
 

Describing Framework Static Structure: 
promoting interfaces with UML annotations 

Sérgio Lopes, Adriano Tavares, João Monteiro, Carlos Silva 
Department of Industrial Electronics  

University of Minho, Campus de Azurém 
4800-058 Guimarães, PORTUGAL 

Email: <sergio.lopes,adriano.tavares,joao.monteiro,carlos.silva>@dei.uminho.pt 
 
 
 
Abstract—Frameworks are an important form of reuse that 

can help to significantly decrease the time and cost of application 
development. Although widely known, there are still some diffi-
culties associated with framework reuse, which are critical to its 
success. In this paper, we focus on the issues regarding the frame-
work reuse process, and more specifically, on the framework 
architecture description.  

This paper discusses our position on the subject. It enables a 
component-oriented approach to framework reuse by emphasiz-
ing the description of black-box variation-points, and introducing 
call-points. We define the UML-FD profile for UML 2.0, which 
extends UML to support these and other concepts, dedicated to 
describe the static structure of application frameworks. 

I. INTRODUCTION 
Reuse has been a major concern for software engineers, in 

their quest for easier application development with reduced 
time-to-market and cost. Frameworks are an important form of 
reuse that can help to get closer to this long-time pursued goal. 
However, several problems associated with frameworks have 
been identified [2], starting from the framework development 
and ending at its maintenance. This work is concerned with 
the difficulties inherent to framework reuse from the perspec-
tive of the application developer. 

Object-oriented frameworks [1] are widely known, but 
building applications by reusing them poses problems that 
software developers have to struggle with. Frameworks cap-
ture a specific domain’s commonalities and variabilities, by 
implementing common elements and providing an architecture 
that localizes variability at variation-points. In contrast with 
passive forms of reusable software (typically, procedural li-
braries or traditional class libraries), frameworks are active 
and exhibit predefined behaviour, which imposes some con-
trol flow among its components. Consequently, they are often 
complex and hard to understand, what can make reusing them 
a difficult and time-consuming assignment [1]. 

These problems must be alleviated in order to make frame-
work reuse an alternative way of building applications that is 
decisively attractive. In fact, it is not always guaranteed to be 
advantageous comparatively to application development by 
“reinventing the wheel”. The typical framework slow learning 
curve is one major issue because it results in a delayed pro-
ductivity payoff, which can arrive unrewardingly late or even 
be unacceptable. Therefore, diminishing these problems is a 

decisive factor for the success of framework-based reuse ap-
proach. It has been consensually recognized the need to effec-
tively communicate frameworks and provide appropriate tool 
support, in order to minimize the effort and time required to 
build applications. The present paper focuses on difficulties in 
communicating the framework to the re-user, and our proposal 
to lessen them. 

Although communicating the architecture is a framework 
developer responsibility, the notation chosen is decisive to the 
following phases of the reuse process to be carried out by ap-
plication developers. It is widely accepted that visual notations 
have crucial advantages over textual languages in the commu-
nication of software. Being a de-facto standard object-oriented 
design notation in industry, UML [21] is a beneficial choice 
for describing frameworks, but it is a general scope and exten-
sible language, not specifically tuned for this purpose. It has 
been previously demonstrated [4] the need to explicitly repre-
sent frameworks variation-points, not supported by UML, in 
order provide effective framework description. Actually, ap-
plying a subset of UML to object-oriented frameworks reuse 
has been addressed before, with a few dedicated extensions 
being proposed [4], [8], [9]. However, a few limitations still 
endure and we investigate how to tackle them, in order to pro-
vide a more complete support for the framework reuse needs. 
We propose the UML-FD profile that integrates a different 
perspective, namely, promoting a component-oriented ap-
proach to application frameworks. 

This paper describes on going research, and starts by dis-
cussing some issues regarding framework description in fol-
lowing section. In section III, we introduce our perspective 
and discuss the foundation of our proposal. In section IV, the 
requirements for object-oriented notations supporting frame-
work reuse are outlined. The UML-FD profile, defining the 
proposed UML extensions, is described in section V. In sec-
tion VI, the related work is reviewed and our contribution is 
explained. Finally, we present the concluding remarks. 

II. ABOUT FRAMEWORK REUSE 
A framework can be reused in many different ways that re-

quire different kinds and amounts of information, which may 
be constrained by business interests. The support that tools 
can offer is also affected, but this is not a matter for this paper. 



 

We discriminate two fundamental forms of object-oriented 
framework reuse: unanticipated reuse and anticipated reuse. 
The differences of them are given below, in a discussion that 
describes their relationships with framework documentation 
aspects. 

A. Anticipated Reuse vs. Unanticipated Reuse 
We make the distinction between these two forms of reuse 

because the information needs, the activities and the results of 
each one are quite different. 

Anticipated reuse takes place when the particular needs of a 
re-user are fulfilled by the functionalities of the framework. In 
more concrete terms, the framework provides enough varia-
tion-points (also named hot-spots [3] or hooks [17]) with 
enough flexibility, to cope with a re-user objectives. Or, the 
other way around, the re-user goals can be achieved by a sub-
set of all the possible variation-points’ adaptations. The 
framework adaptation is realized by providing application 
specific components for variation-points that observe the re-
spective constraints. With this kind of activity, typically, the 
re-user does not have to worry about possible erroneous inter-
actions between the framework components. 

Unanticipated reuse happens when the re-user wants to add 
some functionality that is not provided by the framework com-
ponents, or only to make a slight change to some feature. Usu-
ally, these kind of goals cannot be achieved solely by adapting 
the framework’s variation-points. Most probably, it will be 
necessary to make adaptations outside the set of pre-defined 
variation-points. By doing it, the re-user can more easily in-
troduce erroneous interactions between application specific 
components and the framework. Furthermore, these flaws can 
be difficult to correct, as we see next. 

B. Description Information and Business Rules 
Telling apart the two forms of reuse above is important be-

cause they have a strong impact on both the kind and quantity 
of necessary information about the framework, which in turn 
is a subject of business concerns. 

Anticipated reuse is easier to document because the antici-
pated variability is localized at variation-points. Therefore, it 
is sufficient to provide detailed design documentation only 
about them. In particular, describing the purpose of each 
variation-point, how to adapt it, and their semantic restrictions 
which guarantee that the adaptation will work correctly. Tools 
can also be built to provide specific assistance for filling the 
variation-points. In contrast, unanticipated reuse can occur at 
almost any part of the framework. Hence, besides the varia-
tion-point description, it requires detailed design (and possibly 
implementation) information about the complete framework. 
Notice this is generic software documentation, because it is 
not possible to provide specific reuse information. The same 
applies to tools, which cannot provide any special develop-
ment support for unanticipated reuse. 

Communicating a precise and deep understanding of the 
framework to the re-user is essential to enable the assessment 
of viability that is necessary to achieve specific goals, and the 
development of adaptations that do not violate the framework 

architecture. Naturally, the description should be independent 
of implementation details not important for design, which 
might limit the framework generality, or lead to complications 
caused by framework evolution (see [19] for this kind of prob-
lems). These issues apply to both kinds of reuse, but are much 
harder to manage when support for unanticipated reuse is in-
tended. Unanticipated reuse requires complete information 
about the framework, in order to enable the re-user to develop 
unpredicted adaptations, which correctly interact with the 
framework, and/or change parts of it while maintaining behav-
iour consistent with untouched parts. 

Furthermore, the problem with detailed architecture de-
scription, necessary for supporting unanticipated reuse, is that 
it may collide with business interests. There are a few free 
open-source frameworks but, on the other hand, there are 
commercial frameworks provided by vendors. Development 
of a framework is a long and costly process that requires high 
expertise in the target domain. Thus, revealing the architecture 
details is not usually considered good business because it may 
give advantages to competitors in the same market, and 
framework vendors may be suppliers of dedicated support 
tools. For these reasons, if a framework is not open and there 
is no detailed documentation about it, it may prove to be very 
difficult to achieve a successful unanticipated adaptation. 

C. Description Techniques and Reuse Possibilities 
The spectrum of approaches for framework documentation 

can be classified according to two categories: informal pre-
scriptive techniques, and formal descriptive techniques. 

Prescriptive techniques [14], [15], [16], [17] describe how 
to use the framework, normally using natural language, or 
other informal means of documentation. They provide valu-
able guidance but only to the limited adaptation possibilities 
described. It is not possible to predict all the ways of adapting 
a framework, in fact, not even is feasible to describe a large 
number of them. Therefore, these techniques are more suited 
to support anticipated reuse. They are also oriented towards 
less skilled users, or to enable experienced users a quicker 
first application build. 

Descriptive techniques describe the framework architecture, 
usually using formal or semi-formal visual languages, like 
UML [4], [8], [9]. They do not dictate or elicit any particular 
way of reusing it; instead, they try to communicate the frame-
work architecture to the user. They do not provide significant 
guidance for adapting a framework; it is up to the re-user to 
figure out how to adapt it, in order to meet her/his specific 
requirements. Consequently, these techniques are appropriate 
to support unanticipated reuse, and are more oriented towards 
experienced users, who need detailed information more than 
guidance. 

III. OUR APPROACH 
Before we get to the proposed solution to communicate 

frameworks, we explain our point of view about framework 
reuse, which is the foundation for it. First, the technique cho-
sen to describe frameworks, and then the perspective on reuse 
technology, are presented. 



 

We follow the same line as the UML techniques cited 
above, i.e., investigating how to augment the reuse flexibility 
that descriptive techniques provide, with as much guidance as 
possible. In agreement with the exposed in the previous sec-
tion, adopting a descriptive technique to describe a framework 
in detail supports unanticipated reuse. Augmenting a general 
descriptive technique with support for explicit variation-point 
description enables to provide guidance for anticipated reuse. 
Variation-points are the typical key concept for organizing 
this kind of documentation for frameworks, but they are not 
enough, as it will be argued in the next section. No special 
requirements apply to the description of a framework for un-
anticipated reuse, it is much like describing any other piece of 
software. Therefore, the requirements for OO notations for 
framework description (presented below) reflect only the part 
of reuse that is anticipated, because it is the one that requires a 
dedicated approach. 

White-box frameworks [5], more than object-oriented, are 
class-oriented because their adaptation is frequently based on 
inheritance (sub-classing framework classes), which is a 
mechanism that describes class hierarchies. We favour a pre-
dominantly black-box approach in which the framework is 
reused by calling its interfaces and providing components that 
implementing the interfaces it requires. This approach empha-
sizes use relationships instead of inheritance, and thus is suit-
able to support the representation of object interactions. In 
turn, this also facilitates the specification of restrictions on 
clients. 

When using a framework, an application developer is reus-
ing both a design and its implementation. Therefore, we 
choose not to abstract the variation-point description to the 
design level, as opposed to [4]. In fact, we consider that the 
framework should be described with as much precision as 
possible (without neglecting what was stated in the previous 
section). Design variations-points defined by inheritance can 
be refactored into use relationships, with interfaces to be im-
plemented by application specific components [4]. This can be 
done using the Strategy design-pattern [6], or other suitable 
design patterns based on separation meta-patterns [3]. This 
polymorphism and forwarding technique separates the inter-
faces from implementations, making the design more decoup-
led and flexible than with inheritance, and it is the base for a 
black-box approach to reuse. 

Moreover, if framework classes provide separate computa-
tional and compositional interfaces, it enables a decomposition 
of the framework instantiation process into two different reuse 
activities. In the literature, the process of reusing a framework 
to build an application is usually denominated framework in-
stantiation [1]; we subdivide it in two activities or two phases 
– framework adaptation, and application instantiation – which 
we explain next. 

The adaptation phase (also designated as ‘framework in-
stantiation’ in [4]) consists in providing application specific 
adaptations that define the behaviour of variation-points. The 
application developer learns the details about the framework 
architecture from the annotated UML diagrams, and extends it 
with the application specific components. 

Once all components necessary for an application are avail-
able, the final application can be defined. This is accom-
plished in the application instantiation phase, by creating in-
stances of framework and application components, configur-
ing and interconnecting them to form the final executing ap-
plication. The components provide a compositional interface 
including methods whose names typically start by ‘set’, ‘add’, 
‘remove’, etc, that enable run-time configuration. 

A complete discussion of the reasons behind the separation 
between framework adaptation and application instantiation 
can be found in [22], which discusses our perspective on tool 
support for these activities. 

To conclude, frameworks designed this way enable the ap-
plication definition by creating and configuring its run-time 
units individually, like components. We consider them com-
ponent-oriented frameworks, because they can be adapted by 
composing components, although we do not consider any 
standard component model. We provide support for reusing 
them, but we also provide specific constructs for white-box 
reuse that can be useful for describing “gray-box” frame-
works. 

IV. FRAMEWORK DESCRIPTION REQUIREMENTS 
Considering the discussion in the previous section, we pre-

sent below, what we consider to be, the main requirements for 
describing frameworks in order to facilitate its reuse. 

Based on our experience in adapting and implementing 
frameworks, and on the revision of previously proposed solu-
tions for framework design, we have elicited a requirements 
list for design languages to describe OO frameworks. First, we 
present it, and then we discuss each one of the requirements: 
1) Domain and purpose of the framework and its specific 

features; 
2) Framework static structure with explicit variation-point 

identification; 
a. Support for white-box, black-box and client reuse; 
b. Define different types of variation-points with clear 

semantics; 
c. Variation-point syntax enabling the definition of se-

mantic restrictions on the adaptation; 
3) Framework dynamic behaviour with explicit support for 

variation-points; 
a. Define causal obligations for variation-point adapta-

tion; 
b. Explicit differentiation of variation-points messages 

in behavioural compositions; 
4) Guidance for framework adaptation process, with support 

for optional variation-points; 
5) Guidance for the application instantiation process. 

The complete framework documentation should include the 
identification of its target domain, as much as possible defin-
ing the boundaries of that domain, and stating which problem 
the framework solves in that domain. It should also provide a 
functional view of the features provided by the framework. 

The description of framework static structure identifies the 
components that compose its design and their relationships. It 



 

gives a static view of the objects’ collaborations. It should 
explicitly distinguish the variation-points from the framework 
core, in order to assist the framework user in identifying more 
easily the parts that need to be provided, or adapted, to create 
applications. This a form of endowing descriptive techniques 
with some guidance for the framework adaptation phase. 

White-box and black-box variation-points have been con-
sensually recognized as forms of adapting frameworks, and 
their explicit identification and description has been supported 
by graphical notations dedicated to framework reuse ([4], [8], 
[9]). Nevertheless, frameworks do not always rely exclusively 
in the Hollywood Principle (“don’t call us we’ll call you”, or 
inverted control mechanism based on Template Method [6]) to 
communicate with application components. Sometimes they 
provide services to be called by clients, as has been recog-
nized in [18]. We have developed a framework for measure-
ment systems, inspired by [13], that combines predominant 
‘inverted’ flow of control with pieces of non-inverted control 
flow. This example experience suggests broadening the 
framework variety to frameworks that have a neither purely 
called neither purely calling architecture. The interaction be-
tween clients and framework through use relationships may 
vary from single method invocation to complex protocols that 
impose obligations on the clients. We share this view with 
[10], which also emphasizes that use relationships, as a basis 
of behaviour composition, play an important role in frame-
work integration. Therefore, we introduce the notion of call-
points as parts of the framework interface, anticipated for cli-
ent use, that play a key role in the framework operation. We 
believe call-points are a concept that reflects an important 
variety of reuse needs and, for this reason, we widen the ex-
plicit identification of framework reuse points to support 
them. 

Variation-points should be classified according to different 
types, more refined than white-box and black-box, providing 
additional semantics which are helpful for guiding the frame-
work adaptation. Their semantics should be made as precise as 
possible, with clear description of the abstract possibilities it 
opens and abstract restrictions it imposes. Their syntax should 
support the representation of additional semantic adaptation 
restrictions that may be useful to specify limits to the set of 
possible application instantiations. 

The description of dynamic behaviour gives a view of the 
dynamic aspects of the framework design that clarifies the 
objects’ responsibilities, their context dependencies, and how 
they can be combined. By representing explicitly the run-time 
collaborations between objects, it reveals the framework ar-
chitecture. How much of this information is provided depends 
on the factors considered in the previous section. This infor-
mation is fundamental to comprehend the framework and, 
once more, it is vital for opening the door to the flexibility of 
unanticipated reuse. Furthermore, it also enables the descrip-
tion of causal obligations for variation-points and call-points. 
These behavioural restrictions should be documented, if they 
exist, and the corresponding messages in object interactions 
should be explicitly differentiated from the framework core 
messages. 

The adaptation process should be guided by a description 
that helps to reduce the complexity of the task, especially for 
medium and large-scale frameworks. Some variation-points 
may be optional, and others may require the adaptation of an-
other variation-point. These dependencies should be described 
in order to provide more guidance and facilitate the job of the 
application developer. 

Finally comes the instantiation process, which should also 
be guided some how. A framework may be adapted to build 
an application, or to be integrated into a larger project. These 
processes should be described, if not in abstract, at least with 
partial, or complete, concrete examples. 

V. STATIC STRUCTURE DESCRIPTION 
Although the set of requirements in the previous section 

cover all aspects of framework documentation, this paper 
deals only with the description of static structure, i.e. corre-
sponding to requirement 2.  

UML 2.0 is a convenient choice for describing frameworks 
due to its widespread use. It provides structural diagrams, 
which depict the static features of the model, and behavioural 
diagrams that describe the dynamic aspects of the model. 
UML structural diagrams include the class, object, package, 
component, composite structure, and deployment diagrams. 
To describe the frameworks’ static structure several of these 
available diagrams can be used for different purposes. In our 
opinion, two diagrams are rather useful: the class diagram for 
explicit identification and characterization of variation-points 
and call-points, and composite structure diagrams as a com-
plement to elucidate its architecture. 

We introduce the UML Profile for Framework Description 
(UML-FD), which extends UML with dedicated concepts 
supporting a few different variation-points and call-points. 
Naturally, the proposed annotations address the aforemen-
tioned requirements 2-a through 2-b, and therefore we do not 
discuss them further. The UML-FD profile is defined for 
UML 2.0, i.e. it augments the current version of UML making 
use of its improved extensibility mechanism.  

Fig. 1 defines the profile abstract syntax and its integration 
with the UML 2.0 meta-model. All the UML meta-classes 
extended by UML-FD belong to the Classes::Kernel 
language unit. Tables I to III describe the semantics of each 
individual extension in a compact tabular form (similar to the 
presentation of UML 2.0 standard stereotypes). Each table 
groups variations-points according to white-box variation-
points, black-box variation-points, and call-points, providing a 
clear separation between these different reuse categories.  

White-box variation-points are supported because they can 
be useful to describe white-box frameworks, which is classi-
cally the first form that every framework assumes. The appli-
cation class annotation is not a variation-point at all, but in-
stead, it can be used to discriminate framework classes from 
application specific ones. Both extensible class and non-
overridable method follow the Open-Closed Principle of ob-
ject-oriented design. Variable methods are usually abstract 
methods of abstract classes. The three white-box variation-
points can be can be directly implemented by subclasses, 



 

however that is not recommended. They can also be combined 
in both concrete and abstract classes. 

Black-box variation-points and call-points are the recom-
mended option for reusing a framework. The realizable inter-
face is the black-box reuse variation-point with inverted con-
trol flow, to be implemented during the framework adaptation 
phase. All three white-box variation-points can (and should) 
be converted to a realizable interface, as described in section 
III. Select class and define parameter are black-box variation-
points which are defined during the application instantiation 
phase (according to the approach described in section III). 

In the next subsections, we discuss in more detail the main 
contributions of the UML-FD profile to the description of 
framework static structure. 

A. Client Interface  
A client interface identifies a framework call-point. A call-

point is defined by a bidirectional association between one 
client interface and a framework class that provides one corre-
sponding service interface. The association end connected to 
the framework class identifies (has the name of) a service in-
terface, or control method, to be used by the client interface. 

The example of Figure 2 illustrates a call-point that is an 
implementation of the Observer design pattern [6]. The call-
point is identified by three elements: the Observer interface; 
the association connecting Observer and Figure with an 
association end for Figure whose role name is subject; 
and, the part of Figure class interface defined by the 
Subject interface. The Observer interface is the client 
interface that must be implemented by client components 
using the call-point. The subject role name of the 
association end identifies the name of the service interface to 
be used by the Observer client interface. The Subject 

interface is the service interface that defines the Figure 
method(s) to be called by Observer client(s). 

The client interface construction is a kind of localized role 
modelling at implementation level, in which client interfaces 
represent role-types to be integrated by client classes, and ser-
vice interfaces represent role-types assigned to core frame-
work classes. It enables the modelling of multiple collabora-
tions, through disjunctive groups of semantically related 
methods (role types), on the same framework interface. Each 
collaboration is specified by one association that identifies the 
framework interface methods to be called (service interface) 
and connects to the respective interface required on clients 
(client interface). This solution is described only under the 
perspective of the static structure description: roles, repre-

«metaclass»
Interface

«metaclass»
Operation

«metaclass»
Parameter

kind : SelectKind

«stereotype»
Select

single
set
collection

«enumeration»
SelectKind

«profile» UML-FD

«stereotype»
Application

«stereotype»
Extensible

restricted : Boolean

«stereotype»
Realizable

«stereotype»
Client

«stereotype»
Non-overridable

«stereotype»
Variable

«stereotype»
Define

«metaclass»
Class

 
Fig. 1.  The UML-FD Profile for UML 2.0. 
  

TABLE I 
WHITE-BOX VARIATION POINTS 

Applies to Stereotype Semantics 

Class, 
Interface «Application» 

An application class, or application 
interface, is part of the application, as 
opposed to classes which belong to a 
framework. 

Class «Extensible» An extensible class can have new meth-
ods added. 

Operation «Variable» 
A variable method is a method to be 
implemented by application classes (im-
plementation variation). 

Operation «Non-
overridable» 

A non-overridable method can be ex-
tended but cannot be overridden, i.e., any 
overriding method must always invoke it. 

TABLE II 
BLACK-BOX VARIATION POINTS 

Applies to Stereotype Semantics 

Interface «Realizable» 

A realizable interface is an abstract type 
for which application classes can be de-
fined. It has a property named restricted 
that if true forbids sub-typing (classes im-
plementing it, cannot have a different inter-
face). 

Class, 
Interface «Select» 

A select class limits the variation-point to 
the concrete sub-components provided by 
the framework. It has a property named 
kind, whose value can be single, set, or 
collection. 

Parameter «Define» 

A define parameter, is a parameterized 
variability that defines an important charac-
teristic of the framework (e.g., in opposition 
to ordinary attributes or parameters related 
to component interconnection). Constraints 
on the valid values may be defined as sup-
ported by UML (e.g., Enumeration). 

 
TABLE III 

CALL-POINTS 
Applies to Stereotype Semantics 
Interface «client» A client interface is an interface to be 

implemented by application classes that 
interact with a framework by calling ser-
vices of its components (use relationship). 
Any (call-back) methods it has define client 
constraints, namely static behaviour obliga-
tions. 

Operation «control» A control method is a method to be called 
by clients to externally control some special 
framework function or trigger some event. 

 



 

sented by interfaces, describe type information only (or static 
behaviour). However, client interfaces can be empty, which 
supports the specification of dynamic behaviour obligations 
on frameworks clients, independent from structural properties. 

The idea behind it is to take advantage of some useful prop-
erties of the role modelling technique while avoiding some of 
its intrinsic verbosity and complexity (see next section proper-
ties discussion). Namely, it enables the definition of client 
restrictions without over constraining client implementation 
structure. It also provides more structure and semantic infor-
mation about framework call-points and its relationships with 
clients. The framework description is kept succinct because 
client interfaces express role-types which are confined to call-
points. This technique avoids the overweight and complexity 
of the coexistence of reusable role models with respective 
implementations, by keeping the description at implementa-
tion level and within a single paradigm. 

B. Control Method 
The control method identifies another kind of framework 

call-point. It is a simpler construction for using framework 
services that involves a single component method, because it 
requires no separate service interface for the core framework 
component. In addition, it is not intended to be used with a 
client interface, although it might (as defined above). As an 
example, we have used it to model the trigger function for a 
real-time embedded framework, shown in Figure 3. The 
Sensor application component invokes the update() 
control method, to stimulate the Trigger framework 
component. Obviously, the framework description does not 
include the application class, which is included in the figure 
only for illustrative purposes. 

Control methods are applicable more generally to event-
driven frameworks that depend on externally fed events. We 
believe, control methods can also be used to model frame-
works that enable easier composition with other frameworks, 
by providing externally regulated control-flow. They can be 
used to synchronize the control-flow of such frameworks. 

VI. RELATED WORK 
The framework description problem has been addressed 

from informal textual language approaches [7], to formally 

defined visual notations that extend UML [8]. 
Informal textual techniques are usually prescriptive. One 

first example is the cookbook [14] for the Model-View-
Controller framework, useful for implementing graphical user 
interfaces. A similar work is found in [15], where little more 
structured of a set of Alexandrian-based patterns helps to re-
use the Hot-Draw framework. Both describe the framework 
purpose and how to use it. They consist of non-uniform nar-
rated descriptions with minimal structure, and examples solv-
ing problems about how to use the framework. This kind of 
technique was improved by hooks [17], which are more uni-
form, formal and structured adaptation receipts. Hooks define 
a classification of adaptation methods and kinds of support 
provided. However, its typology does not provide a clear 
separation of adaptation activities involved, and they may fo-
cus on different framework functionalities with different lev-
els of detail. As discussed in section II.C, prescriptive tech-
niques are focused on the framework intended use and there-
fore do not offer support for unanticipated reuse. 

Although discussing how our approach can be combined 
with software tool support is outside the scope of this paper, 
we still look at tool-based solutions, but we concentrate on 
framework communication and we overlook the facilities for 
automating framework adaptation. By using software tools, it 
was possible to improve the cookbook technique to electronic 
books. Active cookbooks [20] are a prominent example, which 
provides interactive receipt descriptions that explain how to 
use the framework design to solve problems. However, it 
lacks flexibility because the user has to follow the dictated 
steps. Evolutions of the electronic book approach are Smart-
books [11] and Specialization Patterns [12]. Smartbooks are 
based on a hierarchical interactive hypertext interface through 
which the desired framework functionalities are chosen. From 
it, a task plan is generated which guides the adaptation. Spe-
cialization patterns are described by a dedicated notation, 
which lacks tool support. The specialization patterns for a 
specific framework are embedded in a tool, which handles 
them providing support for building applications. None of 
these approaches provides the explicit representation of varia-
tion-points within the framework design. Although formalized 
somehow (to enable tool processing), it is still the framework 
designer who prescribes its adaptation options. 

A few works have been devoted to descriptive visual ap-
proaches for documenting frameworks. UML has been the 
obvious target, being extended with concepts dedicated to 
framework documentation [4], [8], [9]. These works have 
similarities – all provide UML extensions to identify varia-
tion-points – and parts that are complementary: [4] focus more 
on variation-points identification and characterization, while 
[8] provides stronger support for expressing framework syntax 
and semantics, and [9] introduces selection of black-box com-

+draw(in g : Graphics) : void
+moveBy(in dx : int, in dy : int) : void
+size() : Dimension
+attach(in o : Observer) : void
+detach(in o : Observer) : void
+notify() : void

Figure

+update() : void

«Client»
Observer

+attach(in o : Observer) : void
+detach(in o : Observer) : void
+notify() : void

«interface»
Subject

0..*

subject

1

 
Fig. 2.  Example of a Client Interface. 
  

«Application»
Sensor calls

«Control» +update() : void

Trigger

 
Fig. 3.  Example of a Control Method. 
  



 

ponents and parameterization. The role modelling technique 
[10] is a complementary technique that tackles object relation-
ships, which are fundamental for framework integration and 
composition. The requirements on clients calling framework 
services are explicitly represented but, on the other hand, this 
approach disregards the explicit identification of variation-
points. frameworks may require different instantiation mecha-
nisms. Catalysis [23] also applies UML to support reuse. 
However, it defines model frameworks as collaborations of 
abstract types, which are reused through parameter substitu-
tion. It does not address the reuse of (code) frameworks, and 
consequently it does not provide dedicated annotations for 
explicit representation of its variation-points. Catalysis defines 
a software development method based on the concepts of 
model frameworks and components. 

Our research also explores UML as visual descriptive tech-
niques for describing frameworks. It builds on previous work, 
but we provide a wider and more complete coverage of the 
different reuse needs. While keeping the support for white-
box variation-points, a clear and precise definition of black-
box variation-points is provided. We introduce UML exten-
sions for explicit expression of use relationships with con-
straints on clients, to facilitate the reuse and composition of 
called frameworks [18] and black-box [5] frameworks. We do 
that by introducing call-points, which borrow inspiration from 
concepts of the cited role modelling technique. By putting a 
special emphasis on use relationships, or object relationships, 
we enable a black-box approach to framework reuse. 

VII. CONCLUSION 
Software engineering has pursued for decades the ambition 

of increased reuse and software quality. Frameworks are an 
important alternative, which offers high reuse potential, but 
still have a few problems to be tackled. Addressing these dif-
ficulties, namely by employing graphical notations and pro-
viding appropriate tool support, it is critical to its success as 
an option for application development, and for the reuse goal 
in general. 

Some important factors that influence the support that is 
provided for framework reuse were discussed. An explanation 
of our perspective on framework reuse was given. A require-
ments list for object-oriented design notations providing spe-
cific support for framework reuse was elaborated and dis-
cussed. The UML-FD profile for UML 2.0 was defined, offer-
ing a wider coverage of needs for describing framework static 
structure description. The role modelling technique was ana-
lysed in more detail, because it is the background for part of 
our work. 

We have provided a clear separation of different reuse op-
tions: white-box, black-box and call-points. Although the pro-
posed notation supports white-box variations-points, we en-
courage a component-oriented approach by emphasizing back-
box variation-points and call-points. For that purpose, we also 
define how framework interfaces must be described in order to 
enable a black-box application development. 

We have introduced the concepts of client-interfaces and 
control methods that expand the spectrum of reuse concepts, 

by including specific points for calling framework services. 
These concepts are important in the context of black-box reuse 
and framework integration or composition. 

We believe the presented work contributes to facilitate the 
communication of frameworks. Hence, it also helps to de-
crease the difficulties and complexity associated with the 
framework reuse-based development, making it a more attrac-
tive, easy and rewarding alternative to develop applications. 

ACKNOWLEDGEMENTS 
The authors would like to thank the anonymous reviewers 

for their contribution to this work. 

REFERENCES 
[1] M. Fayad, and D. Schmidt, “Object-oriented Application Frameworks,” 

in Communications of the ACM, vol. 40, no. 10, ACM Press, Oct. 1997, 
pp. 32–38. 

[2] J. Bosch, P. Molin, M. Mattsson, PO Bengtsson and M. Fayad, “Object-
oriented frameworks — problems & experiences,” in Building 
Application Frameworks — Object-Oriented Foundations of Framework 
Design, M. E. Fayad, D. C. Schmidt and R. E. Johnson, Ed. New York, 
NY: Wiley & Sons, 1999, pp. 55–82. 

[3] W. Pree, “Meta Patterns — a means for capturing the essentials of 
reusable object-oriented design,” in Object-Oriented Programming, 
ECOOP ’94, Tokoro, Mario & Pareschi, Ed. Remo: Springer-Verlag, 
1994, pp. 150–162. 

[4] M. Fontoura, W. Pree and B. Rumpe, “UML-F: A Modeling Language 
for Object-Oriented Frameworks," in Proc.of the European Conference 
on Object-Oriented Programming (ECOOP’00), LNCS 1850, 2000, pp. 
63–84. 

[5] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of 
Object-Oriented Programming, vol. 1, no. 2, pp. 22–35, Jun. 1988. 

[6] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: 
Elements of Reusable Object-Oriented Software, Reading, MA: 
Addison-Wesley, 1995. 

[7] L. Murray, D. Carrington and P. Strooper, “An approach to specifying 
software frameworks,” in Proc. of the 27th Conference on Australasian 
Computer Science, Dunedin, New Zealand, 2004, pp. 185–192. 

[8] N. Bouassida, H. Ben-Abdallah, F. Gargouri and A. Ben Hamadou, 
“Formalizing the framework design language F-UML,” in Proc. of the 
1st IEEE International Conference on Software Engineering Formal 
Methods, 2003, pp. 164–172. 

[9] T. Oliveira, P. Alencar and D. Cowan, “Towards a declarative approach 
to framework instantiation,” in Proc. of the Workshop on Declarative 
Metaprogramming to Support Software Development of the 17th IEEE 
International Conference on Automated Software Engineering, 
Edinburgh, Sept. 2002, pp. 5–8. 

[10] D. Riehle, and T. Gross, “Role model based framework design and 
integration,” in Proc. of the 13th ACM Conference on Object-Oriented 
Programming Systems, Languages and Applications (OOPSLA’98), 
Vancouver, Canada, 1998, pp. 117–133. 

[11] A. Ortigosa and M. Campo, “Smartbooks: a step beyond active-
cookbooks to aid in framework instantiation,” in Technology of Object-
Oriented Languages and Systems, 25, IEEE Press, June 1999. 

[12] M. Hakala, J. Hautamäki, K. Koskimies, J. Paakki, A. Viljamaa and J. 
Viljamaa, “Annotating reusable software architectures with 
Specialization Patterns,” in Proc. of the Working IEEE/IFIP Conference 
on Software Architecture, August 2001. 

[13] J. Bosch, “Measurement systems framework”, in Domain-specific 
Application Frameworks, M. E. Fayad, D. C. Schmidt and R. E. 
Johnson, Ed. New York, NY: Wiley & Sons, 2000, pp. 177–205. 

[14] G. Krasner and S. Pope, “A cookbook for using the Model-View-
Controller user interface paradigm in Smalltalk-80”, in Journal of 
Object-Oriented Programming, 1(3), 1988. 

[15] R. Johnson, “Documenting Frameworks using Patterns,” in Proceedings 
of the Conference on Object-Oriented Programming Systems, 



 

Languages and Applications (OOPSLA’92), Vancouver, Canada, 1992, 
pp. 63–78. 

[16] W. Pree, Design Patterns for Object-Oriented Software Development, 
Addison-Wesley, 1995. 

[17] G. Froehlich, H. Hoover, L. Liu and P. Sorenson, “Hooking into object-
oriented application frameworks”, in Proceedings of the 1997 
International Conference on Software Engineering, Boston, MA, 1997. 

[18] S. Sparks, K. Benner and C. Faris, “Managing object-oriented 
framework reuse,” IEEE Computer, pp. 53–61, Sep. 1996. 

[19] P. Steyaert, C. Lucas, K. Mens, T. D'Hondt, “Reuse contracts: managing 
the evolution of reusable assets,” in Proceedings of the 11th Conference 
on Object-Oriented Programming Systems, Languages and Applications, 
San Jose, CA, October 1996, pp. 268–285. 

[20] W. Pree, G. Pomberger, A. Schappert and P. Sommerlad, “Active 
guidance of framework development,” Sofware — Concepts and Tools, 
Springer-Verlang, 1995. 

[21] Object Management Group (2005, July 4th). Unified Modeling 
Language: Superstructure (version 2.0) [Online] Available: 
http://www.uml.org. 

[22] S. Lopes, C. Silva, A. Tavares and J. Monteiro, “Application 
development by reusing object-oriented frameworks,” in Proceedings of 
the IEEE International Conference EUROCON 2005, Belgrade – Serbia 
& Montenegro, November 2005. 

[23] D. D’Souza and A. Wills, Objects, Components, and Frameworks with 
UML: the Catalysis approach, Addison-Wesley, 1999. 


