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A B S T R A C T

Combining different programs or code fragments is a natural way to build larger pro-
grams. This allows programmers to better separate a complex problem into simple parts.
Furthermore, by writing programs in a modular way, we increase code reusability.

However, these simple parts need to be connected somehow. These connections are done
via intermediate structures that communicate results between the different components,
harming performance because of the overhead introduced by the allocation and dealloca-
tion of multiple structures.

Fusion, a very commonly used technique in functional programming, aims to remove the
creation of these unnecessary structures, as they don’t take part in the final result.

With the introduction of streams and lambda expressions, Java made its way into a more
functional programming style. Yet, these mechanisms lack optimization and the adaptation
of fusion techniques used by some compilers for functional languages could benefit the
performance of Java streams.

In this thesis, we study how functional fusion can be adapted to Java Streams.

ii



R E S U M O

Combinar diferentes programas ou fragmentos de código é uma forma natural de con-
struir programas maiores. Isto permite aos programadores melhor separar um problema
complexo em partes simples. Além disso, ao escrever programas de forma modular, esta-
mos a aumentar a reutilização do código.

Contudo, estas partes têm de ser ligadas de alguma maneira. Estas conexões são feitas
via estruturas intermédias que comunicam os resultados entre os diferentes componentes,
prejudicando a performance com o overhead introduzido pela alocação e desalocação de várias
estruturas.

A fusão, uma técnica muito usada em programação funcional, pretende remover a criação
destas estruturas desnecessárias, uma vez que não tomam parte no resultado final.

Com a introdução de streams e expressões lambda, o Java abriu caminho para um estilo
de programação mais funcional. Mesmo assim, estes mecanismos não possuem otimização
e a adaptação de técnicas de fusão utilizadas por alguns compiladores de linguagens fun-
cionais poderiam beneficiar a performance das streams do Java.

Nesta dissertação, é estudado como a fusão em programação funcional pode ser adaptada
às streams do Java.
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1

I N T R O D U C T I O N

1.1 context

In the last years, programming languages have evolved in order to provide powerful
abstractions to programmers. Examples of such abstractions are models that represent
code abstractions, powerful type systems and recursion patterns allowing the definition of
functions that abstract the data type they traverse.

Recently, Java adopted lambda expressions as a mechanism to manipulate its collections,
the so called streams. These lambda expressions are very used by the functional program-
ming community and allow writing traversals on complex data structures in a concise way.

However, the execution of these recursion patterns has several efficiency problems, either
by doing more traversals than necessary, or by creating intermediate data structures. In
the context of functional programming, a lot of work has been developed for an efficient
execution of these mechanisms. Unfortunately, none of this work was incorporated in Java
and, because of that, stream execution is not efficient, yet!

In recent times, the growing concern with energy waste has steered the focus of software
optimization not only to performance issues, like execution time and memory consumption,
but to the energy consumption side as well. As such, it is expected that the adaptation
of several fusion mechanisms (well known to the functional community) will allow its
application on Java streams, making it possible to contribute to a greater efficiency of the
programs both in terms of energy consumed and execution time.

1.2 motivation

With the introduction of streams and lambda expressions, Java allowed programmers to
write their code in a more concise and readable way. Moreover, the Stream class allows the
possibility to compose operations, such as maps and filters, making it possible to express
long, and sometimes complex, sequences of instructions with little effort. However, if these
mechanisms are not tuned appropriately, they may lead to efficiency problems. As such,

1



1.3. Objectives 2

programs are affected by certain problems such as the introduction of overhead, multiple
traversals and allocation of needless objects.

Modifying the program’s code in order to overcome these issues has the drawback of
compromising its readability. Furthermore, a more efficient implementation may not nec-
essarily be the most natural solution to a problem, leading to increased difficulty during
development and maintenance.

In essence, programmers wish to write programs in the style they are most familiar with,
not necessarily the most efficient one, and have them perform the best way possible. They
want the best of both worlds.

Therefore, there’s a need for techniques that automatically perform these kinds of op-
timisations automatically. That is where this thesis tries to step in, providing a way for
Java programmers to overcome the efficiency problems that arise as a consequence of them
writing their programs in powerful ways that ease their understandability.

1.3 objectives

In this thesis, the following objectives are to be achieved:

• Adapt fusion and deforestation techniques to Java streams

• Develop a structured template to assist in the systematic application of fusion and
deforestation techniques to streams

• Validate this template with programs using streams

• Make a detailed study of the gains obtained with the optimisation, namely in terms
of execution time.

1.4 green software laboratory

This thesis is being developed under a research grant within the Green Software Lab (GSL)
project, which aims to analyse and reduce energy consumption in software systems. GSL is
funded by Fundação para a Ciência e a Tecnologia (FCT).

In the context of previous work done under the GSL project (which is not presented in
this thesis), I was a co-author of the following publications:

• Towards a Green Ranking for Programming Languages [2] in the 21st Brazilian Sym-
posium on Programming Languages (SBLP), which was awarded the Best Paper Award,
leading to the submission of an extended version to SCP 2018.
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• Energy Efficiency across Programming Languages: How does energy, time, and mem-
ory relate? [15] in the 10th International Conference on Software Language Engineering
(SLE)

• Energyware Analysis [3] in the 7th Workshop on Software Quality Analysis, Monitoring,
Improvement, and Applications (SQAMIA)

1.5 structure of the thesis

This document is structured as follows.
Chapter 2 presents the state of the art, where some important contributions to fusion and

deforestation are presented so as to place ourselves in the current stage of development of
these techniques.

Chapter 3 is the one in which the code produced in order to adapt Stream Fusion to an
object-oriented setting is discussed.

Chapter 4 explains how some of GHC’s optimisations were mimicked as code refactor-
ings.

Chapter 5 presents the template one whishes to obtain after applying the transformations
described in the previous chapter.

Chapter 6 presents some examples in which the adapted setting provides a higher degree
of functional expressiveness to Java.

Chapter 7 compares the impact of the different optimisation steps by presenting the
obtained results from the performance tests that were carried out. Additionally, it presents
some experiments performed in the early stages of this work in order to assess the current
behaviour of Java Streams.

Chapter 8 closes this document by stating the attained conclusions and providing some
insights to where future work could be directed.



2

S TAT E O F T H E A RT

2.1 intermediate structures

Building programs through function composition has many advantages as it makes it
easier to write programs in a clear and modular way. However, this style of programming
is subject to some runtime penalties [4]. More precisely, each function composing the pro-
gram needs to communicate its result to the next function. In functional programming, a
paradigm which is very fond of this kind of programming approach, this is often accom-
plished by creating intermediate lists that connect the different functions assembling the
program. Therefore, with strict evaluation, a lot of intermediate structures are allocated
along the way which do not take part in the final result [19].

As Wadler [19] states, the problem with the memory usage of these structures can be over-
come with lazy evaluation. This way, because elements are generated as they are needed,
there is no requirement for loading the entirety of the intermediate lists. However, each list
element still has to be allocated, checked and de-allocated.

2.2 deforestation

To deal with the problem arising from the allocation of intermediate lists, a program
transformation technique called deforestation is used. This method allows for the elimination
of intermediate structures which are created and consumed soon afterward.

One of the first deforestation algorithms was presented by Wadler and, although it re-
moved intermediate data structures, it had some disadvantages, as Gill et al. state.

The major drawback of this kind of approach to the elimination of intermediate structures
is the restriction imposed on the algorithm inputs. In his paper, Wadler [19] presents what
he calls a treeless form for defining functions which do not use any internal intermediate
structures. The algorithm developed transforms a program composed by functions defined
in treeless form into a single function, also defined in treeless form. As one can see, this is
where one of the main disadvantages of this technique is evident. By limiting its application
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2.3. Short-cut fusion 5

to functions defined in a restrictive form, the algorithm has a restricted range of inputs to
operate on.

This places boundaries on the style of programming allowed to programmers, compro-
mising code readability and conciseness.

A technique allowing the elimination of intermediate data structures, and thus creating
a more efficient version, without sacrificing code clarity was needed.

Saraiva and Swierstra [17] studied the elimination of intermediate structures in the con-
text of attribute grammars.

2.3 short-cut fusion

In Gill et al. [7], a transformation technique to create more efficient versions of programs
through the elimination of intermediate lists is presented. The core idea behind this defor-
estation technique are the algebraic transformations performed on some functions.

With these algebraic transformations, the authors show it is possible to standardise the
way lists are consumed and produced. Furthermore, this algorithm allows every program
as input.

In Haskell, one could define the well known list data type as:

data List a = Nil | Cons a (List a)

foldr is a function which behaviour consists of processing a list with an operator and
returning the value it constructed along the way (accumulated in an initial value).

This systematic consumption of a list can be thought of as replacing every occurrence of
Cons with the provided operator and the Nil instance with the initial value.

Therefore, many functions that consume lists in a constant way like the one just described
can be expressed in terms of foldr. That is because this higher-order function encloses that
kind of systematic consumption of a list.

Example implementations resorting to foldr of pre-defined functions can be seen in the
same paper by Gill et al. [7].

However, this standardisation of list consumption is not enough to achieve the desired
program transformation, as the following example demonstrates.

Supposing a composition of functions like:

sum (map f ls)
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where map applies function f to each element of ls and sum performs the addition of every
element in the list.

One could modify this program and have:

foldr (+) 0 (foldr ((:).f) [] ls)

where foldr is a higher-order function which consumes a recursive data structure (in this
case, a list) by applying a given combining function in a systematic way to all the constituent
parts, building a return value in the end.

But there isn’t a rule that simplifies occurrences of foldr/foldr. A workaround for this,
could be rewriting these kinds of programs in a more specific way, and have the above
example transformed in:

foldr ((+).f) 0 ls

The problem with this approach is that it is not very general. More precisely, it is very
difficult to be sure we have sufficient rules. When another combination of functions is
encountered, a new rule would need to be written so that that particular case would get
simplified.

In the example used to illustrate this, the foldr on the outside had no way to know how
the foldr on the inside was producing its result list. As such, we also need a way to stan-
dardise list production.

The abstraction described for list consumption consists in the replacement of every cons

with a function and the nil at the end with a given value. And foldr encapsulates this
behaviour by receiving a function f and an initial value acc.

Therefore, if list production is abstracted in terms of cons and nil, it is possible to obtain
foldr’s effect if this list-producing abstraction is applied to f and acc.

As such, a function build can be defined like:

build g = g (:) []

Following the line of thought just described, we come up with the foldr/build rule, which
can be expressed as:

foldr f acc (build g) = g f acc

Listing 2.1: foldr/build rule
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As an example, one can consider the upto function which, given two numbers, produces
a list that starts from the first one and continues until the second one.

In a very straightforward way, one could define this function as:

upto x y = if x>y then []

else x : upto (x+1) y

But, as stated before, we can try to abstract the production of the list in terms of cons and
nil, and thus getting the following definition:

upto’ x y = \ cons nil -> if x>y then nil

else cons x (upto’ (x+1) y cons nil)

Now, the function upto would be written like:

upto x y = build (upto’ x y)

Deforestation is now possible if the list is produced using build and consumed using
foldr:

mul (upto x y) = foldr (*) 1 ( build (upto’ x y))

= upto’ x y (*) 1

Applying the foldr/build rule presented in 2.1 (key elements highlighted inside red rectan-
gles) allows us to obtain a reduced form of the function mul, where no intermediate list is
produced, which confirms the effect of deforestation.

2.4 circular program calculation

Algorithms that perform multiple traversals on the same data structure can be expressed
as a single traversal function through a technique called circular program calculation.

This kind of approach, first explored by Bird [1], highlights the importance of the lazy
evaluation mechanism in functional languages like Haskell. In fact, defining circular pro-
grams in this way only works because of lazy evaluation. A circular definition has the
consequence of creating a function call containing an argument that is, simultaneously, a
result of that same call. Under a strict evaluation mechanism, this can be a problem as an
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infinite cycle is created because values are demanded before they can be calculated, leading
to non-termination.

On the other hand, lazy evaluation allows for the computation of such circular structures.
With this strategy, the right evaluation order of the expression is determined at runtime.
More specifically, only the elements of the expression to be computed that are necessary to
continue are expanded.

Although circular programs avoid unnecessary multiple traversals, they are not neces-
sarily more efficient than their more straightforward counterparts [6] and are even more
difficult to write. In fact, even more experienced programmers find it hard to understand
programs written in such a way. In his paper, Bird proposes deriving these circular pro-
grams from their less efficient (in terms of number of traversals), but more natural, equiva-
lent solutions.

The example he uses is the function repmin, which has become a traditional example for
being simple and a good assistant for the explanation of this particular technique.

The problem at hand is going to be the replacement of every leaf value in a tree with the
original minimum value of the tree.

First of all, we must define a datatype for the tree. After that, we need a function replace

and a function tmin to swap the tree’s leaves for a given value and to calculate the minimum
value of a tree, respectively.

With that, we can easily come up with a natural way of expressing the problem, which is
implemented by the function transform.

data LeafTree = Leaf Int

| Fork (LeafTree , LeafTree)

tmin :: LeafTree → Int

tmin (Leaf n) = n

tmin (Fork (l, r)) = min (tmin l) (tmin r)

replace :: (LeafTree , Int) → LeafTree

replace (Leaf _, m) = Leaf m

replace (Fork (l, r), m) = Fork (replace (l, m),

replace (r, m))

transform :: LeafTree → LeafTree

transform t = replace (t, tmin t)

After having a straightforward solution to the problem, one can start applying Bird’s
proposed technique.
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The first step consists of tupling. The functions tmin and replace both have a similar
recursive pattern and operate on the same data structure. Therefore, a function repmin can
be created by combining the results from the two previous functions in a tuple.

repmin (t, m) = (replace (t, m), tmin t)

Furthermore, a recursive definition of this function can be created, in which two cases
need to be considered:

repmin (Leaf n, m)

= (replace (Leaf n, m), tmin (Leaf n))

= (Leaf m, n)

repmin (Fork (l, r), m)

= (replace (Fork (l, r), m), tmin (Fork (l, r)))

= (Fork (replace (l, m), replace (r, m)) , min (tmin l) (tmin r))

= (Fork (l’, r’), min n1 n2)

where (l’, n1) = repmin (l, m)

(r’, n2) = repmin (r, m)

The final step is where circular programming is used in order to put together the two
elements forming the result of repmin.

Highlighted inside blue rectangles is the presence of circularity; m is being used simulta-
neously as an argument and a result of the same call.

transform :: LeafTree → LeafTree

transform t = nt

where (nt , m ) = repmin (t, m )

This method for deriving circular programs presents, however, a drawback.
Although it allows the derivation of a circular program from a more natural and intuitive

equivalent, removing the burden of having to come up with such a complicated implemen-
tation and creating a circular alternative which makes less traversals on the data structure,
this technique does not guarantee termination. In order to illustrate this, in his paper, Bird
even presents a case where this happens.
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2.5 circular program calculation and short-cut fusion

A different technique than the one explained previously is presented by Fernandes et al.
[5]. This approach also has in mind the derivation of circular programs from more natural
ones, but through a different process.

The method in question is applied to programs consisting of the composition of functions
f ◦ g, where:

• g is a producer of type: g :: i→ (b, v)

• f is a consumer of type: f :: (b, v)→ r

These programs have a particular circumstance compared to the ones we talked about in
2.3. In addition to an intermediate structure, the functions composing the program need to
communicate through an additional parameter.

The repmin problem constitutes a very good case to explain strategies concerning circular
programming. As such, it will again be used as an example.

The strategy presented in this section is applied to programs defined in a slightly different
way than the definition used for the repmin problem in 2.4. Thus, in order to make that
program suitable for the application of this method, the original, and more natural, solution
needs to be adapted so that the function types coincide with the ones of f and g presented
above.

Function replace maintains its original definition, as its type is already equivalent to
f :: (b, v)→ r.

However, function tmin needs to be modified:

transform :: LeafTree → LeafTree

transform t = replace ◦ tmint $ t

tmint :: LeafTree → (LeafTree , Int)

tmint (Leaf n) = (Leaf n, n)

tmint (Fork (l, r)) = (Fork (l’, r’), min n1 n2)

where (l’, n1) = tmint l

(r’, n2) = tmint r

replace :: (LeafTree , Int) → LeafTree

replace (Leaf , m) = Leaf m

replace (Fork (l, r), m) = Fork (replace (l, m),

replace (r, m))

This way, the producer and the consumer are defined in the way we need and the main
function is expressed as the composition of those two functions, just like intended.
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As the title of the section suggests, this method applies short-cut fusion in order to derive
circular programs.

In the paper by Fernandes et al. [5], a generic rule for such fusion is provided. For the
example in question, this rule can be expressed as:

pfold T (h1, h2) ◦ buildp T g $ c = v

where (v, z) = g (k1 , k2) c

k1 n = h1 (n, z)

k2 (l, r) = h2 ((l, r), z)

Listing 2.2: pfold/buildp for leaf trees

Therefore, in order to meet the conditions necessary to apply this rule, the consumer
(replace) needs to be written in terms of a pfold and the producer (tmint) needs to be written
in terms of a buildp.

replace = pfold (Leaf ◦ π2, Fork ◦ π1)

tmint = buildp g

where g (leaf , fork) (Leaf n) = (leaf n, n)

g (leaf , fork) (Fork (l, r)) = let (l’, n1) = g (leaf , fork) l

(r’, n2) = g (leaf , fork) r

in (fork (l’, r’), min n1 n2)

Now that the functions are expressed in the necessary form, we can apply rule 2.2, thus
obtaining:

transform t = nt

where (nt , m) = g (k1 , k2) t

k1 = Leaf m

k2 (l, r) = Fork (l, r)

For clarity, if we replace the above function definition with the actual code being executed:

transform t = nt

where (nt , m) = repm t

repm (Leaf n) = (Leaf m, n)

repm (Fork (l, r)) = let (l’, n1) = repm l

(r’, n2) = repm r

in (Fork (l’, r’), min n1 n2)
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The circularity introduced in this final version of the program is a consequence of merg-
ing the construction of the result tree and the minimum value.

With this version, the production of an intermediate data structure (a tree in this case)
has been eliminated and the original tree is traversed only once. This technique eliminates
both unnecessary intermediate structures and multiple traversals.

One of the main points to retain about the difference between the method by Fernan-
des et al. [5] and the method by Bird [1] is the safe introduction of circularity. That is,
the lazy engine can safely schedule the computations so that termination is guaranteed, a
consequence of the way in which circularity is introduced.

This assumption comes from a property between tmint and repm, which lies in the fact that
both are able to compute the minimum value of a tree without depending on the respective
tree.

π2 ◦ tmint = π2 ◦ repm

This property holds in general and, as such, does not apply to this particular case only.
This way, the method can be applied to a wide range of programs.

Circular programs and short-cut fusion are also studied in other works, such as [11], [12],
[13], [9] and [14].

2.6 stream fusion

The work by Coutts et al. [4] in Stream Fusion consists of an automatic deforestation sys-
tem that takes a different approach compared to more traditional short-cut fusion systems.

The approach taken by Gill et al. [7] with the foldr/build rule is to fuse functions that work
directly over the original structure of the data, that is, lists.

In Stream Fusion, the operations over the original list structure are transformed in order
to, instead, work over the co-structure of the list.

As Coutts et al. state, the natural operation over a list is a fold, while on the other hand,
the natural operation over a stream is an unfold. Therefore, a list’s co-structure is a stream.

The Stream datatype encloses that unfolding behaviour. In order to achieve this, it wraps
an initial state and a stepper function which specifies how elements are produced from the
stream’s state.

data Stream a = ∃s. Stream (s → Step a s) s

The stepper function produces a Step element, which permits three possibilities:
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data Step a s = Done

| Yield a s

| Skip s

The Step datatype allows the co-structure to be non-recursive, thanks to the Skip data
constructor. This is the key point of the stream fusion system. The Skip constructor is what
allows the production of a new state without yielding a particular element and this is a
crucial point as it permits every stepper function to be non-recursive.

The Done and Yield alternatives are quite simple as they pinpoint the end of a stream and
carry an actual element together with a reference to the rest of the stream’s state, respec-
tively.

In order to convert list structures to streams and vice-versa, two functions are needed.

stream :: [a] → Stream a

stream xs0 = Stream next xs0

where

next [] = Done

next (x : xs) = Yield x xs

unstream :: Stream a → [a]

unstream (Stream next0 s0) = unfold s0

where

unfold s = case next0 s of

Done → []

Skip s’ → unfold s’

Yield x s’ → x : unfold s’

The function stream creates a Stream with:

• a stepper function next0 which is non-recursive and yields each element of the stream
as it unfolds;

• a state, which consists of the list itself.

On the other hand, the function unstream creates a list by unfolding the given stream,
repeatedly calling the stream’s stepper function.

Implementing functions to perform operations over streams is quite simple. The function
intended has to define the particular stepper function for the stream it is going to return as
a result. Considering the simple and well known map example operating on lists, one would
define its stream counterpart as:
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map s :: (a → b) → Stream a → Stream b

map s f (Stream next0 s0) = Stream next s0

where

next s = case next0 s of

Done → Done

Skip s’ → Skip s’

Yield x s’ → Yield (f x) s’

What map does here is define a stepper function that applies the function given as a
parameter of map to every yielded element of the stream.

A very simple but important case where one can see the effect of the stream fusion
approach is the function filter. Its implementation allows us to observe the true impact of
this technique.

filter s :: (a → Bool) → Stream a → Stream a

filter s p (Stream next0 s0) = Stream next s0

where

next s = case next0 s of

Done → Done

Skip s’ → Skip s’

Yield x s’ | p x → Yield x s’

| otherwise → Skip s’

The only way that the function filter is non-recursive is because of Skip. This constructor,
when put in place of the elements that should be removed from the stream, allows us to
avoid the recursion otherwise necessary to process every stream element in order to find
out which ones satisfy the given predicate.

More precisely, in the last line of the above implementation, Skip is introduced whenever
an element does not pass the predicate’s test.

This way, code can be better optimised by general purpose compiler optimisations.

The method documented so far has a very curious and important implication.
To understand it, we should first be aware that the Glasgow Haskell Compiler allows us

to write rules that will then be used while compiling our programs. These ”custom rules”
can be expressed through pragmas, which are instructions that can be given to the compiler.

Some algebraic transformations can be expressed through these pragmas. For example:

map f (map g xs) = map (f.g) xs
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This algebraic rule expresses that a composition of maps is equivalent to the map of
the composition of the two functions. This rule allows for the generated code to be more
efficient.

However, there is a multitude of possible function combinations and, as a consequence,
one could never be certain of the number of rules necessary to cover all cases.

This is a point where the work by Coutts et al. plays an important role. As presented
earlier, when writing different stream combinators (like map and filter), the outcome of each
stepper function that is defined depends on the outcome of the previous stream’s stepper
function.

This way, whenever a stepper function of a stream is called, every stepper function of the
streams preceding the current one is going to be executed.

Therefore, functions are fused without the need to explicitly state the rules performing
those transformations.

2.7 hylo system

Program calculation is what is behind the techniques described to transform programs
into more efficient versions. These techniques are based on many existing transformation
laws. However, these rules only allow us to work with programs by hand, therefore leaving
the application of program transformations necessary to obtain more efficient versions to
the programmer, and not to the computer. Fusion systems are, as a consequence, not
automatic.

Algorithms need to be developed that construct programs based on those transformation
laws. This is what the HYLO system by Onoue et al. [10] aims to be: a fusion system
applying these transformations in a more universal and regular way than existing ones.

First of all, we need to understand that there are two possible approaches to fusion:
search-based fusion and calculational fusion.

The first one, search-based fusion, unfolds recursive definitions of functions to find suit-
able places inside those expressions to perform folding operations. But to achieve this, this
kind of method needs to keep track of the function calls so it can control the unfolding, in
order to avoid an infinite process. As this introduces a great overhead, fusion cannot be
practically implemented this way.

The work by Onoue et al. [10] focuses on the second kind of fusion, calculational fusion,
which has been the object of a lot of investigation over the years.

This approach explores the recursive structure of each component of the program in
order to apply fusion through existing transformation laws.

However, most of the proposed techniques for fusion have the slight inconvenient of forc-
ing the programmer to express the functions in terms of the necessary recursive structure,
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so that the different transformations can be applied. This is impractical, as it leads the
programmer away from more potentially readable and natural implementations.

With this in mind, when briefly explaining their approach, the authors of the HYLO
system start by stating that the majority of recursive functions can be expressed in terms of
a very specific recursive form: hylomorphism. In order to rewrite the program’s recursive
components in terms of hylomorphisms, the authors developed an algorithm to derive such
general recursive structures from the recursive definitions of the program.

Following that, schemes for data production and consumption need to be captured so
that the Acid Rain Theorem can be applied to hylomorphisms, in order to fuse them.

The final step consists of inlining the resulting hylomorphism into a normal recursive
definition, in which the intermediate structures have been eliminated.

All in all, the HYLO system allows programs to be written without the concern of express-
ing them in terms of specific and more generic recursive structures, as these are derived
by an automatic algorithm. Thus, fusion laws can still be applied, leading to more efficient
programs without sacrificing so much code readability and without forcing programmers
to express functions under certain recursive patterns. This system was incorporated into
the Haskell compiler.



3

F U N C T I O N A L S T R E A M F U S I O N A P P L I E D T O J AVA S T R E A M S

3.1 adaptation of the stream fusion framework

The work by Coutts et al. [4] presents an automatic deforestation system in Haskell, called
stream fusion, that is achieved by fusing different operations on lists. The paper describes
the Haskell code created for that purpose, so the first step of the implementation for this
thesis consists on the mapping of that Haskell code to an equivalent Java code.

3.1.1 FStream and Step classes

In the paper, the Stream and Step datatypes are defined as:

data Stream a = ∃ s. Stream (s → Step a s) s

data Step a s = Done

| Yield a s

| Skip s

As one can see, the Stream datatype encapsulates a stepper function (s → Step a s) and
a state represented by s. In order to represent this datatype in Java, a class called FStream

(standing for Fusion Stream) was created.

public class FStream <T>{

public Function <Object , Step > stepper; // stepper function: (s -> Step a s)

public Object state; // the stream ’s state

As Haskell is a polymorphic language, the datatype Stream is defined in a generic way.
More precisely, a and s are type variables, which means they can be of any type, and Stream

and Step are parameterized types. To achieve this in Java, we use generics, which allows us
to use types as parameters when defining classes. In this case, T is a type parameter of the

17
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class FStream, meaning that a stream can hold values of any type (Integer, String, etc.), just
as its Haskell counterpart.

Resorting to the Function class introduced in Java 8, it is easy to store the desired behaviour
for the stepper function in an instance variable. The input for this stepper function is a state
(Object) and the output is a Step object. There are different possibilities for the type of the
state encapsulated by the stream. As such, the more generic Object class is used.

Another important datatype in this implementation, and the main responsible for the
advantages that the stream approach allows, is Step. In Haskell, its definition has three
value constructors: Done, Yield and Skip. Similarly to Stream, the datatype Step is defined in a
polymorphic way and so the same approach using generics was taken.

public abstract class Step <T,S>{

public T elem;

public S state;

}

To reflect the role of each of the value constructors, a separate class was created for each
of them. Each of these classes is a specialization of Step and, as such, they extend that class.

Done represents the end of a stream. When an object of this type is detected, we know we
have reached the end of the stream. As this object does not carry any particular value, its
implementation is quite simple.

public class Done extends Step{

}

A Yield object carries an actual element and the rest of the state coming after the element
in question. It has two types as parameters, as previously seen with other classes, which
are in conformity with the generic types of the corresponding stream.

public class Yield <T,S> extends Step{

public Yield(T e, S s){

this.elem = e;

this.state = s;

}

}

Finally, there is the Skip class. Although this element is not important to understand the
approach being presented, it is of extreme importance in the implementation because it is
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what enables the stepper functions to be non-recursive and thus allowing fusion, which is
the mechanism behind all the optimization and, consequently, the efficiency improvements.

public class Skip <S> extends Step{

public Skip(S s){

this.state = s;

}

}

3.1.2 FStream methods

After creating the necessary functional datatypes in the Java implementation, there has
to be a way to generate an FStream object from a known state. To not complicate our presen-
tation, we start by considering the state to be a list datatype.

In Haskell, this is represented by the function stream presented below. The state of the
stream is the list itself and elements are yielded one at a time as the stream gets traversed
(unfolded).

stream :: [a] → Stream a

stream xs0 = Stream next xs0

where

next [] = Done

next (x : xs) = Yield x xs

To recreate this in Java, a method in the FStream class called fstream was implemented.
The return type of the method is an FStream of the same type of objects (T) as the input
list. The stepper function, as seen in the Haskell implementation, returns a Done object if
the list is empty, meaning it reached the end of the list. Otherwise, it returns a Yield object
yielding the first element of the list and the rest of that list as the remaining state. Note
that the implementation of the stepper function is saved inside a variable of type Function
(nextStream). The returned FStream holds it and this stepper function is only executed when
its method apply is called (as one shall see later).
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public static <T> FStream <T> fstream(List <T> l){

Function <Object , Step > nextStream = x -> {

List aux = (List) x;

if(aux.isEmpty ()){

return new Done();

}

else{

List <T> sub = aux.subList(1, aux.size());

return new Yield <T, List <T>>((T) aux.get (0), sub);

}

};

return new FStream <T>(nextStream , l);

}

In order to create a list back from a stream, the unstream function repeatedly calls the
stepper function of the stream, unfolding it.

unstream :: Stream a → [a]

unstream (Stream next0 s0) = unfold s0

where

unfold s = case next0 s of

Done → []

Skip s’ → unfold s’

Yield x s’ → x : unfold s’

The most important part of this function is the unfold. In the equivalent Java method that
was created, this unfolding behaviour was implemented in the form of a while loop, since
a tail recursive function, which is one where its last action is the call to itself, can be more
efficiently expressed by a loop. The stream’s stepper function is repeatedly called inside
the loop. Depending on the result of that method call, different behaviour can occur.

First of all, if the object returned by the stepper function is a Done, then the loop finishes,
as the end of the stream has been reached.

If the object is of type Skip, then the unfolding process continues with the rest of the state.
Otherwise, if it is a Yield object, it will add the yielded element to the result list and

continue unfolding the stream’s state.
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public List <T> unfstream (){

ArrayList <T> res = new ArrayList <>();

Object auxState = this.state;

boolean over = false;

while (!over) {

Step step = this.stepper.apply(auxState);

if (step instanceof Done) {

over = true;

} else if (step instanceof Skip) {

auxState = step.state;

} else if (step instanceof Yield) {

res.add((T) step.elem);

auxState = step.state;

}

}

return res;

}

Higher order functions are, perhaps, the most important aspect of functional program-
ming [8]. They are a powerful mechanism that allow programmers to define what the
computations are instead of programming the steps that compose the computation.

Maps and filters are two well known higher order functions and this approach has im-
plementations for those two functions over streams. map f xs applies input function f to
each element of xs and filter p xs returns a list with all the elements of xs that fulfill the
condition stated by p.

The Haskell implementation for the map higher order function over streams is:

maps :: (a → b) → Stream a → Stream b

maps f (Stream next0 s0) = Stream next s0

where

next s = case next0 s of

Done → Done

Skip s’ → Skip s’

Yield x s’ → Yield (f x) s’

As expected, the map higher order function takes a function as a parameter. In the Java
implementation, that parameter function receives an input of type T and its output is of
type S.
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Therefore, the FStream object returned by the method mapfs is a stream holding objects
of type S, which is the return type of the function to be applied to each of the stream’s
elements. As any other stream, the stream being created needs a stepper function of its
own. The behaviour for that function is saved in the variable nextMap and it produces a
different Step object depending on the outcome of the FStream’s stepper function to which
we are applying mapfs.

Done represents the end of the stream. So, if it is encountered, then an object of that type
will also be created.

In the case a Skip object was produced, it means that that element should not be dealt
with. As such, another Skip is created referencing the rest of the stream’s state.

Finally, if an actual element is being yielded, i.e. a Yield object exists, then the input
function for mapfs (funcTtoS) is applied to that element and the result is placed into the new
Yield that is going to be instantiated, along with the rest of the stream’s state.

public <S> FStream <S> mapfs(Function <T,S> funcTtoS){

Function <Object , Step > nextMap = x -> {

Step aux = this.stepper.apply(x);

if(aux instanceof Done){

return new Done();

}

else if(aux instanceof Skip){

return new Skip <>(aux.state);

}

else if(aux instanceof Yield){

return new Yield <>(funcTtoS.apply ((T) aux.elem), aux.state);

}

return null;

};

return new FStream <S>(nextMap , this.state);

}

In order to supplement the explanation, the following example illustrates how the maps

function would be used in a Haskell and in a Java scenario. In this case, we add 1 to each
element of a stream.

xs = [1,2,3,4,5]

res = unstream (maps (+1) (stream xs))

-- res = [2,3,4,5,6]
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ArrayList <Integer > xs = new ArrayList <>(Arrays.asList (1,2,3,4,5));

ArrayList <Integer > res = FStream.fstream(xs)

.mapfs(x -> x + 1)

.unfstream ();

// res = [2,3,4,5,6]

The filter higher order function is the one where the big advantage of having a non-
recursive stepper function can be observed. This non-recursive implementation can only be
achieved due to the Skip element because it avoids the need to recursively go through the
structure to find elements satisfying the predicate. This way, GHC can better optimise the
code due to the absence of recursion.

filter s :: (a → Bool) → Stream a → Stream a

filter s p (Stream next0 s0) = Stream next s0

where

next s = case next0 s of

Done → Done

Skip s’ → Skip s’

Yield x s’ | p x → Yield x s’

| otherwise → Skip s’

The filterfs method is similar to the previous mapfs method, although it takes a Predicate

as a parameter instead of a Function. Its stepper function’s behaviour is quite similar to the
one explained before in mapfs.

The only difference lies in the case of when the stepper function of the stream being fil-
tered returns a Yield object. In that situation, the filter’s stepper function (nextFilter) should
evaluate if the element yielded satisfies the given predicate. If it does, then a new Yield is
created carrying the element in question and the rest of the stream’s state. Otherwise, as
the element does not satisfy the predicate, it should not be present in the resulting stream
and, therefore, a Skip object is created with a state containing the subsequent elements.
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public FStream <T> filterfs(Predicate p){

Function <Object , Step > nextFilter = x -> {

Step aux = this.stepper.apply(x);

if(aux instanceof Done){

return new Done();

}

else if(aux instanceof Skip){

return new Skip <>(aux.state);

}

else if(aux instanceof Yield){

if(p.test(aux.elem)){

return new Yield <>((T) aux.elem , aux.state);

}

else{

return new Skip <>(aux.state);

}

}

return null;

};

return new FStream <T>(nextFilter , this.state);

}

The following example demonstrates how we can retain the elements greater than 2 from
a stream by resorting to the higher-order function filters. This is illustrated using both the
Haskell and the Java alternative.

xs = [1,2,3,4,5]

res = unstream . filter s (>2) . stream $ xs

-- res = [3,4,5]

ArrayList <Integer > xs = new ArrayList <>(Arrays.asList (1,2,3,4,5));

ArrayList <Integer > res = FStream.fstream(xs)

.filterfs(x -> x > 2)

.unfstream ();

// res = [3,4,5]
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Concatenating two lists is a common operation. Haskell makes use of the ++ operator
in order to express this action. The Stream Fusion library implements this same function-
ality for streams through the appends function. The appends function makes use of the Either

datatype in order to concatenate two different streams. This is crucial to maintain the
control flow of the operation.

Thus, Left and Right make it possible for the stepper function to work on two distinct
modes, that is, holding the state of the first stream or the state of the second stream.

When the end of the first stream’s state is reached, the stepper function simply switches
its mode from Left to Right, allowing for an easy exchange between the two different states.

append s :: Stream a → Stream a → Stream a

append s (Stream next a sa0) (Stream nextb sb0) =

Stream next (Left sa0)
where

next (Left sa) =

case next a sa of

Done → Skip (Right sb0)
Skip s’a → Skip (Left s’a)

Yield x s’a → Yield x (Left s’a)

next (Right sb) =

case nextb sb of

Done → Done

Skip s’b → Skip (Right s’b)

Yield x s’b → Yield x (Right s’b)

In Java, there is not an equivalent class emulating Haskell’s Either datatype. However,
this is a trivial thing to implement. First, an abstract class for Either is created.
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public abstract class Either <L,R> {

L left;

R right;

}

After that, classes Left and Right extend it, as follows:

public class Left <T> extends Either{

public Left(T e){

this.left = e;

}

public T fromLeft (){

return (T) this.left;

}

}

public class Right <T> extends Either{

public Right(T e){

this.right = e;

}

public T fromRight (){

return (T) this.right;

}

}

In the Haskell code above, we can see that appends’s stepper function makes use of pattern
matching to assess in which mode it is operating on.

In Java, we perform this check in a similar way to what has been presented so far when
checking whether Step objects are of type Done, Skip or Yield. More precisely, depending
on whether the stream’s state is an instanceof Left or an instanceof Right, the actions corre-
sponding to next (Left sa) or next (Right sb) are executed.
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public FStream <T> appendfs(FStream <T> streamB){

Function <Object , Step > nextAppend = x -> {

if(x instanceof Left){

Step aux = this.stepper.apply ((( Left) x).fromLeft ());

if(aux instanceof Done){

return new Skip <Either >(new Right(streamB.state));

}

else if(aux instanceof Skip){

return new Skip <Either >(new Left(aux.state));

}

else if(aux instanceof Yield){

return new Yield <T, Either >((T) aux.elem , new Left(aux.state

));

}

}

else if(x instanceof Right){

Step aux = streamB.stepper.apply ((( Right) x).fromRight ());

if(aux instanceof Done){

return new Done();

}

else if(aux instanceof Skip){

return new Skip <Either >(new Right(aux.state));

}

else if(aux instanceof Yield){

return new Yield <T, Either >((T) aux.elem , new Right(aux.

state));

}

}

return null;

};

return new FStream <T>(nextAppend , new Left(this.state));

}

The following example shows a way in which this function could be used to concatenate
the elements from two different streams, both in Haskell and Java.

xs = [1,2,3,4,5]

ys = [6,7,8,9,10]

res = unstream (append s (stream xs) (stream ys))

-- res = [1,2,3,4,5,6,7,8,9,10]
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ArrayList <Integer > xs = new ArrayList <>(Arrays.asList (1,2,3,4,5));

ArrayList <Integer > ys = new ArrayList <>(Arrays.asList (6,7,8,9,10));

ArrayList <Integer > res = FStream.fstream(xs)

.appendfs(FStream.fstream(ys))

.unfstream ();

// res = [1,2,3,4,5,6,7,8,9,10]

When a function consumes more than one stream at the same time, some extra care is
needed in order to handle the stream’s state.

The zips function is an example of such a function. This function receives two lists as
input and produces a list of corresponding pairs. In case the two input lists are of different
lengths, the remaining elements of the longer list are discarded. The fact that this function
has to deal with Skip, means that the function might be able to extract one element from
one of the streams at some point but might not be able to do it simultaneously from the
second stream.

If that is the case, the extracted element is saved inside the current state and we iterate
over the second stream until an element gets extracted too.

For that, the Maybe datatype is used. When no element is being carried, the value is empty
(Nothing). When an element is yielded and waiting to be coupled with another one, the
value is saved inside Just.

zips :: Stream a → Stream b → Stream (a, b)

zips (Stream next a sa0 ) (Stream nextb sb0 ) =

Stream next (sa0, sb0, Nothing)

where

next (sa, sb, Nothing) =

case next a sa of

Done → Done

Skip s’a → Skip (s’a, sb, Nothing)

Yield a s’a → Skip (s’a, sb, Just a)

next (s’a, sb, Just a) =

case nextb sb of

Done → Done

Skip s’b → Skip (s’a, s’b, Just a)

Yield b s’b → Yield (a, b) (s’a, s’b, Nothing)
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In order to create an equivalent Java method, the Optional class is used. Similarly to
Haskell’s Maybe, an Optional object can either have a value present or be empty.

The state produced and handled by zipfs’s stepper function consists of a tuple of size
three. Therefore, a class Triple was created in order to represent values of the form (stateA,
stateB, Optional).

public class Triple <T,S> {

T stateA;

S stateB;

Optional elem;

public Triple(T stateA , S stateB , Optional elem) {

this.stateA = stateA;

this.stateB = stateB;

this.elem = elem;

}

}

The objects that the returned stream represents consist of tuples too, although these ones
have size two. An identical approach was taken in order to represent these values. As such,
the Pair class was created.

public class Pair <T,S> {

T x;

S y;

public Pair(T x, S y){

this.x = x;

this.y = y;

}

}

The first action the stepper function needs to perform is to check if the Optional element
inside the input state is empty or not.

After that, the same procedure of all the other stepper functions so far is followed. De-
pending on the type of the Step returned, nextZip performs the appropriate operation.

When unfolding the first stream (Optional is empty), a value is saved only when a Yield

is encountered. Therefore, this results in a value being present inside the Optional object,
which makes the stepper function unfold the second stream, beginning the search for an
element to complete the Pair. Thus, the Optional value inside the Triple is only set to empty
again when another Yield is found.
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public <S> FStream <Pair <T,S>> zipfs(FStream <S> streamB){

Function <Object , Step > nextZip = x -> {

if (!((( Triple) x).getElem ()).isPresent ()){

Step aux = this.stepper.apply ((( Triple) x).getStateA ());

if(aux instanceof Done){

return new Done();

}

else if(aux instanceof Skip){

return new Skip <>(new Triple(aux.state , (( Triple) x).

getStateB (), Optional.empty()));

}

else if(aux instanceof Yield){

return new Skip <>(new Triple(aux.state , (( Triple) x).

getStateB (), Optional.of(aux.elem)));

}

}

else{ // There is a value present in Optional

Step aux = streamB.stepper.apply ((( Triple) x).getStateB ());

if(aux instanceof Done){

return new Done();

}

else if(aux instanceof Skip){

return new Skip <>(new Triple ((( Triple) x).getStateA (), aux

.state , (( Triple) x).getElem ()));

}

else if(aux instanceof Yield){

return new Yield <>(new Pair <>((( Triple) x).getElem ().get()

, aux.elem), new Triple ((( Triple) x).getStateA (), aux.

state , Optional.empty ()));

}

}

return null;

};

return new FStream <>(nextZip , new Triple <>(this.state , streamB.state ,

Optional.empty ()));

}

An example that demonstrates the use of the zips function is the enumeration of elements
in a list ys. In other words, we produce a list of pairs in which the first element of each
tuple is the corresponding index of the second element in the original list ys.
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Note that list xs, which holds the indexes, is larger than ys. That is to show that when the
two lists differ in length, the bigger one gets its remaining elements discarded, i.e. they are
not part of the final result.

xs = [0,1,2,3,4,5,6,7]

ys = [10, 20, 30, 40, 50]

res = unstream (zips (stream xs) (stream ys))

-- res = [(0 ,10) ,(1,20) ,(2,30) ,(3,40) ,(4,50)]

ArrayList <Integer > xs = new ArrayList <>(Arrays.asList (0,1,2,3,4,5,6,7));

ArrayList <Integer > ys = new ArrayList <>(Arrays.asList (10 ,20 ,30 ,40 ,50));

ArrayList <Pair <Integer ,Integer >> res = FStream.fstream(xs)

.zipfs(FStream.fstream(ys))

.unfstream ();

// res = [(0 ,10) ,(1,20) ,(2,30) ,(3,40) ,(4,50)]

Some higher-order functions have to deal with nested data structures. For example, the
function concatMap from the standard Haskell list library applies its input function to each
element of its input list, similarly to what the map function does. However, in this case, this
input function produces a list, instead of a single element. As such, concatMap concatenates
every list resulting from the application of its input function. If it didn’t, we would obtain a
list of nested lists. concatMaps is an example of a function on nested streams. The function f
it receives is applied to each one of the stream’s elements (similarly to maps). However, this
function has a particular aspect: it does not produce a single value, but a stream of values.

The goal is to produce a stream of single elements and not a stream of streams. Therefore,
we need to have some special concerns when implementing a function like this.

The function operates on two different modes, much like what has been presented above
in other functions.

The two modes are: applying function f to the elements of the outer stream, generating
another stream, and extracting the elements from each generated inner stream. To differen-
tiate between these modes, the datatype Maybe is used.
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concatMap s :: (a → Stream b) → Stream a → Stream b

concatMap s f (Stream next a sa0) = Stream next (sa0, Nothing)

where

next (sa, Nothing) =

case next a sa of

Done → Done

Skip s’a → Skip (s’a, Nothing)

Yield a s’a → Skip (s’a, Just (f a))

next (sa, Just (Stream nextb sb)) =

case nextb sb of

Done → Skip (sa, Nothing)

Skip s’b → Skip (sa, Just (Stream nextb s’b))

Yield b s’b → Yield b (sa, Just (Stream nextb s’b))

When the stepper function nextConcatMap is unfolding the outer stream, this Optional value
is set to empty.

When applying the function to one of its elements, the generated stream needs to be
unfolded before continuing to process the outer stream.

Therefore, the Optional value is set to hold the new inner stream, making the stepper
function switch modes. As a consequence, it is then going to unfold that inner stream,
switching back to the outer one when it reaches the end.
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public <S> FStream <S> concatMap(Function <T, FStream <S>> f){

Function <Object , Step > nextConcatMap = x -> {

Optional opAux = (Optional) ((Pair) x).getY();

if(!( opAux.isPresent ())){

Step aux = this.stepper.apply ((( Pair) x).getX());

if(aux instanceof Done){

return new Done();

}

else if(aux instanceof Skip){

return new Skip(new Pair <>(aux.state , Optional.empty ()));

}

else if(aux instanceof Yield){

return new Skip(new Pair <>(aux.state , Optional.of(f.apply

((T) aux.elem))));

}

}

else{

FStream fAux = (FStream) opAux.get();

Step aux = (Step) fAux.getStepper ().apply(fAux.getState ());

if(aux instanceof Done){

return new Skip(new Pair ((( Pair) x).getX(), Optional.empty

()));

}

else if(aux instanceof Skip){

return new Skip(new Pair ((( Pair) x).getX(), Optional.of(

new FStream <>(fAux.getStepper (), aux.state))));

}

else if(aux instanceof Yield){

return new Yield(aux.elem , new Pair ((( Pair) x).getX(),

Optional.of(new FStream <>(fAux.getStepper (), aux.state

))));

}

}

return null;

};

return new FStream <>(nextConcatMap , new Pair(this.state , Optional.

empty ()));

}
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For a demonstration of concatMap, let’s assume the existence of a function upTo that receives
a single integer x as an argument and that generates a stream representing numbers from 1

to x.

xs = [1,2,3]

res = unstream (concatMap s upTo (stream xs))

-- res = [1,1,2,1,2,3]

ArrayList <Integer > xs = new ArrayList <>(Arrays.asList (1,2,3));

ArrayList <Integer > res = FStream.fstream(xs)

.concatMap(upTo)

.unfstream ();

// res = [1,1,2,1,2,3]

In the Stream Fusion approach, there are two other terminal operations besides unstream.
Those operations are foldr and foldl.

As seen before with unstream, these terminal operations are implemented in a recursive
way.

foldr s :: (a → b → b) → b → Stream a → b

foldr s f z (Stream next s0) = go s0

where

go s = case next s of

Done → z

Skip s’ → go s’

Yield x s’ → f x (go s’)

foldl s :: (b → a → b) → b → Stream a → b

foldl s f z (Stream next s0) = go z s0

where

go z s = case next s of

Done → z

Skip s’ → go z s’

Yield x s’ → go (f z x) s’

In the Java implementation, recursion is converted to loops whenever possible. That is
the case with unstream and foldl. However, foldr is a particular case because it is not tail
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recursive. As a consequence, it cannot be expressed in terms of a loop in the same manner
the other two functions are.

One could implement foldr by making it traverse the list in a reverse way, that is, from
right to left. However, because Stream Fusion retrieves elements as they are needed, the list
that foldr is supposed to process still does not exist. One cannot invert the order of the
input list at this stage either because the preceding operations have not yet been executed
and that would create an incorrect result.

One possible way would be to force the creation of the list before applying the final
foldr operation. This would have a negative impact on performance, as this intermediate
structure is not required to produce the final result. Moreover, this is the kind of situations
that fusion aims to avoid.

In section 3.2, we discuss in great detail how to express foldr in Java using loops instead
of recursion.

The go function in foldls presented above is implemented in Java as a while loop. On
every iteration, the stepper function of the stream is called. If the resulting Step happens to
yield an element, function f is applied to the initial value and to the element in question.
The state moves forward whether step evaluates to a Skip or Yield.

public <S> S foldl(BiFunction <S,T,S> f, S value) {

Object auxState = this.state;

boolean over = false;

while (!over) {

Step step = stepper.apply(auxState);

if (step instanceof Done) {

over = true;

} else if (step instanceof Skip) {

auxState = step.state;

} else if (step instanceof Yield) {

auxState = step.state;

value = f.apply(value , (T) step.elem);

}

}

return value;

}

foldr behaves in an identical way to foldl, except that the elements are processed in the
opposite way.

As discussed earlier, instead of a loop, there are recursive calls.
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public <S> S foldr(BiFunction <T,S,S> f, S value){

return goFoldr(f, value , this.stepper , this.state);

}

public static <S, R> S goFoldr(BiFunction <R, S, S> f, S value , Function <

Object , Step > stepper , Object state) {

Step step = stepper.apply(state);

if (step instanceof Done) {

return value;

} else if (step instanceof Skip) {

return goFoldr(f, value , stepper , step.state);

} else if (step instanceof Yield) {

return f.apply ((R) step.elem , goFoldr(f, value , stepper , step.

state));

}

return null;

}

One is not only limited to use the fstream method as the first operation in a stream
pipeline.

Another alternative for retrieving elements is the unfoldr method.

unfoldr :: (b → Maybe (a, b)) → b → Stream a

unfoldr f s0 = Stream next s0

where

next s = case f s of

Nothing → Done

Just (w, s’) → Yield w s’

Function f acts as a builder that generates elements for the stream and is called each time
the stepper function is executed.

It returns either Nothing, if it is done generating elements, or Just containing a tuple
in which the first value is the generated element and the second one is the value to be
considered when the next call occurs.
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public static <T,S> FStream <T> unfoldr(

Function <S, Optional <Pair <T,S>>> builder ,

S seed){

Function <Object , Step > nextUnfoldr = x -> {

Optional <Pair <T, S>> aux = builder.apply ((S) x);

if(!aux.isPresent ()){

return new Done();

}

else{

return new Yield <>(aux.get().getX(), aux.get().getY());

}

};

return new FStream <T>( nextUnfoldr , seed);

}

The equivalent FStream method is represented above. Its mapping to Java is pretty straight-
forward. The Optional class is used as a replacement for Maybe and the Pair class is used to
emulate Haskell tuples.

3.2 overcoming foldr’s recursion

In a functional setting, a recursive implementation for foldr is, undoubtedly, the most
intuitive one. Furthermore, when programming in a functional context, recursive imple-
mentations arise very naturally.

Nevertheless, consecutive recursive calls rapidly fill up the stack and stack overflow er-
rors may happen.

As stream pipelines may very well describe operations to be performed in collections with
a large number of elements, repeated consecutive calls are bound to happen in terminal
operations that are not implemented in the form of a loop, like foldr’s case. As such,
applying a pipeline of operations terminating with foldr on a large list will most likely
cause the program to raise a stack overflow error.

Indeed, the main responsible for these errors is not recursion itself, but the nature of
recursion. In [4], other terminal operations, like unstream and foldl, are expressed in terms
of recursion too. However, these functions are tail recursive. As there is no need for the
call stack to increase in size, functions of this type can be easily transformed into their
equivalent loops.
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The original implementation of foldr is not the case. As such, we need a slightly more
elaborate process if we want to have it written as a loop. As a consequence of doing that, we
will overcome the inherent stack overflow errors that the non-tail recursive implementation
presents.

3.2.1 Creating an intermediate list

One way to process the list’s elements from right to left is to traverse the list from the
end to its beginning.

However, because we are using streams, that approach is not so straightforward as it may
seem because there is no actual list. With streams, elements are returned one at a time, as
they are needed. Furthermore, they depend on the operations that compose the pipeline.

As such, if we are to traverse the list in reverse order, we need to force its creation before
foldr.

public <S> S foldrLoop(BiFunction <T,S,S> f, S value){

List <T> l = this.unfstream ();

// From size -1 to 0 (right to left)

for(int i = l.size() -1; i>=0; i--){

T t = l.get(i);

value = f.apply(t, value);

}

return value;

}

Highlighted in blue1 is the use of unfstream which creates the list that results from ap-
plying the operations that precede foldr. Only then can it be traversed from right to left,
emulating the desired behaviour.

3.2.2 Foldr as Foldl

Contrary to foldr, foldl has a straightforward implementation in the form of a loop (its
original definition is tail recursive).

An alternative way to tackle the current problem is to express foldr in terms of a foldl.
Although this may look tricky at first sight, the strategy used to achieve this is quite simple.

1 We assume that colours are available in the electronic version of this document.
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At a higher degree of abstraction, fold simply consists of a recursive pattern. Instead of
applying such a pattern directly to our data structure, we can use it to build a function
along the way. In the end, a ”big” function will have been constructed. This function will
be composed of several function applications referencing the list’s elements in the correct
order. When applied to the accumulator’s initial value, the order in which the function
was composed will make its execution yield a result that resembles what would have been
obtained if the elements were processed from right to left.

foldrAsFoldl f z lxs = foldl (\g x -> (\a -> g(f x a))) id lxs z

public <S> S foldrAsFoldl(BiFunction <T,S,S> f, S value){

BiFunction <Function <S,S>, T, Function <S,S>> reducer =

(g, x) -> (a -> g.apply(f.apply(x,a)));

Function <S,S> finalAcc = this.foldl(reducer , Function.identity ());

return finalAcc.apply(value);

}

The first highlight in blue is a lambda expression representing the reducer function that
will be passed to foldl. It receives two parameters, one of them being a function (g) and
the other one an individual element from the stream (x). What is so particular about this
reducer is that it does not return a value, but a function. The function consists of the ap-
plication of input function g to the value returned by function f when applied to stream
element x and the accumulator a. This returned function is going to be g in the next execu-
tion. One can now understand that this mechanism is the one responsible for composing
all the operations in the appropriate order.

Also highlighted in blue is the call to foldl that, besides the reducer, takes the identity
function as a parameter which, in this case, behaves as the accumulating value we are used
to see associated with folds.

However, this solution does not completely overcome stack overflow errors but, instead,
delays them. Because the function built along the way consists of consecutive nested func-
tion calls, the stack’s size increases and we are bound to encounter the same problems. The
main advantage of this implementation is that the function size only grows when Yield

elements are encountered. As such, pipelines containing methods which produce Skip ob-
jects (for example, filter operations) will be able to operate on larger collections than the
original foldr implementation.
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3.2.3 Using continuations

There is another possible implementation for foldr that tries to avoid its inherent recur-
sion problems. This solution resorts to Continuation Passing Style [18], [16] in order to have
the code explicitly state what should be executed next. By having the control flow pro-
grammed this way, we avoid filling up the stack because function calls are encapsulated
inside objects that represent the continuations. Furthermore, it eases the process of imple-
menting foldr in the form of a loop, as it allows us to define it as a tail-recursive function.

foldr’ f z [] cont = cont z

foldr’ f z (x:xs) cont = foldr’ f z xs (\a -> cont(f x a))

This definition for foldr will help in understanding the reason why continuations were
encoded the way they were.

The first thing to do is to build some classes that will allow us to encode the desired be-
haviour. Moreover, we need to combine this style of programming with the FStream setting.

Different Continuations are going to be needed for different reasons during execution. Yet,
they all still share one common blueprint. Therefore, a more general class was created. All
other, more specific, Continuations will extend this super class.

public abstract class Continuation <S, R extends Continuation <S,R>> {

public static Object globalState;

public static Object res;

public static BiFunction b;

public Continuation <S,R> nextCont;

public abstract Continuation execute(S value);

The class signature forces every subclass to have its type parameters be the same as the
superclass ones.

All objects of type Continuation will share three class variables:

• globalState: the current stream state as it gets modified;

• res: the accumulator value that is built throughout the folding operation;

• b: the function that is repeatedly applied to every element retrieved from the stream
and the accumulator value.
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As the folding operation progresses through the stream, each Continuation that is created
along the way holds a reference to the next one - nextCont - i.e. what to do next (as this style
of programming implies). As a result, a chain of Continuation objects will have been created
by the time the fold operation finishes unrolling the stream.

An object belonging to this class represents an action. As such, every object needs to
define a method execute which indicates what should be performed.

foldr consumes a list from right to left. However, elements are retrieved from a stream
from its beginning to its end, i.e. from left to right. As a result, as the stream gets unrolled,
we need to somehow save the yielded elements so that, in the end, it is possible to replicate
the processing of these elements from right to left.

Therefore, each time a Yield is returned by the stream’s stepper function, that element
needs to be enclosed inside a continuation which encodes what should be performed at
that particular point of execution.

public class ContinuationListElem <T,S> extends Continuation <S,

ContinuationListElem <T,S>> {

public T pendingElem;

public ContinuationListElem(T elem , Continuation nextCont){

this.pendingElem = elem;

this.nextCont = nextCont;

}

@Override

public Continuation execute(S value) {

Continuation.res = b.apply(pendingElem , value);

return this.nextCont;

}

}

When dealing with a list element, a ContinuationListElem is used so that the item in ques-
tion gets saved in pendingElem. Note that the execute method, in this case, is responsible for
two things:

• applying the parameter function of fold to the pending element and the accumulator
value;

• returning the next Continuation object.

This Continuation can be thought of as the (\a -> cont(f x a)) part in the foldr’ definition
previously presented.
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Additionally, we still need another type of Continuation in order to have the desired
behaviour completely implemented.

Another aspect to take into consideration is that, in order to replicate the recursive call in
the next iteration of the loop, the self call in foldr’ needs to be represented as a Continuation

object too.

public class ContinuationListFold <S> extends Continuation <S,

ContinuationListFold <S>>{

public ContinuationListFold(Continuation nextCont) {

this.nextCont = nextCont;

}

@Override

public Continuation execute(S value) {

return this.nextCont;

}

}

In this case, the action performed by the execute method is quite simple, as it only returns
the next continuation, allowing for the execution flow to take its correct course.

One final aspect to bear in mind is that the chain of continuations starts with the identity
function.

public class ContinuationId <S> extends Continuation <S, ContinuationId <S>>{

public ContinuationId (){

}

@Override

public Continuation execute(S value) {

res = value;

return null;

}

}

This identity function is represented by the ContinuationId class. As a result of repeatedly
adding Continuations one after the other, this initial identity Continuation is going to be
pushed to the very end of the chain, thus terminating the execution by saving the final
accumulator value to its class variable res and not returning any type of Continuation.



3.2. Overcoming foldr’s recursion 43

Now that the implementation of Continuation Passing style was explained, we can take a
look at the mapping of the tail-recursive version of foldr’ to a loop.

public <S> S foldrTailRec(BiFunction <T,S,S> f, S value){

Continuation.b = f;

Continuation cont = new ContinuationId ();

boolean over = false;

Continuation.globalState = this.state;

Continuation.res = value;

while (!over){

Step step = this.stepper.apply(Continuation.globalState);

if(step instanceof Done){

cont = cont.execute(Continuation.res);

if(cont == null){

over = true;

}

}

else if(step instanceof Skip){

Continuation.globalState = step.state;

}

else if(step instanceof Yield){

Continuation.globalState = step.state;

Continuation <S, ContinuationListElem <T,S>> nextCont =

new ContinuationListElem <T,S>((T) step.elem , cont);

cont = new ContinuationListFold(nextCont);

}

}

return (S) Continuation.res;

}

Similarly to what happens in other stream operations, the loop begins by applying the
stepper function to the current state.

As we progress through the stream, by retrieving elements from it, a chain of contin-
uations is constructed. The part of the code responsible for the creation of this chain is
highlighted in green. When a Yield object is present, a new Continuation is instantiated and
placed at the beginning of the chain.

When the stream reaches its end, with the detection of Done, the head of the continuation
chain gets its execute method called, unwinding the execution of all the other Continuations.
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3.3 adaptation to other data structures

Defining streams for other data structures is something that can be addressed by the
Stream Fusion approach. In fact, in the end of their paper, Coutts et al. [4] briefly cover what
could be a definition for a stream co-structure on binary trees with information present in
the leaves and the interior nodes.

In this section, the elements that need to be added in order to adapt Stream Fusion to
binary trees only containing information in the leaves will be presented. Although this
kind of binary trees differs from the ones mentioned in the paper, it still shows that streams
can be generalised to other data structures.

The binary trees considered in this section are expressed by the following data type:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

The Stream data type is identical to the one already presented. The only thing that needs
some adjustments is the Step data type for which the constructors LeafBT and BranchBT were
introduced.

data Stream a = ∃s. Stream (s → Step a s) s

data Step a s = LeafBT a | BranchBT s s | Skip s

Each of these data constructors was mapped to a corresponding Java class.

public class LeafBT <T> extends Step{

public LeafBT(T elem) {

this.elem = elem;

}

}

public class BranchBT <S> extends Step{

public S state1;

public S state2;

public BranchBT(S state1 , S state2) {

this.state1 = state1;

this.state2 = state2;

}

}
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3.3.1 Binary Tree FStream methods

Similarly to what was previously shown for FStream over lists, it is also possible to write
stream style code for methods operating on streams for binary trees.

In order to create an FStream capable of providing elements as if we were dealing with a
binary tree, we can use the method unfoldrBT.

A Haskell definition for an unfold that generates binary trees looks like the following
(note that this is not Stream code):

unfoldT :: (b → a + b x b) → (b → Tree a)

unfoldT g x = case g x of

Left a → Leaf a

Right (c, d) → Branch (unfoldT g c) (unfoldT g d)

Here, one can see that the function returns either Leaf or Branch depending on whether it
has reached an end node or it is supposed to go further down and generate more elements
for the tree. This is, of course, going to depend on what the initial seed is (first value for x)
and what the builder function g does with each value.

By looking at the above definition we can deduce that the programmer should define its
builder function in order to have it return Either.

We still need to make minor adjustments to this function in order to have it fit our FStream

setting. Firstly, we need to define a stepper function, as every FStream needs one. Secondly,
our stepper function needs to return Step elements. LeafBT and BranchBT defined earlier
already fit the current structure of Leaf and Branch quite nicely, so we do not need to change
this part. What’s left is to fit the case g x of... and its body (with a small change) inside a
stepper function. By doing this, we will end with the following method.



3.3. Adaptation to other data structures 46

public static <T,S> FStream <T> unfoldrBT(

Function <S, Either <T, Pair <S,S>>> builder ,

S seed){

Function <Object , Step > nextUnfoldrBT = x -> {

Either <T, Pair <S,S>> aux = builder.apply((S) x);

if(aux instanceof Left){

return new LeafBT <>((( Left) aux).fromLeft ());

}

else if(aux instanceof Right){

Pair p = (Pair) ((Right) aux).fromRight ();

return new BranchBT(p.getX(), p.getY());

}

return null;

};

return new FStream <T>( nextUnfoldrBT , seed);

}

As it is the usual behaviour for streams, the stepper function is going to be repeatedly
called when the terminal operation of a pipeline gets executed. As such, when the builder
function returns an element of type Right, unfoldrBT does not get recursively called like
in the above Haskell code (as recursion is actually ”prohibited” in stream style code for
intermediate operations) but instead returns a Step of type BranchBT which will hold two
separate states.

Conversely, it is also possible to define the fold pattern for binary trees in the FStream

setting.
In order to do this, we base ourselves again in some Haskell code. This time, we’ll take a

look at foldr for binary trees.

foldT :: (b → b → b) → (a → b) → (Tree a → b)

foldT l (Leaf a) = l a

foldT b l (Branch s t) = b (foldT b l s) (foldT b l t)

foldT receives two functions as parameters. Depending on whether the current element
is a Leaf or a Branch, the corresponding function is applied.

After making some adjustments, namely calling the stream’s stepper function and cover-
ing the case when Skip is returned, the following implementation is obtained.
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public <S> S foldBT(BiFunction <S,S,S> b, Function <T,S> l) {

RecursiveLambda <Function <Object ,S>> go = new RecursiveLambda <>();

go.function = x -> {

S res = null;

Step step = this.stepper.apply(x);

if (step instanceof LeafBT) {

res = l.apply((T) step.elem);

} else if (step instanceof Skip) {

res = go.function.apply(step.state);

} else if (step instanceof BranchBT) {

res = b.apply(go.function.apply ((( BranchBT) step).state1), go.

function.apply ((( BranchBT) step).state2));

}

return res;

};

return go.function.apply(this.state);

}

Note that, unlike what we wish when dealing with terminal operations, this implemen-
tation is not based on a loop but, instead, makes use of recursion. More precisely, it is not
tail-recursive, which holds up our ability to express it in the form of a loop.

Furthermore, binary trees propose a new challenge. Earlier, when dealing with streams
that worked over lists, performing the fold operation from left to right helped us implement
the solution as a loop in a really straightforward way. But now, with the introduction
of binary trees, we cannot think of it that way anymore. foldBT ”destroys” the structure
from the leaves and upwards, whereas a left-fold would consume it from the root and
downwards. This latter approach does not make much sense when dealing with binary
trees.

Therefore, we are left with the option of finding an equivalent tail-recursive implemen-
tation. This is not a new problem and some ways to overcome it have been discussed earlier.

For this particular case, the stack was ”moved” into the heap. More precisely, a structure
of type Stack was used in order to regulate the control flow.

This way, we can emulate the order in which the recursive calls would be executed in the
previous recursive implementation and have our code represented as a loop.
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public <S> S foldlBT(BiFunction <S,S,S> b, Function <T,S> l) {

S res = null;

boolean over = false;

Stack <Object > states = new Stack <>();

states.push(this.state);

Optional <S> opAux = Optional.empty ();

while (!over){

if(states.empty()){

res = opAux.get();

over = true;

}

else{

Step step = this.stepper.apply(states.pop());

if(step instanceof LeafBT){

if(!opAux.isPresent ()){

opAux = Optional.of(l.apply((T) step.elem));

}

else{

opAux = Optional.of(b.apply(opAux.get(), l.apply((T)

step.elem)));

}

}

else if(step instanceof BranchBT){

states.push ((( BranchBT) step).state2);

states.push ((( BranchBT) step).state1);

}

}

}

return res;

}

The implementation also makes use of an Optional object, which begins by having the
empty value (Haskell’s Nothing), to assess when it is the first time dealing with a LeafBT. If it
happens to be the case, opAux is assigned to carry an actual value (Haskell’s Just). The next
time a LeafBT is encountered, a value will be present in opAux, and function b can be applied.

Highlighted in blue are the push operations performed on the stack, which correspond to
the self calls in the recursive version.



3.3. Adaptation to other data structures 49

Expressing the binary tree fold as a loop is also possible through the use of Continuation
Passing Style (as seen with foldr for streams operating over lists).

Similarly to what was done in that situation, specialised continuations need to be created
in order to address the specific cases of the control flow.

As we did previously, we will first take a look at the tail-recursive version of the fold
operation for binary trees in Haskell.

foldTTail _ l (Leaf a) cont = cont (l a)

foldTTail b l (Branch s t) cont =

foldTTail b l s (\a1 -> foldTTail b l t (\a2 -> cont (b a1 a2)))

As BranchBT objects hold two states, the continuations containing calls to fold need to have
a reference to one of the states so that when they are executed, they can change the variable
globalState in order to steer the course of execution in the right direction.

Furthermore, the continuation in question also needs to indicate its nextCont what the
current pending element is, so that it knows which element to apply function b to.

In the end, it returns the next continuation, as usual.

public class ContinuationFold <S> extends Continuation <S,ContinuationFold <S

>> {

public Object state;

public ContinuationFold(Object state , Continuation nextCont) {

this.state = state;

this.nextCont = nextCont;

}

@Override

public Continuation execute(S value) {

globalState = this.state;

(( ContinuationBranchOp) this.nextCont).pendingElem = value;

return this.nextCont;

}

}
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By the definition above, it can be seen that (\a2 -> cont (b a1 a2)) should also correspond
to some type of Continuation that applies the function to both sides of the branch.

public class ContinuationBranchOp <S> extends Continuation <S,

ContinuationBranchOp <S>> {

public S pendingElem;

public ContinuationBranchOp(Continuation nextCont){

this.nextCont = nextCont;

}

@Override

public Continuation execute(S value) {

return nextCont.execute ((S) b.apply(pendingElem , value));

}

}

As we previously saw, when foldr for streams over lists was presented, a chain of
Continuation objects needs to be constructed throughout the stream unrolling process.

Again, the initial element of this chain is ContinuationId, representing the identity function.
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public <S> S foldBTTailRec(BiFunction <S,S,S> b, Function <T,S> l) {

Continuation.b = b;

Continuation cont = new ContinuationId ();

boolean over = false;

Continuation.globalState = this.state;

while (!over){

Step step = this.stepper.apply(Continuation.globalState);

if(step instanceof LeafBT){

cont = cont.execute(l.apply ((T) step.elem));

if(cont == null){

over = true;

}

}

else if(step instanceof BranchBT){

Continuation.globalState = (( BranchBT) step).state1;

Continuation <S,ContinuationBranchOp <S>> nextCont =

new ContinuationBranchOp <>(cont);

cont = new ContinuationFold ((( BranchBT) step).state2 , nextCont

);

}

}

return (S) Continuation.res;

}

Although the implementation above differs a little from the majority of stream operations,
one can still find some similarities.

As usual, the stream’s stepper function is applied at the beginning of every iteration.
Continuations are added every time a step of type BranchBT is returned. Here, it is important

to store the second state (state2) the branch refers to. That way, the Continuation object in
question has a reference that will allow it to point the execution in the right direction.

Every time a step of type LeafBT is detected, it means that one of the tree’s bottoms has
been reached and the top most Continuation in the chain gets executed.
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S T R E A M O P T I M I S AT I O N

Stream Fusion accomplishes the elimination of intermediate data structures. Although this
is the main goal of program fusion, this approach achieves that at the cost of introducing
lots of object allocations.

Intermediate data structures are replaced by Step objects and, depending on the kind of
method being executed, complex states like the ones in appendfs, zipfs and concatMap need
even more objects in order to maintain the correct mode of operation.

These allocations are going to be responsible for a great amount of overhead. In the
Haskell implementation, this situation is overcome thanks to several optimisation tech-
niques included in GHC. Therefore, programs are automatically transformed and, in the
end, the most efficient solution is obtained (where all the objects mentioned have been
eliminated, thus reducing unnecessary allocations).

The Java compiler does not perform any of these optimisations. As a consequence, all the
overhead of object allocation, analysis and manipulation is still present in the final executed
version.

This chapter will explain how these optimisations can be achieved through source code
refactoring.

4.1 using fstream

In Coutts et al. [4], one of the examples used for demonstration consists of summing the
elements of two lists. In their fusion framework, the authors express this as:

foldl s (+) 0 (append s (stream xs) (stream ys))

52



4.2. Inlining all the stepper functions 53

In Java, this can be translated as:

BiFunction <Long , Integer , Long > f = (a, b) -> a+b;

FStream <Integer > xsFs = FStream.fstream(xs);

FStream <Integer > ysFs = FStream.fstream(ys);

Long res = xsFs.appendfs(ysFs).foldl(f, (long) 0);

This Java code will be the starting point for all the optimisation steps presented from this
point forward.

4.2 inlining all the stepper functions

The first step is to inline all the stepper functions that compose the methods fstream,
appendfs and foldl.

The code presented below shows that the creation of the respective streams from the two
lists xs and ys corresponds to the inlining of the stepper functions nextStream and nextStream1.

Similarly, appendfs gets inlined in the form of its respective stepper function nextAppend.
Depending on whether the state has the type Left or Right, we can see that the appropriate
stepper function is called: nextStream or nextStream1.

The body of these functions is omitted fully or in part because it is equivalent to what
has been already documented in 3.

We can then see that the seed value gets set to 0 and the initial state to Left(xs), indicating
that list xs is going to be processed first.

Finally, foldl gets inlined as a loop that repeatedly calls the nextAppend stepper function.
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Function <Object , Step > nextStream = x -> { ... };

Function <Object , Step > nextStream1 = x -> { ... };

Function <Object , Step > nextAppend = x -> {

if(x instanceof Left){

Step aux = nextStream.apply ((( Left) x).fromLeft ());

...

}

else if(x instanceof Right){

Step aux = nextStream1.apply ((( Right) x).fromRight ());

...

}

};

Long value = (long) 0;

Object auxState = new Left(xs);

boolean over = false;

while (!over) {

Step step = nextAppend.apply(auxState);

if (step instanceof Done) {

over = true;

} else if (step instanceof Skip) {

auxState = step.state;

} else if (step instanceof Yield) {

auxState = step.state;

value = f.apply(value , (Integer) step.elem);

}

}

Long res = value;

4.3 inlining inside stepper functions

In this step, nextStream and nextStream1 get inlined inside nextAppend (highlighted in blue),
which is the stepper function responsible for calling the first two.

For demonstration purposes, only the Left mode is presented below. However, an identi-
cal transformation takes place for the Right branch.
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It is now clearer that, depending on the outcome of nextStream (now inlined), aux will
be either Done or Yield which will determine the path taken in the last conditional block.
Therefore, this refactoring created a nested conditional.

Function <Object , Step > nextAppend = x -> {

if(x instanceof Left){

Step aux = ((Function <Object , Step >) x1 -> {

List aux1 = (List) x1;

if (aux1.isEmpty ()) {

return new Done();

} else {

List <Integer > sub = aux1.subList(1, aux1.size());

return new Yield <Integer , List <Integer >>(( Integer) aux1.

get (0), sub);

}

}).apply ((( Left) x).fromLeft ());

if(aux instanceof Done){

return new Skip <Either >(new Right(ys));

}

else if(aux instanceof Skip){

return new Skip <Either >(new Left(aux.state));

}

else if(aux instanceof Yield){

return new Yield <Integer , Either >(( Integer) aux.elem , new Left

(aux.state));

}

}

...

}

4.4 case-of-case transformation

In the previous section, there were two main conditional blocks: an inner one that checks
if the list is empty, and an outer one that checks the Step type.

By applying the case-of-case transformation we push the outer block inside each one of
the alternatives of the inner block, thus obtaining the following code (outer case insertion
highlighted in blue).
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Function <Object , Step > nextAppend = x -> {

if(x instanceof Left){

Step aux = ((Function <Object , Step >) x1 -> {

List aux1 = (List) x1;

if (aux1.isEmpty ()) {

Step innerAux = new Done();

if(innerAux instanceof Done){

return new Skip <Either >(new Right(ys));

}

else if(innerAux instanceof Skip){

return new Skip <Either >(new Left(innerAux.state));

}

else if(innerAux instanceof Yield){

return new Yield <Integer , Either >(( Integer) innerAux.

elem , new Left(innerAux.state));

}

} else {

List <Integer > sub = aux1.subList(1, aux1.size());

Step innerAux = new Yield <Integer , List <Integer >>(( Integer

) aux1.get(0), sub);

if(innerAux instanceof Done){

return new Skip <Either >(new Right(ys));

}

else if(innerAux instanceof Skip){

return new Skip <Either >(new Left(innerAux.state));

}

else if(innerAux instanceof Yield){

return new Yield <Integer , Either >(( Integer) innerAux.

elem , new Left(innerAux.state));

}

}

return null;

}).apply ((( Left) x).fromLeft ());

...

Although this particular transformation duplicates code significantly, it makes it easier
to apply another transformation where the code gets rewritten in a more concise way.
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4.5 trivial rewriting

By applying the case-of-case transformation previously, we made it more explicit that it is
possible to determine the path taken by the outer conditional block.

In the previous code, if aux1.isEmpty() evaluates to true, then innerAux will be a Done object.
Consequently, it becomes evident that innerAux instanceof Done will be true. Thus, the only
alternative being executed will be the body of that particular if statement.

Therefore, all the other code can be removed. Following this line of thought, we can
transform the portion of code we have been using so far into the following.

Function <Object , Step > nextAppend = x -> {

if(x instanceof Left){

Step aux = ((Function <Object , Step >) x1 -> {

List aux1 = (List) x1;

if (aux1.isEmpty ()) {

return new Skip <Either >(new Right(ys));

} else {

List <Integer > sub = aux1.subList(1, aux1.size());

return new Yield <Integer , Either >(( Integer) aux1.get (0),

new Left(sub));

}

}).apply ((( Left) x).fromLeft ());

return aux;

}

...

As stated previously, for conciseness reasons, the transformations applied have been
demonstrated in detail only for the Left branch.

If we follow the reasoning documented in the previous sections, we get the following
code for the Right branch, which resembles the code listed prior for the Left mode.
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...

else if(x instanceof Right){

Step aux = ((Function <Object , Step >) x1 -> {

List aux1 = (List) x1;

if (aux1.isEmpty ()) {

return new Done();

} else {

List <Integer > sub = aux1.subList(1, aux1.size());

return new Yield <Integer , Either >(( Integer) aux1.get (0), new

Right(sub));

}

}).apply ((( Right) x).fromRight ());

return aux;

}

So far, the previous three transformations (inlining, case-of-case and trivial rewriting) have
avoided the allocation and check of one Step object for each iteration.

4.6 repeated application of the rules

These transformations can be applied again. As such, we inline the current form of
nextAppend into the loop, apply the case-of-case rule and finally rewrite the code.
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final Long[] value = {(long) 0};

final Object [] auxState = {new Left(xs)};

final boolean [] over = {false};

while (!over [0]) {

Step step = ((Function <Object , Step >) x -> {

if (x instanceof Left) {

Step aux = ((Function <Object , Step >) x1 -> {

List aux1 = (List) x1;

if (aux1.isEmpty ()) {

auxState [0] = new Right(ys);

} else {

List <Integer > sub = aux1.subList(1, aux1.size());

auxState [0] = new Left(sub);

value [0] = f.apply(value[0], (Integer) aux1.get(0));

}

return null;

}).apply ((( Left) x).fromLeft ());

return aux;

} else if (x instanceof Right) {

Step aux = ((Function <Object , Step >) x1 -> {

List aux1 = (List) x1;

if (aux1.isEmpty ()) {

over [0] = true;

} else {

List <Integer > sub = aux1.subList(1, aux1.size());

auxState [0] = new Right(sub);

value [0] = f.apply(value[0], (Integer) aux1.get(0));

}

return null;

}).apply ((( Right) x).fromRight ());

return aux;

}

return null;

}).apply(auxState [0]);

}

Long res = value [0];
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If we compare the current state of the program with the first presented version, we can
see that some variables (value, auxState and over) have been converted to one-element arrays.

The reason behind this modification are the requirements imposed on the variables han-
dled inside the scope of lambda expressions. These expressions can only access variables of
the enclosing block that are final. However, the variables cannot simply be converted to
final because, in addition to being accessed, they also need to be modified.

Thus, for all purpose, by transforming the variables in question to final one-element
arrays, we are not assigning a new value to them, but only to one of its features. The array
behaves as a wrapper around the values we wish to work with.

Every occurrence of Step objects has been removed by now. Some references to this class
are still present in the return values of the Function objects but they can be considered
leftovers of the refactoring. If we inspect the code being executed, we verify that objects of
this type are never instantiated nor manipulated. In fact, the only thing the Functions do is
accessing and modifying the outside variables.

4.7 constructor specialisation

Allocation of intermediate Step objects has been eliminated by now.
However, some functions also require the allocation of additional objects in order to

maintain the stream’s state. This is the case with appendfs since it resorts to Either to control
its mode of operation.

Therefore, similarly to what happened before with Step, an Either object is instantiated
on every iteration.

If we take a look at the if/else statement in the previous section where we check whether
the function is operating on the Left or Right mode and consider each of those branches to
be a specialised version of the loop, we can remove those conditional statements and break
the loop into two.

Now, each mode of operation has its own dedicated loop, thus eliminating the need to
repeatedly check the instance type of the current state. As such, updating the state can be
addressed in a straightforward way and it gets the list assigned directly.

Note that splitting the loop into two does not imply executing more iterations. The first
loop only iterates over the first list and, when finished, switches the state to the second list,
breaks out and the second loop continues from that point forward.
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final Long[] value = {(long) 0};

final Object [] auxState = {xs};

final boolean [] over = {false};

while (!over [0]) {

Step aux = ((Function <Object , Step >) x1 -> {

List aux1 = (List) x1;

if (aux1.isEmpty ()) {

auxState [0] = ys;

over [0] = true;

} else {

List <Integer > sub = aux1.subList(1, aux1.size());

auxState [0] = sub;

value [0] = f.apply(value[0], (Integer) aux1.get(0));

}

return null;

}).apply(auxState [0]);

}

over [0] = false;

while (!over [0]){

Step aux = ((Function <Object , Step >) x1 -> {

...

}).apply(auxState [0]);

}

Long res = value [0];

4.8 simplifying the loop

The subList method used allows the creation of a partial view over the list we want our
program to work on.

Although the creation of this view is relatively cheap, it is still not the most efficient way
to iterate over a collection, at least in Java.

Iterating is expressed in a more efficient way through the use of for-each loops.
There is no need to be constructing a view of the target list every time we want to look

at the next element.
Therefore, the iteration mechanism being used in the implementation so far can be con-

verted to the following.
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long res = 0L;

for (Integer i : xs) {

res = f.apply(res , i);

}

for (Integer i : ys) {

res = f.apply(res , i);

}

Furthermore, the function in question is a very basic one: addition.
Using a Function object to encapsulate this kind of behaviour is, in this particular case,

subject to some unnecessary overhead.
If we translate the execution of such function, f.apply(res, i), to a direct use of the +

operator, we get the following and more efficient version of the program.

long res = 0L;

for (Integer x : xs) {

long l = x;

res += l;

}

long sum = 0L;

for (Integer i : ys) {

long l = i;

sum += l;

}

res += sum;

4.9 existing ide refactoring tool

The previous sections presented a way to refactor an existing program expressed as a
chain of different stream operations into an equivalent version using loops which achieved
better performance.

Nowadays, IDE’s contain several tools that allow programmers to refactor their code in a
multitude of ways.

Some of these development environments offer Java Stream API conversion to for loops
as one of the possible refactors.

As an example, one could obtain the final optimised version of our program by using the
included refactoring tool in IntelliJ IDEA.
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However, in this particular example, the IDE does not seem to detect that this conversion
can take place due to the stream concatenation.

For every other example tested that only used one stream, the IDE was able to translate
code written with the Java Stream API to the equivalent for loop version.
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T H E G E N E R A L T E M P L AT E

This chapter describes the structure of the general template that is obtained after the
optimisation steps described in 4 have been performed.

The following sections describe considerations that are important to have in mind when
thinking about this process.

5.1 considering complex states

The example used for the demonstration in 4 belongs to a set of stream pipelines which
has a particular characteristic.

Examples of this kind manipulate what is referred to in Stream Fusion as complex stream
states.

These non-trivial state types are necessary in order to guarantee the correct control flow of
the operations in question, such as append and zip.

Different types represent different modes to operate on. Therefore, the corresponding
stepper functions need to check the type of the current state they are manipulating. De-
pending on the result of that inspection, the code corresponding to that mode of operation
is executed.

This mechanism requires the creation of objects that represent those different types of
complex states. In the example used in 4, Left and Right object are instantiated in order to
achieve the desired effect.

As a result, when optimising the code, it is necessary to remove these allocations, as they
are not necessary for the execution. That is precisely what the constructor specialisation step
achieves. We only obtain the general template after this.
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5.2 simpler operations

Functions like filter and map do not manipulate the kind of states mentioned in the previ-
ous section. As such, when a stream pipeline is only composed of operations of this nature,
the code optimisation process does not require constructor specialisation.

As a result, one can obtain the general template in a more straightforward way.

5.3 the template’s structure

In order to explain the template’s skeleton, we shall consider the following stream pipeline.

Predicate <Student > p = s -> s.grade >= 95;

Function <Student , Student > f =

s -> new Student(s.name , Math.round(( double) s.grade / 10));

ArrayList <Student > res = (ArrayList <Student >) FStream.fstream(l)

.filterfs(p)

.mapfs(f)

.unfstream ();

After applying all the optimisations, we obtain a code similar to the one presented below.
The comments highlight the logic behind each instruction.

List auxState = l;

boolean over = false;

while (!over) {

if (auxState.isEmpty ()) {

over = true; // End of the list reached: break out of the loop

} else {

// Set sub to be the tail of the current state

List <Student > sub = auxState.subList(1, auxState.size());

if ((( Predicate) p).test(auxState.get (0))) {

// auxState.get (0) is the element corresponding to the

current iteration

res1.add(f.apply (( Student) auxState.get (0)));

auxState = sub; // Advance one element , i.e. set the state to

its tail

} else {

auxState = sub;

}

}

}
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Listing 5.1: Code after optimisations

If we analyse the code above and try to identify a general form for its representation, we
can conclude that the template one whishes to obtain after performing code optimisation
has the following structure.

List auxState = list;

boolean over = false;

while (!over) {

if (auxState.isEmpty ()) {

over = true;

} else {

List <T> sub = auxState.subList(1, auxState.size());

body

}

}

Listing 5.2: Template’s structure

Here, body (highlighted inside a red rectangle) consists of the instructions that, when
executed, perform the behaviour that the original stream pipeline describes. Therefore, the
innermost if-else statement in 5.1 corresponds to the body just described.

More precisely, that particular if-else statement is the equivalent for the filter operation
used in the stream version. In a similar way, the equivalent for the map operation is the
f.apply(...) present inside the if statement.

This structure can be converted into a for loop.

for (... x: list){

modified body

}

Listing 5.3: Conversion into for loop

In 5.1, 5.2 and 5.3 there are some yellow and green highlights that represent the collection
(list) over which operations are performed and the element being manipulated in each
iteration, respectively.

The collection which the for loop iterates over is pretty straightforward to set, as it corre-
sponds to the first value held by the state.

The while loop in 5.1 should perform operations on no more than one element on each iter-
ation. The way we refer to the element in question is through the instruction auxState.get(0).
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In the enhanced for loop, we refer to each element in list as x. Therefore, each occurrence
of auxState.get(0) gets replaced with x (both in the loop’s header and in modified body). As
an iterator is used under the hood for this kind of control flow structure, there is no need
to explicitly set what the state should be before the next iteration starts and, as a result,
auxState = sub instructions do not show up in modified body.

Following this line of thought, the example presented in the beginning can be converted
into an equivalent for loop.

for(Student s: l){

if ((( Predicate) p).test(s)){

res1.add(f.apply(s));

}

}

5.4 streams with folds and/or unfolds

When the method used to generate an FStream object is an unfold, and not fstream, then
the template obtained in the end slightly differs from the one described previously.

The same goes for the cases when the terminal operation of the stream pipeline is a fold

and not an unfstream.
In order to better illustrate the situation, let’s consider another example. This time, we

consider the well known factorial operation implemented in the form of an unfold followed
by a fold.

Function <Integer , Optional <Pair <Integer ,Integer >>> f = x -> {

if (x > 0) {

return Optional.of(new Pair <>(x, x - 1));

} else {

return Optional.empty ();

}

};

Integer res = FStream.unfoldr(f, 5).foldl((x, y) -> x * y, 1);

Function f represents the function which unfoldr uses in order to generate the stream’s
elements. This function gets executed each time the higher order function unfoldr needs to
return a new element. As such, the Pair used inside the builder function holds both the
element to be retrieved and the value it needs to consider during its next call.
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In this particular example, x gets decremented each time and f stops returning elements
when zero is reached.

After applying the transformations, the following is obtained.

Function <Integer , Optional <Pair <Integer ,Integer >>> f = x -> {

if (x > 0) {

return Optional.of(new Pair <>(x, x - 1));

} else {

return Optional.empty ();

}

};

Integer value = 1;

Object auxState = 5;

boolean over = false;

while (!over) {

Optional <Pair <Integer , Integer >> aux = f.apply (( Integer) auxState);

if (!aux.isPresent ()) {

over = true;

} else {

auxState = aux.get().getY();

value = ((BiFunction <Integer , Integer , Integer >) (x, y) -> x * y).

apply(value , aux.get().getX());

}

}

Integer res = value;

Listing 5.4: optimised unfoldr based stream

The above program can be converted in an equivalent one using a for-loop, presented
below. Colours were used in order to highlight where the elements of one version fit in the
other one.

Integer value = 1;

for(Integer x = 5; x > 0; x = x-1){

value = (( BiFunction <Integer , Integer , Integer >) (a, b) -> a * b).

apply(value , x);

}

Similarly to what was done in 5.3, we wish to find a way to generalise this transformation
to programs of this kind. As such, we try to find a template that conforms to the structure
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of such programs. If we examine the code in 5.4 we can locate the most important elements
(highlighted in colours). The builder function f passed to unfoldr has two components:

• blue: the condition that sets whether the function keeps returning elements or not;

• yellow: the operation that sets the value for the next call.

Before the loop starts, there are two other details highlighted:

• red: the accumulator value;

• green: the seed state, i.e the value that is passed when calling unfoldr’s builder func-
tion for the first time.

After that, the while-loop takes over the execution. It encapsulates consecutive calls to
the builder function in order to continuously retrieve elements. The outer if-else statement
controls whether the execution continues or not. If the builder did not return any element,
we break out of the loop. Otherwise, the body (highlighted inside a red rectangle), corre-
sponding to all the operations that compose the stream pipeline, gets executed.

Function <T, Optional <Pair <T,S>>> f = x -> {

if (condition_to_continue) {

return Optional.of(new Pair <>(x, advance_operation));

} else {

return Optional.empty ();

}

};

S value = accumulator;

Object auxState = seed_state;

boolean over = false;

while (!over) {

Optional <Pair <T, S>> aux = f.apply ((T) auxState);

if (!aux.isPresent ()) {

over = true;

} else {

body

}

}

Integer res = value;
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Based on this structure, it is possible to derive an equivalent control flow making use of
a for-loop. The highlighted elements are repositioned in order to fill the appropriate spots.

Moreover, the body gets modified:

• statements responsible for advancing the state (auxState = aux.getY().get()) are elimi-
nated because the loop’s iterator working under the hood takes care of that;

• references to aux.get().getX() (corresponding to each iteration’s variable) are replaced
by x.

S value = accumulator;

for(T x = seed_state; condition_to_continue; advance_operation){

modified body

}
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E X P R E S S I V E N E S S

The FStream setting allows for a degree of expressiveness that Java Streams do not cur-
rently support.

In this chapter, some examples of programs that showcase this expressive power are
presented.

6.1 fibonacci

Naively, a Haskell implementation stands as follows.

fib 0 = 0

fib 1 = 1

fib n = fib (n - 1) + fib (n - 2)

We could think of the sequence of calls that a program calling this function would gener-
ate and generalise a representation over binary trees.

fibT :: Integer → Tree Integer

fibT 0 = Leaf 0

fibT 1 = Leaf 1

fibT n = Branch (fibT (n - 1)) (fibT (n - 2))

The above function returns a binary tree (Tree datatype).
A program that calculates Fibonacci numbers could therefore be written as the composi-

tion of an unfold followed by a fold1.

1 Indeed, the HYLO system converts the original fib implementation into a fold◦unfold.
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fib’T :: Integer → Integer

fib’T = foldT (+) id ◦ unfoldT g

where

g 0 = Left 0

g 1 = Left 1

g n = Right (n - 1, n - 2)

Equivalently, one could write this program in Java using the FStream setting.

// Builder function passed to unfoldrBT

Function <Integer , Either <Integer , Pair <Integer ,Integer >>> g = x -> {

if (x == 0){

return new Left <>(0);

}

else if(x == 1){

return new Left <>(1);

}

else{

return new Right <>(new Pair <>(x-1, x-2));

}

};

Integer res = unfoldrBT(g, NUMBER)

.foldlBT ((x,y) -> x + y, Function.identity ()));
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P E R F O R M A N C E T E S T S

In order to assess the effect that each transformation has on the program’s performance,
each version obtained through the application of the those rules was tested in terms of
runtime performance.

In addition, the equivalent implementation using Java Streams was also measured.
Although the program took less time to complete with the increasing number of optimi-

sation rules that were applied, in order to show the values in a more concise way, only the
results for the original Java Streams implementation, FStreams implementation, the final
optimised loop obtained from FStreams (after the transformations) and the final for-each
loop are going to be presented.

7.1 foldl-append

In Stream Fusion, one of the examples used by Coutts et al. [4] to demonstrate the trans-
formations performed by the GHC optimiser is:

foldl s (+) 0 (append s (stream xs) (stream ys))

In fact, the optimisations in question were presented in detail in 4. The results collected
by the benchmarks are the following.
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Figure 1: Runtime results for foldl append

The results allow us to verify that the optimisation rules applied (and documented in 4)
lead to an efficiency gain. The original FStream implementation execution time drops from
142 seconds to 70 seconds. Although this version is not the best (as it still does not use for-
each loop), one can verify that the application of the GHC optimisation techniques discussed
in Coutts et al. [4] in the form of source code refactoring contributes to a major improvement
in runtime performance.

The equivalent implementation using the Java Stream API accomplishes a significantly
better execution time of 0.39 seconds, which is roughly identical to the 0.37 seconds mea-
sured for the final optimised loop version.

7.2 filter-map

A different example using filter and map operations was also conceived in order to assess
the performance impact of the optimisations with other FStream methods.

This example consists in filtering out the Students that do not have a grade equal or greater
than 95 points. The ones that remain have their grades divided by 10 in order to normalise
the value. The initial list has 20.000.000 elements.

The FStream setting allows us to write this examples as:
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Predicate <Student > p = s -> s.grade >= 95;

Function <Student , Student > f =

s -> new Student(s.name , Math.round(( double) s.grade / 10));

ArrayList <Student > res = (ArrayList <Student >) FStream.fstream(l)

.filterfs(p)

.mapfs(f)

.unfstream ();

The obtained results are the following:

Figure 2: Runtime results for filter map

This stream pipeline does not manipulate complex stream states, i.e. the stream does not
need to handle objects of types such as Either or Optional in order to assess which mode it
is operating on. Therefore, the Constructor Specialisation optimisation is not performed, as
there is no need for it.

In the chart, NoFunctions represents the final optimised loop (after all Inlines, Case Of
Case and Trivial Rewrites) with all Function objects removed in order to minimise the over-
head.

The original implementation (as seen in the previous code listing) finished its execution
after 1.52 seconds.
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After all the optimisations were applied, the execution time dropped to 1.10 seconds,
which approximately represents a 27% improvement.

If the task in question is implemented with Java Streams or with for-each loops, the exe-
cution time is around 0.34 seconds.

7.3 iterate-zip

The calculation of the lines that compose the Pascal Triangle can be expressed using the
iterate, append, zip, map and take functions.

The implementation of such solution for the first 3000 lines (NLINES = 3000) stands as
follows:

Function <List <BigInteger >,List <BigInteger >> f1 =

row ->

fstream(Arrays.asList(BigInteger.ZERO)).appendfs(fstream(row))

.zipfs(fstream(row).appendfs(fstream(Arrays.asList(BigInteger.ZERO

))))

.mapfs(p -> p.getX().add(p.getY()))

.unfstream ();

res1 = iterate(f1, l).take(NLINES).unfstream ();

zipfs is an operation that works with complex stream states. However, it restricts the use
of the Constructor Specialisation rule, as the different modes of operation alternate between
each other, making it impossible to split the loop in two parts.

Nevertheless, for this particular example, there is a way to overcome that difficulty and
perform an extra optimisation in the end that resembles the effect obtained from the Con-
structor Specialisation rule application.

The two lists that zipfs handles are the result of two separate list concatenations. But
because these two concatenations yield lists of equal size, we can switch the places of
appendfs and zipfs inside the loop. That way, append is the outermost operation and we can
then eliminate the creation of all the Left and Right objects.
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Figure 3: Runtime results for iterate-zip

Again, we can see that the transformations have a positive impact in runtime performance.
The original program takes 1.08 seconds to complete, whereas the final optimised one
(called InvertLoops because of the splitting that occurs after the inversion of the operations)
takes 0.80, reflecting, approximately, a 26% improvement. Although Java Stream’s do not
provide a zip function implementation, it is still possible to code an equivalent solution by
resorting to other methods. The corresponding solution completes after 0.62 seconds.

7.4 foldr

Native Java Streams do not currently support a fold right like operation.
The FStream class implements such a method in different ways:

• The usual recursive foldr;

• foldr as foldl;

• A loop version derived from a tail recursive definition.

The example chosen to test the performance of the existing alternatives was the calcula-
tion of the average of a list of randomly generated numbers ranging from 0 to 499 (inclusive)
that gets the numbers that are not even filtered out.

Foldr’s stack overflow problems have already been discussed in 3.2. There, it was ex-
plained why the foldr as foldl alternative took advantage of stepper functions which pro-
duced Skips. As such, a filter operation was introduced in this example in order to verify
that this would happen.
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Figure 4: Runtime results for different foldr implementations

Running tests for small lists meant that these tests would complete in a very short time.
As a consequence, one could not use these values for appropriate comparison, as they
placed themselves between 2 and 4 milliseconds.

Thus, in order to be able to produce results for a collection with a large number of
elements without running into stack overflow problems, the JVM’s internal stack was in-
creased to 1Gb with the -Xss1G option. Even FoldrTailRec was run under these conditions,
even though its implementation does not take advantage of a larger stack size. Nevertheless,
it stands to show that the size does not interfere with this version’s performance.

The usual recursive version of foldr completes the task in 1.58 seconds. The fact that
its counterpart FoldrAsFoldl finishes in 1.03 seconds goes to show the benefits of ”jumping
over” Skip elements (as discussed in 3.2), which reflect a 35% improvement.

On the other hand, the implementation using Continuation Passing Style did worse, av-
eraging 1.82 seconds. Although this version has the ability to produce results for lists
containing any amount of elements (provided they all fit in memory), it does so with a
penalty. The 77% decrease in performance from 1.03 to 1.82 shows exactly that: the cost of
having to handle all those Continuation objects.

7.5 fibonacci

The adaptation of the FStream setting to binary trees was presented in 3.3.
A solution for calculating Fibonacci numbers can be expressed based on binary trees (as

seen on 6.1).
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In this section, we explore two different perspectives. One of them is what has been
seen so far: applying the transformations and check if there are any improvements. The
other one consists of comparing different program versions for calculating these Fibonacci
numbers and analysing the differences in execution time between them.

7.5.1 Applying transformations

An implementation for the calculation of the Fibonacci function can be expressed as an
unfold followed by a fold.

Function <Integer , Either <BigInteger , Pair <Integer ,Integer >>> g = x -> {

if (x == 0){

return new Left <>( BigInteger.ZERO);

}

else if(x == 1){

return new Left <>( BigInteger.ONE);

}

else{

return new Right <>(new Pair <>(x-1, x-2));

}

};

BiFunction <BigInteger , BigInteger , BigInteger > sum = (x, y) -> x.add(y);

BigInteger res = unfoldrBT(g, 38).foldBTTailRec(sum , Function.identity ());

In this case, the fold that was used was the version implemented with Continuation Passing
Style because it is the one that has a code structure more susceptible to have the optimisa-
tions applied to it.
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Figure 5: Runtime results for Fibonacci before and after optimisations

As illustrated by the chart, the original FStream version with no optimisations finishes in
2.41 seconds.

After the transformations and the removal of all Function objects, the execution time drops
to 2.15 seconds, depicting a 10% gain.

In contrast to the examples so far, results for an implementation using Java Streams
are not presented. This is because Java Streams are intended to work over the Collections
the language has to offer. In this particular case, FStreams are working over binary tree
structures, thus the absence of a native Java Stream alternative.

7.5.2 Version comparison

Fibonacci numbers can be calculted through many different ways. With this in mind,
several solutions were implemented in order to better understand the differences between
each other in terms of runtime. The implementations in question are:

• Recursive: an intuitive and straightforward implementation;

• Recursive fold: similar to the one presented in the previous section, but with a recur-
sive implementation for the final fold;

• Anamorphism and Catamorphism (no fusion): explicitly producing the binary tree
and then consuming it;

• Hylomorphism (fusion): similar to the previous one, but elements get consumed as
they are produced.
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• Iterative: using a simple for loop;

• Tuple: uses an auxiliary tuple to return the solution for n-1 and n in order to avoid
repeating the calculations;

The first four implementations were tested for n = 38 and the collected results were the
following.

Figure 6: Runtime results for recursive, recursive fold, anamorphism/catamorphism and hylomorphism

The recursive version, although having the disadvantage of running into a stack overflow
for bigger n values, is the one that comes on top among these four alternatives, taking
approximately 0.84 seconds to compute fib(38).

The fold.unfold version based on a recursive implementation takes 2.14 seconds to com-
pute the same result, which makes for a 154% increase in runtime.

Explicitly building the produced structure and then consuming it is, as expected, the
worst implementation in terms of execution time. At 10.31 seconds, it takes approximately
12x more time to complete than the most efficient one.

Finally, an implementation based on a hylomorphism, where elements are consumed
as they are produced, reduces the previous result to 2.58 seconds, which means a 75%
improvement. It is important to note that this solution is very similar to the one of Recur-
siveFold, except that it is able to compute bigger n values (as it does not have to deal with
the increasing stack size originated by the recursive function calls) and its code is prone to
optimisations (as already mentioned).
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Figure 7: Runtime results for iterative and tuple

The two last implementations - iterative and tuple - are the most efficient ones. In fact,
a significantly greater n value of 700.000 had to be used in order to obtain comparable
execution time results.

As the implementation that makes use of tuples is a recursive one, the JVM internal stack
size needed to be increased to 1Gb through the -Xss1G option.

The two solutions present very similar performance, separated by a 5% difference with
the for loop implementation finishing after 6.56 seconds and the tuple based one after 6.87

seconds.
Still, as stated previously for another set of implementations, there are stack overflow er-

rors that are bound to happen as the value of n increases, which the iterative implementation
is able to overcome but the tupled solution suffers from.

7.6 initial experiments

Some preliminary tests were made in order to better understand the behaviour of the
native implementation of Java streams before and after fusion.

For now, the transformation was applied manually.

7.6.1 Experiment setup

The focus for the experiments being documented was execution time.
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As the tests being performed targeted very specific scenarios of stream usage, there are
some risks associated with the isolated execution of the examples in question that needed
to be addressed.

More specifically, the JVM might apply some optimizations to the code segment being
executed. However, in a real world scenario, these optimisations might not be performed if
that part of the program is integrated in a larger application.

As such, while performing benchmarks of this kind, we need to concern about several
issues, such as:

• Loop Optimisations

• Dead Code Elimination

• Constant Folding

• JVM Warmup

In order to compensate for these difficulties, in addition to what we want to measure, the
benchmark needs to implement preventive measures to mitigate unwanted effects.

Fortunately, there are tools that assist with this kind of requirements.
One example is Java Microbenchmark Harness (JMH).
With the placement of some convenient annotations, the framework will benchmark the

code we intend in an appropriate way. This way, we can keep our focus in the actual code
to be benchmarked and thus saving time in the setup.

The collection used for the tests consisted of an ArrayList of String, with each of the
elements having the form n word where n is a random integer.

In order to test the effects of fusion, two filter alternatives for the same task were con-
ceived. One had the predicates to be tested chained together and the other one had them
merged.

The operation is question consisted of calculating the number of elements in the list that
complied to two predicates:

• n was greater than 100,000,000

• the String’s length was less than 15

Therefore, the chained alternative was equivalent to:

list.stream ().filter(s -> Integer.parseInt(s.split("_")[0]) > 100000000)

.filter(s.length () < 15)

.count();
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And the merged alternative was equivalent to:

list.stream ().filter(s -> Integer.parseInt(s.split("_")[0]) > 100000000

&& s.length () < 15)

.count();

Different collection sizes were considered: 5,000,000, 10,000,000, 20,000,000, 40,000,000.
Each case had 5 warmup iterations of 20 seconds each.
For the actual measurement, 8 iterations of 20 seconds each were executed.

7.6.2 Results

For the experiment described in the previous section, the following results were obtained:

Figure 8: Filter: chained vs merged results

As one can see, the merged alternative is faster than the option with chained predicates.
If we calculate the percent improvement of the merged version over the chained version:

• 5,000,000 elements: 6.5%

• 10,000,000 elements: 5.4%

• 20,000,000 elements: 4.2%
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• 40,000,000 elements: 7.7%

We can end up considering that there is a general 6% improvement when fusion is ap-
plied.

7.6.3 Discussion

The improvement verified after applying fusion was expected.
What’s at the heart of this improvement is not the number of times each predicate gets

tested, but the number of traversals done on the data structures.
Because the operations are chained, there is an intermediate structure being produced

after the execution of the first filter. For that intermediate structure, the elements that did
not comply to the first predicate have already been removed. Nevertheless, this structure
(a newly produced stream) still needs to get traversed in order to check if its elements obey
the second predicate.

However, with fusion (mentioned as ”merged”), the two predicates are tested for each
element right after the other. Therefore, we avoid the creation of an intermediate structure
and, consequently, an extra unnecessary traversal.

Although the outcomes show an improvement, these gains are not significant. Therefore,
at this time, the results are not conclusive and more tests are going to be performed.
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C O N C L U S I O N / F U T U R E W O R K

8.1 conclusions

Throughout the years, programming languages have come up with new mechanisms that
allow programmers to abstract more complex ideas into simple instructions. Java Streams
are an example of such a mechanism, allowing for an easier manipulation of Java collections.
Together with lambda expressions, programmers can express recursion patterns in a very
intuitive way. However, these abstractions may lead to performance issues. Chaining sev-
eral higher order functions can cause a program to perform extra unnecessary traversals and
operations if optimisation techniques like fusion are not implemented.

In chapter 2, several optimisation techniques were covered. Techniques like deforestation
and short-cut fusion aimed to eliminate intermediate structures that were inevitably created
as a way to ”glue” different functions together. Other approaches, like circular program calcu-
lation, focused on converting algorithms which performed multiple traversals to programs
performing a single one. Ultimately, stream fusion, in which this thesis is heavily based on,
accomplishes both. By rewriting Haskell’s List library functions in order to adapt them to
the Stream setting and, together with that, providing a set of compiler optimisation rules,
this approach accomplishes some kind of automation when it comes to fusion. Automat-
ing this final step is something that previous techniques have missing. In a similar way,
the Hylo System also tries to perform these transformations automatically by extracting the
recursive structure of programs and performing fusion through the application of transfor-
mation laws.

In order to explore the approach taken by Stream Fusion in a Java context, that setting
has to be adapted and implemented in Java. The representation of the Stream and Step
datatypes had to be mapped to a more Object Oriented setting and each function of the
Stream library had to have its implementation converted to the most possibly equivalent
Java method. Haskell’s functional essence makes recursion a natural ”component” of the

86



8.1. Conclusions 87

language. As such, many patterns are implemented recursively, like folds. Although the
Java language allows for the use of recursion, it is not the most efficient mechanism. Re-
cursive calls rapidly fill up the stack and, in order to overcome some of these difficulties,
alternative ways to express foldr had to be explored. As such, the reader may have noticed
that in 3.2.3, Continuation Passing Style was given a lot of attention if we consider that the
main research task described in this document did not initially focus on something like
that. This was something that emerged from a difficulty which sprouted during the devel-
opment process of the FStream setting. Moreover, with the adaptation of the framework to
other data structures, this programming style also helped overcoming problems of similar
nature.

After having the FStream setting all set up, it was now possible to write programs by
chaining several higher order functions. However, a considerable amount of object alloca-
tions had been introduced in order to eliminate intermediate data structures. Therefore, the
code that got executed at that point was not optimal. [4] actually describe this scenario and
explain that a lot of the optimisation process is carried out by GHC. In order to reproduce
the different optimisation rules already implemented in GHC, the examples implemented
to demonstrate the use of FStreams were refactored. That way, the effect of the different
optimisation steps was recreated and the ultimate goal of removing unrequired allocations
was accomplished.

Although the optimisations are not automatic, if we analyse the structure of the different
programs, a number of similarities are found. Thus, general templates can be extracted,
which assists the optimisation process. Depending on the type of functions which compose
the stream pipeline, different templates need to be considered, which ultimately affect the
optimisation rules that are applied.

Although Java already has the notion of stream natively present in its implementation,
the FStream setting brings something new to the table: expressiveness. By implementing
functions not supported (at least currently) by native Java streams and making it feasible
to work over other data structures like binary leaf trees, it makes it possible to implement
certain algorithms in a more expressive way. Calculating fibonacci numbers through the use
of binary leaf trees is one example, as shown in 6.1.

Like every software piece, the framework developed throughout this thesis was subject to
performance tests. The main goal of these tests was to assess the impact that the source code
transformations had on the execution time of several example programs. Those numbers
were put side by side with run time results for equivalent versions of those same programs,
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but using Java Streams and normal for loops.

Chapter 8 describes one of the first tasks that was carried out during the beginning of
this thesis. The goal was to verify the degree of improvement that was possible to achieve
by simply merging each parameter of two higher order functions of the same type into only
one.

8.2 prospect for future work

Ideally, fusion should be accomplished through an automated optimisation process, sim-
ilar to what Coutts et al. [4] and Onoue et al. [10] try to achieve. Therefore, future work
could focus on developing a tool that automatically performs the described refactorings in
4.

FStreams performance (without optimisations) falls behind Java Streams. Athough this
gap tries to be shortened through the transformations previously mentioned, it would be
interesting to explore what improvements could be achieved by actually changing the im-
plementation of the setting.

In addition to making it possible to abstract complex recursion patterns into pipelines of
simple and clear higher order functions, the concept of stream also simplifies the adaptation
of sequential implementations of algorithms to parallel ones. As such, making the necessary
adaptations to FStream in order to have it support parallelism constitutes one of the main
features for future work.
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nandes, and João Saraiva. Energy efficiency across programming languages: How do
energy, time, and memory relate? In Proceedings of the 10th ACM SIGPLAN Interna-
tional Conference on Software Language Engineering, SLE 2017, pages 256–267, New York,
NY, USA, 2017. ACM. ISBN 978-1-4503-5525-4. doi: 10.1145/3136014.3136031. URL
http://doi.acm.org/10.1145/3136014.3136031.

https://doi.org/10.1007/978-3-319-15940-9_10
https://doi.org/10.1007/978-3-319-15940-9_10
https://doi.org/10.1007/978-0-387-35264-0_4
http://doi.acm.org/10.1145/1480945.1480958
https://doi.org/10.1007/s10990-011-9076-x
http://www.sciencedirect.com/science/article/pii/S0167642316300880
http://www.sciencedirect.com/science/article/pii/S0167642316300880
http://doi.acm.org/10.1145/3136014.3136031


Bibliography 91

[16] John C. Reynolds. The discoveries of continuations. LISP and Symbolic Computation, 6

(3):233–247, Nov 1993. ISSN 1573-0557. doi: 10.1007/BF01019459. URL https://doi.

org/10.1007/BF01019459.

[17] João Saraiva and Doaitse Swierstra. Data Structure Free Compilation. In Stefan
Jähnichen, editor, 8th International Conference on Compiler Construction, CC/ETAPS’99,
volume 1575 of LNCS, pages 1–16. Springer-Verlag, March 1999.

[18] Gerald J. Sussman and Guy L. Steele, Jr. An interpreter for extended lambda calculus.
Technical report, Cambridge, MA, USA, 1975.

[19] Philip Wadler. Deforestation: transforming programs to eliminate trees. Theoretical
Computer Science, 73(2):231 – 248, 1990. ISSN 0304-3975. doi: https://doi.org/10.1016/
0304-3975(90)90147-A. URL http://www.sciencedirect.com/science/article/pii/

030439759090147A.

https://doi.org/10.1007/BF01019459
https://doi.org/10.1007/BF01019459
http://www.sciencedirect.com/science/article/pii/030439759090147A
http://www.sciencedirect.com/science/article/pii/030439759090147A


This work is funded by ERDF - European Regional Development Fund through the Operational Programme
for Competitiveness and Internationalisation – COMPETE 2020 Programme and by National Funds through the
FCT - Foundation for Science and Technology within the project FCOMP-01-0124-FEDER-020484 and grant ref.
BI2-2017 PTDC/EEI-ESS/5341/2014 UMINHO.


	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Green Software Laboratory
	1.5 Structure of the thesis

	2 State of the art
	2.1 Intermediate structures
	2.2 Deforestation
	2.3 Short-cut fusion
	2.4 Circular program calculation
	2.5 Circular program calculation and short-cut fusion
	2.6 Stream Fusion
	2.7 Hylo System

	3 Functional Stream Fusion Applied to Java Streams
	3.1 Adaptation of the Stream Fusion framework
	3.1.1 FStream and Step classes
	3.1.2 FStream methods

	3.2 Overcoming foldr's recursion
	3.2.1 Creating an intermediate list
	3.2.2 Foldr as Foldl
	3.2.3 Using continuations

	3.3 Adaptation to other data structures
	3.3.1 Binary Tree FStream methods


	4 Stream Optimisation
	4.1 Using FStream
	4.2 Inlining all the stepper functions
	4.3 Inlining inside stepper functions
	4.4 Case-of-case transformation
	4.5 Trivial rewriting
	4.6 Repeated application of the rules
	4.7 Constructor specialisation
	4.8 Simplifying the loop
	4.9 Existing IDE refactoring tool

	5 The General Template
	5.1 Considering complex states
	5.2 Simpler operations
	5.3 The template's structure
	5.4 Streams with folds and/or unfolds

	6 Expressiveness
	6.1 Fibonacci

	7 Performance tests
	7.1 Foldl-Append
	7.2 Filter-Map
	7.3 Iterate-Zip
	7.4 Foldr
	7.5 Fibonacci
	7.5.1 Applying transformations
	7.5.2 Version comparison

	7.6 Initial experiments
	7.6.1 Experiment setup
	7.6.2 Results
	7.6.3 Discussion


	8 Conclusion/Future Work
	8.1 Conclusions
	8.2 Prospect for future work


