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A B S T R A C T

A new simple and easy-to-prepare imidazole-based probe 1 was synthesized and used to detect Cu(II) and
biothiols (Cys, Hcy and GSH) in aqueous environments. Addition of increasing amounts of Cu(II) to water (pH
7.4)-acetonitrile 90:10 v/v solutions of probe 1 induced the apperance of a red-shifted absorption together with
a marked colour change from colorless to deep blue. In addition, probe 1 was fluorescent and a marked emission
quenching in the presence of Cu(II) was observed. The optical response is selective and other cations tested do
not induce significant chromo-fluorogenic modulations. Limits of detection for Cu(II) of 0.7 and 3.2 μM using
UV–visible and fluorescence data were determined. On the other hand, addition of Cys, Hcy and GSH to the
deep-blue water (pH 7.4)-acetonitrile 90:10 v/v solutions of the 1-Cu(II) complex reulted in a marked bleaching
together with the appearance of a highly emissive band centred at 475 nm. Other amino acids tested induced
negligible response. The limits of detection for Cys, Hcy and GSH using 1-Cu(II) and emission data are 6.5, 5.0
and 10.2 μM, respectively. These optical changes were ascribed to a biothiol-induced demetallation process of
the 1-Cu(II) complex that released the free probe. Besides, probe 1 is non-toxic and can be used for Cu(II)
detection in HeLa cells.

1. Introduction

Transition metal cations are involved in several vital processes and
are also used as diagnostic tools in medical, physiological and en-
vironmental fields [1–3]. In this scenario, the development of techni-
ques for monitoring transition metal cations is an active area of re-
search. Among transition metal cations, Cu(II) is the third most
abundant essential element in the human body and plays vital roles in
several physiological processes [4–9]. For instance, it has been reported
that Cu(II) stimulates the proliferation of endothelial cells and is ne-
cessary for the secretion of several angiogenic factors by tumour cells
[10,11]. Aside from its biological and environmental importance,
copper is widely used in metallurgical, pharmaceutical and agrochem-
ical industries [12]. As a result of the extensive applications of Cu(II) in

life science and industry, it has become one of the first hazard en-
vironmental pollutants [13]. Despite the important role played by Cu
(II) in several biological processes, abnormal levels of this cation can
cause serious health problems on humans due to its ability to displace
other vital metal ions in some enzyme-catalysed reactions [14]. In ad-
dition, high concentrations of Cu(II) in cells was documented to cause
toxicity and different neurodegenerative diseases such as Menkes,
Wilson's and Alzheimer [15]. Therefore, simple and rapid sensing tools
to monitor Cu(II) levels in biological and environmental media is of
importance.

In the past years, electrochemical methods, spectrometry and
chromatography have been employed to detect Cu(II). However, these
methods are limited by their relatively high costs, are time consuming
and are not usually suitable for in situ and on site analysis. As an
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alternative to these classical methods, the use of chemical optical
probes has attracted great attention in the last years and several Cu(II)
sensors have been reported [16]. Some of these probes are able to de-
tect Cu(II) both in solution (by colour and/or emission changes) and in
living cells (by using confocal microscopy) [17–21]. In spite of these
interesting features, some of these probes operate in organic solvents
and often presented poor selectivity [22,23]. Thus, the preparation of
selective probes that can detect Cu(II) in water or water/organic sol-
vents mixtures is still a matter of interest.

On the other hand, biothiols (GSH, Cys and Hcy) are molecules that
play fundamental roles in living systems because are involved in many
important biological processes (such as tissue growth and defences)
[24,25]. Dysregulation of biothiol levels could induce the appearance of
certain diseases such as Alzheimer and cardiovascular disorders
[26,27]. For the above mentioned reasons, the sensitive and selective
detection of biothiols has been a matter of concern. In this respect, in
the last years, several probes for the chromo-fluorogenic detection of
biothiols have been published [28–31]. Most of the published examples
are designed following the chemodosimeter paradigm, which makes use
of the high nucleophilic reactivity of the thiol group. For example,
biothiols reaction with fluorophores containing aldehyde [32–34], and
4-methoxythiophenol moieties [35,36] are recently reported. Besides,
hydrolysis reactions induced by biothiols coupled with emission
changes are also used [37,38]. However, among different approaches
used for the design of biothiol chemosensors the use of Cu(II) complexes
is perhaps one of the most promising. These probes worked using the
well-known indicator displacement assay (IDA) paradigm [39,40].
These IDA assays are based on the use of fluorescent probes that co-
ordinate selectively with Cu(II) (a highly effective quencher). As a
consequence a non-emissive complex is formed. In the presence of
biothiols, the non-emissive complex is demetallated (due to the pre-
ferential binding of Cu(II) with the thiol moieties in the biothiols) re-
storing the fluorescence of the free fluorophore. Using this IDA ap-
proach several systems for biothiols detection have been recently
published [41–46].

Bearing in mind our experience in the development of molecular
probes for detection of anions, cations and neutral molecules of biolo-
gical and environmental significance [47–52], we report herein the
synthesis and sensing behaviour of a new imidazole-based easy-to-
prepare chromo-fluorogenic probe 1 able to detect Cu(II) in water (pH
7.4)-acetonitrile 90:10 v/v mixtures. Besides, the complex formed be-
tween probe 1 and Cu(II) was used for the selective chromo-fluorogenic
detection of relevant biothiols (Cys, Hcy and GSH). Probe 1 was also
successfully used for detection of Cu(II) in living cells.

2. Experimental section

Chemicals: Commercially available reagents 4-(dimethylamino)
benzaldehyde (1a), 1,2-di(thiophen-2-yl)ethane-1,2-dione (1b), am-
monium acetate, Na2S2O3, and I2 were purchased from Sigma-Aldrich
and Acros and used as received. TLC analyses were carried out on
0.25mm thick precoated silica plates (Merck Fertigplatten Kieselgel
60F254) and spots were visualized under UV light. Chromatography on
silica gel was carried out on Merck Kieselgel (230–240 mesh). All the
metal salts used for the UV–visible and fluorescence experiments are
nitrates.

Materials and methods: All melting points were measured on a
Stuart SMP3 melting point apparatus. IR spectra were determined on a
BOMEM MB 104 spectrophotometer using KBr discs. NMR spectra were
obtained on a Bruker Avance III 400 at an operating frequency of
400MHz for 1H and 100.6MHz for 13C using the solvent peak as in-
ternal reference at 25 °C. All chemical shifts are given in ppm using δH
Me4Si= 0 ppm as reference. Assignments were supported by spin de-
coupling-double resonance and bi-dimensional heteronuclear correla-
tion techniques. High resolution mass spectrometry (HRMS) data were
obtained with a TRIPLETOF T5600 (ABSciex, USA) spectrometer. UV/

visible titration profiles were carried out with JASCO V-650 spectro-
photometer (Easton, MD, USA). Fluorescence measurements were re-
corded with a JASCO FP-8500 spectrophotometer.

Synthesis of probe 1 (method A): 4-(Dimethylamino) benzaldehyde
(1a, 0.15 g, 1mmol), 1,2-di(thiophen-2-yl)ethane-1,2-dione (1b, 0.2 g,
1 mmol) and NH4OAc (20mmol) were dissolved in glacial acetic acid
(5mL), followed by stirring and heating at reflux for 8 h. Then, the
reaction mixture was cooled to room temperature, ethyl acetate
(15mL) was added and the mixture was washed with water
(3×10mL). After, the organic phase was dried with anhydrous
MgSO4, filtered and the solvent was evaporated under reduced pres-
sure. The resulting crude product was purified by column chromato-
graphy (silica gel, CH2Cl2/MeOH 100:1), given the pure product as a
pink solid: yield (70mg, 59%). 1H NMR (400MHz, DMSO‑d6): δ=2.96
(s, 6H, NMe2), 6.77 (dd, J=7.2 and 2.4 Hz, 2H, H3 and H5), 6.99 (dd,
J=5.2 and 3.6 Hz, 1H), 7.13 (dd, J=3.6 and 1.2 Hz, 1H), 7.19 (dd,
J=5.2 and 3.6 Hz, 1H), 7.36–7.39 (m, 2H), 7.65 (dd, J=5.2 and
1.2 Hz, 1H), 7.84 (dd, J=7.2 and 2.0 Hz, 2H, H2 and H6), 12.46 (s, 1H,
NH) ppm. 13C NMR (100.6MHz, DMSO‑d6): δ=40.12 (NMe2), 111.86
(C3 and C5), 117.51 (C1), 119.51, 123.08, 124.52 (C2 and C6), 126.40,
126.98, 127.24, 127.51, 128.04, 131.27, 133.01, 137.87, 146.70 (C4),
150.45 ppm. IR (Nujol): ν=2855, 1615, 1510, 1201, 1167, 1116,
1078, 905, 841, 822, 687 cm−1. HRMS-EI m/z: calcd for
C19H17N3S2 + H+: 352.0942; measured: 352.0936.

Synthesis of probe 1 (method B): 4-(Dimethylamino) benzaldehyde
(1a, 0.15 g, 1mmol), 1,2-di(thiophen-2-yl)ethane-1,2-dione (1b, 0.2 g,
1 mmol), NH4OAc (20mmol) and I2 (5 mol %) were dissolved in
ethanol (5 mL), followed by stirring and heating at reflux for 27 h.
Then, the reaction mixture was diluted with water (15mL) having a
small amount of Na2S2O3 and was cooled in an ice bath. The resulting
crude product which precipitated was purified by recrystallization from
ethanol given the pure compound 1 as a pink solid: yield (100mg,
84%).

Synthesis of complex 1-Cu(II): Probe 1 dissolved in acetonitrile
(1.0 mmol) was mixed with Cu(NO3)2 (1.0 mmol) followed by stirring
and heating at reflux for 4 h. Then [NH4][PF6] was added and the solid
product formed was collected, washed with cold acetonitrile and dried:
yield (0.8 mmol, 80%). Elemental analysis, [1-Cu(II)][PF6]2,
Calculated: C, 54.98; H, 4.13; N, 10.12; Cu, 15.31; Found: C, 55.05; H,
4.06; N, 10.17; Cu, 15.25.

3. Results

Probe 1 is not completely water soluble and, for this reason, the
spectroscopic behaviour was studied in water (pH 7.4)-acetonitrile
90:10 v/v mixture. In this respect, water (pH 7.4)-acetonitrile 90:10 v/v
solutions of probe 1 (1.0× 10−5 mol L−1) presented an absorption
band centred at ca. 320 nm with a molar extinction coefficient of
28000M−1 cm−1 (see Fig. 1). Next, UV–visible changes in probe 1
upon addition of 10 eq. of Cu(II), Pb(II), Mg(II), Ge(II), Ca(II), Zn(II), Co
(II), Ni(II), Ba(II), Cd(II), Hg(II), Fe(III), In(III), As(III), Al(III), Cr(III),
Ga(III), K(I), Li(I) and Na(I) was studied. As could be seen in Fig. 1,
among all cations tested, only Cu(II) was able to induce the appearance
of a new absorption band centred at 555 nm (ε=32000M−1 cm−1).
The marked changes in the UV–visible spectrum of probe 1 upon ad-
dition of 10 eq. of Cu(II) is reflected in a clear colour modulation from
colourless to deep blue (see also Fig. 1).

Having assessed the highly selective response of probe 1 toward Cu
(II) we studied, in the next step, the changes in the UV–visible spectra
upon addition of increasing amounts of Cu(II). Addition of different
amounts of Cu(II) to water (pH 7.4)-acetonitrile 90:10 v/v solutions of
1 (1.0× 10−5 mol L−1) induced the progressive decrease of the ab-
sorption centred at 320 nm together with the growth of the visible band
at 555 nm. From the obtained titration profile a limit of detection of
0.7 μM was determined (see Supporting Information) which is almost
100 times lower than the limit prescribed by the World Health
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Organization (WHO) guideline for drinking water (30mM) [53,54].
In order to understand the mode of coordination between probe 1

and Cu(II) Job's plot were determined. As could be seen in Fig. 2, probe
1 clearly forms a 1:1 stoichiometry complex with Cu(II). From the
UV–visible titration shown in Fig. 3 a logarithm of the stability constant
for the formation of the 1-Cu(II) complex of 3.50 ± 0.15 was de-
termined.

Probe 1 is also fluorescent. Excitation at 324 nm (one of the iso-
sbestic points observed in the Cu(II) UV–visible titration profile) of
water (pH 7.4)-acetonitrile 90:10 v/v of probe 1 (1.0× 10−5 mol L−1)
showed a marked emission band centred at 475 nm (quantum yield of
0.26). Among all cations tested, only Cu(II) induced emission
quenching as could be seen in Fig. 3. From the emission titration profile
(see Supporting Information) a linear ratio between the emission in-
tensity and the amount of Cu(II) added was observed. Besides, a limit of
detection of 3.7 μM of Cu(II) was determined. On the other hand, the
emission of probe 1 in water-acetonitrile 90:10 v/v mixtures at acidic
pH (5.0 and 6.0) remained nearly unchanged upon addition of Cu(II)
cation (see Supporting Information).

The observed emission quenching is remarkable, especially when
compared with the results previously published obtained with a struc-
turally related probe 2 (see Scheme 1). In this respect, ethanol solutions

of macrocycle-containing probe 2 presented a weak emission band that
was markedly increased upon addition of Cu(II) [55]. The marked
emission enhancement observed with 2 was ascribed to an increase in
the rigidity of the probe upon formation of 2:1 metal-probe complexes
in which one Cu(II) coordinated with the macrocycle and the other with
the nitrogen atoms of the imidazole with a logarithm of the stability
constant of 11.58 ± 0.01. In our case, the fluorescence experiments
were carried out in a more competitive media (water-acetonitrile 90:10
v/v) and probe 1 lacks the macrocycle binding domain presented in 2.
Taking into account the red shift observed in the UV–visible titration
profile of probe 1 with Cu(II), and also the formation of 1:1 complexes,
assessed from the Job's plot, we proposed that for 1, the Cu(II) co-
ordinates with one of the nitrogen atoms of the imidazole heterocycle.
The observed quenching of the emission intensity of 1 upon Cu(II)
binding is most likely due to an electron or energy transfer process
between the probe and the cation.

Taking into account the non-emissive nature of 1-Cu(II) complex
(quantum yield of 0.07) and the high affinity of thiol moieties for Cu(II)
we tested the possible use of this complex in an IDA assay for biothiols
detection. As stated above, water (pH 7.4)-acetonitrile 90:10 v/v so-
lutions of 1-Cu(II) complex (6.2× 10−6 mol L−1) presented a marked
deep blue colour due to a remarkable absorption band centred at
555 nm. In a first step, the chromogenic response of 1-Cu(II) complex
was tested in the presence of amino acids (Val, Leu, Thr, Lys, Trp, His,
Phe, Ile, Arg, Met, Ala, Pro, Gly, Ser, Cys, Asn, Gln, Tyr, Asp, Glu and

Fig. 1. UV–visible spectra of probe 1 in water (pH 7.4)-acetonitrile 90:10 v/v
(1.0×10−5 mol L−1) alone and in the presence of 10 eq. of selected metal
cations. The inset shows the change in colour of probe 1 in the presence of Cu
(II). (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 2. Job's plot of probe 1 and Cu(II) in water (pH 7.4)-acetonitrile 90:10 v/v.
Total concentration of 1 and Cu(II) of 2.0×10−5 mol L−1.

Fig. 3. Fluorescence spectra of probe 1 in water (pH 7.4)-acetonitrile 90:10 v/v
(1.0×10−5 mol L−1) upon addition of increasing amounts of Cu(II) (from 0 to
10 eq.).

Scheme 1. Synthesis of probe 1 and structure of closely related macrocycle-
containing imidazole-derivative 2.
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Hcy) and relevant biothiols (GSH). As could be seen in Fig. 4 only Cys,
Hcy and GSH were able to induce the bleaching of the solution of the 1-
Cu(II) complex reflected in the disappearance of the 555 nm band to-
gether with the appearance of an absorption centred at 320 nm. Be-
sides, water (pH 7.4)-acetonitrile 90:10 v/v solutions of 1-Cu(II) com-
plex (6.2× 10−6 mol L−1) were weakly emissive and only addition of
Cys, Hcy and GSH induced an emission enhancement (ca. 2.7-fold) at
475 nm (see Fig. 5). From the emission titration profiles obtained upon
addition of increasing quantities of biothiols (see Supporting Informa-
tion) limits of detection of 6.5, 5.0 and 10.2 μM for Cys, Hcy and GSH
were obtained. The chromo-fluorogenic changes observed upon addi-
tion of biothiols to the aqueous solutions of 1-Cu(II) complex were
ascribed to a demetallation complex, due to the high affinity of Cu(II)
cation for thiol moieties, that released the free probe 1.

On the other hand, we also tested the chromo-fluorogenic behaviour
of water (pH 7.4)-acetonitrile 90:10 v/v solutions of 1-Cu(II) complex
(3.2× 10−6 mol L−1) in the presence of selected anions (F−, Cl−, Br−,
I−, AcO−, BH4

−, ClO4
−, H2PO4

−, CN−, HS−, SCN−, NO3
−, HCO3

−

and P2O7
4−). Of all the anions tested only P2O7

4− was able to induce
the disappearance of the absorption band of the complex centred at
555 nm (with a marked bleaching of the solution) and an enhancement
in the emission at 475 nm (see Supporting Information). These chromo-
fluorogenic changes were also ascribed to a demetallation of 1-Cu(II)

complex, induced by P2O7
4− anion, that produced the free probe [56].

The selective emission quenching of 1 in the presence of Cu(II) and
the recovery observed with GSH suggests that the probe can be used for
the imaging of these species in living cells. Based on these observations,
the cytotoxicity of 1 was first evaluated. HeLa cells were treated with 1
(5 μM) over half an hour period and cell viability was determined by a
WST-1 assay. Moreover, the viability of probe 1 in the presence of Cu
(II) (1 and 10 eq.) was also assessed. The obtained results are shown in
Fig. 6. As could be seen, probe 1 was non-toxic to HeLa cells at the
concentration tested. Besides, the concentrations of Cu(II) added (alone
and in the presence of probe 1) were also non-toxic to HeLa cells.

Then, in order to verify the feasibility of the developed probe to
detect Cu(II) and GSH in highly competitive environments, we pro-
spectively used probe 1 for the fluorescence imaging of both species in
living cells. In a typical experiment, HeLa cells were incubated in
DMEM supplemented with 10% fetal bovine serum. To conduct fluor-
escence microscopy studies, HeLa cells were seeded in 24mm glass
coverslips in 6-well plates and were allowed to settle for 24 h. Cells
were treated with probe 1 in DMSO (1%) at a final concentration of
5 μM. After 30min, the medium was removed and solutions of different
concentrations of Cu(NO3)2 in PBS were added (5 μM and 50 μM) and
cells were incubated for another 10-min period. Finally, treated cells
were incubated overnight in order to ascertain the intracellular GSH
effect. As seen in the confocal fluorescence microscope images shown in
Fig. 7a, the control experiment (HeLa cells without probe 1) showed a
weak fluorescence, and cells treated with 1 (5 μM) showed a marked
intracellular emission (Fig. 7b). Moreover, a significant quenching in
intracellular emission was observed in the Cu(II)-treated cells (Fig. 7c),
clearly indicating the possible use of 1 to detect this divalent metal
cation in complex biological settings. Finally, after incubation over-
night, a remarkable emission enhancement could be observed probably
due to a intracellular GSH-induced demetallation of complex 1-Cu(II)
which generated the free probe (Fig. 7d). Besides, the emission intensity
of the HeLa cells after each treatment was measured and the obtained
results are presented in Fig. 7e.

4. Conclusions

In summary, we report herein an easy-to-prepare imidazole-based
chromo-fluorogenic probe 1 for the selective and sensitive optical de-
tection of Cu(II) and biothiols. Probe 1 was able to selectively detect Cu
(II) in a highly competitive media (water-acetonitrile 90:10 v/v) by a
marked colour change from colourless to deep blue. Besides, a sig-
nificant quenching of the probe emission in the presence of Cu(II) was
observed. Moreover, real-time fluorescence imaging measurements

Fig. 4. UV–visible changes of 1-Cu(II) (6.2× 10−6 mol L−1) in water (pH 7.4)-
acetonitrile 90:10 v/v in the presence of selected amino acids (0.2 eq.) and
biothiols (0.2 eq.).

Fig. 5. Changes in the emission band of 1-Cu(II) complex (6.2× 10−6 mol L−1)
in water (pH 7.4)-acetonitrile 90:10 v/v upon addition of biothiols (0.2 eq.) and
selected amino acids (0.2 eq.).

Fig. 6. Cell viability assays. HeLa cells were treated with probe 1 (5 μM) for
30min in the absence or in the presence of Cu(II) (1 and 10 eq.). Then, cell
viability was quantified by means of WST-1 assay.
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confirmed that probe 1 can be used to detect intracellular Cu(II) at
micromolar concentrations. Moreover, 1-Cu(II) complex was used for
the development of an IDA assay for the selective chromo-fluorogenic
sensing of biothiols (Cys, Hcy and GSH). Biothiols were able to deme-
tallate 1-Cu(II) complex with the subsequent release of free probe 1
assessed by a marked colour change from deep blue to colorless and by
a significant emission enhancement. The sensing behaviour of probe 1
toward Cu(II) and of the 1-Cu(II) complex toward biothiols are com-
parable to other sensing probes recently published (see Supporting
Information for a comparative table). Besides, the results presented
here showed the sequential detection of two analytes, which is an
emerging area inside the design and synthesis of new molecular probes

[41–46,57–59].
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