
María Guillermina Cledou

maio de 2018

U
M

in
ho

|2
01

8

A Virtual Factory for Smart city Service
Integration

A
 V

ir
tu

a
l F

a
ct

o
ry

 f
o

r
S

m
a

rt
 c

it
y

S
e

rv
ic

e
 I

n
te

g
ra

ti
o

n
M

ar
ía

 G
ui

lle
rm

in
a

C
le

do
u

Universidade do Minho

Escola de Engenharia

Programa de Doutoramento em Informática (MAP-i)
das Universidades do Minho, de Aveiro e do Porto

 Universidade do Minho

universidade de aveiro

Governo da
República Portuguesa

maio de 2018

Trabalho realizado sob a orientação do

Luis Manuel Dias Coelho Soares Barbosa

e

Elsa Estevez

María Guillermina Cledou

A Virtual Factory for Smart city Service
Integration

Universidade do Minho

Escola de Engenharia

Programa de Doutoramento em Informática (MAP-i)
das Universidades do Minho, de Aveiro e do Porto

Universidade do Minho

universidade de aveiro

DECLARAÇÃO

Nome: María Guillermina Cledou

Endereço electrónico: mgc@inesctec.pt

Número do Bilhete de Identidade: 6706C60C7

Título da tese: A Virtual Factory for Smart city Service Integration

Orientador(es):

Luis Manuel Dias Coelho Soares Barbosa

Elsa Estevez

Ano de conclusão: 2018

Designação do Doutoramento:

Programa Doutoral em Informática MAP-i

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE APENAS PARA
EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO
INTERESSADO, QUE A TAL SE COMPROMETE;

Universidade do Minho, ___/___/______

Assinatura: __

	

	

	

STATEMENT OF INTEGRITY

I hereby declare having conducted my thesis with integrity. I confirm that I have not used

plagiarism or any form of falsification of results in the process of the thesis elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of

Minho.

University of Minho, _____________________________

Full name:

Signature:
__

Acknowledgements

I immensely thank my parents that support me unconditionally in every decision I
take, and my grandma who called me every day since I moved away.

I would like to thank my supervisors, Elsa and Luis, for their support and guidance
through out these years. To Elsa, who encourage me to pursue this PhD, and who I
admire. Thank you for always motivating me to go beyond my comfort zone to become
a better professional, for your trust, and for adopting me since day zero and treating
me like a daughter when I was far away from home. To Luis, who guided me and
worried about me being alone in Portugal. Thank you for your support. Thank you
to both for always finding time for discussions in your busy schedule.

I would like to thank José Proença, who became an unofficial supervisor and guided
me throughout parts of this work as well. Thank you for your patience, for finding
time for discussions and for sharing your wisdom.

I would like to thank as well to the academics I met through out these years and
contributed with valuable feedback and advice, in particular, to Tomasz Janowski,
Marijn Janssen, and the people from UNU-EGOV.

To Mica, who bear with me in the distance and supported me unconditionally.
Thank you for making me laugh through all times and for always being present.

To Eduarda and Joana, who became like sisters in Portugal, and will stay with
me forever. To Catarina, the other fun half of the “4to esquerdo”, thank you for your
friendship.

To Lucy and Julia, who I met during my first years in Portugal. Thank you for
your friendship and for all the fun we had.

To my brothers and family who I missed very much and with whom I look forward
to spend more time.

Last, but not least, I wish to thank my friends from Argentina, whom I miss a lot
and skyped with me through the process, and the new I met in Portugal and made my
stay more fun: my collogues from the 207 lab, Matias, Lu, the Cecis, Lula, Pancho,
Lili, Rita and Adriano.

v

This work was funded by FCT – Foundation for Science and Technology, the Portuguese
Ministry of Science, Technology and Higher Education, through the Operational Pro-
gramme for Human Capital (POCH). Grant reference: PD/BD/52238/2013.

Abstract

In the context of smart cities, governments are investing efforts on creating public
value through the development of digital public services (DPS) focusing on specific
policy areas, such as transport. Main motivations to deliver DPS include reducing
administrative burdens and costs, increasing effectiveness and efficiency of government
processes, and improving citizens’ quality of life through enhanced services and simpli-
fied interactions with governments.

To ensure effective planning and design of DPS in a given domain, governments face
several challenges, like the need of specialized tools to facilitate the effective planning
and the rapid development of DPS, as well as, tools for service integration, afford-
ing high development costs, and ensuring DPS conform with laws and regulations.
These challenges are exacerbated by the fact that many public administrations de-
velop tailored DPS, disregarding the fact that services share common functionality
and business processes.

To address the above challenges, this thesis focuses on leveraging the similarities of
DPS and on applying a Software Product Line (SPL) approach combined with formal
methods techniques for specifying service models and verifying their behavioural prop-
erties. In particular, the proposed solution introduces the concept of a virtual factory
for the planning and rapid development of DPS in a given smart city domain. The
virtual factory comprises a framework including software tools, guidelines, practices,
models, and other artefacts to assist engineers to automate and make more efficient
the development of a family of DPS.

In this work the virtual factory is populated with tools for government officials and
software developers to plan and design smart mobility services, and to rapidly model
DPS relying on SPLs and components-base development techniques.

Specific contributions of the thesis include: 1) the concept of virtual factory; 2)
a taxonomy for planning and designing smart mobility services; 3) an ontology to fix
a common vocabulary for a specific family of DPS; 4) a compositional formalism to
model SPLs, to serve as a specification language for DPS; and 5) a variable semantics
for a coordination language to simplify coordination of services in the context of SPLs.

vii

viii

Resumo

No contexto das cidades inteligentes, os governos investem esforços na criação de valor
público através do desenvolvimento de serviços públicos digitais (DPS), concentrando-
se em áreas políticas específicas, como os transportes. As principais motivações para
entregar o DPS incluem a redução de custos administrativos, o aumento da eficácia
dos processos do governo e a melhoria da qualidade de vida dos cidadãos através de
serviços melhorados e interações simplificadas com os governos.

Para garantir um planeamento efetivo do DPS num determinado domínio, os gov-
ernos enfrentam vários desafios, como a necessidade de ferramentas especializadas para
facilitar o planeamento eficaz e o rápido desenvolvimento do DPS, bem como ferra-
mentas para integração de DPS, reduzindo altos custos de desenvolvimento e garant-
indo que os DPS estejam em conformidade com as leis e regulamentos.

Esses desafios são exacerbados pelo fato de que muitas administrações públicas
desenvolvem o DPS sob medida, desconsiderando o fato de que os serviços compartil-
ham funcionalidade e processos de negócios comuns.

Para enfrentar os desafios, esta tese concentra-se em aproveitar as semelhanças dos
DPS aplicando uma abordagem de Software Product Lines (SPL) combinada com méto-
dos formais para especificar modelos de DPS e verificar propriedades. Em particular,
introduz o conceito de uma fábrica virtual (VF) para o planeamento e desenvolvimento
rápido de DPS num domínio de cidade inteligente. A VF compreende ferramentas de
software, diretrizes, modelos e outros artefatos para auxiliar os engenheiros a automat-
izar e tornar mais eficiente o desenvolvimento de uma família de DPS.

Neste trabalho, a VF é preenchida com ferramentas para várias partes para planear
e projetar serviços de mobilidade inteligente (MI), e modelar rapidamente o DPS com
base em SPLs e técnicas de desenvolvimento baseadas em componentes.

Contribuições específicas da tese incluem: 1) o conceito de VF; 2) uma taxonomia
para planear serviços de MI; 3) uma ontologia para fixar um vocabulário comum para
uma família específica de DPS; 4) um formalismo composicional para modelar SPLs,
e servir como uma linguagem de especificação para DPS; e 5) uma semântica variável
para uma linguagem de coordenação para simplificar a coordenação.

ix

x

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Research Problem . 1
1.3 Solution Approach . 5
1.4 Contributions . 6
1.5 Thesis Structure . 9

2 Domain Background 13
2.1 Digital Government . 13
2.2 Digital Public Services . 14

2.2.1 Benefits . 15
2.2.2 Challenges . 17

2.3 Smart Cities . 18
2.4 Smart Mobility Services . 19

2.4.1 State of Research . 20
2.4.2 State of Practice . 21

3 A Taxonomy of Smart Mobility Services 27
3.1 Building Taxonomies . 28

3.1.1 Taxonomy Structure . 28
3.1.2 Taxonomy Development . 28

3.2 Methodology . 29
3.2.1 Planning . 29
3.2.2 Data Collection . 31
3.2.3 Taxonomy Construction . 31

xi

xii CONTENTS

3.2.4 Validation . 32
3.2.5 Maintenance . 32

3.3 A taxonomy of smart mobility services 33
3.3.1 Type of Services . 33
3.3.2 Level of Maturity . 35
3.3.3 Type of Users . 36
3.3.4 Technology . 36
3.3.5 Delivery Channels . 38
3.3.6 Benefits and Beneficiaries . 38
3.3.7 Common Functionality . 42

3.4 Validation . 44
3.5 Maintenance . 46
3.6 Challenges and Lessons Learnt . 46
3.7 Related Work . 48
3.8 Conclusions . 49

4 Technical Background 51
4.1 Software Product Lines . 52

4.1.1 Variability . 54
4.1.2 Modelling SPLs . 58
4.1.3 SPLs and Digital Government 60

4.2 Featured Timed Automata . 61
4.2.1 Timed Systems . 61
4.2.2 Families of Timed Systems . 65

4.3 Reo Coordination Language . 69
4.3.1 Primitive Channels . 70
4.3.2 Nodes . 71
4.3.3 Connectors . 72
4.3.4 Reo Semantics . 73

5 Compositional Modelling of SPLs 75
5.1 Motivation . 76

5.1.1 Coordinating Variable Services 76
5.1.2 Composing Variable Services . 80

5.2 Interface Featured Timed Automata . 81
5.2.1 Syntax . 81
5.2.2 Operational Semantics . 83
5.2.3 Composition . 84
5.2.4 Equivalence . 88

CONTENTS xiii

5.2.5 Properties . 93
5.3 Related Work . 94
5.4 Discussion . 94

6 Refinement of IFTA 97
6.1 Introduction . 97
6.2 Refinement . 99

6.2.1 Variability Refinement . 100
6.2.2 Behavioural Refinement . 102
6.2.3 IFTA Refinement . 103
6.2.4 Properties . 104

6.3 Variability-aware Refinement . 113
6.4 Discussion . 115

7 Variability and Coordination 117
7.1 Variable Reo Connectors . 118

7.1.1 The Conservative Approach . 118
7.1.2 The Relaxed Approach . 120

7.2 Example: Synchronous Merger . 123
7.3 Discussion . 126

8 A Virtual Factory Approach 127
8.1 Virtual factory . 127
8.2 Planning . 130
8.3 Domain Engineering . 132

8.3.1 Methodology . 133
8.3.2 Ontology . 133
8.3.3 Discussion . 144

8.4 Software Engineering . 144
8.4.1 Case Study . 145
8.4.2 Prototype . 152

8.5 Discussion . 156

9 Conclusions and Future Work 159

Bibliography 165

xiv CONTENTS

List of Figures

3.1 Methodology for taxonomy development 30
3.2 Defining a smart mobility service taxonomy 33
3.3 Type of service contributing to each identified benefit 42
3.4 Example of common functionality for two smart mobility services. . . . 43

4.1 The engineering process for software product lines [7]. 54
4.2 An example of a feature diagram . 55
4.3 An example of a TA modelling a payment selection controller. 62
4.4 An illustration of an infinite TS corresponding to the TA in Figure 4.3. 64
4.5 An example of a FTA and its projections over its valid feature selections. 67
4.6 Examples of composed Reo connectors. 74

5.1 An example of a network of FTA modelling a family of systems which
can make remote requests to available databases. 79

5.2 Example of a network of FTA modelling a family of payment systems
which may send email confirmations . 80

5.3 A grounded IFTA corresponding to the FTA Req (Figure 5.1). 82
5.4 Example of IFTA composition. 88

6.1 Example scenario of refinement of families of components. 98
6.2 Example of a family of payment selection methods P ′ with new variab-

ility, interfaces and time restrictions, refining the family P 105
6.3 An example of IFTA refinement with internal actions, where PP ′ refines

the IFTA PP from Figure 5.4 . 106

7.1 Example of Reo connectors modelled as IFTA using the conservative
approach. 119

7.2 Example of Reo connectors modelled as IFTA using the relaxed approach.121
7.3 Synchronous merger with support for variable components 124
7.4 Two instantiations of the variable synchronous merger from Figure 7.3. 124

xv

xvi LIST OF FIGURES

7.5 Example of an undesired projected product allowed when no additional
restrictions are made over the variability model. 125

8.1 Virtual factory concept . 128
8.2 Components of the virtual factory . 129
8.3 Usage scenarios of the taxonomy . 131
8.4 Methodology for ontology development. 134
8.5 Predefine relation types . 137
8.6 Transport licensing services ontology 137
8.7 Proposed feature model for the family of public transport licensing services147
8.8 IFTA models for the Preassessment, Assessment, Appeal, Credit Card,

and Paypal components. 149
8.9 IFTA models for to the Submission component. 150
8.10 Architectural view of the composed family of licensing services 151
8.11 Example of an Uppaal TA consisting of the PayPal component (Fig-

ure 8.8b), and the feature model of the payment net specified in List-
ing 8.1. 156

List of Tables

2.1 Smart cities selected. 22

3.1 Type of service . 33
3.2 Level of maturity . 35
3.3 Types of users . 36
3.4 Technology . 36
3.5 Delivery channels . 38
3.6 Benefits . 38
3.7 Benefits and beneficiaries . 41
3.8 Common functionality . 43
3.9 Type of services – References from literature 45

8.1 Ontology specification . 135
8.2 Glossary of concepts . 136
8.3 Custom relationships identified . 138
8.4 Concept attribute table – terminal attributes 139
8.5 Types . 141
8.7 Concept attribute table – non-terminal attributes 141
8.6 Glossary of symbols . 143

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

1.1 Context and Motivation

Information and Communication Technologies (ICTs) are becoming ubiquitous and im-
mersed in our daily environment contributing to automate and facilitate our activities.
They cover a broad spectrum – from software and hardware capabilities, such as wire-
less networks and mobile computing allowing access to information and services on the
move; to the innovative use of existing technologies to enhance public services, such as
closed circuit television and pattern recognition used for traffic control.

Due to the embeddedness of ICTs in daily issues, citizens are more and more used
to interact with ICTs, putting pressure on governments to take advantage of such
technologies to provide better digital public services (DPS). Actually, cities possess a
wide range of digital skilled users that are ready to use and benefit from the usage
of ICTs to deliver digital public services. In particular, citizens can benefit from the
use of ICTs in three main areas: 1) improvements in the way they receive services; 2)
enhanced interactions with government; and 3) better quality of lives due to easy access
to services. The use of ICTs to provide digital public services also benefits governments
by: 1) providing tools to facilitate information sharing among government agencies; 2)
increasing effectiveness and efficiency; and 3) providing tools to deliver public value.

1.2 Research Problem

Digital government (e-government) and smart cities provide us a relevant context as
well as the motivation for identifying a research problem. In the following we explain
this in detail.

Digital government deals with the use of ICTs to facilitate the delivery of digital

1

2 CHAPTER 1. INTRODUCTION

public services and support the interaction between their providers and consumers.
Since the concept of e-Government was born it has evolved through various stages
along the years [86], and is currently evolving towards more specialization and con-
textualization. In particular, the trend is to concentrate on digital public services
focused on a specific policy area – like transport, mobility, social inclusion, or other;
or on context-specific conditions – problems affecting a given city. Because of this,
e-government rely on technological and organizational knowledge and capacities to en-
sure effective planning and design of public services. In particular, government officials
need specialized tools to understand a given domain – the type of services that can be
delivered, the technologies used to deliver them, and the benefits they provide, among
others.

This leads to the definition of the first objective of this research work.

O1) To provide a framework for domain-experts to plan and design services in a spe-
cific smart city dimension considering context-specific needs

We focus on the smart mobility dimension of a smart city. In particular, smart
mobility deals with the use of integrated ICT infrastructures, sustainable transport
systems and logistics to support better urban traffic and mobility. Some examples
of smart mobility services include the provision of real time and multi-modal public
transport services, and traffic light optimization to attend to real-time traffic demand.
To address this objective, we proposed the following research questions.

RQ1) What kind of smart mobility services are delivered in the context of smart
cities?

RQ2) How are such services delivered?

RQ3) What kind of public value is delivered by smart mobility services and to whom?

In addition, efficient and effective delivery of digital public services encompasses
many challenges, including: 1) rapid development – to attend increasing citizens’ de-
mands and quickly integrate changes in regulations, government must find mechanisms
to rapidly develop digital public services; 2) service integration – government agencies,
and other entities, must collaborate to deliver seamless services, i.e. services delivered
collaboratively by several government and non-government organizations while present-
ing a single-organization interface to customers. The only-once principle [64], which
means that citizens, businesses, and other stakeholders, are required to provide com-
mon information only once to government, is particularly critical and requires service
integration; 3) conformance with laws and regulations – the delivery of services gener-
ally depends on laws and regulations, thus government must have mechanisms to ensure

1.2. RESEARCH PROBLEM 3

that a digital public service conforms with such laws and regulations; otherwise, failing
to correctly design and implement digital public services can increase bureaucracy, or
malfunctioning of services; and 4) development costs – the adoption of ICT for the
development of digital public services involves high costs for governments, which can
be difficult to accommodate, particularly at the city level.

In practice, many public services still rely on paper-based solutions, particularly
in less resourceful governments. In many other cases, due to the differences in gov-
ernment regulations, lack of interoperability, budgetary resources, and difficulties in
ensuring the fulfilment of their specific features, local governments develop tailored
ICT solutions to automate the provision of services. This silo-based approach exacer-
bates the aforementioned challenges by increasing development times and costs, as well
as by hindering service integration [2]. In addition, it disregards the fact that many
public services share common functionality and business processes, not taking advant-
age of software engineering techniques to efficiently develop families of services. By
families of services we refer to similar services that share many common features, such
as functionality and business processes supporting the delivery of such services, but
differ in other features.

Software Product Lines (SPLs) are an efficient approach to develop families of
services. Since services must conform with laws and regulations, and exhibit safety
and functional correctness requirements, the use of formal methods to formally define
an SPL for a family of digital public services seems a feasible approach. Formal methods
help to model and verify that a set of services satisfy a given set of properties. In the
case of SPLs, they help to verify that the entire family, as well as individual services,
satisfy a pre-determined set of properties.

Essentially, an SPL is a set of software systems that share a high number of features
while differing in others, where concrete products, such as models and systems, are
derived from a core of common assets in a prescribed way [45]. In this context, a
feature constitutes a functional characteristic or a behaviour of the system visible to
the user. The variability of an SPL is defined in terms of common and variable features,
usually through feature models [7]. A feature model expresses the valid combination of
features, where each combination is a product in the family.

There are various formalism to model SPLs, mainly based on automata theory or
Petri nets [36, 47, 115]. In the literature, these formalisms are broadly classified into
two categories. They can be annotative – where all products are specified in a single
model. Parts of the model are annotated with variability specifying in which products
each part is present. When selecting a set of features only parts associated to those
features remain in the model; and compositional – where the SPL is modelled in a
modular way, were each feature is modelled in isolation, specifying how it alters the
core model, i.e. the part common to all products. When selecting a set of features,

4 CHAPTER 1. INTRODUCTION

only their corresponding models are composed into the final product. In this sense,
this approach enables the composition of products.

However, we argue that these approaches differ mainly in the level of granularity of
the assets annotated with variability. We recognize a third approach from the literature
[115], a truly compositional approach, where the SPL is defined in a modularized
way, where each module has its own variability model, which can be composed into
a single model. Thus, this approach composes SPLs instead of products. This is of
interest because it gathers the best of both approaches documented in the literature.
The software engineering problem addressed in this thesis focuses on defining a truly
compositional formalism to define SPLs for a given e-government domain, in particular,
for public transport services in the context of smart cities.

In addition, given the fact that public services are collaboratively delivered by
multiple government agencies, there is a need to orchestrate different services and design
how they are integrated and interact. In this sense, we recognize exogenous coordination
as a suitable approach to orchestrate how variable services, or variable functionality
defined in smaller components can be integrated and interact to deliver higher-level
functionality. In exogenous coordination, the models of the coordination protocols are
separated from the computational models of the components they coordinate. TheReo
[9] language is a well-known exogenous coordination language enabling the coordination
of components through their interfaces. However, in the case of SPLs, the components
to be coordinated have variable interfaces in the sense that they are not present in every
product. Thus, we identified the challenge to provide some kind of variable semantics
to Reo, such that the coordination protocols used to coordinate variable components
can automatically adapt in the presence or absence of those interfaces.

This leads to the definition of the second objective of this research work.

O2) To provide state-of-the art tools to formally specify families of digital public
services in a compositional way enabling verification of behavioural requirements

To address this objective we proposed the following research questions.

RQ4) Which modelling technologies are suitable for specifying common features of a
family of digital public services delivered by local governments in the context of
smart cities?

RQ5) Based on such modelling techniques, how to provide a domain-specific frame-
work, including modelling tools that can automatically generate behavioural
models for the members of the identified family of digital public services?

With the aim of packaging the solutions proposed to address each of the research
questions described above, and to deliver concrete value to policy makers, we define
the last objective.

1.3. SOLUTION APPROACH 5

O3) To identify a family of digital public services delivered by local governments and
to provide a repository of models using the proposed framework

To address this objective we propose the following research question.

RQ6) Which family of digital public services in the context of smart mobility is amend-
able to be deliver through common business processes by local governments in
different contextual conditions?

1.3 Solution Approach
The general aim of this research work is to provide conceptual tools for both, govern-
ment officials and software developers, and rapidly plan and design integrated smart
city services on a specific domain of a smart city. Thus, aligned with the objectives
and research questions described above we propose the following approach.

In order to address research questions RQ1, RQ2, RQ3 and RQ6 the first part of
this thesis investigates smart mobility services and proposes a taxonomy. Taxonomies
enable the identification and definition of common concepts of the domain, and layout
their relationships, providing a common vocabulary to discuss and share information
about the specific domain. Thus, it provides a specialized and contextualized tool for
policy makers involved in the development of smart mobility initiatives.

In order to address research questions RQ4 and RQ5 we propose an approach, taking
the form of a virtual factory for smart city service integration, for the development and
integration of city-level DPS. The virtual factory consists of a framework with tools,
guidelines, models, and other artefacts to assist different stakeholders to automata
and make more efficient the development of families of DPS. In particular, the virtual
factory contributes to different stages in the development of a family of services, namely
planning, domain engineering, and software engineering. The thesis populates the
virtual factory with elements contributing to the different stages:

1. Planning – comprising tools for strategic planning and design of services in a
concrete smart city domain;

2. Domain engineering, fixing the general vocabulary, attributes, properties, pro-
cesses, architectural schemes of the selected family of digital public service.

3. Software engineering, comprising formalisms and tools for rapidly modelling and
verifying service properties in the specified domain.

In particular, the software engineering is populated with the following formalism and
tools:

6 CHAPTER 1. INTRODUCTION

a) A specification language for service modelling and assembly by feature composi-
tion;

b) A proof-of-concept prototype to specify, compose, visualize, and translate the
relevant models to other well-known formalisms;

c) A verification engine to check whether properties documenting the family are
satisfied by the models.

In addition, in order to illustrate the formalism and tools, the thesis proposes models
and properties of the selected family:

1. A feature model specifying domain variability in terms of common and optional
functionality

2. Behavioural models characterising features representing functionality of the do-
main, and temporal properties of the services to be satisfied by the models

While most of the adopted approaches in the literature take advantages of existing
tools, the virtual factory approach proposed in this thesis, discussed in Chapter 8, seeks
to help public administrations to move from the silo-based approach of modelling gov-
ernment services to a component-based approach instead. In particular, by identifying
and taking advantage of common features and business processes present on differ-
ent services of a family, and contributing to service integration and interoperability
between government agencies.

1.4 Contributions

The work conducted through this research to address the aforementioned domain and
software engineering problems, following the proposed approach above, produced the
following contributions.

A taxonomy for planning and designing smart mobility services

The taxonomy comprises eight dimensions: type of services, level of maturity, type
of users, applied technologies, delivery channels, benefits, beneficiaries, and common
functionality. Based on literature review, for each dimension, we synthesize common
concepts, provide definitions and illustrate them with the case studies. The taxonomy
can assist policy makers to define smart mobility strategies, since it enables the identi-
fication of stakeholders to whom services need to be provided, exemplifies the different

1.4. CONTRIBUTIONS 7

type of services to be delivered, and the corresponding benefits and beneficiaries, fa-
cilitating the justification of business cases for each initiative. In addition, software
engineers can benefit from the identification of common functionality that can be
used to develop reusable components for smart mobility services. This contribution
is presented in Chapter 3.

A compositional formalism for modelling software product lines

The thesis proposes a compositional formalism, Interface Feature Timed Automata
(IFTA), to model in a compositional way the behaviour of SPLs with time requirements,
a feature enforced by the presence of recurrent time constraints in public services. We
base this formalism on Feature Timed Automata [47], an annotative approach to model
SPLs in a single model and annotating it with variability. The main contribution
of IFTA is the ability to model SPLs in an incremental and modular way. Each
IFTA defines a component that encapsulates some functionality and provides variable
interfaces to interact with other components. Each component has its own variability
model. When two components are composed, their variability models are composed
as well, determining a new family of products. We define an equivalence relation
between IFTA in order to study properties of the formalism. This relation is based on
a bisimulation relation between automata, which can be defined over the entire family
or product by product. This allows the verification of properties of the composed
model against an expected feature model and determine, for example, whether the
composed model derives the expected products and only those. In addition, we propose
a refinement relation for IFTA, in order to verify if a more concrete model of an SPL
is congruent with a given specification. Again this relation can be defined over the
entire family or product by product. This contribution is presented in Chapter 5 and
Chapter 6.

A variable semantics for Reo

Reo is an exogenous coordination language used to orchestrate how distributed com-
ponents interact. Because in SPL components have interfaces that are not always
present in every product, coordination protocols need to adapt to the variable inter-
faces. Manually defining the variability of a protocol taking into account the variability
of each specific component it coordinates is error prone and inefficient. Thus, we pro-
pose a variable semantics for Reo using IFTA. Compositionality of IFTA enables the
definition of generic coordination protocols that, when composed with other compon-
ents, adapt well to the components’ variability. In addition, the exogenous nature
of Reo presents an advantage since it increases the reusability of both the coordina-

8 CHAPTER 1. INTRODUCTION

tion protocols and the components they orchestrate. This contribution is presented in
Chapter 7.

An ontology for licensing public transport services

Most smart mobility services identified during the definition of the taxonomy are
either delivered by the private sector or co-created between government and other
non-government entities. However, government must ensure the provision of transport
as a basic service for residents and regulate such provision. This is done trough the
issue of licenses permits, e.g. to provide bus services and for vehicles to transport
passengers. This kind of licensing services are offered by most local governments and
share many business processes and structural properties. Thus, it is of interest to use
this family of services as a case study due to their potential scalability. We study how
public transport licenses are delivered in two specific countries – Ireland and Portugal,
and propose an ontology to define a common vocabulary for a family of licensing public
transport services. The ontology identifies actors, supporting documents, and attrib-
utes required in the application and processing stage of the licenses. The main aim
of the ontology is to document the structural elements present in the family. How-
ever, by defining a common vocabulary, the ontology can serve to: 1) facilitate the
transition from paper-based delivery channels to electronic ones; 2) facilitate the in-
tegration of different licensing systems, and 3) improving government interoperability.
All such features, facilitate information sharing between agencies enabling the delivery
of one-stop, seamless services, and the implementation of the “only-once” principle for
reducing administrative burden. This contribution is presented in Chapter 8 as part
of the domain component of the virtual factory.

A conceptual framework for rapidly modelling families of services.

The proposed framework contributes to the planning, domain engineering, and software
engineering stage in the development of a family of services. Contributions of this
thesis populate the virtual factory as follows. The taxonomy provides a tool for the
strategic planning and design of smart mobility services. The ontology of licensing
services contributes to the domain engineering stage by capturing and fixing common
vocabulary of the domain. The formalism and tools used for the rapid modelling
and verification of families of services, and the concrete models for the selected family
contribute to the software engineering stage. The methods and tools used comprise the
compositional formalism proposed, IFTA; and a proof-of-concept prototype to model
IFTA, compose and translate them to another well-known formalism to reason about
behavioural properties, in particular, using the Uppaal model checker. The concept

1.5. THESIS STRUCTURE 9

of the virtual factory is configurable by a given family of services, but scalable and
generalizable to other families. This contribution is presented in Chapter 8.

The above contributions produce the following publications.

1. G. Cledou. A virtual factory for smart city service integration. In Proceedings
of the 8th International Conference on Theory and Practice of Electronic Gov-
ernance, ICEGOV ’14, pages 536–539, New York, NY, USA, 2014. ACM [38]

2. G. Cledou and L. S. Barbosa. An ontology for licensing public transport services.
In Proceedings of the 9th International Conference on Theory and Practice of
Electronic Governance, ICEGOV ’15-16, pages 230–239, New York, NY, USA,
2016. ACM [40]

3. G. Cledou and L. S. Barbosa. Modeling families of public licensing services: A
case study. In Proceedings of the 5th International FME Workshop on Formal
Methods in Software Engineering, FormaliSE ’17, pages 37–43, Piscataway, NJ,
USA, 2017. IEEE Press [41]

4. G. Cledou, J. Proença, and L. Soares Barbosa. Composing families of timed
automata. In M. Dastani and M. Sirjani, editors, Fundamentals of Software
Engineering, pages 51–66, Cham, 2017. Springer International Publishing [44]

5. G. Cledou, J. Proença, and L. S. Barbosa. A refinement relation for families
of timed automata. In S. Cavalheiro and J. Fiadeiro, editors, Formal Methods:
Foundations and Applications, pages 161–178, Cham, 2017. Springer Interna-
tional Publishing [43]

6. G. Cledou, E. Estevez, and L. S. Barbosa. A taxonomy for planning and design-
ing smart mobility services. Government Information Quarterly, 35(1):61 – 76,
2018. Internet Plus Government: Advancement of Networking Technology and
Evolution of the Public Sector [42]

1.5 Thesis Structure
The rest of this thesis is structured as follows:

Chapter 2 – Domain Background. The chapter describes the role of digital gov-
ernment in delivering digital public services including the challenges faced. Thereafter,
it reviews the concept of smart city and its dimensions. Finally, it discusses the smart
mobility dimension, presenting the state of the art for smart mobility services in smart
cities.

10 CHAPTER 1. INTRODUCTION

Chapter 3 – A Taxonomy of Smart Mobility Services. First, the chapter briefly
describes some background concepts of taxonomy development and the methodology
used to build the taxonomy of smart mobility services. Then, it presents a taxonomy
of smart mobility services by discussing each of its dimensions and exemplifying with
services from the literature. Third, it proposes how the taxonomy can be maintained
and by whom, and discusses its validation. Finally, the chapter discusses challenges
and lessons learnt during the study, applications of the taxonomy, and concludes with
some related work.

Chapter 4 – Technical Background. The chapter introduces SPLs and some of
its models, the notion of variability, and discusses how SPLs can contribute to the
delivery of public services. Then, it explains Featured Timed Automata (FTA), a
formalism to model SPLs in which we based the compositional method proposed in the
thesis (Chapter 5). Finally, the chapter reviews Reo, a coordination language and the
benefits of using exogenous coordination in SPLs modelling.

Chapter 5 – Compositional Modelling of SPLs. The chapter starts by motiv-
ating for the need of a compositional formalism to compose and coordinate variable
services. Following we present Interface Featured Timed Automata (IFTA), an ex-
tension to FTA with variable interfaces and a compositional semantics, discussing its
syntax and semantics, and a notion of equivalence in order to study properties of the
composition. Finally, the chapter discusses some advantages and limitations of the
approach.

Chapter 6 – Refinement of IFTA. This chapter extends the previous one by
introducing a the refinement relation for IFTA. First it discusses a relation that sep-
arates the notion of behavioural refinement from variability refinement, i.e. a product
by product refinement relation; and then it proposes a refinement relation over the
entire family. Finally, the chapter discusses some decisions made and limitations of the
approach.

Chapter 7 – Variability and Coordination. The chapter proposes two approaches
to model the Reo coordination language with IFTA, providing the coordination lan-
guage with a variable semantics. Then, it exemplifies how complex variable coordin-
ation protocols can be defined by composing simpler ones modelled as IFTA. Finally,
the chapter discusses some advantages and limitations of these models.

1.5. THESIS STRUCTURE 11

Chapter 8 – A Virtual Factory Approach. First, it introduces the concept of the
virtual factory. Then, it discusses how the virtual factory was populated in this thesis,
contributing to the planning, domain engineering and software engineering stage in the
development process of a family of services. Finally, it discusses some advantages and
limitations.

Chapter 9 – Conclusions and Future Work. Finally, we conclude by discussing
the research conducted, the advantages and limitations of our proposals, as well as we
outline possible future work.

Chapters 3 and 5 to 8 contain the original contributions of the thesis.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Domain Background

This chapter presents background concepts used in the thesis. We introduce the defin-
ition of Digital Government and its role in delivering services. We explain benefits
that both citizens and government receive from digital public services. We discuss the
challenges governments face in order to achieve such benefits. As one of the latest
trends in Digital Government, particularly of concern to local governments, we present
the concept of smart cities. We introduce six dimensions for the development of smart
cities and we focus on the smart mobility dimension. We outline the current state of
the art of smart mobility services, which serves as basis for the taxonomy proposed in
Chapter 3.

Chapter Organization. Sections 2.1 and 2.2 presents digital government and and
digital public services, respectively. Section 2.3 discusses smart cities. Finally, Sec-
tion 2.4 focuses on smart mobility and summarizes the current state of the art.

2.1 Digital Government

Digital Government deals with the use of ICTs to create public value, relying on an eco-
system comprised by government actors, non-governmental organizations, businesses,
citizens’ associations, and individuals. The members of the ecosystem contribute with
the production of and access to data, services, and content through interaction with
the government [122].

According to [86], in the beginning the aim of digital government was to incorporate
the use of ICTs to deliver digital public services to citizens. As the concept evolved, the
focus on the use of ITCs changed to improve internal processes and efficiency, facilitate
collaboration between agencies, and share information; and eventually evolved to en-

13

14 CHAPTER 2. DOMAIN BACKGROUND

gage citizens in government decision, e.g. through the use of electronic participation.
Recently, the last stage in digital government evolution suggest the focus is moving
towards more specialization and contextualization. This latter stage involves efforts
supporting the development of digital public services focused on a specific policy area
– such as transport, culture, social inclusion, and economical development, among oth-
ers; or on context-specific conditions – problems affecting a given city, country, cultural
background, or other issues.

2.2 Digital Public Services

A public services is a service delivered for the benefit of the public, especially provided
by a non-profit or government organization. The public includes citizens, businesses,
and visitors, among others. Examples of public services include notifying, assessing and
accepting tax declarations; issuing building permissions and public transport licenses;
and providing job-search, among others.

A digital public services is a service that uses ICTs to support the interaction
between the service providers and consumers. Examples of interactions includes sub-
mitting applications and asking appointments. Examples of digital public services
include income tax declarations, notification and assessment; and birth and marriage
certificate, as well as another kinds of permissions and licenses’ requests and delivery.

From a government perspective, one of the basic responsibilities of local govern-
ments is improving citizens’ lives by ensuring educational, health, security and trans-
port services, among others. This is ultimately related to improving public services,
for example by enhancing accessibility, delivering integrated services and ensuring sim-
plification of service delivery, among others.

Governments must comply with several requirements in order to deliver digital pub-
lic services. First, services must be provided in a seamless way. According to [61] a
seamless service “is a public service accessed through a one-stop contact and delivered
collaboratively by several government and non-government organizations while present-
ing a single-organization interface to customers”. Thus, citizens do not need to be
familiarized with the government structure behind, nor need to interact with different
agencies. The different agencies must interact with each other sharing information and
coordinating the provision of services, which leads to the concept of “only-once” [64].
This means that citizens should not be asked to give the same information to differ-
ent agencies more than once. To avoid this, agencies should collaborate to share the
information already available.

To deliver seamless services, government agencies and other entities, public or
private, must collaborate among them. Such collaboration is related to information

2.2. DIGITAL PUBLIC SERVICES 15

and process integration [61]. Both, information and process integration is a complex
task given the nature of the entities involved, in terms of data standards, data se-
mantics, technical infrastructure, software applications, and organizational structures,
among others. Most entities use systems that were designed in isolation, and which
are not able to easily integrate with others. The maturity level of technological facil-
ities is likely to be diverse among the different entities [55]. It will be also necessary
to do changes in the hierarchical responsibilities and duties of the entities if they are
intended to collaborate, since most government agencies are fragmented in a way that
are independent from each other [150].

According to [61] one key aspect to resolve such issues is interoperability. This is,
the capability of government organizations to share and integrate information and busi-
ness processes based on common standards [73]. Interoperability must be achieved at
three different levels in order to provide seamless services [65]: 1) technical – deals with
the actual connection and integration between the different software systems and ser-
vices, including open interfaces, data sharing, data presentation, security and privacy
of the data, etc.; 2) semantic – ensures that the meaning of the information exchanged
between two systems is preserved and precisely understood; and 3) organizational –
defines common business goals and ensures the successful execution of business pro-
cesses while managing the exchange of information among different entities that have
different internal structures, IT platforms and procedures.

To address the challenges faced for improving public services and delivering seam-
less services, several approaches have been proposed in the literature [49, 88], such as
frameworks for digital public service development, interoperability frameworks, enter-
prise architectures, ontologies, etc. However, most of the approaches proposed, take
advantage of already developed services and build integrated solutions on top of such
services. What we propose in this thesis is to proactively develop families of services
by taking advantage of the similarities among business processes and functionality.

2.2.1 Benefits

The delivery of digital public services can benefit citizens and governments. The liter-
ature documents many of such benefits, as follows.

Benefits of digital public services for citizens can be classified into three areas:

– improvements in the way citizens receive services – e.g., reduction of time spent
in bureaucracy by having 24/7 access to government services, one-stop access to
government services, and services customized according to citizens needs by using
electronic channels and ICT-driven innovations to deliver public services;

16 CHAPTER 2. DOMAIN BACKGROUND

– enhanced interactions between citizens and government – e.g., enhancing trans-
parency in how services are delivered, by having access to who applied and re-
ceived public services and the criteria applied for delivering them, enhancing
efficiency by eliminating unnecessary tasks and having a collaborative network
of public authorities delivering seamless services, and enabling citizens to receive
services through digital channels; and

– better quality of citizens’ lives – e.g., avoiding citizens to queue for hours to receive
a public service by enabling access through digital channels, enhanced safety for
citizens by improving traffic control or monitoring of public places, greener and
less polluted environment by the usage of electric cars, better health services by
having access to accurate medical records, and through their consolidation and
analysis to more informed health-related policies, etc.

In reality, benefits delivered to citizens are interlinked; for example, having access to
integrated and green public transportation systems, improves citizens’ quality of life by
reducing waiting times and reducing air pollution; having better access to government
information makes citizens more aware of governments issues and encourages them
to participate, which in turn strengthens democracy and makes governments more
transparent. This interlinking is better illustrated in Section 3.3.6 when we discuss the
benefits identified from the delivery of smart mobility services, and classify them by
the smart city dimension to which they contribute.

Benefits of digital public service for government include:

– facilitating information sharing among government agencies – by digitalizing in-
formation and making use of communication platforms [62];

– increasing effectiveness and efficiency – by designing common service components
lie authentication, payment and notification services, and integrating systems
from different domains such as transportation, health and environment [93]. The
automation and standardization of public services leads to reducing bureaucracy
[55]; and

– embedding ICTs in daily activities and obtaining public value through it – making
use of ICT-innovations to automate processes and deliver ubiquitous and seamless
services, e.g. by using RFID devices embedded in cars in combination with
sensors and CCTV systems to automatically detect and generate fines for excess
of speed, illegal parking, etc. [20]

2.2. DIGITAL PUBLIC SERVICES 17

2.2.2 Challenges

When developing digital public services, local governments face several types of chal-
lenges. In particular, some of the technical challenges include the possibility of identi-
fying common functionality existing in the business processes of public services and
the scarcity of domain-specific reliable tools enabling the automated composition of
common functionality for the rapid development of digital public service.

The wide range and complexity of services to be provided, in addition to the fact
that systems are usually built following a “silo-based” approach and designed independ-
ently from others, hinders service integration and collaboration between government
agencies as well as between public and private organizations [2]. In addition, the lack
of resources in many local government, contributes to the fact that many of services
still relay on paper-based solutions. The lack of tools for overcoming such challenges
sets back the development of efficient and effective digital public services which can
deliver real value to citizens.

Examples of technical and organizational challenges for digital public service devel-
opment include the following.

Technical Challenges

– rapid development of digital public services: to attend increasing citizens’
demands and quickly integrate changes in regulations, government must find
mechanisms to rapidly develop digital public services [87].

– service integration: government agencies, and other entities, must collabor-
ate to deliver seamless services [62].

– multichannel delivery: governments need to enable service delivery using
traditional (e.g., counter, phone) and digital channels (e.g., website, mobile
devices) for service delivery since Internet may not be accessible for the
whole population [55]; for example due to the lack of digital skills, and lack
of motivation exhibited by service recipients to use Internet.

– concerns about privacy and security: some citizens may not be willing to
consume digital public services because they feel their privacy and security
at risk. Digital public services and most important information integration
processes performed for delivering one-stop services must guarantee the pri-
vacy and security of personal data [150].

– usability: the acceptance of digital public services is highly affected by the
friendliness, easy of use, reliability and other qualities of the software ap-
plications supporting them [56].

18 CHAPTER 2. DOMAIN BACKGROUND

Organizational Challenges

– business process integration: the integration of back office processes is usu-
ally complex given the diverse nature of tasks performed, organizational
structures executing them and ICT solutions used [55]. Frequently, it in-
volves re-engineering current processes which in turn may require signific-
ant organizational changes in terms of agencies structures and responsibil-
ities [150].

– matching citizens needs: instead of using a qualitative approach, govern-
ments tend to follow a quantitative approach to develop digital public ser-
vices. Following this latter approach, services are delivered without analys-
ing what citizens really need or the way they would like to receive public
services [56].

– development costs: the adoption of ICTs for digital service delivery usually
involves high costs for local governments [116].

– conformance with laws and regulations: the delivery of services generally
depends on laws and regulations. Government must have mechanisms to
ensure that an EPS conforms with such laws and regulations, otherwise,
failing to correctly design and implement EPSs can increase bureaucracy,
and result in unused or malfunctioning of services [150]

2.3 Smart Cities
Various definitions of the smart city concept exists in the literature [76, 78, 149]. For
example, Harrison et al. [78], offer a comprehensive and simple definition of smart city:
“an instrumented, interconnected, and intelligent city”.

In the context of the above definition, instrumented refers to the capacity to acquire
live real city data through various channels – sensors, meters, safety cameras, personal
devices, satellite navigation systems, social networks, etc. Interconnected refers to
the mechanisms for data integration and their usage to deliver enhanced city services.
Intelligent refers to the use of advanced computational tools to analyze collected data,
obtaining valuable information to assist in better government decision-making processes
and in delivering public value to citizens and society at large. In accordance with such
definition, a main objective of smart city development is to provide government officials
and citizens with real time, valuable information in order to improve government’s
performance and citizens’ quality of lives.

To be considered smart, a city needs to make strategic use of ICTs to achieve
significant improvements across different city dimensions. Giffinger et al. [70] recognize

2.4. SMART MOBILITY SERVICES 19

six dimensions: smart economy, smart environment, smart governance, smart living,
smart people, and smart mobility.

In particular, smart economy refers to city competitiveness, including innovation,
entrepreneurship, and productivity. Smart environment concerns issues related to nat-
ural resources and attractive natural conditions of the city, like green spaces, climate,
and green practices. Smart governance considers citizens’ participation in decision-
making processes; public and social services delivered to citizens, visitors and other city
stakeholders; as well as government administrative processes. Smart living focuses on
issues related to quality of life, including culture, health, housing, education, and tour-
ism. Smart people addresses issues related to human and social capital, like citizens’
level of education or qualification and quality of social interactions. Finally, Smart
mobility focuses on the use of reliable and integrated ICT infrastructures, sustain-
able transport systems and logistics in support of better urban traffic and inhabitants’
mobility.

2.4 Smart Mobility Services
By 2050 it is expected that 66% of the world population will reside in urban areas [146].
As the number of urban residents increases, local governments need to address serious
sustainable and development challenges in various areas, including mobility. Mobility
issues impact on citizens’ quality of life and the overall sustainability of cities. For
example, travel time shows a strong positive relationship with life satisfaction in smal-
ler cities, but such relation is non-existent in large cities, mainly due to the costs of
traffic congestion [112]. Regarding sustainability, in the United States, transportation
is responsible for 27% of the greenhouse gas emissions [147], while in developing coun-
tries the transport sector is responsible for 80% of air pollution [145]. Globally, it is
estimated that road transport consumes about 70% of the energy used in the world
transport system and that only road passenger transport accounts for 50% of this en-
ergy consumption [57]. Additionally, as part of the Sustainable Developments Goals
(SDGs)1, the goal number 11 (SDG11) refers to make cities more inclusive and sus-
tainable. In particular, target 11.2 defines that by 2030, governments should provide
access to safe, affordable and sustainable transport systems for all.

In addition to their relevance, the planning and development of smart mobil-
ity services is challenging. One of the challenges is that digitization policies and
strategies need to carefully consider the interests and needs of the many stakehold-
ers involved (government, citizens, commuters, transport providers, etc.), such that
possible (un)expected negative effects to some group of stakeholders are minimized.

1http://www.un.org/sustainabledevelopment/cities/

http://www.un.org/sustainabledevelopment/cities/

20 CHAPTER 2. DOMAIN BACKGROUND

Existing solutions, examples of good practices, have been implemented in smart cities,
offering a catalogue of initiatives from which governments can learn and consider for
adoption in their own local context.

However, the information available of such initiatives is shallow, unstructured, and
not properly maintained. In addition, given the lack of information- and experience-
sharing, each local government develops its own ad-hoc solutions to deliver mobility
services, ignoring that in practice many of such services share common functionality
and thus, could be built using reusable components simplifying development processes
and significantly reducing costs.

With the aim of understanding the domain, and addressing research questions RQ1)
to RQ3) and RQ6), we investigate the state of the art in smart mobility services in the
context of smart cities. The following two sections outline the state of research and
practice of such services, repectively.

2.4.1 State of Research

To understand the state of research on smart mobility services, we conducted literature
review using a scientific repository. We selected Scopus2 as the main source due to
its coverage of journal publications and publications on hard sciences, e.g., computer
science, relevant to smart city initiatives. Searches were conducted using the keywords
“transport or mobility” and “smart city”, and “ ‘smart transport’ or ‘smart mobility” ’ and
“city”. We considered papers that refer to ICT solutions and only the most influential
ones, i.e. papers with more than two years since their publication with no citations
were discarded. In total, 18 papers were selected.

Findings from the state of research assessment include: P1) a software platform to
automate the collection and aggregation of large scale context information provided by
different sources, which serves to build an intelligent transportation system to better
understand traffic problems [59]; P2) an ICT platform for an intelligent transportation
system that updates users with real time information regarding flexible transport, like
bicycles and car sharing, and traditional transport systems, such as optimal routes,
delays in public transport, available parking places, and the state of the roads with
data collected from various sources [6]; P3) an intelligent urban traffic management
system that detects congestions from various information sources, such as sensors at
road intersections and on public transport vehicles [133]; P4) a fuzzy neuronal network
to optimize traffic light patterns and provide priority to public buses and emergency
vehicles [80]; P5) an adaptive system for intelligent traffic management [72]; P6) a
framework for designing business services, and its application to mobility services [114];

2https://www.scopus.com/

https://www.scopus.com/

2.4. SMART MOBILITY SERVICES 21

P7) a cloud-based car parking middleware for smart cities based on Internet of Things,
including sensors to detect available parking places, wireless technologies to transmit
the information sensed, and functionality to provide cloud-based parking services [90];
P8) a large scale traffic simulation platform for transport authorities to optimize city
transportation [139]; P9) a multi-agent simulation system that incorporates real world
data into the simulation, e.g. snowstorms, to improve smart transportation plan-
ning [19]; P10) a real time mobility assistant providing information about multi-modal
journeys [113]; P11) an augmented reality application to access public transport in-
formation, such as buses arrival times and routes [128]; P12) a generic framework for
mobile participatory sensing with a live transit feed service providing real time inform-
ation about public transport services [140]; P13) an application layer solution for a
geo-casting function for smart on-board units in vehicles. The aim is to automatically
detect car accidents and disseminate information about the incidents to near vehicles
and authorities, like hospitals and police stations [141]; P14) an assistance system to
adjusts the driving speed to arrive at intersections when traffic lights are still green
when buses have their own lane such as Rapid Transit Buses [136]; P15) an electric-
ally powered one person transport system for pedestrian areas, such as historical city
centres, enabling accessibility for people with mobility disabilities [31]; P16) an adapt-
ive traffic management system with a fuzzy logic scheme to reduce travelling times of
emergency vehicles [58]; P17) a platform for dynamic carpooling in the city, i.e. to
share car rides that are published in real time, contrary to typical carpooling services
that required planning in advanced [109]; and P18) an approach to reduce traveling
times suggesting customized routes to vehicles to avoid traffic jams using vehicle-to-
infrastructure communication [138].

2.4.2 State of Practice

To assess the state of practice, we conducted searches using Google search engine and
to identify smart city good practices, we used the keywords “ ‘smart city’ or ‘intelligent
city’ or ‘living labs’ or ‘ciudad inteligente” ’, in conjunction with three continent names,
America, Asia, and Europe, to cover countries with different levels of development.
For each city, the following selection criteria was applied: availability of information
of mobility services in government websites, and diversity of mobility services with
respect to those already collected. In total 9 cities were selected as shown in Table 2.1.

All the nine cities have been recognized as cities standing out in some of the six
dimensions of a smart city. In particular, Curitiba is recognized4 by its integrated
transportation system and land use planning 5; Seattle is a leading example in sus-

4https://sustainabledevelopment.un.org/index.php?page=view&type=99&nr=57&menu=1449
5http://www.ippuc.org.br

https://sustainabledevelopment.un.org/index.php?page=view&type=99&nr=57&menu=1449
http://www.ippuc.org.br

22 CHAPTER 2. DOMAIN BACKGROUND

Table 2.1: Smart cities selected.

Continent City Country Reference 3

America
Curitiba Brazil http://www.curitiba.pr.gov.br
Seattle USA https://www.seattle.gov
Surrey Canada https://surrey.ca/city-government/15430.aspx

Asia Dubai UAE http://www.dubai.ae/en/Pages/default.aspx
Songdo South Korea http://songdoibd.com/about/

Europe

Amsterdam The Netherlands https://amsterdamsmartcity.com
Barcelona Spain http://smartcity.bcn.cat/es/
Copenhagen Denmark https://stateofgreen.com/en
Vienna Austria https://smartcity.wien.gv.at/site/en/

tainability in terms of energy efficiency and transportation6, and has recently joined
a national network of smart cities 7; Surrey was recognized as one of the top seven
intelligent communities of 2016 8; Dubai was recognized as the leading smart city ini-
tiative in the Gulf 9; Songdo is well known because the city was conceived and built
from scratch 10; Amsterdam was recognized with the Smart City World Award in 2012
and is an example in living labs, and mobility and smart grid programs 11; Barcelona
was recognized as World’s Smartest City in 2015 because of its programs in smart
traffic management and smart grids12; Copenhagen is recognized due to the Copenha-
gen Connecting initiative, awarded as best project with the Smart City World Award
in 2014 13; and Vienna was recognized with the Smart City World Award in 2016 14

for its integrated energy research.
Below we summarize examples of the services that are delivered by each city. Ref-

erences to each initiative can be found in [42].

Amsterdam. S01) Moby Park, a mobile application and website facilitating finding,
booking and paying parking places and getting driving guidance to arrive to a selected
parking place. S02) A platform for finding and booking parking places, and for receiving
driving guidance for lorry drivers. S03) A mobile application to provide real time

6http://smartcitiescouncil.com/article/why-seattle-sustainability-superstar
7https://www.seattle.gov/tech/initiatives/smart-cities
8https://surrey.ca/city-government/15430.aspx
9http://e.huawei.com/ae/news/ae/2015/2016/201610181814

10http://songdoibd.com/about/
11http://www.smartcityexpo.com/past-editions-2012
12https://eu-smartcities.eu/content/barcelona-world’s-smartest-city-2015
13http://www.smartcityexpo.com/past-editions-2014
14http://www.smartcityexpo.com/en/past-editions-2016

http://www.curitiba.pr.gov.br
https://www.seattle.gov
https://surrey.ca/city-government/15430.aspx
http://www.dubai.ae/en/Pages/default.aspx
http://songdoibd.com/about/
https://amsterdamsmartcity.com
http://smartcity.bcn.cat/es/
https://stateofgreen.com/en
https://smartcity.wien.gv.at/site/en/
http://smartcitiescouncil.com/article/why-seattle-sustainability-superstar
https://www.seattle.gov/tech/initiatives/smart-cities
https://surrey.ca/city-government/15430.aspx
http://e.huawei.com/ae/news/ae/2015/2016/201610181814
http://songdoibd.com/about/
http://www.smartcityexpo.com/past-editions-2012
https://eu-smartcities.eu/content/barcelona-world's-smartest-city-2015
http://www.smartcityexpo.com/past-editions-2014
http://www.smartcityexpo.com/en/past-editions-2016

2.4. SMART MOBILITY SERVICES 23

driving guidance, using calendar data to suggest when to start driving so to arrive on
time to scheduled appointments. S04) A mobile application to provide real time driving
guidance to emergency vehicles. S05)WeGo, a peer-to-peer car-sharing platform for car
owners to share their cars, and for non-car owners to find, book and pay for available
cars. It also enables to lock and unlock cars.

Vienna. S06) An energy saving tram that monitors different aspects of the jour-
neys and takes proactive measures to increase passengers’ comfort, e.g., it controls the
amount of incoming fresh air and sunlight. S07) Smile, a mobile app to plan multi-
modal journeys, to book and pay mobility services, to open doors at parking places
and shared vehicles, and to access mobility records.

Copenhagen. S08) Copenhagen Connecting, an integrated system tracking moving
assets for security or location purposes, sharing real time data about parking places,
and monitoring and controlling traffic flow on real time. It also enables traffic light
optimization, and dynamic pricing of parking and road tolls based on current parking
demand and traffic flow. S09) A cloud-based dashboard to study the efficiency of traffic
light patterns, traffic behaviour, and correlations between traffic and other influencing
factors. S10) An integrated system to coordinate traffic lights and provide faster green
lights for buses, to detect parking places, to inform passengers about delays and altern-
ative routes, and to widen or shrink lanes on rush hours through dynamic led signs.
S11) Rejseplanen, a real time multi-modal journey planner with customizable searches,
and displays with information about transport. S12) An short messaging service (SMS)
to buy public transport tickets.

Barcelona. S13) A remote device for blind people to command traffic lights to emit
an audible sound to safely cross the street. S14) An intelligent traffic light system
to control traffic lights 16and provide faster green lights for emergency vehicles. S15)
ApparkB, a mobile app to pay street parking places, providing access to a monthly
summary of expenses. S16) App&Town, a real time multi-modal journey planner for
public transport gathering information from various sources. S17) An SMS service to
access transport-related information, including availability of public bicycles, and cars
seized by authorities. S18) JoinUp Taxi, a mobile app to share a taxi, rate taxi drivers
and users, estimating money and carbon dioxide (CO2) emissions saved by sharing a
taxi. S19) WeSmartPark, a mobile app and website to find available parking places,
get driving guidance, book places and issue payment when leaving the parking place,
automatically opening parking doors.

24 CHAPTER 2. DOMAIN BACKGROUND

Curitiba. S20) Services for public buses including wireless Internet on-board, and
smart pass payment, providing real time information about the service; and monitoring
vehicles and their performance, e.g., measuring passenger demand to send more vehicles
to cover a route, and comparing estimated traveling times with actual times. S21)
A service providing online integrated itinerary comprising information about various
types of buses. S22) A service estimating traveling times by detecting and monitoring
cars entering and leaving specific locations. S23) A system to control traffic lights
based on current traffic conditions or by request. S24) A system providing faster green
lights for public buses, and monitoring buses to identify critical and optimal road
intersections to improve traveling times. S25) A system providing real time traffic
information through dynamic message signs. S26) An operational control centre to
monitor traffic and incidents in real time through closed-circuit television (CCTV).
S27) Radars and cameras to detect vehicles that exceed the speed limit, fail to stop on
a red light, or stop on the pedestrian walk.

Songdo. S28) A system for optimizing traffic light aiming at resolving traffic con-
gestions, which are detected by analysing geo-location information provided by radio-
frequency identification (RFID) tags on cars.

Seattle. S29) A website providing real time information of available parking places,
and a system of dynamic message signs providing guidance to the nearest available
parking place . S30) Online payment of parking and traffic fines. S31) An online
interactive map with information about planned events that affect mobility. S32) A
system to monitor traffic flows and to automatically detect license plates for security
and law enforcement, estimating traveling times. S33) A system to adjust traffic lights
based on historical and current data, and to provide faster green lights for public buses.
S34) A system providing real time information about traffic through dynamic message
signs. S35) An online interactive map publishing real time traffic information, including
incidents, planned events, and access to CCTV cameras feeds.

Dubai. S36) Nol Card, a smart card to seamlessly pay for different mobility services,
including public transport and parking places. S37) Smart Taxi, a mobile app to
request taxis, choose the type of vehicle, find out the location of taxis, get information
about the driver, and rate the driver’s driving skills. S38) A multi-modal journey
planner with customizable searches and estsimations of traveling times and costs. S39)
A mobile app to find nearby available parking places and to receive driving guidance
to reach the parking place.

2.4. SMART MOBILITY SERVICES 25

Surrey. S40) A mobile application for car-pooling. S41) A website for car-sharing,
including a booking service. S42) A system to control traffic lights and to adjust them
for faster emergency responses, as well as to guide emergency vehicles, and to analyse
traffic behaviour.

26 CHAPTER 2. DOMAIN BACKGROUND

Chapter 3

A Taxonomy of Smart Mobility
Services

With the aim of addressing the lack of structured information and deepening the know-
ledge in smart mobility services, as well as to address research questions RQ1, RQ2,
and RQ3, we analysed the state of the art described Section 2.4. Based on the ana-
lysis and findings, we propose a taxonomy for planning and designing smart mobility
services. The taxonomy comprises eight dimensions: 1) type of services, 2) maturity
level, 3) type of users, 4) applied technologies, 5) delivery channels, 6) benefits, 7)
beneficiaries, and 8) common functionality.

The structuring nature of taxonomies enables to identify and define common con-
cepts for each of the dimensions, providing a common vocabulary to discuss and share
information about smart mobility services. In addition, it provides a specialized and
contextualized tool for policy makers involved in the development of smart mobility
initiatives. In particular, the concrete dimensions identify the spectrum of mobility
services that can be provided, to whom they are provided, what technologies can be
used to deliver them, and the public value that is delivered through each kind of service.
Identifying common functionality can also help software engineers and IT staff to im-
plement smart mobility services through reusable components, ready to be configured
and integrated into software applications.

Chapter Organization: Some background on how taxonomies are built is presented
in Section 3.1. Section 3.2 describes the methodology used for building the taxonomy.
Section 3.3 introduces the proposed taxonomy. Sections 3.4 to 3.6 discuss the valid-
ation and maintainability of the taxonomy, and some challenges and lessons learnt,
respectively.

27

28 CHAPTER 3. A TAXONOMY OF SMART MOBILITY SERVICES

3.1 Building Taxonomies

Taxonomy is the science of classification. It structures information of a given domain
into groups and lays out their relations, providing a conceptual framework for discus-
sion, analysis, and information retrieval [28]. We use a taxonomy since we are merely
concerned with the classification of concepts, although it can be later evolved into an
ontology with richer relations and characterization of the concepts. Below we discuss
some key aspects of taxonomy development.

3.1.1 Taxonomy Structure

The most common types of relations between concepts are hierarchies, trees, and fa-
ceted [101]. We focus on the faceted structure due to its many advantages. The
approach considers that there are multiple perspectives or facets to model a concept.
Main advantages include: 1) hospitability – it does not require a complete knowledge of
the domain. This is attractive for emerging or changing domains, as the smart mobility
domain, which is continuously evolving due to advances in technology and changing
needs; 2) flexible searches – facilitates recovering information in multiple ways; e.g.,
some of the benefits delivered by type of service; 3) greater expressiveness – each facet
can use the structure that best suits the knowledge that it represents; and 4) flexibility
– each concept can accommodate multiple perspectives. As a limitation, facets do not
explicitly express meaningful relations between concepts.

3.1.2 Taxonomy Development

Categories in a taxonomy are constructed following an iterative process. In each itera-
tion a development approach is selected and at the end of the process it is analysed if
categories are well defined, need to be merged, or if new ones can be identified [120].

There are three well known development approaches [18]: 1) conceptual, 2) empir-
ical, and 3) operational. The last one is a combination of the previous two and is the
most commonly used in practice.

An operational approach can follow two development patterns. On the one hand,
conceptual to empirical, where categories are first conceptualized following a deductive
process, based on theory, domain knowledge, or experience, and then empirical cases
are identified for each concept. On the other hand, empirical to conceptual, where a
series of empirical cases are first identified, analysed and grouped based on recognized
similarities, and then conceptual labels are formulated for them.

In addition, various methodologies and best practices exist for taxonomy develop-

3.2. METHODOLOGY 29

ment. We identify three that are generic enough to easily adapt to our domain 1: 1)
BR [28], and 2) CJ [32] – both focusing on organizational aspects; and 3) NVM [120] –
focusing on information systems. We believe that the three methodologies complement
each other, and as such, we propose a methodology combining guidance and steps
from all of them. In particular, NVM recognizes the need for an iterative develop-
ment process and provides guidance for selecting a development strategy, the criteria
to develop a useful taxonomy and how to use such criteria to evaluate the taxonomy;
BR recognises the need of a data collection process; and BR and CJ distinguish dif-
ferent taxonomy structures and provide guidance for maintaining the taxonomy. The
proposed methodology is described in Section 3.2

3.2 Methodology

The proposed methodology for taxonomy development comprises five steps: 1) Plan-
ning, 2) Data Collection, 3) Taxonomy Construction, 4) Validation, and 5) Mainten-
ance. A comprehensive view of the methodology is depicted in Figure 3.1, including
the five main activities, tasks involved in each activity and some results obtained. The
activities conducted and decisions made in each step are described in the following
sections.

3.2.1 Planning

This step provides the foundations to develop the taxonomy. It defines the goals and
scope of the taxonomy, meta-characteristics, ending conditions, and structure of the
taxonomy.

Goals, Scope, and Meta-characteristics. The goal is to structure knowledge re-
lated to smart mobility services. The scope of the taxonomy is limited to smart mobility
services, in particular, software intensive services, with limited attention given to ser-
vices depending mainly on non-software technologies, such as electric vehicles. The
research questions RQ1, RQ2 and RQ3 formulated in Section 1.2 serve as the meta-
characteristics of the taxonomy, i.e. they represent the most comprehensive character-
istics that will serve to determine the features of the taxonomy. The main dimensions
of the taxonomy should be a logical consequence of these meta-characteristics.

1We use the authors initials to identified them i.e. BR, CJ, and NVM.

30 CHAPTER 3. A TAXONOMY OF SMART MOBILITY SERVICES

Planning

Defining:
o  goals, scope, meta-

characteristic
o  taxonomy structure
o  ending conditions

ü  3 guiding research questions
ü  decision to apply a faceted structure
ü  3 objective and 2 subjective conditions

Data Collection
o  Specifying instruments
o  Identifying resources
o  Collecting data

ü  conceptual framework, mind maps
ü  18 state of the art papers
ü  42 smart mobility initiatives

Taxonomy
Construction

o  Following a
development strategy

o  Conducting iterative
analysis, construction

ü  strategies applied: conceptual-to-
empirical, empirical-to-conceptual

ü  8 final dimensions

Validation

o  Validating ending
conditions

o  Validating with domain
experts

ü  ending conditions met
ü  2 focus groups conducted with domains

experts

Maintenance ü  guidance for researchers
ü  guidance for policy-makers

o  Engaging stakeholders
o  Guiding updates

ACTIVITY TASKS RESULTS

Figure 3.1: Methodology for taxonomy development

Taxonomy Structure. We selected a faceted structure due to its many advantages
as discussed in Section 3.1.1, and due to the different aspects, or facets, explored by
the meta-characteristics.

Ending Conditions. We selected the following objective and subjective ending con-
ditions, based on NVM. Objective conditions: 1) no dimensions or characteristics were
merged or split in the last iteration; 2) no new dimensions or characteristics were ad-
ded in the last iteration; and 3) each dimension and characteristic is unique and not
repeated. Subjective conditions: 1) the number of dimensions allows the taxonomy
to be meaningful without being unwieldy or overwhelming; and 2) dimensions and
characteristics can be easily added.

3.2. METHODOLOGY 31

3.2.2 Data Collection

This step comprises the identification of resources and instruments to collect data,
and the actual collection of data. We divided the data collection process into state
of research, to collect data from scientific publications on smart mobility solutions,
and state of practice, to collect data about mobility services delivered in the context
of smart cities. The results of this step have been presented in Section 2.4, when we
discussed the state of the art of smart mobility services.

The data was analysed based on three constructs to understand the domain – What,
Who and Why. Each construct aligns with a concrete research question (Section 1.2,
as follows:

– What – RQ1): What is the service about? The construct explores the aim and
type of the service delivered.

– How – RQ2): How is the service delivered? The construct investigates the tech-
nology and the channels used to implement and deliver the service.

– Why – RQ3): Why is the service relevant? The construct assesses for whom the
service is delivered and the public value delivered through the service.

3.2.3 Taxonomy Construction

This step is an iterative process. In each iteration, a strategy is selected to build or
refine the taxonomy, a series of steps are conducted depending on the selected strategy,
and the ending conditions are checked to decide whether another iteration is needed.

First, the top-level dimensions of the taxonomy were conceptualized following a
conceptual to empirical approach, i.e. for each research question, we identified concepts
that capture the essence of the question. In particular, six dimensions were identified
at this stage: 1) type of services as logical consequences of RQ1; 1) applied technologies
and 3) delivery channels, as logical consequences of RQ2; and 4) benefits, 5) beneficiaries
and 6) type of users, as logical consequences of RQ3.

Second, various iterations were conducted following an empirical to conceptual ap-
proach until the ending conditions were met. In each iteration, services of the initiatives
were grouped based on common characteristics under the different dimensions, given
rise to the various sub-categories of each dimension. For example, in the type of user
dimension, we identified groups of services for people who drive cars and for cyclists.
Intuitively, these groups gave rise to the sub-category drivers. This was conducted with
the help of conceptual maps to group services and for this we used the XMind2 mind-

2https://www.xmind.net

https://www.xmind.net

32 CHAPTER 3. A TAXONOMY OF SMART MOBILITY SERVICES

mapping tool. During this process, it was evident that many services provided similar
functionality with small variations, resulting in the identification of another dimension,
7) common functionality, which can be seen as a logical consequence of RQ2.

3.2.4 Validation

This step comprises the validation of the taxonomy and the integration of the received
feedback. We organized two focus groups meetings with international government
practitioners and academic experts with experience on the smart mobility domain.

The two meetings conducted in Guimarães, Portugal, one at Comunidade Intermu-
nicipal do Ave 3 and one at United Nations Universit-EGOV (UNU-EGOV) 4, were
organized as two-hour session, including 20-minutes presentation of the taxonomy, fol-
lowed by a discussion among participants. The aim was to discuss the suitability of
the taxonomy, validity of the concepts, completeness, weaknesses, and improvements.
In total, the meetings were attended by five government experts from China (working
for Beijing Government), Uganda (working for Ministry of ICT, Uganda), Portugal
(working for Comunidade Intermunicipal do Ave), and Denmark (former government
official of the Danish Agency for Digitization), and four academics from UNU-EGOV.

Both meetings provided valuable feedback for validating the content of the tax-
onomy as well as for its improvement. In particular, a new dimension was incorporated,
8) level of maturity, which can be seen as a logical consequence of RQ2. This resulted
in a new iteration of step 3, where the characteristics for this dimension were identified
following a conceptual to empirical approach based on existing theory.

In addition to the feedback received during the two focus groups, the content of the
taxonomy has been validated based on traceability, i.e. the content has been produced
only based on collected data and references are provided for each concept.

3.2.5 Maintenance

This step comprises the identification of the stakeholders responsible for the continued
maintenance and evolution of the taxonomy, and the definition of guidelines for the
stakeholders. These topics are discussed in Section 3.5.

3http://www.cim-ave.pt
4https://egov.unu.edu

http://www.cim-ave.pt
https://egov.unu.edu

3.3. A TAXONOMY OF SMART MOBILITY SERVICES 33

3.3 A taxonomy of smart mobility services
The main dimensions defined for the taxonomy of smart mobility services are depicted
in Figure 3.2. The identified values for each dimension are defined and illustrated in
the following sections.

Type of
Service

Level of
Maturity

Type of
User

Technology Delivery
Channels Benefits Beneficiaries

Common
Functionality

Smart Mobility
Service

Figure 3.2: Defining a smart mobility service taxonomy

3.3.1 Type of Services

We identify 12 types of services. Table 3.1 describes each type and exemplifies it by
classifying each initiative described in Sections 2.4.1 and 2.4.2.

Table 3.1: Type of service

Category Description Examples

Driving
guidance

It provides guidance to drivers about the best route for moving
from one place to another, including fixed or real time informa-
tion of issues affecting mobility. Routes can be selected based on
different criteria, such as the shortest or fastest route.

S01, S02, S03,
S04, S19, S39,
S42, P18

Improving
transport
infra-
structure

It refers to enhanced functionality included in transport resources,
usually related to a specific goal, such as energy savings, enhancing
the travel experience, and reducing CO2 emissions.

S06, S20, P13,
P14, P15

Improving
transport
infra-
structure

It refers to enhanced functionality delivered to transport infra-
structure such as parking places, roads, traffic lights, etc., includ-
ing devices to detect empty parking places, or dynamic message
signs to inform about traffic.

S07, S10, S13,
S19, S25, S29,
S34

34 CHAPTER 3. A TAXONOMY OF SMART MOBILITY SERVICES

Journey
planners

It provides instructions for moving from one place to another using
one or multiple types of transport for a single journey. Instruc-
tions include types of transport available, travel and arrival times,
and guidance for commuting between them. Guidance can be per-
sonalized with different criteria such as the cheapest, fastest or
most environmentally friendly journey, and support for transport-
ing wheelchairs or bicycles, among others.

S07, S11, S16,
S20, S21, S38,
P2, P6, P10

Locating
objects

It enables to locate, usually in real time, vehicles in the city such
as cars, public bicycles or public buses.

S08, S17, S37

Monitoring
traffic

It enables authorities to monitor, analyse, and get insights about
traffic and pedestrians, such as detecting congestions, estimating
travelling times, and detecting cars’ illegal behaviour. It can rely
on monitoring of simulated data, e.g., to evaluate the impact of
events on traffic, such as, weather, road closure, and adjustments
in traffic lights patterns. Recorded data can serve as evidence of
incidents for authorities.

S08, S22, S26,
S27, S32, S42,
P1, P2, P3, P5,
P8, P9

Monitoring
transport

It enables transport authorities to monitor public transport
vehicles to get insights about on-board events, vehicles’ perform-
ance based on current and expected travelling times, number of
passengers, and incidents, among others.

S20, S24

Parking It enables users to search, book, and pay for parking places. It can
also include functionality for managing the parking facilities, offer-
ing parking places and managing interactions between the parking
provider and the users.

S01, S02, S08,
S10, S15, S19,
S29, S39, P2,
P7

Payment It enables to seamlessly pay transport-related services, such as
tickets for single or multi-modal journeys, parking places, energy
for electric vehicles, road tolls, and use of public bicycles, among
others.

S01, S05, S07,
S12, S15, S19,
S20, S30, S36

Reporting
mobility

It provides various stakeholders with information about events
affecting mobility such as planned events, incidents, alternative
routes, and current travelling times, among others.

S10, S25, S31,
S34, S35, P2,
P11-P13

Sharing
transport

It enables to share vehicles (car-sharing) and journeys (car-
pooling), including, announcing, searching, booking, and paying
for cars and shared journeys, and accessing to vehicles.

S05, S18, S40,
S41, P17

Traffic
light
optimiza-
tion

It allows adjusting traffic light patterns based on different factors
including current traffic flow, historical and simulated data, and
approaching of special types of vehicles such as emergency vehicles
and public buses. The main aim of this type of service is to respond
to the changing demands in traffic flow and to prioritize the moving
of special vehicles.

S08, S09, S10,
S14, S23, S24,
S28, S33, S42,
P4, P16

3.3. A TAXONOMY OF SMART MOBILITY SERVICES 35

3.3.2 Level of Maturity

We define level of maturity following the United Nations four-stage digital public ser-
vice maturity model [104] to classify standard digital public services, and the digital
public service innovation framework proposed in [26] to classify innovative digital pub-
lic services. Table 3.2 describes each level of maturity and classifies each initiative.
Example services were identified for all categories.

Table 3.2: Level of maturity

Category Description Examples

Standard Services

Emerging Informational services providing basic online informa-
tion with only one-way interaction between users and
the service provider.

S25, S29

Enhanced Services with enhanced one-way communication or ba-
sic two-way interactions between users and the service
provider.

S31

Transactional Services enabling complete transactions online with two-
way communication between users and the service pro-
vider.

S13, S17, S30

Connected Integrated seamless services, delivered using multiple
technologies and platforms, and highly interactive.

S01-S05, S07-S12,
S14-S16, S18-S21,
S24-S27, S29, S32-S42

Innovative Services

Transparent Services publishing information about service context
and decisions made by the service provider.

S07, S31, S35, S37

Participatory Services using participatory techniques such as crowd-
sourcing.

S16, S18

Anticipatory Services that anticipate to the needs of the user. S03
Co-created Services delivered collaboratively between government,

private sector, and/or non-government organizations,
and/or citizens.

S01, S05, S18, S40,
S41

Personalized Customizable service delivery based on user’s prefer-
ences and specific needs.

S07, S11, S16, S18,
S38

Context-
aware

Services or information provided based on the user’s con-
text information.

S01, S02, S04, S07,
S10, S20, S39

Context-
smart

Services that apply intelligence and leverage on the
knowledge of context-related information to take action
at the needed moment.

S02-S03, S06, S08-
S10, S14, S19, S22-
S24, S28, S33

36 CHAPTER 3. A TAXONOMY OF SMART MOBILITY SERVICES

3.3.3 Type of Users

In this context, a user refers to any actor receiving a smart mobility service. We
identify five main types of users. Table 3.3 describes each category and classifies each
initiative.

Table 3.3: Types of users

Category Description Examples

Transport
Authority

A government agency responsible for the licensing of
public and commercial vehicles, for designing, building
and maintaining land transport resources and infrastruc-
tures, and for regulating and monitoring land transport
in a given territory.

S08-S10, S14, S20,
S22-S28, S32, S33, S42

Driver A person who is licensed for driving a vehicle or is able
to drive a vehicle that does not require a permit. Drivers
are further classified into Motor-Vehicle Driver, and Bi-
cycle Driver.

S01, S02-S04, S05,
S07, S08, S10, S15,
S17, S19, S25, S29-
S31, S34- S36, S39-
S41, S42

Passenger A person who travels in a vehicle without participating
in its operation. Passengers are further classified into
public and non-public transport, and taxi passenger.

S06, S07, S10, S11,
S12, S16, S18, S20,
S21, S36-S38, S40

Resource
Owner

A person who possesses a transport-related resource,
such as a vehicle, parking place, garage, and is willing
to share it or rent it.

S01, S05

Pedestrian A person who walks through the city. S13, S16, S23

3.3.4 Technology

This concept focuses on ICT tools and computational techniques applied for delivering
smart mobility services. We identify nine main types of ICT tools, and two compu-
tational techniques. Table 3.4 describes each technology and classifies the initiatives
that rely on them.

Table 3.4: Technology

Category Description Examples

ICT Tools

3.3. A TAXONOMY OF SMART MOBILITY SERVICES 37

Internet Access It refers to technologies enabling a computer terminal,
mobile device and computer network to connect to In-
ternet for accessing online services. Internet access is
provided by various wired or wireless technologies offer-
ing a wide range of data transfer speed.

S01, S02, S05,
S07, S11, S19-
S21, S29-S31,
S35, S40, S41

Mobile Broadband It refers to the various generations (2G, 3G, and 4G)
of mobile telecommunications technology for mobile
devices and services and networks that fulfil a set of
standards defined by the International Telecommunica-
tion Union (ITU). It contributes to access services on
the move.

S01-S05, S07,
S11, S15, S16,
S18, S19, S21,
S29, S35, S37-
S41

Wi-Fi Access Points It refers to a device that enables wireless devices to con-
nect to a wired network, and to detect and geo-locate
Wi-Fi pings made from mobile Wi-Fi enabled devices.

S08, S20

Near Field
Communication
(NFC)

It refers to a wireless connectivity standard to exchange
data using magnetic field induction between two devices
located at few centimetres from each other.

S36

Closed Circuit
Television (CCTV)

It refers to a TV system, which signals are not pub-
licly distributed but are used to monitor a given area,
primarily for surveillance and security purposes.

S20, S22, S26,
S27, S32, S35,
S42

Global Positioning
System (GPS)

It refers to a satellite navigation system enabling to loc-
ate an object in longitude, latitude and altitude with
high precision.

S01-S04, S05,
S07, S10, S11,
S16, S18-S20,
S39-S41

Radio Frequency
Identification
(RFID)

It refers to a technology that enables data transfer
through wireless use of electromagnetic fields. RFID
technology relies on identifying and tracking tags at-
tached to objects.

S08, S10, S19,
S24, S28, S33

Smart Sensors It refers to a device able to sense and convert real-world
data into a digital data stream and transmit it wirelessly.

S06, S24, S27,
S33, S39

Inductive-Loop
Traffic Detector

A kind of smart sensor in the pavement. It is an
electrical conducting loop to detect vehicles arriving or
passing through.

S22

Computational Techniques

Simulation
Algorithms

It refers to computational algorithms able to produce
models that imitate a current or probable system and
its progression.

S09, S33

Video Recognition It refers to computational techniques enabling to detect,
locate and recognize objects and events in a video feed.

S22, S32

38 CHAPTER 3. A TAXONOMY OF SMART MOBILITY SERVICES

3.3.5 Delivery Channels

We define channel as the mean used by an administration to interact with and to
deliver smart mobility services to its stakeholders. We identify five types of delivery
channels. Table 3.5 describes each channel and classifies the services that rely on them
for their delivery.

Table 3.5: Delivery channels

Category Description Examples

Dynamic
Message Sign

It refers to an electronic message board used to
provide up-to-the minute information to drivers
and the public.

S25, S29, S34

Mobile Device
and Applications

It refers to a handheld computing device with ca-
pacity for running application software, e.g., smart
mobile phone or tablet.

S01-S05, S07, S10, S11,
S15, S16, S18, S19,
S37-S40

Smart Card It refers to a plastic card embedded with a micro-
chip and/or NFC facilitating data storage and ex-
change.

S36

Short Message
Service (SMS)

It refers to a text message sent through a mobile
device, with a maximum of 160 characters for Latin
alphabets, or 70 for Chinese or Arabic alphabets.

S12, S17

Website It refers to a connected set of Internet pages facil-
itating access to online resources.

S01, S02, S05, S11, S19,
S21, S29-S31, S35, S38,
S40, S41

3.3.6 Benefits and Beneficiaries

We define benefit as a positive outcome obtained from delivering smart mobility ser-
vices. We identify direct and indirect benefits delivered to different stakeholders and
we classify them according to the smart city dimensions (Section 2.3). In addition,
we relate each benefit with public values identified in the literature [92]. Table 3.6
describes the benefits and classifies the services that deliver them.

Table 3.6: Benefits

Category Description Public Values Examples

Smart Economy

3.3. A TAXONOMY OF SMART MOBILITY SERVICES 39

Generating
new sources of
incomes

It refers to enabling new sources of
earnings, e.g., from sharing owned re-
sources.

Citizen’s
self-development

S01, S05

Generating
personal
savings

It refers to reducing personal expendit-
ures dedicated to mobility.

Productivity;
Effectiveness

S01, S02, S03,
S15, S18, S19,
S29, S30, S36,
S39, S40

Facilitating
a sharing
economy

It refers to the use of ICT to support
the sale or rent of goods and services
via online markets. It can be peer-to-
peer, business to consumer, etc.

Cooperativeness S01, S05, S18,
S40, S41

Smart Governance

Resolving
conflicts

It refers to providing evidences to au-
thorities to react faster to resolve con-
flicts generated by traffic or people.

Effectiveness;
Common good;
Productivity;
Rule of law;
Protection of
rights of the
individual

S20, S26, S27,
S32, S42

Detecting
illegal
behaviour

It refers to facilitating the detection of
illegal behaviour committed by drivers.

Rule of law;
Effectiveness;
Common good

S27

Smart Mobility

Facilitating
journeys

It refers to enabling journey plan-
ning providing alternatives scenarios
for moving in the city using different
types of transport.

Common good;
Public interest;
Productivity;
Effectiveness

S07, S10, S11,
S16, S20, S21,
S38

Reducing
commuting
time

It refers to providing alternatives
routes and guidance for reducing the
amount of time required to move from
one place to another, considering one
or more types of transport.

Common good;
Public interest;
Productivity;
Effectiveness;
Timeliness

S01, S02, S03,
S04, S08, S09,
S10, S14, S19,
S23, S24,
S28,S29, S31,
S33-S35, S39,
S42

Contributing
to reducing
traffic
congestions

It refers to improving traffic flow. Common good;
Public interest;
Effectiveness;
Sustainability

S02, S03, S08,
S09, S10, S23,
S28, S33, S42

Facilitating
seamless
payment

It refers to facilitating seamless and on-
the-move payment of smart mobility
services.

Productivity;
Effectiveness

S01, S07, S12,
S19, S20, S30,
S36

40 CHAPTER 3. A TAXONOMY OF SMART MOBILITY SERVICES

Smart Environment

Reducing CO2
emissions

It refers to contributing to reducing
CO2 emissions.

Sustainability;
Common good;
Public interest;
Ethical
consciousness

S01, S02, S03,
S08, S09, S10,
S18, S19, S23,
S28, S29, S33,
S39, S40, S42

Contributing
to becoming
a paperless
society

It refers to digitizing service delivery,
avoiding the use of paper-based forms
and interactions.

Sustainability;
Common good;
Public interest;
Ethical
consciousness

S01, S07, S12,
S15, S19, S20,
S30, S36

Using
environmentally-
friendly
transport media

It refers to encouraging the use
of means of transport which are
classified as environmentally-friendly,
like car-pooling, public transport,
low emission vehicles, vehicles using
environmentally-friendly fuels.

Sustainability;
Common good;
Public interest;
Ethical
consciousness

S06, S07, S10,
S11, S14, S16,
S20, S21, S24,
S33, S38

Smart Living

Improving
safety

It refers to improving safety conditions
for city dwellers.

Rule of law;
Protection of rights
of the individual

S18, S20, S25,
S32, S34, S35,
S37

Improving
quality of life

It refers to improving the quality of life
of city dwellers in terms of saving time
for moving in the city, increasing com-
fort, simplifying tasks and use of ser-
vices, etc.

Protection of rights
of the individual;
Human dignity;
Common good

S02-S04, S06,
S07, S08, S11-
S17, S19-S21,
S24, S29, S30,
S33, S36, S38,
S39

Reducing
isolation

It refers to providing access to altern-
ative and more economic transport ser-
vices in places where public transport
is not available, such as access to share
rides to move to hospitals, work, etc.

Protection of
minorities;
Protection of rights
of the individual

S05, S18, S40,
S41

Developing
social values

It refers to the development of social
values, like sharing and trust.

Moral standards;
Ethical
consciousness;
Common good

S01, S05, S18,
S40

Smart People

3.3. A TAXONOMY OF SMART MOBILITY SERVICES 41

Developing
e-skills

It refers to enabling the development of
digital skills by using digital services.
The substantial benefits provided by
digital services could encourage digital
illiterates to learn how to use them,
while they continue to increase the
knowledge of those already digital lit-
erate.

Citizen’s
self-development

S01-S05, S07-
S12, S15-S24,
S26, S29,
S30-S33, S35,
S37-S42

Associated with benefits, we can identify beneficiaries. A beneficiary refers to the
actor who receives a benefit from a smart mobility service. From the types of users
identified in Section 3.3.3, we identify transport authority, driver, passenger, and re-
source owner, as beneficiaries. We also identify the society, as beneficiary, representing
all kind of social actors. Table 3.7 illustrates this relationship. In addition, due to
the faceted structure, we can easily relate information in multiple ways. Thus, we can
relate types of services with benefits delivered; as Figure 3.3 shows the type of service
contributing to delivering each benefit.

Table 3.7: Benefits and beneficiaries

ID Benefits TA D P RO S

B1 Generating new sources of income X X
B2 Generating personal savings X X X
B3 Facilitating a sharing economy X X X
B4 Resolving conflicts X X
B5 Detecting illegal behaviour X X X
B6 Facilitating journeys X
B7 Reducing commuting time X X
B8 Contributing to reducing traffic congestions X X
B9 Facilitating seamless payment X X
B10 Reducing CO2 emissions X
B11 Contributing to becoming paperless society X
B12 Using environmentally-friendly transport media X
B13 Improving safety X X X
B14 Improving quality of life X X
B15 Reducing isolation X
B16 Developing social values X X X X
B17 Developing e-skills X X X X X
TA = Transport Authority; D = Drivers; P = Passengers; RO = Resource Owners; S = Society

42 CHAPTER 3. A TAXONOMY OF SMART MOBILITY SERVICES

Figure 3.3: Type of service contributing to each identified benefit

3.3.7 Common Functionality

By common functionality we refer to a given feature that is present in more than
one service, producing different results depending only on different values of certain
parameters. Figure 3.4 illustrates this concept, showing the functionality identified for
two services, S01) parking sharing (top left) and S05) car sharing (bottom left). In
both cases, users request a resource, a parking place or a car, which is near a given
location. The object of the request could be potentially any kind of transport-related
resource, such as a bus stop, train station or a bicycle. However, the process for
handling the request is the same: searching an object in a database that satisfies a
given relation, e.g., “is closed to” with a given parameter, e.g., a location. This is an

3.3. A TAXONOMY OF SMART MOBILITY SERVICES 43

example of common functionality used by more than one service. We call such function
“request nearby resource” and the parameters include type of resource and location. The
common functionality and expected parameters identified for both services is shown in
Figure 3.4 (right).

Figure 3.4: Example of common functionality for two smart mobility services.

A summary of the common functionality identified in smart mobility services to-
gether with the services that use such functions is presented in Table 3.8.

Table 3.8: Common functionality

Category Description Examples

Requesting near
resources

It enables requesting and obtaining from a database all
the resources of a given type that are located near a
given location.

S07, S16, S21

Requesting
available nearby
resources

It enables requesting and obtaining from a database all
the resources of a given type that are located near a
given location and are available at a given timestamp.

S01, S02, S05,
S07, S16, S17,
S19, S21, S29,
S37, S41

44 CHAPTER 3. A TAXONOMY OF SMART MOBILITY SERVICES

Requesting
guidance to move
to a location

It enables requesting and obtaining concrete instructions
to move from a starting point to a destination point
by using one or more means of transportation specified.
The guidance can be provided with different levels of
precision based on different factors, including distance
and real time traffic information, among others.

S01-S04, S07, S11,
S16, S19, S21,
S38, S39

Calculating
arrival time

It calculates an estimated arrival time to reach a loca-
tion from a starting point by using one or more types of
transport. The estimated time can have various levels of
precision based on different factors, such as distance, real
time traffic information, public transport timetables,
and geo-location information of a vehicle.

S02, S03, S07,
S11, S16, S18,
S20, S21, S38

Calculating cost
of a service or
resource

It calculates the cost of a service or the use of a resource,
such as: a journey, a parking place, etc.

S07, S38

Sharing a
resource

It enables specifying data about a transport-related re-
source that is offered to others.

S01, S05, S18,
S19, S40, S41

Booking a
resource

It enables booking a transport-related resource for a
given daytime.

S01, S02, S05,
S07, S19, S41

Paying a service It enables a payment transaction made by the user of a
service or a resource to the service provider or resource
owner.

S01, S02, S05,
S07, S12, S15,
S19, S20, S30, S36

Locking and
unlocking access
to a resource

It enables the locking and unlocking of resources through
non-traditional channels (non-manual) such as mobile
devices, RFID, etc.

S05, S07, S19

Requesting
mobility records

It enables requesting and obtaining records of mobility
services used or paid during a given period.

S07, S15, S36

Locating a
resource

It enables finding and showing the current location of
an object in a map.

S01, S02, S05,
S17, S21, S29,
S35, S37

3.4 Validation

The taxonomy presented was constructed based on a detailed analysis of the state of
research and practice of smart mobility services, following the methodology defined in
Section 3.2 and the validation approach described in Section 3.2.4. Below we discuss
further decisions underpinning the taxonomy.

The values identified for type of service have been recognized and studied in various

3.4. VALIDATION 45

Table 3.9: Type of services – References from literature

Type of Service References

Driving guidance [106,155,156]
Improving transport resources [21,67,152]
Improving transport infrastructure [29,68,121]
Journey planners [3, 99,119]
Locating objects [100]
Monitoring traffic [30,100,135]
Monitoring transport [77,102,153]
Parking [14,117,143]
Payment [27,79,123]
Reporting mobility [124,137,151]
Sharing transport [69,129,132]
Traffic light optimization [71,96,131]

related work, as shown in Table 3.9. The level of maturity was based on well-defined
existing classifications, as discussed in Section 3.3.2. The values identified for type of
users, technologies and delivery channels were identified directly from the description
of the surveyed services. No other values were added. The benefits were extracted
from the description of the services. The criteria for classifying benefits was discussed
among the authors, and the beneficiaries derived from the service descriptions. While
some common functionality was extracted from the service descriptions, given the lack
of detailed documentation, some other functionality was identified relying on related
work [60,63].

Finally, the focus group meetings enabled to validate the content of the taxonomy.
In addition, many valuable ideas to improve the contributions of the taxonomy were
recorded and will be considered for future work, including: 1) digitalization of the
taxonomy and creation of an online platform where experts can contribute to the evol-
ution of the taxonomy and documentation of case studies; 2) extension of the taxonomy
with quantitative benefits, actions taken by the authorities to promote the use of the
services, plans for training potential users, dissemination efforts, and information re-
garding service implementation, such as budget, schedules, staff, etc.; 3) identification
of mobility services for people with disabilities, types of service providers, and services
using social networks as delivery channel; and 4) categorization of users in terms of
daily users such as commuters and students, and occasional users such as tourists.

46 CHAPTER 3. A TAXONOMY OF SMART MOBILITY SERVICES

3.5 Maintenance

The faceted structure provides flexibility to quickly extend the taxonomy horizontally
and vertically. New values can be added to each dimension as new initiatives are stud-
ied, and new dimensions can be explored as suggested in Section 3.4. Researchers in
areas such as e-government, smart cities, and smart mobility are apt to maintain all
dimensions except the common functionality dimension, which together with the tech-
nology and delivery channels dimensions, would be better maintained by researchers
in software engineering and informatics. Below, we briefly discuss the maintainability
of the existing dimensions.

Type of services : it could be extended both horizontally and vertically. A hier-
archical structure could be suitable for further extending each category, e.g., parking
services could be refined as parking sharing and parking search. As new trends and
technology emerge, new types of mobility services can be explored, e.g., vehicle-to-
vehicle communication services. Level of maturity : extensions will depend on innov-
ative uses of ICT to deliver services, and can be extended as proposed in [26]. Types
of users : it could be extended vertically and horizontally, following either a faceted
or hierarchical structure. For example, a faceted structure will enable to distinguished
passengers by periodicity (daily commuters, occasional passengers, and tourists) and
by whether they possess some disability. A hierarchical structure will be more intu-
itive to separate drivers into motor-vehicle drivers and bicycle drivers. Technology :
both sub-dimensions of technology could be extended vertically and horizontally using
a hierarchical structure. For example, wireless, cabled and fiber could further refine
the category Internet access; and further research following a conceptual to empirical
approach could be conducted to identify types of smart sensors, simulation algorithms,
and video recognition techniques. Delivery Channel : it could be extended horizontally
as new delivery channels are identified, such as social media. Benefits : it could be
extended horizontally and vertically following a hierarchical approach, e.g., detecting
illegal behaviour and resolving conflicts could be further refined by type of behaviour
and conflict. Further benefits for each smart city dimension can be identified by further
analysing smart mobility services. Beneficiaries : it can be adapted as new types of
users are identified. Common functionality : it could be extended horizontally as smart
mobility services are further analysed to identify similarities and variability.

3.6 Challenges and Lessons Learnt

One main challenge faced along the taxonomy development process was the difficulty
in collecting relevant data about smart mobility services due to the lack of standardiz-

3.6. CHALLENGES AND LESSONS LEARNT 47

ation and meaningful information provided, as well as a lack of comprehensive lists of
initiatives in official government websites. In most cases, we conducted several searches
involving different sources to have a clear picture about a given service. These makes
it difficult for citizens, researchers and other governments to learn about initiatives
and good practices implemented. In addition, it could affect the success of the services
being delivered, since citizens may not be aware of their existence. In some cases,
governments release reports about the initiatives, providing some organizational and
strategic insights. Although these documents are good for other governments, usually
they are unfriendly for citizens. Thus, some standardization and trade-off are needed.
Citizens would benefit from information about the available services, how they can use
them, and how such usage benefits them. Government officials, researchers, and other
stakeholders would benefit from information regarding planning, technical details and
lessons learnt from smart mobility initiatives successfully or unsuccessfully implemen-
ted. Moreover, access to such information could serve open government requirements,
now being implemented at subnational level by the Open Government Partnership
(OGP)5. In particular, the objectives of the OGP initiative include to “discover and
promote new and innovative open government techniques and practices emerging at
the subnational level around the world; and create practical opportunities for subn-
ational governments to learn from each other, share experiences, and build upon the
open government work of their counterparts”.

During the data collection process, it was also difficult to find relevant information
about the usage of the services. Only when services were delivered through a mobile ap-
plication, some insights on the number of downloads, users’ comments, and application
rate was available from the application store. In many cases, the number of downloads
was not representative with respect to city inhabitants, the rating was average, and
there were significant number of complaints regarding the performance of the applica-
tions and the unattractiveness of user interfaces. Some recommendations to overcome
this, is to have a dedicated strategy to ensure the efficient delivery and usage of smart
mobility services. The strategy should strongly rely on citizen engagement, includ-
ing, as a first step, conducting communication campaigns for promoting the services,
informing citizens about their availability and benefits. Other steps should include
initiatives for listening to citizens’ feedback, facilitating user experimentation as part
of innovation labs, documenting the level of user satisfaction, modifying services based
on appropriate feedback, maintaining users informed about how their feedback is being
used, ensuring the correct maintainability of the software, and collecting data about
the actual usage of the services. These efforts should increase trust in the service and
in the service provider, and enhance the level of acceptance and usage of the service.

5http://www.opengovpartnership.org/how-it-works/subnational-government-pilot-program

http://www.opengovpartnership.org/how-it-works/subnational-government-pilot-program

48 CHAPTER 3. A TAXONOMY OF SMART MOBILITY SERVICES

In many cases, information about the stakeholders involved in the development and
delivery of the services and about the level of government engagement was missing.
Many of the services were provided by the public, as mechanisms for promoting a
collaborative or sharing economy, e.g., most parking services were developed without
government involvement. In all such cases, it is recommended that governments revise
their roles as regulators and as providers of the needed platforms for promoting the
development and delivery of such type of services by entrepreneurs and representatives
of the private sector [89]. Finally, since the data was collected, we noticed that some
government websites have removed information about the services. The reasons could
rely on several arguments, such as failure of the initiative, and closure after achieving
its goals. To facilitate knowledge sharing, it would be helpful to maintain a knowledge
base, accessible to the public, containing data and lessons learnt about conducted
initiatives, whether they are active or not. This is important for other governments
and researchers, but also for citizens, as accountability mechanism.

3.7 Related Work

Some taxonomies exist in the literature covering smart city concepts, for instance: a
taxonomy of application domains for smart cities, including transport and mobility
domain that is further classified into city logistics, info-mobility, and people mobility
[118]; a taxonomy to classify smart city projects comprising the description of the
project, the business model, and the purpose [126]; and a taxonomy of technologies for
smart cities [154].

Recently, a taxonomy of smart mobility has been proposed by Benevolo et al. [24].
Such a taxonomy intersects with the one proposed in this article in the types of services
and benefits dimensions, and in some values identified for such dimensions. We believe
that the taxonomy proposed here provides a wider view of smart mobility services
by considering other dimensions related to service development. In addition, main
differences between both taxonomies include: we recognize benefits for all dimensions
of a smart city, while the other authors focus on benefits for smart mobility; we focus
in services highly relying on ICT, while Benevolo et al. consider a broader range of
solutions, such as vehicles depending on sustainable fuels and policy actions; and we
develop the taxonomy based on the state of art assessed from literature review and 42
initiatives from smart cities around the world, while Benevolo et al. focus on economic
papers regarding policies and technologies for urban and smart mobility, especially in
Europe.

3.8. CONCLUSIONS 49

3.8 Conclusions
The contribution of the taxonomy is twofold. First, it presents a broad mapping of
mobility services that can be deployed in the context of smart city initiatives. Second,
it introduces a taxonomy defining and classifying relevant concepts for policy makers
and software engineers.

On the one hand, policy makers can benefit from the taxonomy when defining smart
mobility strategies, since it enables the identification of stakeholders to whom services
need to be defined, exemplifies the different type of services to be delivered, and the
corresponding benefits and beneficiaries, facilitating the justification of business cases
for each initiative. In addition, entrepreneurs can benefit from the taxonomy to study
possible market opportunities to innovate in the provision of smart mobility services.
On the other hand, software engineers can benefit from the identification of common
functionality that can be used to develop reusable components for smart mobility
services. We discuss in more detail applications of the taxonomy and some usage
scenarios in Section 8.2 when we discuss the planning component of the virtual factory.

As a limitation, the analysis was based on secondary data. Such data was gathered
from government websites and reporting documents as well as from scientific publica-
tions.

50 CHAPTER 3. A TAXONOMY OF SMART MOBILITY SERVICES

Chapter 4

Technical Background

This chapter gathers the necessary technical background for the thesis and comprises
three main concepts.

First, in line with the goal of rapid developing government services, we discuss the
notion of Software Product Lines (SPLs), an approach to model families of software
systems that takes advantage of shared functionality to rapidly develop them. There
are two main approaches to model variability in SPLs, here referred as fine-grain and
coarse-grain. However, we argue that a third compositional approach can be recognized
from the literature. This approach seems to gather the best from the fine-grain and
coarse-grain approach, thus, we proposed a compositional approach to model SPLs in
Chapter 5.

Second, we present a promising existing fine-grain formalism to model SPLs, called
Featured Timed Automata, in which we based our proposed formalism to model SPLs
in a compositional way.

Finally, we present Reo, and exogenous coordination language to orchestrate dis-
tributed components. One of the main advantages of Reo, is that it allows to yield
loosely-coupled systems where components comprising domain functionality are separ-
ated from the protocols that orchestrate them. Thus, it seems interesting to incorporate
the notion of exogenous coordination with SPLs to decoupled coordination from do-
main functionality and improve the reusability of both, domain assets and coordination
protocols. To to this, it is necessary to model Reo protocols as families of protocols,
as we do in Chapter 7.

Chapter Organization. Section 4.1 presents the definition of software product lines
(SPLs), discusses their benefits, some common approaches to formally model SPLs,
and their relevance to support Digital Government. Section 4.2 discusses Featured
Timed Automata, a formalism to model SPLs that supports real-time requirements.

51

52 CHAPTER 4. TECHNICAL BACKGROUND

Finally, Section 4.3 presents Reo, an exogenous coordination language, and discuss the
advantages of incorporating the notion of exogenous coordination in SPLs.

4.1 Software Product Lines
Software development has gone through various stages, from custom made, to mass
production, to mass customization [7, 45, 127]. In the beginning, software was custom
made for a specific hardware, purpose, or client. As the production of hardware in-
creased and software became more complex, software producers agreed on standard
platforms as a way to develop standard software and off-the-shelf components that
could be installed by many, bringing mass production to the software industry. How-
ever, as the proliferation of devices and software increased, so did customer demand to
receive better and customized products, something that mass production could not deal
with. This gave rise to the adoption of mass customization – large scale production of
goods tailored to individual customers’ needs [51].

Software Product Lines (SPLs) emerged as a way to bring mass customization to
the software industry [7], similar to how production lines brought mass customization
to other markets, such as car manufacturing.

4.1.1 Definition (Software Product Line (SPL) [45]). A software product line is a
set of software-intensive systems sharing a common, managed set of features that satisfy
the specific needs of a particular market segment or mission and that are developed
from a set of core assets in a prescribed way.

An SPL enables the development of a family of software systems by taking ad-
vantage of the commonalities and variabilities of the members of the family. These
commonalities and variations are referred as features. There are many definitions in
the literature of what a feature is, here we use the following one.

4.1.2 Definition (Feature [7]). A feature is a characteristic or behaviour of the
system visible to the user. It captures both requirements of the end users as well as
implementation concepts.

By selecting a desired set of features, one can derived a concrete product from
the SPL. The set of all valid feature selections determines the scope of the software
product line, i.e. the set of products that can be derived from the SPL. These valid
combinations are specified through variability models, called feature models. We discuss
feature models and their representation in Section 4.1.1.

The set of core assets includes the typical artefacts in software development: re-
quirements, domain models, test cases, software architecture, and components, among

4.1. SOFTWARE PRODUCT LINES 53

others, all of which are designed to accommodate variability and to be reused. Unlike
with merely reusability of existing components, in SPL reusability and variation points
are carefully planned, enabled and enforced [45]. Through out this work we focus only
on models.

In addition to mass customization, following an SPL approach brings other im-
portant benefits, such as: reducing costs and time to market – although the upfront
investment is larger than developing a single product, it pays off in the long term, since
there is no need to develop customized solutions from scratch. Developing a product
reduces to selecting the desired set of features. Even if it may be necessary to tweak
a final product to accommodate new functionality, the efforts and costs are lower; and
improving quality – the reusability and testing of assets in many products leads to more
stable and reliable products than if they were built from scratch; among others.

The increase in benefits achieved through an SPL entails new risks and significant
development efforts during start-up, as well as ongoing costs to maintain the assets. An
example of a typical risk that can arise has to do with the definition of the SPL scope.
In fact, in [7] the authors discuss that a well-defined and well-scoped domain is a key
success factor for SPL development. If the scope of the SPL is too wide, it will lead
to too much variability, making it difficult to accommodate variability, and resulting
in going back to a product by product development approach. If the scope is to small,
the core assets might not be generic enough, making it difficult to accommodate future
growth, stagnating the development, and leading to no return on investment.

To avoid these issues, understanding correctly the domain of application is of utmost
importance. Thus, the software engineering process of an SPL is divided into two main
processes, each of which incorporates two main activities: domain engineering – deals
with domain analysis and domain implementation; and application engineering – deals
with requirements analysis and product derivation. This is schematized in Figure 4.1
taken from [7].

Essentially, the activities involved in each of the main tasks are described as follows.
1) Domain analysis – identifies the scope of the domain and the features that are rel-
evant and should be implemented as reusable assets. This is typically documented in a
feature model (see Section 4.1.1). 2) Requirements analysis – studies the requirements
of a given client. This can result in a simple feature selection, or it might result in new
requirements, leading to expand the domain analysis and possible adaptation of the fea-
ture model. 3) Domain implementation – develops the reusable assets that correspond
to the features identified in domain analysis. 4) Product derivation – is the production
step of application engineering, where reusable artifacts are combined according to
the results of requirement analysis. Depending on the implementation approach, this
process can be more or less automated, possibly, involving several development and
customization tasks.

54 CHAPTER 4. TECHNICAL BACKGROUND

Figure 4.1: The engineering process for software product lines [7].

4.1.1 Variability

Variability is identified and documented during domain analysis, and it is used during
the application engineering process to derive concrete products of the family. The
variability is typically defined in terms of common (present in every product) and
optional features, usually through variability models, called feature models. A feature
model expresses the valid combination of features by defining dependencies between
them, where each combination is a product supported by the family.

There are various approaches to express feature models, both in textual descrip-
tion and graphical representation. The latter are usually referred as feature diagrams.
Graphical representations however do not provide a formal semantics. A common way
to give formal semantics to a feature diagram is by mapping it directly into a proposi-
tional logic [7, 23,110].

Feature Diagrams

Among feature diagrams, there are many variants as well, including the first defin-
ition [94] and many extensions to this notation [75, 95]. In [134] the authors study

4.1. SOFTWARE PRODUCT LINES 55

various notations for feature diagrams, providing a formal semantics for these and ana-
lysing their expressiveness, succinctness and embeddability, concluding that many of
the existing extensions do not increase expressiveness and sometimes are ambiguous.
Similar, in [34] the authors survey various approaches to model feature diagrams and
provide a textual notation with formal semantics.

Here we adopt the notation used in [7]. In this case, a feature diagram is represented
as a tree structure. Some notations allow the diagram to be a graph (see [134]). Each
node of the tree represents a feature. There are various types of notations that link
non-leave nodes with their children, expressing a type of constraint between them.

Public Transport License

License Documents

Vehicle Operator Service Vehicle
Insurance

Criminal
Record

Payment

Credit Card PayPal

Vehicle <-> Vehicle Insurance

…

P

C1 Cn …

P

C1 Cn

P

C

P

C

Legend

or xor optionalmandatory

Figure 4.2: An example of a feature diagram for an SPL of public transport licensing
services.

Figure 4.2 illustrates a simplified feature diagram extracted from the case study
shown in Chapter 8. A root feature is always present in every product, in this case
PublicTransportLicense. A relation between a feature and its child features can be of

56 CHAPTER 4. TECHNICAL BACKGROUND

four types as described by the legend: or – some out of many can be selected; xor – one
out of many can be selected; mandatory – always present; and optional – optionally
present. For example, a feature License must always be selected, specifying only one
type of license, Vehicle, transport Operator , or Service. Not all public transport li-
censes require Payment support, and if they do, they could support payments through
CreditCard , PayPal , or both. In addition, a feature can be selected only if its parent
feature is selected. Because not all constraints can be expressed in a tree structure,
additional cross-tree constraints can be added in textual form using propositional lo-
gic. In the example, support for VehicleInsurance documentation can be selected, if
and only if, the selected license to be derived is a license for Vehicles to transport
passengers.

As mentioned, there are many variants of feature diagrams, some distinguish between
concrete and abstract features, where an abstract feature do not have associated assets,
others allow multi-features [48], i.e. to select a feature multiple times, each time with
different child configurations. A comprehensive analysis of feature diagrams can be
found in [134].

Formal feature models

The simplest way to give a formal semantics to feature diagrams is to translate them
into propositional logic where each feature is treated as a boolean variable. Examples
of this approaches can be seen in [7, 23,110].

Given a feature diagram over a set of features F , we can obtain a formal feature
model in propositional logic applying the following set of rules to each edge of the
feature diagram [7]:

root(P) ≡ P

mandatory(P ,C) ≡ P ↔ C

optional(P ,C) ≡ C → P

or(P , {C1 , . . . ,Cn}) ≡ P ↔ (C1 ∨ C2 ∨ · · · ∨ Cn)

xor(P , {C1 , . . . ,Cn}) ≡ P ↔ (C1 ∨ · · · ∨ Cn) ∧
∧
i≤j

¬(Ci ∧ Cj)

The resulting future model in propositional logic is the conjunction of formulas obtained
by applying such rules. In addition, since cross-tree constraints can be added in textual
form to the feature diagram, these are as well conjoined in the resulting model.

For example, the feature diagram shown in Figure 4.2 can be translated into the

4.1. SOFTWARE PRODUCT LINES 57

following propositional formula:

fm ≡PublicTransportLicense

∧ License ↔ PublicTransportLicense

∧ Documents ↔ PublicTransportLicense

∧ Payment → PublicTransportLicense

∧ License ↔ (Vehicle ∨Operator ∨ Service)

∧ ¬(Vehicle ∧Operator) ∧ ¬(Vehicle ∧ Service) ∧ ¬(Operator ∧ Service)

∧ Payment ↔ (CreditCard ∨ PayPal)

∧ Documents ↔ (VehicleInsurance ∨ CriminalRecord)

∧ Vehicle ↔ VehicleInsurance

Similar to [46] and for simplicity, throughout this work we formally defined a feature
as a boolean variable that represents a unit of variability; and defined a feature model
as a boolean expression over features, called feature expressions. Formally, feature
expressions, their satisfaction and semantics are defined as follows.

4.1.3 Definition (Feature Expressions (FE), satisfaction, and semantics). A
feature expression ϕ over a set of features F , written ϕ ∈ FE(F), is defined by

ϕ ::= f | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | > (feature expression)

where f ∈ F is a feature. The other logical connectives can be encoded as usual:
⊥ = ¬>; ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2; and ϕ1 ↔ ϕ2 = (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).

Given a feature selection FS ⊆ F over a set of features F , and a feature expression
ϕ ∈ FE(F), FS satisfies ϕ, noted FS |= ϕ, if

FS |= > always
FS |= f ⇔ f ∈ FS
FS |= ϕ1 ∧ ϕ2 ⇔ FS |= ϕ1 and FS |= ϕ2

FS |= ϕ1 ∨ ϕ2 ⇔ FS |= ϕ1 or FS |= ϕ2

FS |= ¬ϕ ⇔ FS 6|= ϕ

(FE satisfaction)

The semantics of a feature expression ϕ with respect to a set of features F , denoted
JϕKF , is the set of valid feature selections over F that satisfy ϕ, formally,

JϕKF = {FS ⊆ F | FS |= ϕ} (FE semantics)

We will use simply JϕK when F is clear from the context.

58 CHAPTER 4. TECHNICAL BACKGROUND

Thus, the semantics of a feature model is the set of products that can be derived
from it, i.e. the valid combinations of features. If we consider the boolean formula
obtained from the feature model in Figure 4.2, there are 16 valid combinations of
features allowed by this feature model.

We model feature expressions in a constraint fashion, i.e., a feature expression
expresses the minimum requirement over a set of features that needs to be satisfy. For
example, a feature expression ϕ = > over the set of features F = {f1 , f2}, expresses
that any combination of features f1 and f2 is possible, in fact JϕKF = 2F , while the
feature expression ϕ′ = f1 → f2 , over F , expresses that whenever f1 is selected, f2 must
be selected, being Jϕ′KF = {{}, {f2}, {f1 , f2}}.

4.1.2 Modelling Software Product Lines

One of the main challenges in SPL is to guarantee efficiently that every product of the
SPL behaves as expected. The issue is that in practice software product lines can deal
with thousands of features and thousands of valid feature combinations. In fact, the
number of products that can be derived from an SPL is exponential in the number of
features. One approach towards addressing this issue is to have modular and scalable
behavioural formalisms to model and verify properties of the SPL.

When modelling SPLs, one of the aspects to consider is how variability is associ-
ated to specific assets, in our case models, of the SPL. There are two main approaches
recognized in the literature to model and verify SPLs [7, 97] that differ in the level of
granularity of the assets to which variability is assigned. For example, in an object-
oriented program, variability could be assigned to a class, a method, or a statement,
among others. These two approaches are refer as annotative and compositional. How-
ever, we argue that the term compositional can be misleading, since in practice, both
approaches are annotative in the sense that assets in the SPL are annotated with the
features they belong to. Here we refer to them as fine-grain, and coarse-grain ap-
proach, respectively. In practice, both approaches can be combined, as in Kästner et
al. [97]. Below we discuss a third approach to model variability, which we argue is truly
compositional.

In an fine-grain approach, the behaviour of all the products of the family is rep-
resented in a single model. Parts of the model are then annotated with variability
specifying in which products that part is present. When selecting a specific product,
only the parts of the core that belong to that product are preserved, the rest are pruned
or ignored. This has the advantages and disadvantages of any fine-grain approach. On
the one hand, it allows greater flexibility to model cross-cutting functionality. In ad-
dition, it allows to verify properties of the entire family instead of following a product
by product approach. On the other hand, it does not allow to define an SPL in a

4.1. SOFTWARE PRODUCT LINES 59

modularized way. The core asset can quickly grow in complexity, which hinders the
understanding, maintainability, and evolution of the SPL. Examples of fine-grain be-
havioural formalisms found in the literature include the use of transition systems and
finite automata [35,47], where transitions are annotated with a feature expression, sim-
ilar to how feature expressions are defined here. In both cases, a single model is built
containing the behaviour of the entire family. Model checking techniques are later used
to verify properties over the entire model.

In a coarse-grain approach, the modelling and reasoning of features is done in isol-
ation. The SPL is design in a modularized way, where functionality is divided into
composable units, where each unit typically corresponds to a feature. Each feature
specifies how it alters the core model. When selecting a specific product, only com-
ponents that correspond to a selected feature are composed into the final product. It
can be verify if a given combination of features preserves the properties of the indi-
vidual ones, but requires to check over every possible combination of features. It has
been proposed [8] to model features in a compositional manner but to model check
them following an fine-grain approach. The advantage of the coarse-grain approach
is that variability and functionality are encapsulated in composable units, simplifying
the design, and addressing the main issues of the fine-grain approach. Of course, the
main disadvantage is that it is not always possible to decompose variability into well-
defined components, as in the case of cross-cutting functionality. Typical examples of
this approach can be found at the level of implementation [22, 97], where features can
extend a class by redefining methods or adding new ones.

From the literature, we would like to recognize a third approach, a truly compos-
itional approach. In this approach, an SPL can be designed following a component-
based approach in which functionality is divided into simpler components, each of
which can be annotated with variability. In addition, each component possess its own
feature model. The SPL can then be built by composing the components, including
their variability models. An example of a behavioural formalism following this ap-
proach includes an extension to Petri Nets, where each net has a feature model, and
arcs in the net can be annotated with features indicating in which products the arcs
are present [115]. Various nets can be combined through composition, where feature
models from separately engineered models of individual features are composed as well.

In the coarse-grain approach, only components that belong to selected features
are combined in the final product. In this sense, this approach composes products.
In the truly compositional one, the entire SPL is composed out of smaller variable
components. In this sense, this approach composes SPLs, or families of products.
This provides some advantages over only fine-grain or coarse-grain approaches. First,
it gathers the best of both approaches: modularization while having the ability to
assign variability at a finer level. Second, it allows to model variable components

60 CHAPTER 4. TECHNICAL BACKGROUND

with independent variability models, composed them together and reason about the
composed variability model, what products can be derived, and dependencies between
features, among others. Thus, in this work we focus on the compositional approach
and propose accordingly a compositional formalism to model SPLs in Chapter 5.

4.1.3 SPLs and Digital Government

Only a few studies can be found in the literature regarding SPL support for the devel-
opment of digital government applications. In [107], the authors propose an SPL for
generating front-end environments for an e-government context management system.
In [125], the authors propose a method to generate personalized government documents
using SPL. The approach takes advantage of the high level reuse of government docu-
ments. More recently, SPLs have been used to support the development of personalized
applications in smart cities [105].

Although not yet widely used in government, the concept of SPL offers unique op-
portunities for the rapid development and deployment of certain services provided by
local governments. For example, following our case study, in most public administra-
tion systems, local governments are responsible for issuing licenses for public transport
services. While such services comprise a number of common functionality – e.g. sub-
mission and approval of the public transport route, submission and approval of the
vehicles certificates of property, submission and approval of the driverś’ driving li-
censes, etc.; they also differ in a number of features, mostly due to specific regulations
of each local government. Therefore, the idea of applying SPL for generating a family
of certain type of public services is appealing and relevant to the public sector.

However, in addition to the concept, there is a need to provide appropriate tools to
facilitate the generation of reliable software systems supporting the delivery of public
services based on the SPL concept. In this sense, the use of formal methods and
SPLs can help to overcome this issue and, to some extent, the challenges described in
Section 2.2. On the one hand, formal methods help to model and verify that services
conform with the required laws and regulations at an early stage. On the other hand,
software product lines can help to rapidly develop families of services, reducing costs
and development efforts, as well as facilitating service integration. Thus, it offers unique
opportunities for the rapid development and deployment of certain services provided
by local governments.

Thus, integrating both approaches seems the way to go. Various formalisms and
approaches exist to formally model and verify SPLs as mentioned in Section 4.1.2.
However, they are mainly fine-grain or coarse-grain approaches. Following a compos-
itional approach to formally model SPLs seems more interesting due to its flexibility
and potential improvement over the other approaches.

4.2. FEATURED TIMED AUTOMATA 61

In addition, based on our case study we recognize that time constraints, although
not necessarily real-time constraints, are a recurrent requirement in government ser-
vices. Thus, we focus in a formalism capable of capturing this requirements. From
the literature, Featured Timed Automata is a very interesting formalism with efficient
algorithms to verify properties over the models. However, it is a fine-grain approach,
and as such it does not allow to model SPLs in a compositional way. Thus, the com-
positional formalism proposed in Chapter 5 is based on this formalism. We provide
the necessary background on Featured Timed Automata in the following section.

4.2 Featured Timed Automata

Featured Timed Automata (FTA), introduced by Cordy et al. [47], is an extension to
Timed Automata (TA) [4] to model and verify families of real-time systems paramet-
rized by a variability model. This parametrization enables to model various systems in
a single model, simplifying the design and improving efficiency during model checking.

Essentially, FTA extends TA by incorporating a set of features, which represent
units of variability, and a feature model, which determines the set of valid feature
combinations. Each valid combination determines a concrete product in the family,
i.e., a timed system modelled as a timed automata.

We first introduce some preliminary notions of Timed Automata in Section 4.2.1.
Then, in Section 4.2.2 we present the formal definition of a featured timed automaton
and its semantics based on Cordy et al..

4.2.1 Timed Systems

Featured Timed Automata builds on top of Timed Automata, introduced by Alur et
al. in [4] as an abstract model for timed systems. A timed automaton is a finite
automaton equipped with a finite set of real-valued variables representing a set of
clocks, and logic guards over clocks, called clock constraints, to model time constraints
about the behavior of the system.

A clock c is a logical entity that models continue and dense-time. It can only be
inspected or reset to zero, and represents the time elapsed since its last reset. When a
timed automaton evolves over time, all clocks are incremented simultaneously. Initially,
all clocks are reset to zero.

Clock constraints are logic conditions over the value of a clock. They are used as
logic guards to represent time constraints over locations, restricting the amount of time
the system can spend in the location; and over transitions, restricting when the system
can move to another location by taking an action on a transition. Specifically, clock

62 CHAPTER 4. TECHNICAL BACKGROUND

constraints over locations are called location invariants.
Intuitively, a TA may remain in a location as long as the current clock valuation,

i.e., the current value of the clocks, satisfies the invariant of the location; and may
leave a location by taking an outgoing transition, only while the current clock valuation
satisfies the clock constraint of the transition. Notice that transitions are instantaneous
steps, i.e., taking a transition does not increment the value of the clocks. We illustrate
this with an example before presenting any formal definition.

4.2.1 Example. Figure 4.3 shows a timed automaton modelling a payment selec-
tion controller. There are two locations, `0 and `1, a clock c , and three actions
pay , creditcard and paypal , representing the ability to pay, and to select the payment
method, i.e., credit card or PayPal, respectively. Initially the automaton is in location
`0, indicated by a node with double line 1, and it can evolve either by waiting for
time to pass, incrementing the clock c, or by taking the transition to `1. Taking such
transition triggers the reset of the clock c back to 0, evolving to the state `1. Here it
can wait for the time to pass, but for at most 5 time units, determined by the invariant
c ≤ 5 in `1. In location `1 it can either evolve by selecting to pay by PayPal or by
credit card. However, these transitions have a different guard: a clock constraint c ≥ 1
that allows the transitions to be taken only when clock c is greater than 1. /

`0 `1

[c ≤ 5]
paypal
c ≥ 1

pay
c := 0

creditcard
c ≥ 1

Figure 4.3: An example of a TA modelling a payment selection controller.

We now present the formal definition of clock constraints and timed automata.

4.2.1 Definition (Clock Constraints (CC), valuation, and satisfaction). A
clock constraint over a set of clocks C, written g ∈ CC(C) is defined by

g ::= c < n | c ≤ n | c = n | c > n | c ≥ n | g ∧ g | > (clock constraint)

where c ∈ C, and n ∈ N.
1This notation is adopted as well by Uppaal. It can be confusing since in Büchi Automata a

double line indicates accepting states, which are used to reason about the progress of the system.
However, when dealing with Timed Safety Automata, as in this case, the notion of progress is given
by invariants associated to locations instead of accepting states [25].

4.2. FEATURED TIMED AUTOMATA 63

A clock valuation η for a set of clocks C is a function η : C → R≥0 that assigns each
clock c ∈ C to its current value ηc. We use RC to refer to the set of all clock valuations
over a set of clocks C. Let η0(c) = 0 for all c ∈ C be the initial clock valuation that
sets to 0 all clocks in C. We use η + d, d ∈ R≥0, to denote the clock assignment that
maps all c ∈ C to η(c) +d, and let [r 7→ 0]η, r ⊆ C, be the clock assignment that maps
all clocks in r to 0 and agrees with η for all other clocks in C \ r.

The satisfaction of a clock constraint g by a clock valuation η, written η |= g, is
defined as follows

η |= > always
η |= c� n if η(c)� n
η |= g1 ∧ g2 if η |= g1 and η |= g2

(clock satisfaction)

where � ∈ {<,≤,=, >,≥}.

4.2.2 Definition (Timed Automata (TA)). A timed automaton is a tuple A =
(L, `0, A, C, T, Inv), where:

– L is a finite set of locations,

– `0 is the initial location,

– A is a finite set of labels representing actions,

– C is a finite set of clocks,

– T ⊆ L× CC(C)× A× 2C × L is a finite set of transitions

– Inv : L→ CC(C) is a function assigning invariants to locations.

In a transition (l, g, a, r, l′) ∈ T , sometimes written ` g,a,r−−−→A `′, l is the origin location,
g is the clock constraint or guard associated to the transition, a is the action triggering
the transition, r is the set of clocks to reset, and l′ is the target location.

Notation. 2A denotes the powerset of A. Given any automaton A, we use LA, `0A ,
AA, . . . to refer to the elements of A when not clear from the context.

The semantic representation of a TA is given by a Labelled Transition System or
just Transition System (TS) [16]. Figure 4.4 illustrates the infinite transition system
corresponding to the TA of the payment controller shown in Figure 4.3. The states
of the underlying TS of a TA A consist of a location of A and a clock valuation that
represents the current value of the clocks in that state. The transitions between states

64 CHAPTER 4. TECHNICAL BACKGROUND

of the TS can be delay transitions, e.g., 〈`0, c = 0〉 2−→ 〈`0, c = 2〉, or action transitions,

e.g., 〈`0, c = 0〉 pay−−→ 〈`1, c = 0〉. Delay transitions model the passing of time, i.e., they
model when A does not take any action, staying in the same location but incrementing
the value of the clocks. Action transitions model when A takes an action on an actual
transition, moving to a possible new location and without altering the value of the
clocks, except for those that are reset to 0 by the transition.

〈`0, c = 0〉 〈`1, c = 0〉

〈`0, c = 2〉 . . .

. . .

...

〈`1, c = 2〉.
pay

pay

2 paypal

Figure 4.4: An illustration of an infinite TS corresponding to the TA in Figure 4.3.

4.2.3 Definition (Semantics of TA). The semantics of a timed automaton A =
(L, `0, A, C, T, Inv), is a transition system JAK = (St, s0, A, T

′), where:

– St = L × RC is the set of states, consisting of the current location and clock
valuation,

– s0 = 〈`0, η0〉 is the initial state, and

– T ′ ⊆ St× (A] R≥0)× St is the transition relation, defined as follows

〈`, η〉 d−→ 〈`, η + d〉 if η |= Inv(`) and (η + d) |= Inv(`), for d ∈ R≥0 (4.1)

〈`, η〉 a−→ 〈`′, η′〉 if ∃ ` g,a,r−−−→ `′ ∈ T s.t. η |= g,

η |= Inv(l), η′ = [r 7→ 0]η, and η′ |= Inv(`′) (4.2)

Condition (4.1) defines delay transitions. A delay transition is labelled with a
positive delay d ∈ R≥0. For a delay transition to exist, the clock valuation of the origin
state, η, must satisfy the invariant of the location `; while the updated clock valuation
after taking the delay transition, η+d, must still satisfied the invariant of such location.
Condition (4.2) defines action transitions. The transition is labelled with the action
of the corresponding transition in A. For an action transition to exists between two

4.2. FEATURED TIMED AUTOMATA 65

states, the clock valuation of the origin state, η, must satisfy the invariant of the origin
location, `, and the guard, g, associated to the transition; while the clock valuation of
the target state, defined as η for all clocks, except for clocks in r which are reset to 0,
must satisfy the invariant of the target location, `′.

Multiple TA can be composed in parallel to model concurrent systems, resulting
in a network of Timed Automata. Parallel composition of TA reduces to computing
the product of the automata, where the automata in the network may interleave or
transition together through the use of shared actions, called synchronization actions.
In a network there are no external actions, i.e., all actions are synchronized and the
network is considered a closed system. The formal definition of a network of TA and
its semantics can be found in [25]. In practice, computing the product of a network of
automata is computationally expensive, however, it can be computed on-the-fly as is
in the case of the real-time model checker Uppaal.

4.2.2 Families of Timed Systems

Featured Timed Automata is an fine-grain approach introduced by Cordy et al., [47]
to model real-time SPL. Thus, an FTA encodes in a single model various models
corresponding to a family of timed systems, in particular, each model being a concrete
timed automaton. Given a FTA, it is possible to model check it against a given property
expressed in Timed Computation Tree Logic (TCTL) [16] and determine the set of
products that satisfy or violate such a property.

In order to model a family of timed automata in a single model, FTA extends TA
with features, feature expressions, and a feature model. As mentioned Section 4.1.1,
features represent units of variability supported by the model, and are modelled as
a set of Boolean variables. Feature expressions are Boolean conditions over features,
and are associated to transitions to specify the set of concrete products of the SPL (in
this case, concrete TA) where a given transition is present. The feature model, here
modelled as a feature expression, represents the set of valid feature combinations, i.e.,
the set of concrete products that can be derived from the model.

We can now present the formal definition of FTA based on Cordy et al.. For the
sake of simplicity, we have slightly modify the original definition. In particular, we use
an unique initial location instead of a set of locations; we use clock constraints instead
of featured clock constraints (clocks constraints parametrized by features expressions);
and we do not associate atomic propositions to locations. In the last case, this is
because FTA uses a state-based approach to verify properties of a family, where the
observable behaviour of an FTA is given by a set of properties, usually called atomic
propositions, associated to the current state of the system. However, we use an action-
based approach, since we focus on modelling interactive systems where the observable

66 CHAPTER 4. TECHNICAL BACKGROUND

behaviour is rather given by the actions available through outgoing transitions from
the current state.

4.2.4 Definition (Featured Timed Automata (FTA) [47]). A featured timed
automaton is a tuple A = (L, l0, A, C, T, Inv , F, fm, γ) where L, `0,A, C, T , and Inv
are defined as in TA (Definition 4.2.2), and F, fm, and γ are defined as follows:

– F is a finite set of features,

– fm ∈ FE (F) is a feature model defined as a FE over features in F , and

– γ : T → FE (F) is a total function that assigns feature expressions to edges.
Sometimes we shall write l g,a,r−−−→

ϕ
l′ to express that γ(l, g, a, r, l′) = ϕ and that

(l, g, a, r, l′) ∈ T .

Now we can encode various models of similar systems into a single FTA by taken
advantage of their similarities. Let us consider the payment controller introduced in
Figure 4.3. Imagine we now want to model an SPL of payment controllers to capture
systems with support for different payment methods: a) only credit card, b) only
PayPal, and c) both. We can easily do this by representing the support for each
method as features supported by the SPL. Figure 4.5 (top left) depicts such a FTA.
The model is further explained in Example 4.2.2.

4.2.2 Example (FTA). Figure 4.5 exemplifies a simple FTA modeling an SPL of
payment selection controllers. The base model corresponds to the TA depicted in
Figure 4.3 and it is parameterized by two features pp and cc, standing for the support
for paying by PayPal and by credit card, respectively. The transitions labelled with the
action paypal and creditcard are only active when the corresponding feature is present,
while the transition labelled with the action pay is active if at least one of the payment
methods is present. The lower expression [fm = pp ∨ cc] defines the feature model,
i.e., how the features relate to each other. In this case at least one payment method
must be supported. /

By selecting a desired combination of features, one can map an FTA into a concrete
TA. Figure 4.5 (top right, and bottom) depicts the resulting TA obtained by projecting
the payment controller into its three valid feature selections. The formal definition of
projection follows. This definition has been slightly adapted from [47] to reflect the
changes introduced in our modified definition of FTA.

4.2. FEATURED TIMED AUTOMATA 67

4.2.5 Definition (FTA Projection). The projection of an FTA A = (L, l0, A, C,
T, Inv , F, fm, γ) over a set of features Fs, written A ↓Fs , is a timed automaton defined
as follows:

A ↓Fs= (L, l0, A, C, T
′, Inv)

where T ′ = {t ∈ T | Fs |= γ(t)}.

Givne a feature selection Fs , only transitions whose feature expression is satisfied
by Fs remain present in the projection.

P P ↓{pp,cc}

`0 `1

[c ≤ 5]
paypal

cc, c ≥ 1

pay
pp ∨ cc, c := 0

creditcard
pp, c ≥ 1

[fm = pp ∨ cc]

`0 `1

[c ≤ 5]
paypal
c ≥ 1

pay
c := 0

creditcard
c ≥ 1

P ↓{pp} P ↓{cc}

`0 `1

[c ≤ 5]

paypal
c ≥ 1

pay
c := 0

`0 `1

[c ≤ 5]

pay
c := 0

creditcard
c ≥ 1

Figure 4.5: Example of a FTA, P , over the features pp and cc (top left), and its
projections over its valid feature selections, cc and pp (top right), pp (bottom left),
and cc (bottom right).

Cordy et al. proposes two alternative semantics for FTA [35]. As various transition
systems, each corresponding to the underlying TS of each of its valid projections; and
as an infinite Featured Transition System (FTS), similarly to how the semantics of TA
is given in terms of TS.

Since a FTA models the behaviour of various TA, the semantics can be given as
function that associates to each valid feature selection the semantics of the projected
timed automata. This is given as follows.

68 CHAPTER 4. TECHNICAL BACKGROUND

4.2.6 Definition (Semantics of FTA in terms of TS). The semantics of featured
timed automaton A = (L, l0, A, C, T, Inv , F, fm, γ), is a function JAK such that:

∀ Fs ∈ Jfm KF · JAK(Fs) = JA ↓Fs K

Alternatively, the semantics can be given in terms of FTS. An FTS extends Trans-
ition Systems with a set of features F , a feature model fm, and a total function γ that
assigns FE to transitions. The formal definition of semantics of an FTA as an FTS
follows. Notice that this definition of semantics has been adapted to incorporate the
modifications over FTA adopted here, namely, no featured clock constraints and no
application conditions.

4.2.7 Definition (Semantics of FTA as an FTS). The semantics of a featured
timed automaton A = (L, l0, A, C,E, Inv , F, fm, γ), is a featured transition system
JAK = (St, s0, A, T, F, fm, γ′), where:

– St ⊆ L × RC is the set of states consisting of the current location and clock
valuation,

– s0 = 〈`0, η0〉 is the initial state,

– T ⊆ St × (A] R≥0) × St is the transition relation, sometimes written s1
α−→ s2

to express that (s1, α, s2) ∈ T , and

– γ′ : T → FE(F) is a total function that assigns feature expressions to transitions
in T , sometimes written s1

α−→
ϕ
s2 to express that γ(s1, α, s2) = ϕ for (s1, α, s2) ∈

T .

The transition relation and γ are defined as follows, based on A:

〈`, η〉 d−→
>
〈`, η + d〉 if η |= Inv(`) and (η + d) |= Inv(`), for d ∈ R≥0 (4.3)

〈`, η〉 a−→
ϕ
〈`′, η′〉 if ∃ ` g,a,r−−−→

ϕ
`′ ∈ E s.t. η |= g, η |= Inv(l),

η′ = [r 7→ 0]η, and η′ |= Inv(`′) (4.4)

Transitions in the resulting FTS are defined similarly to how transitions are defined
for the underlying transition system of a TA (Definition 4.2.3). The main difference

4.3. REO COORDINATION LANGUAGE 69

is that now transitions are associated with a feature expression that determines the
products (concrete TS) in which such transitions are present. Since delay transitions are
independent from the variability, i.e., they depend only on the current clock valuation
and on the invariant associated to the origin and target location, they are present in
every product. Thus, their feature expression is always true (>). The feature expression
associated to an action transition, is simple the feature expression of the transition it
represents in the corresponding FTA A.

These alternative definitions of semantics enable two different ways to model check
FTA: following a product by product approach, by analysing the underlying transition
system of each TA projected; and following a variability aware approach that verifies
properties over the entire family at once. The main characteristic of the second ap-
proach is that it takes advantage of the common behaviour of the various products
in the family during verification, which can reduce significantly verification times. Of
course, this might not be the case always, since in the case of very large SPLs it
might be more efficient to taking advantage of parallel processors to verify in parallel
properties of different products or subsets of products of the SPL.

4.3 Reo Coordination Language

Coordination of interacting and concurrent components can be done endogenously, or
exogenously [9, 10]. In endogenous coordination, coordination is treated as a second-
class concept, and it appears intertwine within the models of the components’ computa-
tion. This hinders the study of properties of the components behaviour and the coordin-
ation protocol, as well as their maintainability and scalability. Examples of endogenous
coordination includes: process algebras, share memory, and message passing, among
others. In exogenous coordination, coordination is treated as a first-class concept,
where the models of coordination protocols reside separately from the components
they orchestrate. This facilitates anonymous communication of components, i.e., com-
ponents have no knowledge of other components nor of the coordination protocols.
Thus, it is possible to yield loosely-coupled and flexible systems whose components
and coordination protocols can be easily study, maintain, and scale up. Examples of
exogenous coordination include Reo and to some extent, Orc [98].

Given that the nature of software product lines is to derive products from a common
set of assets, including models, one would expect to maximize as much as possible
(without hindering productivity) the reusability of such models. One step towards such
direction is to take advantage of exogenous coordination to increase the reusability of
both, the coordination protocols and the components, which are oblivious to other
components and how they interact with each other.

70 CHAPTER 4. TECHNICAL BACKGROUND

Towards this goal, we focus onReo, a well known channel-based exogenous coordin-
ation language, introduced by Arbab [9], in order to understand exogenous coordination
and how we can use this concept to model variable coordination protocols to coordinate
families of services/components.

The language is based on the notion of channel composition [9]. In Reo, complex
coordinators, called connectors, are compositionally built out of simpler ones, called
channels. Each channel has a set of input and output ports, and a well defined semantics
of how data flows from the inputs to the outputs. Channels can be composed by
connecting their ends through nodes.

These connectors can then be used to orchestrate how components in a component-
based system interact. Since Reo is simply a coordination formalism, it abstracts
from what a component can be (models, processes, threads, etc.). Instead, it assumes
that components have a set of input and output ports, such that an input port of a
component can read from the output port of a connector to which it is connected to;
while an output port of a component can write out data items into the input port of a
connector to which it is connected to. Components themselves can be a connector or
encapsulate various simpler components orchestrated through Reo connectors.

4.3.1 Primitive Channels

A channel consists of two ends and a constraint of how data flows through those ends.
Channel ends can be of two types, input and output. An input end accepts data
into its channel, and an output end dispenses data out of its channel. Each channel
has associated an intuitive graphical notation that hints on how data flows through
channels ends. As a consequence, it aids in the understanding of connectors, whose
semantics is revealed by the resulting composed graphical notation.

In the most basic notion of Reo, constraints that specify the behaviour of a channel
can be classified into synchronisation constraints and dataflow constraints. A syn-
chronization constraint describes how the ends are synchronized on a particular step.
Typically, it describes the atomicity, exclusion, order, and/or timing of the passage of
data. For example, synchronous channels allow data to flow on both ends or neither
end, while asynchronous channels allow data to flow on at most one of their ends. A
dataflow constraint specifies constraints on the data that flows through the channel.
Typically, it describes the content, the conditions for loss, and/or creation of data that
passes through the ends of a channel. For example, a channel may specify that the
data that flow through the input end must be exactly the same data that flows through
the output end.

Channels are user defined, however there are a set of basic channels that can be
used to built significantly complex connectors. We describe some of these channels

4.3. REO COORDINATION LANGUAGE 71

below.

i o

Sync. It synchronises both ends, i and o. It can only receive an
input in i, if and only if, it can simultaneously send it through
its output o.

i1 i2

SyncDrain. It is a synchronous drain. In synchronises both input
ends, i1 and i2. In can only receive both inputs simultaneously,
or not receive any input at all.

i1 i2

AsyncDrain. It is an asynchronous drain. It receives inputs in
one input end at a time but never simultaneously.

i o

FIFO1. It introduces the notion of storage and delay. It can only
receive an input i if it is not full. It is full if it has received an
input before and has not been yet dispensed through the output
o. By incorporating the notion of storage, it also incorporates
the notion of delay, since after receiving an input time can pass
before it is dispense. It is call FIFO1 because it has storage for
only one input at a time.

Notice that in the case of the drain channels, data received through the input ends
is discarded, while in the case of the sync and fifo1 the data item received must be
the same data item dispensed through the output port.

It is worth mentioning that while Reo channels have the notion of data items being
written to input ports or being read out of output ports, for our purposes, instead of
data items we focus on actions being executed/issued. For example, in the case of a
sync, we say that an action connected to its input port can only be executed if the
action connected to its output port can be executed simultaneously.

4.3.2 Nodes

Channels are composed by connecting their ends through nodes. There are three types
of nodes in Reo, namely, input, output, and mixed nodes2. The type of the node
determines how synchronization between channels ends is conducted. A node is an

2Also referred as source node, sink node, and mixed node, respectively.

72 CHAPTER 4. TECHNICAL BACKGROUND

input, output, or mixed node if the channels ports that are connected to the node are
all input ports, output ports, or a mixed of both ports, respectively.

Input and output nodes are called boundary nodes, i.e., they define the interface of
a connector. Components can connect to these nodes and interact anonymously. At
most one component can connect to one input or output node at a time. We use
to represent boundary nodes, and to represent mixed nodes. Mixed nodes remain
hidden from the environment, i.e., from other components or connectors.

Input Node. A component can send data into an input node,
only if the data can be send simultaneously through the input
ports of all the outgoing channels. It is said that an input node
acts as a synchronous replicator.

Output Node. A component connected to an output node and
ready to receive data from it can do so, only if at least one of the
channels connected to the node sends a data item. If more than
one channel sends an item simultaneously, only one is selected
non-deterministically. It is said that an output node acts as a
non-deterministic merger.

Mixed Node. A mixed node non-deterministically synchronizes
one of its coincident output ports with all of its coincident input
ports. Data flow occurs only if all coincident input ports are
ready to receive an item sent through one of the node’s coincident
output ports.

4.3.3 Connectors

We can now combine channels to build complex connectors. Two common and simple
examples of composed connectors are the merger and the replicator connectors,
which due to their common use and simplicity, they are typically treated as primit-
ive connectors. Figure 4.6 shows their graphical representation. For simplicity, their
boundary nodes are usually not represented.

A replicator consists of an input port and two output ports. It can receive an
input only if it can simultaneously send it through all of its output ports.

A merger consists of two input ports and an output port. It synchronizes at most
one of its input ports with its output port, i.e., if it receives both inputs simultaneously,

4.3. REO COORDINATION LANGUAGE 73

only one is synchronized with the output port. The choice is done non-deterministically.
As mentioned before, an input and an output node act as a replicator and a merger,
respectively.

Slightly more complex examples of connectors typically used are the join and
router connector.

A join connector [12] consists of two input ports i1 and i2, an output port o, and
two mixed nodes a and b. These nodes connect two syncs(i1-a and i2-b), a syncdrain
(a-b), and two lossysyncs (a-o and b-o) as depicted in Figure 4.6b. This connector
synchronizes both inputs with the output port. It can only receive both input sim-
ultaneously while sending the output without delay, or receive no input at all. Thus,
the only possible behaviour is that the ends i1-i2-a-b-o synchronize and execution flows
from i1 and i2 to o.

An exclusive router or just router [17] consists of an input port i, two output ports
o1 and o2, and four hidden mixed nodes a, b, c and d. It is constructed by composing
a sync (i-a), two lossysyncs (a-b and a-d), one syncdrain (a-c), and two replicators 3

(b-o1-c and d-c-o2), as shown in Figure 4.6d. It synchronizes the input port with at
most one of its output ports. It can only receive an input if it can send it without delay
through one of its output ports. If more than one output port is ready to receive the
input, only one is selected non-deterministically. Thus, the possible behaviours are: 1)
i-a-b-c-o1 synchronize and execution flows from i to o1, and 2) i-a-d-c-o2 synchronize
and execution flows from i to o2.

Given that the join and router are common coordination mechanisms they are asso-
ciated with a simpler graphical notation as shown next to each connector in Figure 4.6.
Two new special nodes are introduced, ; and , to represent both connectors. The
former is connected to exactly two input ports and one input port, while the latter is
connected to exactly one output port and two input ports. In practice, it is common to
use n-output replicators and routers, and n-input mergers and joins, with n = 2, 3, . . . ,
and they can easily be built by composing various connectors of the same kind.

4.3.4 Reo Semantics

Depending on the nature of the components whose actions need to be coordinated,
there are various formalisms to express the semantics of Reo connectors. In fact,
there are more than 30 semantics for Reo [91], including operational models, such as
constraint automata [17] with variants too capture the nature of the components being
coordinated (timed [11], probabilistic [15], etc.); colouring models [33] to capture how

3For simplification, both replicators are shown as a mixed node, which since it has only one
coincident output port, it acts as input node, i.e., as a synchronous replicator

74 CHAPTER 4. TECHNICAL BACKGROUND

i1

i2

o

(a) Merger

i1

i2

a

b

o =
i1

i2

o

(b) Join

o1

o2

i

(c) Replicator

o1

o2

b

d

ci
a

=
o1

o2

i

(d) Router

Figure 4.6: Examples of composed Reo connectors and their simplified graphical nota-
tion.

data flow between nodes; and coalgebraic models, e.g., based on timed data streams
(TDS) [13], to capture which and when data flows in a given node, among others.

In the context of SPLs, components can have variable interfaces, i.e. interfaces are
not present in every product. To orchestrate this kind of components, protocols need
to adapt to the presence and absence of such interfaces. To do this, we propose to
model Reo protocols using the compositional formalism presented in Chapter 5. We
discuss this experience in Chapter 7.

Chapter 5

Compositional Modelling of Software
Product Lines

This chapter discusses the compositional modelling of families of systems, in particular
families of real time systems through formalisms based on automata theory. In Sec-
tion 4.2 we discussed an existing fine-grain formalism called featured timed automata
used to represent families of real timed systems in a single model. In this chapter
we take a step forward and propose Interface Featured Timed Automata (IFTA), a
compositional formalism based on both FTA and on notions of interface and I/O auto-
mata [50,52]. This formalism enriches FTA with:

– variable interfaces by means of associated feature expressions that restrict the
way multiple automata interact,

– multi-action labels associated to transitions that simplify the design of synchron-
ous coordination, and

– a compositional semantics that takes into account the variability of the composed
models.

The compositional semantics is the main contribution of this formalism. In addition
to enable verifying behavioural properties of the entire family, as one can also do in
FTA, it allows us to reason about variability when composing models that have their
own feature model. For example, we can verify if the composed model realizes all feature
dependencies specified by an expected feature model, or if it does not introduce new
dependencies not specified by the expected feature model. In other words, it address
questions like: does the composed model derives the expected set of product and only
those?. Furthermore, we can study how components interact at an architectural level

75

76 CHAPTER 5. COMPOSITIONAL MODELLING OF SPLS

by visualizing how components are connected at the family level and at the product
level.

Chapter organization. First, in Section 5.1 we motivate with examples some as-
pects to be considered when composing families of systems. In Section 5.2, we present
the formal definition of IFTA, its semantics, and operations. In Section 5.3 we discuss
some related work, and wrap up with some discussion in Section 5.4.

5.1 Motivation

There are two aspects that need to be considered when modelling families of (distrib-
uted) services in a compositional manner. On the one hand, it is necessary to model
mechanisms to coordinate variable services that need to adapt correctly to the pres-
ence or absence of such services. This task can quickly become cumbersome and error
prone if done manually. On the other hand, when composing variable services, we
also need to compose their feature models, which can be independent or have common
features. In the following sections, we propose two simple scenarios to illustrate these
aspects. To motivate the need for compositional modelling and semantics, we model
these components as FTA.

5.1.1 Coordinating Variable Services

Let us consider a simple scenario where we have a system which may support remote
requests to two databases, DB1 and DB2 , by a given user U . This may represent
a typical situation when a given authority must consult external databases to verify
information of an applicant, such as an existing criminal record, traffic violations, and
tax crimes, among others.

The general behaviour of the system is as follows. Typically, if communication
with both databases is supported, both are consulted, otherwise only the available
database is consulted. The user must wait for all responses before being able to do
another request. If none is supported, the user should not be able to make requests. To
guarantee model decouplement and separation of concerns, we decompose the system
into various components as depicted in Figure 5.1. Furthermore, in alignment with the
principles of exogenous coordination, we distinguish between the main building blocks
of the system, i.e. the databases and the user, and the gluing code that puts them
together, i.e. a two variable coordination mechanism: Req , which models how to make
requests to both databases depending on their presence, and Res , which models how to
merge the responses from the available databases before presenting them to the user.

5.1. MOTIVATION 77

We describe each of these components below. Notice that for simplicity we avoided
introducing time constraints in the examples. In reality each database may have its
own processing time, and the user might specify a time-out for responses.

Notation. In order to model simultaneity (synchronous steps), we adopt the notation
C associated to a location as used in Uppaal. A location with C is a committed location,
meaning time can not pass in that location. When an automaton in a network is in a
committed location, only outgoing transitions from there are enabled. This allows to
model a sequence of actions executing simultaneously. For example, in the FTA Req
from Figure 5.1, the actions in the sequence

`0
request−−−−−→
db1∨db2

`1
C

db1in−−−−−−→
db1∧¬db2

`0

execute simultaneously because time can not pass in location `1. This notation is a
simplification for the sequence

`0
request ,c−−−−−→
db1∨db2

`1
c≤0

db1in−−−−−−→
db1∧¬db2

`0

where a clock c is reset to 0 in all incoming edges to `1 and an invariant c ≤ 0 is
associated to `1.

User (U). This component has two actions, request and response, which stand for
the support to consult external databases and receive their responses, respectively. The
presence of both actions depends on the presence of at least one database, as indicated
by the feature expression db1 ∨ db2 associated to both edges. The user can simply
make a request and wait for the response.

Databases (DB1 and DB2). Both databases have two actions, dbNin and dbNout ,
which stand for the support to consult database N , for N = 1, 2, and issue the cor-
responding result, respectively. Two features, db1 and db2 , represent the support for
database DB1 and DB2 , respectively.

Request (Req). It has three actions, request , db1in, and db2in, which synchronize
1 with the equally named actions in U , DB1 and DB2 , respectively. This component

1To recall from Section 4.2.1, when automata are composed in parallel, they can synchronized
over shared action names, meaning that two automata are in a state where both can take an outgoing
transition labelled with the same action name, they transition together simultaneously, i.e., both move
to a new state. They can not transition independently over transitions with shared actions.

78 CHAPTER 5. COMPOSITIONAL MODELLING OF SPLS

coordinates how to consult the available databases if a request is issued by U . If only
one database is present, it consults the corresponding database. For example if only
DB1 is present, only the edge `1

C

db1in−−−−−−→
db1∧¬db2

`0 will be present from location `1. If both

are present, they are called simultaneously, i.e. db1in and db2in must be called at the
same time. This is model as a sequence of actions with committed locations. To avoid
imposing an order, both possible sequence are modeled, i.e. `1

db1in−−−−−→
db1∧db2

`2
C

db2in−−−−−→
db1∧db2

`0

and `1
db2in−−−−−→

db1∧db2
`3
C

db1in−−−−−→
db1∧db2

`0. If neither database is available, the entire automaton

is not present, i.e., there are no transitions in the resulting projection.

Response (Res). It has three actions, response, db1out , and db2out , which synchron-
ize with the same action names in U , DB1 and DB2 , respectively. This component
merges the responses from the available databases before sending them to the user. If
only one database is available, it waits for the corresponding response. For example,
if only DB1 is present, only the sequence `0

db1out−−−−−−→
db1∧¬db2

`2
C

response−−−−−→
db1∨db2

`0 will be present.

If both are present, each database can have its own timing and results may be ready
in any possible order. For example, the sequence `0

db1out−−−−−→
db1∧db2

`3
db2out−−−−−→
db1∧db2

`2 captures
database DB1 returning a result before DB2 . If neither database is available, the entire
automaton is not present.

Note that both coordinators designed in Figure 5.1 correspond to two Reo connect-
ors, namely, a replicator (Req) and a join (Res), here modelled with variable behaviour.

As mentioned at the beginning of Section 5.1, modelling families of services and
coordinating how they are integrated can become cumbersome and error prone. In
particular, we recognize two potential issues, as follows.

Modeling variable coordinators. The difficulty in manually modelling such mech-
anisms is twofold. First, the variability of these mechanisms depends on the variability
of the services they orchestrate. Modelling the feature expressions associated to each
transition is done manually taking into consideration this characteristic. This is error
prone, it can lead to erroneous behaviour such as edges that can never be taken or that
can be taken when they should not be present; and it is inefficient when modelling com-
plex coordinators. For example, in the FTA Req , if the feature expression associated
to the transition `1

db1in−−−−→ `0 is erroneously set to db1 ∧ db2 instead of db1 ∧ ¬db2 ,
the model allows calling only database DB1 when both databases should be called.
Second, the aim of these mechanisms is to coordinate how multiple actions synchronize

5.1. MOTIVATION 79

System Main Components

Databases (DB1 and DB2) User (U)

`0 `1

db1in
db1

db1out
db1

`0 `1

db2in
db2

db2out
db2

`0 `1

request
db1 ∨ db2

response
db1 ∨ db2

Coordination Components

Request (Req) Response (Res)

`0

`1
C

`2
C

`3
C

re
qu

es
t

d
b1
∨

d
b2

db
1i

n
db

1
∧

db
2 db2in

db1
∧

db2

db2in
db1 ∧ db2

db1in
db1 ∧ db2

d
b2

in
¬d

b1
∧

d
b2d

b1
in

d
b1
∧
¬

d
b2

`0`1

`2
C

`3
db2out

db1 ∧ db2
db1out

db1 ∧ db2

db2out

db1
∧

db2

db
1o

ut
db

1
∧

db
2

d
b2

o
u

t

¬
d
b1
∧

d
b2 d

b1
o
u

t
d
b1
∧
¬d

b2respo
n

se
d
b2
∨

d
b1

Figure 5.1: An example of a network of FTA modelling a family of systems which can
make remote requests to available databases.

and wait on each other. In many cases, this requires modelling various alternative
behaviours, i.e., alternative orders in which actions can execute. Identifying all cases
manually can be error prone and inefficient. For example, in the FTA Res , if we fail
to identify that DB2 may finished before DB1 , we may end up with a deadlock if this
were to happen. Although these issues may be identified through model checking, in
some cases, it depends on the formulation of the correct properties. Then, it may be
desirable to prevent this type of errors by design.

Evolving variable coordinators. Introducing changes to manually designed co-
ordinators, requires to redesign the entire coordinator and calculate manually the new
feature expressions associated to transitions. This is time-consuming, and it can be-
come cumbersome and error prone quickly. In our example, if in the future a third
database is added, it will be necessary to redesign both coordinators entirely and cal-

80 CHAPTER 5. COMPOSITIONAL MODELLING OF SPLS

culate manually the new feature expressions. In the case of Req , such an automaton
for three databases, has 11 locations and 25 transitions.

5.1.2 Composing Variable Services

Let us now consider a different scenario, where we have a system which may support
online payment transactions and, if available, send email notifications if the payment
is successful. The system is divided into a payment component, P and a notification
component N .

System Main Components Composed System

Payment (P) Notification (N) (P ‖ N)

`0 `1

pay
p

confirm
p

`0 `1

confirm
n

email
n

`0 `2

`1

`3

pay
p

co
n

fi
rm

p
∧

n

email
n

pay
p

email
n

Figure 5.2: Example of a network of FTA modelling a family of payment systems which
may send email confirmations

Payment (P). The service receives a payment request, pay , and emits a confirmation
event, confirm, if the payment was successful. A feature p represents the support for
the payment service, which can be present or absent, i.e., fmP = >.

Notification (N). The services receives a confirmation notification, confirm, which
synchronizes with the same action name from P , after which it sends an email noti-
fication, email . A feature n represents the support for the email notification service,
which can be present or absent, i.e., fmN = >.

Composed System (P ‖ N). The composed service results from the parallel com-
position of P and N , where both automata can interleave, i.e. they can jump independ-
ently over non-shared actions, or synchronize over the action confirm, i.e. they jump
simultaneously over this action. The feature expression of a synchronized transition

5.2. INTERFACE FEATURED TIMED AUTOMATA 81

is the logical conjunction of the feature expressions of independent transitions being
synchronized.

The main issue is how the new feature model should be defined. If we simple ex-
press the composed feature model as the logical conjunction of both feature models,
then fmP‖N = >. However, this results in a undesirable behaviour when only feature
p is present. In the projected automaton (P ‖ N) ↓p, after a payment is requested,
the service can no longer emit a confirmation in case of success. Thus, we need to
impose additional restrictions to the composed feature model. Intuitively, this restric-
tion should impose that the synchronized actions should always be present or absent
together. In Section 5.2.3 we present a compositional semantics that takes this into
consideration.

5.2 Interface Featured Timed Automata

This section introduces the proposed compositional formalism. We present IFTA syn-
tax in Section 5.2.1, discuss its semantics in Section 5.2.2, and how IFTA are composed
in Section 5.2.3. Finally, in Section 5.2.4 we propose a notion of IFTA equivalence by
means of a bisimulation relation, and use it in Section 5.2.5 to study properties of IFTA
composition.

5.2.1 Syntax

Interface Featured Timed Automata extends FTA mainly in three ways. In this section
we discuss the first two extensions, namely, interfaces and multi-action labels. The
compositional semantics extension is discussed in Section 5.2.3.

First, synchronizing actions are lifted into the interface of the automaton, represent-
ing the actions through which an automaton can communicate with the environment,
namely, other automata when composed in parallel. A synchronizing action a, can
be an input or an output action, written a? and a!, respectively. An input action
represents an event expected from the environment, while an output action represents
an event sent to the environment. We say an IFTA is grounded if it has a feature
expression associated with each interface action. This association is done only once.
The feature expression associated is inferred from the definition of the automaton.
Intuitively, it represents the valid set of products in which an action was designed to
be present.

Second, transitions can be labelled with a set of actions instead of only one action
to model simultaneous execution of actions. This simplifies significantly the design

82 CHAPTER 5. COMPOSITIONAL MODELLING OF SPLS

`0

{request , db1in, db2in }
db1 ∧ db2

{request , db1in }
db1 ∧ ¬db2

{request , db2in }
¬db1 ∧ db2

request?
db1 ∨ db2

db1in!
db1

db2in!
db2

Req

fm = >

Figure 5.3: A grounded IFTA corresponding to the FTA Req (Figure 5.1).

and construction of complex synchronous coordination mechanism, as we will see in
more detail in Chapter 7. A transition is enabled only when all of its actions can be
taken at the same time and if the current clock valuation satisfies its clock constraint.
Synchronizing actions can be taken when their dual actions on neighbour automaton
are on an enabled transition. The dual of an interface action a, noted a, is defined as
a! = a? and a? = a!. In addition to synchronizing actions, there are internal actions
(not visible to the environment), which can always be taken if the transition is enabled.

Figure 5.3 exemplifies how the automaton Req from Figure 5.1 is modelled as an
IFTA by identifying input and output actions and lifting them into the interface of the
automaton, depicted with , and by modelling simultaneous execution of actions with
multi-action labels associated to transitions.

Now we formalize the definition of IFTA, interface, feature expression of an action,
and grounded IFTA.

5.2.1 Definition (Interface Featured Timed Automata). An interface featured
timed automaton is a tuple A = (L, l0, A, C, T, Inv , F, fm, γ) where L, l0, C, Inv , F ,
fm, and γ are defined as in FTA (Definition 4.2.4), and A and T are defined as follows:

– A = I]O]H is a finite set of actions, where I is a set of input ports, O is a set
of output ports, and H is a set of hidden2 (internal) actions, and

– T ⊆ L× CC(C)× 2A × 2C × L is a finite set of transitions, now labelled with a
set of actions instead of a single action.

2Typically H = {τ}

5.2. INTERFACE FEATURED TIMED AUTOMATA 83

Notation. When not clear from the context, we will use LA, l0A , AA, . . . to refer
to the elements of an IFTA A. When using automata names with subscripts such
as A1,A2, . . . , we will simply use L1, L2, l01 , l02 , For simplicity, sometimes we
write l g,ω,r−−−→A l′ instead of (l, g, ω, r, l′) ∈ EA, and use l g,ω,r−−−→

ϕ
A l′ to express that

(l, g, ω, r, l′) ∈ EA and γA(l, g, ω, r, l′) = ϕ.
The interface of an IFTA A is the set PA = IA]OA of all input and output ports

of A. Given a port p ∈ PA we write p instead of {p} when clear from context.
At this point, the definition of IFTA only incorporates the notion of feature ex-

pressions associated to transitions through function γ, but does not incorporate the
notion of feature expressions associated to interfaces. Before doing this, we define the
notion of feature expression of an action. Given an IFTA A, it is possible to infer for
each action a ∈ AA a feature expression based on the feature expressions of the edges
in which a appears. Intuitively, this feature expression determines the set of products
requiring a. The formal definition follows.

5.2.2 Definition (Feature Expression of an Action). Given an IFTA A, the
inferred feature expression of any action a ∈ AA is the disjunction of all the feature
expressions associated to transitions where a appears, defined as

Γ̂A(a) =
∨
{γA(l

g,ω,r−−−→A l′) | a ∈ ω} (FE of an action)

Now we can associate feature expressions to the actions of an IFTA. In order to do
this, we incorporate a new function Γ to the definition of an IFTA A, qualifying the
result as grounded. Thus, a grounded IFTA is given by A = (LA, l0A , AA, CA, EA, InvA,
FA, fmA, γA,Γ), where Γ : AA → FE (FA) is a total function that assigns a feature
expression to each action of A, and is defined as Γ̂A(a) for all a ∈ AA at the moment of
the grounding. By doing this association only once, we are fixing the feature expression
associated to each action, such that it represents the set of products where each action
was originally design to be present in.

The need for this function and for fixing it instead of using directly Γ̂ has to do
with the way we define the composition of IFTA and the properties that we expect
from it. We discuss this in Section 5.2.3.

We shall work only with grounded IFTA from now own.

5.2.2 Operational Semantics

We define the semantics of IFTA in terms of Interface Feature Transition Systems
(IFTS), and define an IFTS as a featured transition system with an interface, multi-
action labels, and feature expressions associated to actions.

84 CHAPTER 5. COMPOSITIONAL MODELLING OF SPLS

5.2.3 Definition (Interface Featured Transition System). An IFTS is a tuple
S = (St, s0, A, T, , F, fm, γ,Γ), where St is a set of states, s0 is the initial state, A =
I] O] H is the set of actions where I, O, and H are the set of input, output, and
hidden actions, respectively, T ⊆ St × (2A] R≥0) × St is the transition relation, F
is a set of features, fm is the feature model, γ : T → FE (F), is a total function that
assigns feature expressions to transitions, and Γ : A→ FE(F), is a total function that
assigns feature expressions to actions.

Notation. As before, when not clear from the context, we will use StS, s0S , AS, . . .
to refer to the elements of a transition system S.

5.2.4 Definition (Semantics of an IFTA as an IFTS). The semantics of a groun-
ded IFTA A = (L, l0, A, C, T, Inv , F, fm, γ,Γ), is an interface featured transitions sys-
tem

JAK = (St, s0, A, T
′, F, fm, γ′,Γ)

where

– St ⊆ L×RC is the set of states, where in a state 〈`, η〉 ∈ St, ` is a location, and
η is a clock valuation,

– s0 = 〈`0, η0〉 is the initial state,

– T ′ ⊆ St× (2A] R≥0)× St is the transition relation, and

– γ′ : T ′ → FE(F) is the total function that assigns feature expressions to trans-
itions in T ′.

The transition relation and γ are defined as follows,

〈`, η〉 d−→
>
〈`, η + d〉 if η |= Inv(`) and (η + d) |= Inv(`), for d ∈ R≥0 (5.1)

〈`, η〉 ω−→
ϕ
〈`′, η′〉 if ∃

`
g,ω,r−−−→
ϕ

`′∈T
s.t. η |= g,

η |= Inv(l), η′ = [r 7→ 0]η, and η′ |= Inv(`′) (5.2)

5.2.3 Composition

In this section we discuss the third extension proposed with respect to FTA, namely,
the compositional semantics for IFTA that takes into account the variability models of
the IFTA being composed.

5.2. INTERFACE FEATURED TIMED AUTOMATA 85

Informally, two IFTA can be composed by combining their feature models and
linking interfaces, imposing new restrictions over them. The composition is built on
top of two simpler operations: product and synchronization. The product operation for
IFTA, unlike the classical product of timed automata, is defined over grounded IFTA
with disjoint sets of actions and clocks, performing their transitions in an interleaving
or synchronous-step fashion. The formal definition of product follows.

5.2.5 Definition (Product of IFTA). Let A1 and A2, be two different grounded
IFTA with disjoint actions and clocks. The product of A1 and A2, is a new IFTA

A1 ×A2 = (L1 × L2, `01 × `02 , A, C1 ∪ C2, F1 ∪ F2, T, Inv , fm1 ∧ fm2, γ,Γ)

where A, T , Inv , γ and Γ are defined as follows:

– A = I]O]H, where I = I1 ∪ I2, O = O1 ∪O2, and H = H1 ∪H2.

– T and γ are defined by the rules below, for any ω1 ⊆ A1, ω2 ⊆ A2.

`1
g1,ω1,r1−−−−−→
ϕ1

1 `
′
1

〈`1, `2〉
g1,ω1,r1−−−−−→
ϕ1

〈`′1, `2〉

`2
g2,ω2,r2−−−−−→
ϕ2

2 `2
′

〈`1, `2〉
g2,ω2,r2−−−−−→
ϕ2

〈`1, `
′
2〉

`1
g1,ω1,r1−−−−−→
ϕ1

1 `
′
1 `2

g2,ω2,r2−−−−−→
ϕ2

2 `
′
2

〈`1, `2〉
g1∧g2,ω1∪ω2,r1∪r2−−−−−−−−−−−→

ϕ1∧ϕ2

〈`′1, `′2〉

– Inv(`1, `2) = Inv 1(`1) ∧ Inv 2(`2).

– ∀ a ∈ A · Γ(a) = Γi(a) if a ∈ Ai, for i = 1, 2.

Both top transitions represent the interleaving of both automata, i.e., either A1

takes a transition (top left) or A2 takes it (top right), but not both. The bottom trans-
ition represents the synchronous execution of transitions from A1 and A2, i.e., when
both take a transition a the same time 3. In the first two cases, the feature expression
of the existing transition in Ai, for i ∈ {1, 2}, is carried to the new transition in the
composed automata. In the last case, the feature expression of the synchronous trans-
ition results from the conjunction of the feature expression associated to the transitions

3In the regular notion of product of timed automata, this is only possible over transitions with the
same shared action. However, in this case the automata do not share actions, instead we postponed
the synchronization to a later stage, by explicitly linking ports.

86 CHAPTER 5. COMPOSITIONAL MODELLING OF SPLS

being synchronised. In the case of Γ, since the intention is to maintain the original set
of products for which an action a was defined to be present in, we define Γ as Γi for
actions in Ai.

The synchronisation operation over an IFTA A connects and synchronises two
actions a and b in AA. The resulting automaton has transitions without neither a and
b, nor both a and b.

5.2.6 Definition (Synchronisation). Given a grounded IFTA A = (L, `0, A, C,
F, T, Inv , fm, γ,Γ) and two actions a, b ∈ A, the synchronisation of a and b is a new
IFTA

∆a,b(A) = (L, `0, A
′, C, F, T ′, Inv , fm ′, γ,Γ)

where A′, E ′ and fm ′ are defined as follows:

– A = I ′]O′]H ′, where I ′ = I \ {a.b}, O′ = O \ {a.b}, and H ′ = H ∪ {a.b}.

– T ′ = {` g,ω,r−−−→ `′ ∈ T | a /∈ ω and b /∈ ω} ∪

{` g,ω\{a,b},r−−−−−−−→ `′ | ` g,ω,r−−−→ `′ ∈ T and a ∈ ω and b ∈ ω}

– fm ′ = fm ∧ (ΓA(a)↔ ΓA(b)).

The resulting feature model imposes new restrictions over the set of features based
on the actions being synchronised. Intuitively, if two actions a and b are synchronised,
they depend on each other. Thus, we require that they should both be present or both
absent in any valid set of features (ΓA(a)↔ ΓA(b)).

Together, product and synchronisation can be used to obtain in a compositional
way a complex IFTA built out of more simple ones. We define the composition of two
IFTA as their product, followed by the explicit binding of actions through synchroniza-
tion. The composition is defined for interface actions synchronized on an input-output
fashion only.

5.2.7 Definition (Composition of IFTA). Given two grounded IFTA, A1 and
A2, with disjoint set of actions, and clocks; and a possibly empty set of bindings
{(a1, b1), . . . , (an, bn)}, such that, for each pair ai and bi, 1 ≤ i ≤ n, we have that

(ai, bi) ∈ I1 ×O2 or (ai, bi) ∈ O1 × I2 (io-only)

then their composition is a new grounded IFTA defined as follows

A1 1(a1,b1),...,(an,bn) A2 = ∆a1,b1 . . .∆an,bn(A1 ×A2)

5.2. INTERFACE FEATURED TIMED AUTOMATA 87

Figure 5.4 exemplifies the composition of a variable router 4 R (top left) and a
simple PayPal component (top right). The variable router corresponds to the Reo
router in Section 4.3.3, except that in this case it encodes three possible connectors:
a typical router when all ports are present; and two different sync when either only i
and o1 are present, or i and o2 are. It is also possible for all ports to be absent in
which case the entire connector is absent. In fact, the router captures the behaviour
of the payment selection method in Figure 4.5 if its invariant in location l1 is c ≤ 0 .
The PayPal component models an oversimplified PayPal payment method that after
a payment is made it sends either a confirmation or an error notification in no more
than 10 units of time. For simplification, only one output of the router is linked
with a payment method, in this case PayPal. The other output could be connected
with other possible payment method such as a credit card, while the input could
be connected to any service that requires a payment. Then, whenever a payment is
required, the router can link to all possible payment methods. The composition is done
by linking the ports o1 with paypal . The resulting IFTA combines the feature models
of both IFTA, imposing additional restrictions given by the linked ports, in this case,
(fi ∧ fo1) ↔ pp, which imposes that o1 is present if and only if, paypal is present as
well. The availability of each port is given by the feature expression associated to it.
In the composed IFTA, transitions with linked actions are fired together: 〈`2, `0〉

i−→

〈`2, `1〉 is the joint transition of `2
i ,o1−−−→ `2 and `0

paypal−−−−→ `1; while transitions with
non-linked actions can execute together or independently.

By allowing each IFTA to have its own feature model and taking into account
variability during composition, we can reason about how composing families of timed
automata in parallel affects the presence of interfaces and the variability of the com-
posed system. In particular, the feature model of the composed systems specifies what
products can be derived, and for each product, we can seen its interfaces and connec-
tions. This is illustrated in Section 7.2.

Composition and inferred feature expressions

Because we define composition as the product followed by the synchronization, the
product will produce transitions that are later cut by the synchronization when linking
actions. This has the undesired effect that the order in which actions are linked, and
therefore the order in which transitions are cut by the synchronization operation affects
the inferred feature expression of an action.

If we were to use Γ̂ instead of Γ, synchronization would not be commutative, since
the final feature expression of an action could differ depending on the order of syn-

4Variable coordination is discussed in Chapter 7

88 CHAPTER 5. COMPOSITIONAL MODELLING OF SPLS

`0 `1

[c ≤ 10]

paypal
pp, c := 0

ok
pp

error
pp

`2

{i , o1}
fi ∧ fo1

{i , o2}
fi ∧ fo2

i?
fi

o1 !
fi ∧ fo1

o2 !
fi ∧ fo2

paypal?
pp

ok !
pp

error !
pp

./
o1 ↔ paypal

fm = (fo1 ∨ fo2)↔ fi fm = >

R (Router) PP (PayPal)

l2, l0 l2, l1

[c ≤ 10]

{i , o2 , error}, fi ∧ fo2
∧ pp

error , pp

i

fi ∧ fo1
∧ pp, c := 0

ok , pp

{i , o2}
fi ∧ fo2

{i , o2}
fi ∧ fo2

{i , o2 , ok}, fi ∧ fo2
∧ pp

fm = (fo1
∨ fo2

)↔ fi ∧ (fi ∧ fo1)↔ pp

i?
fi

ok !
pp

error !
pp

o2 !
fi ∧ fo2

R 1(o1 ,paypal)PP

Figure 5.4: Composition of a Router IFTA (top left) with a PayPal IFTA (top right)
by binding ports o1 and paypal , yielding the IFTA below.

chronization. By fixing the feature expression of an action before composition, we
avoid this issue and the synchronization remains commutative.

As a consequence, when we look at the feature expression of an action, it is necessary
to look at it with respect to the feature model of the automaton. For example, if we
have ΓA(a) = > for some action a and automaton A, then a is present in all products
allowed by the feature model of A. This is, it may no longer be true that a is always
present.

5.2.4 Equivalence

When dealing with timed automata, equivalence relations are defined over their under-
lying infinite transition systems, which represent the actual semantic behaviour of the

5.2. INTERFACE FEATURED TIMED AUTOMATA 89

finite automata. Similarly, we can define an equivalence relation for IFTA over their
underlying transition systems. Furthermore, this relation, can be variability aware,
meaning it takes advantage of the encoding of various systems in a single model, i.e.
it is defined over IFTS; or it can be done in a product by product approach, i.e., over
the underlying transitions system of each valid TA encoded in the family.

We define equivalence in terms of a bisimulation relation. Bisimulation compares
two states, and requires that each of them mimics the other. Equivalence relations can
be state-based or action-based, and can have different levels of strictness.

State-based approaches relate two transition systems by considering labels associ-
ated to states, called atomic propositions. Action-based approaches relate two trans-
ition systems by considering action labels associated to transitions. We adopt the
latter since we are focusing on relating systems that define their behaviour in terms
of actions, rather than on properties valid in a given state. Although, as explained in
Section 4.2, the original definition of FTA uses atomic propositions, IFTA only uses
action labels associated to transitions.

The level of strictness has to do with the actions considered by the relation. This
section proposes an equivalence relation in terms of strong bisimulation (∼). Strong
bisimulation considers two transition systems to be bisimilar only if they are bisim-
ilar for all their actions, including internal actions. This allows us to compare two
IFTA modelling the same system and study properties of the operations defined in
Section 5.2.3. Another possibility, not addressed here, is to define a more relaxed no-
tion of bisimulation, commonly refer as observational bisimulation [74], which considers
only the observable behaviour, i.e., input and output actions.

Cordy [46] proposes as well two types of simulation relations for FTS, one that
separates variability from behaviour and it is defined in terms of TS, and one that
takes advantage of similarities of the systems, defined in terms of FTS. In both cases,
the relation is state-based.

Product by Product

In a product-by-product approach, bisimulation is defined over the underlying trans-
ition system of each valid TA that can be projected from an IFTA. Since an IFTA
has an interface and multi-action transitions, we define a new kind of transition sys-
tem, called Interface Transition System (ITS), which can be seen as an IFTS without
variability.

5.2.8 Definition (Interface Transition System). An ITS is a tuple S = (St, s0,
A, T), where St is the set of states, s0 is the initial state, A = I] O]H is the set of
actions where I, O, andH are the set of input, output, and hidden actions, respectively,
and T ⊆ St× (2A] R≥0)× St is the transition relation.

90 CHAPTER 5. COMPOSITIONAL MODELLING OF SPLS

To avoid introducing a new definition of timed automata with an interface and
multi-action transitions and defining their semantics in terms of ITS, we simply define
projection for IFTS, which results in an ITS.

5.2.9 Definition (IFTS Projection). The projection of an IFTS S = (St, s0, A, T,
F, fm, γ,Γ) over a set of features Fs is an ITS

S ↓Fs= (St, s0, A
′, T ′)

where A′ and T ′ are defined as

A′ = {a ∈ A | FS |= Γ(a)} T ′ = {t ∈ T | FS |= γ(t)}

Only transitions and actions satisfied by the feature selection Fs are preserved by
the projection.

Now we can introduce the definition of strong bisimulation for ITS, and use this
notion to defined a product-by-product bisimulation for IFTA.

5.2.10 Definition (Strong Bisimulation for ITS (∼)). Given two ITS S1 and S2,
over the same set of actions A, S1 and S2 are bisimilar, denoted S1 ∼ S2, if and only if,
there exists a relation R ⊆ St1×St2, such that (s01 , s02) ∈ R, and for each (s1, s2) ∈ R,

– s1
α−→1 s

′
1, α ∈ 2A] R≥0, then s2

α−→2 s
′
2 s.t. (s′1, s

′
2) ∈ R, and

– s2
α−→2 s

′
2, α ∈ 2A] R≥0, then s1

α−→1 s
′
1 s.t. (s′1, s

′
2) ∈ R

Intuitively, two IFTS are bisimilar if they share the same feature model, and for
each valid combination of features allowed by the feature model, the projected ITS
over such combination are bisimilar.

5.2.11 Definition (Strong Bisimulation for IFTS (∼)). Given two IFTS S1 and
S2, over the same set of actions A and the same feature model fm, S1 and S2 are
bisimilar, denoted S1 ∼ S2, if and only if,

∀ Fs ∈ Jfm K · S1 ↓Fs ∼ S2 ↓Fs

5.2. INTERFACE FEATURED TIMED AUTOMATA 91

We say two IFTA A1 and A2 are bisimilar, A1 ∼ A2, if and only if, their underlying
transition systems are bisimilar, i.e., if and only if, JA1K ∼ JA2K.

The following figure illustrates the relation between the various formalisms defined
here. Gray lines correspond to definitions that have been left out for simplification.

IFTA ITA

IFTS ITS

↓Fs

J K

↓Fs

J K

The semantic of an IFTA results in an IFTS (Definition 5.2.3), while the projection
of an IFTS over a feature selection Fs results in an ITS. If we were to define a kind
of Interface TA with multi-action transitions, we could project IFTA into the same Fs
and obtained an ITA, whose semantics will be an ITS, bisimilar to the one obtained
throught the previous step.

Variability-aware

Now we can introduce a variability aware bisimulation relation that takes advantage
of the compact structure of IFTS.

5.2.12 Definition (Strong Bisimulation for IFTS (∼)). Given two IFTS S1 and
S2, over the same set of actions A and the same feature model fm, S1 and S2 are
bisimilar, denoted S1 ∼ S2, if and only if, there exists R ⊆ St1 × St2, such that
(s01 , s02) ∈ R, and for each (s1, s2) ∈ R,

– s1
α−−→
ϕ1

1 s′1, α ∈ 2A] R≥0, then s2
α−−→
ϕ2

2 s′2 s.t. |= fm → (ϕ1 → ϕ2) and

(s′1, s
′
2) ∈ R, and

– s2
α−−→
ϕ2

2 s′2, α ∈ 2A] R≥0, then s1
α−−→
ϕ1

1 s′1 s.t. |= fm → (ϕ2 → ϕ1) and

(s′1, s
′
2) ∈ R

The feature expression fm → (ϕ1 → ϕ2) requires that ϕ2 should be satisfied in all
valid products of the feature model in which ϕ1 is satisfied, i.e. whenever s1

α−→ s′1 is

present in a product, so is s2
α−→ s′2.

92 CHAPTER 5. COMPOSITIONAL MODELLING OF SPLS

A disadvantage of this definition is that it only recognizes two IFTS as bisimilar
if they are bisimilar for all the valid set of products specified by their feature model.
However, when comparing two systems, it might be of interest to know as well the set
of products for which they are bisimilar. We follow Cordy approach [46], and model
bisimulation as a function that captures the set of products for which S1 and S2 are
bisimilar.

5.2.13 Definition (Featured-bisimulation). Given two IFTS S1 and S2, over the
same sets of actions A, features F , and feature model fm ∈ FE (F), a featured-
bisimulation for S1 and S2 is a binary function R : St1 × St2 → FE (F) such that

R(s1, s2) =
∧

s1
ω−−→
ϕ1

1s
′
1

(ϕ1 ⇒
∨

s2
ω−−→
ϕ2

2s
′
2

(ϕ2 ∧R(s′1, s
′
2))) ∧

∧
∧

s2
ω−−→
ϕ2

2s
′
2

(ϕ2 ⇒
∨

s1
ω−−→
ϕ1

1s
′
1

(ϕ1 ∧R(s′1, s
′
2)))

Then, R(s01 , s02) encodes the set of products for which S1 and S2 are bisimilar.
In particular, let Fs ∈ Jfm KF be a valid product of both IFTS, then S1 and S2 are
bisimilar for Fs if and only if Fs |= R(s01 , s02).

5.2.1 Theorem. Let S1 and S2 be two IFTS over the same set of actions A, features
F , and feature model fm ∈ FE (F). Given a valid feature selection Fs ∈ Jfm KF ,
Fs |= R(s01 , s02)⇔ S1 ↓Fs∼ S2 ↓Fs

Proof. Let us first consider (⇒). If Fs |= R(s01 , s02) we have that for all

s01

ω−−→
ϕ1

1 s
′
1 s.t. Fs |= ϕ1 there exists some s02

ω−−→
ϕ2

2 s
′
2 s.t. Fs |= ϕ2 ∧R(s′1, s

′
2)

and for all

s02

ω−−→
ϕ2

2 s
′
2 s.t. Fs |= ϕ2 there exists some s01

ω−−→
ϕ1

1 s
′
1 s.t. Fs |= ϕ1 ∧R(s′1, s

′
2)

In other words, for all transitions s01

ω−−→
ϕ1

1 s
′
1 that exist in a product given by Fs ,

i.e. exist in S1 ↓Fs , there is at least a transition s02

ω−−→
ϕ2

2 s′2 that exist in S2 ↓Fs
and such that the same is valid for transitions starting from (s′1, s

′
2). This corresponds

5.2. INTERFACE FEATURED TIMED AUTOMATA 93

exactly with both conditions in Definition 5.2.10. Then, S1 ↓Fs∼ S2 ↓Fs. Let us
now consider (⇐). If S1 ↓Fs∼ S2 ↓Fs, then let RFs be the bisimulation relation for
S1 ↓Fs∼ S2 ↓Fs such that (s01 , s02) ∈ RFs . By Definition 5.2.10, for all (s1, s2) ∈ RFs ,
including (s01 , s02), we have that for all

s1
ω−→S1↓Fs

s′1 there exists some s2
ω−→S2↓Fs

s′2 s.t. (s′1, s
′
2) ∈ RFs

and for all

s2
ω−→S2↓Fs

s′2 there exists some s1
ω−→S1↓Fs

s′1 s.t. (s′1, s
′
2) ∈ RFs

and since these are projections over Fs , we have that

if Fs |= γS1(s1
ω−→S1

s′1) then Fs |= γS2(s2
ω−→S2

s′2)

The same is valid for transitions starting from (s′1, s
′
2). Then, Fs |= R(s01 , s02).

5.2.5 Properties

Operations over IFTA satisfy the usual properties up to strong bisimulation (∼).
5.2.2 Theorem. Given two IFTA A1 and A2 with disjoint sets of actions and clocks,
we have:

A1 ×A2 ∼ A2 ×A1 (×-commutativity)
A1 × (A2 ×A3) ∼ (A1 ×A2)×A3 (×-associativity)

Proof. Both proofs follow trivially from the definition of product and of the underly-
ing IFTS of each ITFA, and because ∪ and ∧ are associative and commutative. In
particular, commutativity follows from the fact that

R = {(〈(l1, l2), η〉, 〈(l2, l1), η〉) | 〈(l1, l2), η〉 ∈ St JA1 K}

is a bisimulation between A1 ×A2 and A2 ×A1. Similarly,

R = {(〈(l1, (l2, l3)), η〉, 〈((l1, l2), l3), η〉) | 〈(l1, (l2, l3)), η〉 ∈ St JA1×(A2×A3)K}

is a bisimulation between A1 × (A2 ×A3) and (A1 ×A2)×A3.

5.2.3 Theorem. Given two IFTA A1 and A2 with disjoint set of actions and clocks,
and actions a, b, c, d ∈ A1, such that a, b, c, d are different actions, we have:

∆a,b∆c,dA1 ∼ ∆c,d∆a,bA1 (∆-commutativity)
(∆a,bA1)×A2 ∼ ∆a,b(A1 ×A2) (∆ interacts well with ×)

Proof. Both proof follow trivially by definition of product, synchronization, and of the
underlying IFTS of each IFTA.

94 CHAPTER 5. COMPOSITIONAL MODELLING OF SPLS

5.3 Related Work

Related work is discussed following two lines: compositionality and modularity of SPLs,
and compositionality and interfaces for automata.

The importance of having compositional and modular formalisms to model SPLs
has been recognized in the literature. In [115], the authors propose an extension to
Petri Nets, called Feature Nets (FNs), to incrementally specify the behaviour of an SPL.
The approach relies on the design of two types of FNs and their composition: core FNs
that model common behaviour to all products in the family, and delta FNs that model
variations which can be applied to core behaviour. Another delta-oriented approach is
proposed in [108], based on the CCS process calculus, which results in models of features
that can be reused easily. They propose as well an incremental approach to verifying
SPLs to address scalability issues of the typical product-by-product and family-based
approaches. A compositional approach for verification of software product lines has
been as well proposed in [111]. The authors propose to model variability requirements
at the requirement level and behavioural level. In both cases they use state machines
with different levels of abstraction.

There are various papers on interfaces for automata. In [52] de Alfaro et al. proposes
Interface Automata (IA) to specify temporal aspects of software component interfaces.
In this case, temporal does not refers to real time requirements, but the order in which
components expect inputs from the environment and the order in which components
call external methods (outputs). They propose compatibility checks between interfaces
to verify if there exists some environment for a composed system that can make it
work; and a notion of refinement for IA. Similarly, in [50], David et al. proposes
a specification theory for Timed I/O Automata (TIOA), and defines corresponding
notions of composition and refinement for (TIOA), among other operations. However,
their theory is based on input enabled automata. In Chapter 6, we propose a notion of
refinement for IFTA that takes concepts from both theories. Finally, in [103], Modal
I/O automata are proposed as an extension to IA and used to construct a behavioural
variability theory for SPL development that can serve to verify if certain requirements
can be satisfied from a set of existing assets. However, variability is achieved only by
means of must (present in all products) or may (optionally present) transitions.

5.4 Discussion

Interface featured timed automata combines notions from FTA, the theory of automata
with interfaces, and component-based design. The result is a formalism capable of
modelling SPLs in an incremental and modular way.

5.4. DISCUSSION 95

In this sense, the main contribution of IFTA is the definition of its composition
operation. In addition to making possible incremental design, it allows to verify prop-
erties of the composed model against an expected feature model, i.e. to discuss whether
the composed model is able to derive the expected products and only those. It is worth
mentioning that the approach used to compose feature models is not unique, and there
are other approaches that could be explored [1].

The proposed definition has, however, some disadvantages.
First, by forming the product and later applying synchronization, the product auto-

mata will possess unnecessary transitions and states that later will be cut, in the case
of transitions, or become unreachable, in the case of states. This is inefficient when
calculating the composed automata. In practice, it will be better to rename with the
same action name interfaces that will be synchronized before computing the product,
and define the product to synchronize only transitions with the same shared actions
and to interleave only on transitions with non-shared actions. This way, we avoid cre-
ating transitions that will later be cut and we remove unreachable states at an early
stage. In [37] we document a proof-of-concept prototype to specify, compose, visualize,
and translate IFTA models into other formalisms. In this tool we implement both ap-
proaches to IFTA composition: synchronization on shared action names, and product
followed by synchronization. Section 8.4.2 briefly introduces this prototype.

Second, as discussed in Section 5.2.3, we fix the feature expression of an action be-
fore the product in order to achieve commutativity in the composition. This obfuscate
the interpretation of feature expression of an action.

In order to simplify the design of synchronous coordination mechanisms, we mod-
elled simultaneous execution of actions as multi-actions associated to transitions. This
is also the approach used by constraint automata [17], one of the commonly used form-
alism to express the semantics of Reo. In practice, there are other ways of achieving
this. For example, Uppaal provides committed locations, and non-blocking broadcast.
In the latter, an output can synchronized with various inputs in a non-blocking way,
i.e., it will synchronize only with the inputs that are enabled at the moment. Non-
blocking broadcasting can be achieved through the use of variables and other control
mechanism. The disadvantage of these approaches based on committed locations and
broadcasting, is to increase complexity in the modelling stage.

96 CHAPTER 5. COMPOSITIONAL MODELLING OF SPLS

Chapter 6

Refinement of Interface Featured
Timed Automata

6.1 Introduction
As it happens in the development of any complex system, common and variable assets
of an SPL, such as software components, can be designed and developed by different
engineers agreeing on a common specification of what their interfaces should be. In
this sense, being able to reason about how standalone components, and in this case
families of components, implemented separately satisfy a given specification becomes
crucial. In this chapter, we propose a notion of refinement for real timed software
product lines that are modelled as Interface Featured Timed Automata.

Refinement allows us to compare two models of the same system presented at
different levels of abstraction. The most abstract one is referred to as the specification,
while the most detailed one is referred to as an implementation of the system. If
an implementation refines the specification, it agrees with the requirements of the
specification in the sense that one may replace the implementation in any context
where the specification is used, and still obtain a congruent system. However, since
we are dealing with families of components, we need to reason about how a set of
implementations refine a set of specifications.

Figure 6.1 illustrates this problem. The figure shows two composed systems (top):
one (top left), composed by an IFTA C, representing a context (here left undefined),
and an IFTA P corresponding to the payment selection mechanism in Figure 4.5. The
other (top right), which is a refinement of the system on the left, is composed by
the same context C , and a new selection mechanism P ′ (defined in Figure 6.3). The
goal is to define a refinement relation that is compositional, i.e. such that it should
be sufficient to verify if P ′ refines P instead of verifying if the composed system on

97

98 CHAPTER 6. REFINEMENT OF IFTA

P3P2P1

P
(Figure 6.2)

C
(Context)

pay?
pp ∨ cc
paypal !

pp
card !

cc

fm = pp ∨ cc

(models)

fm = ϕ

�
(refined by)

P’4P’3P’2P’1

P’
(Figure 6.2)

C
(Context)

pay?
pp ∨ cc ∨ bk

paypal !
pp

card !
cc

cancel?
c

fm = pp ∨ ccfm = ϕ

(models)

Figure 6.1: Example scenario when reasoning about refinement of families of compon-
ents. A system composed by two IFTA, C and P (left), is refined by a more detailed
system composed by the same IFTA C and a new IFTA P’ (right).

the right refines the composed system on the left. However, we need to consider in
addition that both automata, P and P ′, are actually families of components which
model different concrete automata, as depicted in Figure 6.1 (bottom). Thus, we need
to reason about how each of the new automata P ′i , for i = 1, . . . , 4, refines the automata
Pj , for j = 1, 2. Informally, the notion of refinement proposed requires that each new
automaton of P ′ refines an automata of P , and that all automata of P are refined by,
at least, an automaton of P ′. To simplify reasoning, we first define refinement over
ITS and then re-build our definition of IFTA refinement over this simpler one.

We show that refinement is a pre-order and congruent with respect to IFTA opera-
tions, meaning refinement is compositional. However, as it is discussed in Section 6.2,
stronger pre-conditions must be assumed on the variability model of both automata
for the congruent result to hold.

In addition, we propose a variability-aware refinement defined directly over IFTS,
which takes into account the variability encoded in the model, capturing the set of
products for which an IFTS refines another.

Chapter Organization. In Section 6.2 we discuss the product by product refinement
relation and its properties. We present the variability-aware refinement in Section 6.3
and conclude by discussing the advantages and limitations of the refinement relation
in Section 6.4.

6.2. REFINEMENT 99

6.2 Refinement

In order to simplify reasoning and allow greater flexibility we separate the notion of
refinement into variability refinement – which deals with feature model refinement, i.e.
with deciding when a set of features can be considered a refinement of another one;
and behavioral refinement – which captures timed automata refinement. Refinement
of timed automata is defined in terms of refinement of the semantic representation of
timed transition systems.

There are not many publications in the literature that explore the notion of a
refinement relation between two feature models. In [144] the authors propose four
kinds of relations between feature models. However, we believe neither of these aligns
with a notion of refinement. Informally, we propose that a feature model refines another
one if it preserves variability, i.e. if it allows the same set of products, and introduces
new variability only in terms of new features.

On the other hand, there exist various notions of automata refinement in the lit-
erature, differing on requirements made over the set of actions of the systems being
compared (e.g., actions that must be preserved, actions that can be lost), properties
inherent to the systems being modelled (e.g., input enabled systems, closed systems,
etc.), and properties that the relation should preserve (e.g., safety, reactivity, etc.),
among others. The most common relations are simulation and alternating simulation.

Commonly, when dealing with closed systems, i.e., systems that do not interact
with the environment, refinement is defined as a simulation relation [16], T - S, read
S simulates T , where S is the specification and T is the implementation. Intuitively, the
implementation can only express behaviour allowed by the specification. The advantage
is that simulation preserves all safety properties of the specification. However, when
dealing with open systems, as we do in this thesis, simulation is too strict, since it
requires the implementation to have the same or less inputs than the specification.
On the one hand, this means that a refinement can not incorporate new behaviour in
terms of new inputs, which would not be a problem since it would imply no behavioural
changes in the resulting system, provided a guarantee that the new inputs are not
used. On the other hand, it allows the implementation to have less inputs than the
specification. In the case of reactive systems, however, we can not replace a system for
another one that reacts to less inputs than the original one. This limits the behaviour
of the system, since there will be output actions that are now not captured by the
system, but are left unattended.

Thus, when dealing with open systems it is common to define refinement in terms of
an alternating simulation relation [5,50,52,53]. In this kind of relation, the implement-
ation must simulate all input behaviour of the specification, while the specification
must simulate all output behaviour of the implementation. For example, de Alfaro

100 CHAPTER 6. REFINEMENT OF IFTA

et. al. [53] introduces Interface Automata, without time, and define the notion of re-
finement in terms of alternating simulation, extended to support internal steps, i.e.,
internal actions from both automata which are independent from each other. In [50]
David et. al. provided a complete specification theory for Timed I/O Automata where
they defined refinement, logical conjunction, structural composition, and a quotient
operator. However, their theory is based on input enabled automata.

The rest of this section is divided as follows. We first discuss variability and beha-
vioural refinement and in Section 6.2.1 and Section 6.2.2, respectively. Then we build
the definition of IFTA refinement on top of these simpler concepts. Finally, we discuss
properties of the refinement relation, and conclude by discussing some advantages and
disadvantages of the relation proposed.

6.2.1 Variability Refinement

Thum et al. [144] proposed an algorithm to reason about the relation between two
feature models, fm1 and fm2, independently of whether they share the exact same set
of features, or not. They recognize four type of relations: refactoring or equivalence –
fm1 and fm2 express the same set of products; specialization – fm1 specializes fm2 if the
set of products of fm1 is a subset of the set of products expressed by fm2; generalization
– fm1 generalizes fm2 if and only if the set of products of fm1 is a superset of the set
of products of fm2; and arbitrary – otherwise.

However, in order to reason about refinement of families of timed automata we
also would like to relate feature models in terms of a refinement relation. There are
different ways in which variability refinement can be defined, here we propose one
that suits better in order to guarantee congruency with IFTA operations. However,
in Section 6.4 we discuss some alternatives that can be considered and briefly hint on
what are the main implications of these choices.

Intuitively, a feature model fm1 refines a feature model fm2 if when considering the
set of features of fm2, fm1 expresses exactly the same set of products expressed by fm2.
Thus, fm1 can add new variability or details only in terms of new features, but must
preserve the set of features in fm2. Formally, if we consider feature models with only
terminal features [144], i.e., no abstract features, we define feature model refinement
as follows.

6.2.1 Definition (Feature model refinement). Given two feature models fm i ∈
FE(Fi) over a set of features Fi, i = 1, 2, fm1 refines fm2, denoted fm1 v fm2, if and

6.2. REFINEMENT 101

only if,

F1 ⊇ F2 (preserves features)

Jfm1K
F1|F2

= Jfm2K
F2 (preserves products)

where Jfm KF |F ′ = {FS ∩ F ′ | FS ∈ Jfm KF}.

For example, if consider the payment selection methods P and P ′ from Figure 6.2,
we have that JfmP K = {{pp, cc}, {pp}, {cc}} and JfmP ′ K = {{pp, cc, c}, {pp, cc},
{pp, c}, {cc, c}, {pp}, {cc}}. When we restrict fmP ′ to consider only features in FP ,
we have that JfmP ′ K|FP

= {{pp, cc,�c}, {pp, cc}, {pp,�c}, {cc,�c}, {pp}, {cc}} = JfmP K,
where�c means that feature c is removed from the set. Thus, fmP ′ v fmP .

However, let us assume that the feature model of P ′ is now fmP ′ = pp ∨ cc ∨
c. Then, we have that JfmP ′ K|FP

= {{pp, cc,�c}, {pp, cc}, {pp,�c}, {cc,�c}, {pp}, {cc},
{�c}} 6= JfmP K. Because now P ′ allows a product that does not support neither PayPal
nor credit card payments, P ′ no longer refines P .

6.2.1 Theorem (v is a partial order). For any feature model fm i, for i = 1, 2, 3,
fm1 v fm1; if fm1 v fm2 and fm2 v fm3, then fm1 v fm3; and if fm1 v fm2 and
fm2 v fm1, then fm1 ≡ fm2.

Proof. The reflexive and antisymmetric properties are trivial by definition of set inclu-
sion and set intersection.

In the case of transitivity, first note that by transitivity of set inclusion we have
that F1 ⊇ F3. Then,⋃

Fs∈Jfm1 KF1

Fs ∩ F2 = Jfm2K
F2 by fm1 v fm2 (6.1)

⋃
Fs∈Jfm2 KF2

Fs ∩ F3 = Jfm3K
F3 by fm2 v fm3 (6.2)

⋃
Fs∈Jfm1 KF1

Fs ∩ F2 ∩ F3 = Jfm3K
F3 by (6.1) and (6.2) (6.3)

⋃
Fs∈Jfm1 KF1

Fs ∩ F3 = Jfm3K
F3 by (6.3) and F2 ⊇ F3 (6.4)

where
⋃

Fs∈Jfm1 KF1 (Fs ∩ F3) is exactly the definition of Jfm1K
F1|F3

.
Thus, fm1 v fm3, and v is a partial order.

102 CHAPTER 6. REFINEMENT OF IFTA

6.2.2 Behavioural Refinement

Refinement allows to verify if a given implementation agrees with a specification. We
consider implementations as automata that are more detailed specifications. Intuit-
ively, an automata A that refines an automata B should be able to replace B in every
context in which B appears. Our notion of refinement is similar to the one in [52],
where there is an alternating simulation between both automata: A must simulate all
input behavior of B, while B must simulate all output behavior from A. Thus, A can
allow more legal inputs, and fewer outputs, than B.

Similarly to [50] we define refinement at the semantic level, i.e., at the level of
transition systems and then build up towards IFTA refinement. Because we separate
refinement into variability and behavioural refinement, our base notion of refinement
is defined for Interface Transition Systems (Definition 5.2.8), i.e., IFTS without vari-
ability.

In fact, our notion of refinement can be seen as an extension of [52] for timed systems
with multi-action transitions. Here as well, the definition of refinement must consider
the fact that both automata have internal actions which are independent from each
other. Additionally, since we are dealing with timed transition systems, the definition
of refinement must consider that internal steps can incorporate delays. Thus, we define
a transition relation that captures all transition steps possible from a state s to a state
s′ by any combination of internal and delay steps.

6.2.2 Definition. Given an ITS S and states s, s′ ∈ StS, notation s
τ∗

==⇒d
S s
′ means

that there is a sequence of transition steps from TS, such that

s
ωi−−→

S
s1 . . . sn

ωn−−→
S
s′

with ωi ∈ τ] R≥0 and such that (
∑

ωi∈R≥0
ωi) = d. For simplicity, we use s ω

=⇒d
S s
′ if

there is a sequence of transition steps from TS, such that

s
τ∗

==⇒d
S sn

ω−→
S
s′

with ω ∈ 2A.

In this context, ITS refinement is defined as follows.

6.2.3 Definition (Refinement of ITS). Given two ITS, S and T , such that IT ⊆ IS
and OS ⊆ OT , S refines T , denoted S � T , if and only if, there exists a relation
R ⊆ StS × StT , such that (s0, t0) ∈ R and for each (s, t) ∈ R,

6.2. REFINEMENT 103

1. s τ∗
==⇒d

S s
′, d ∈ R≥0 then t τ∗

==⇒d
T t
′ and (s′, t′) ∈ R, for some t′ ∈ StT

2. s OIs
==⇒d

S s
′, d ∈ R≥0, O 6= ∅ then t

OIs
==⇒d

T t
′ and (s′, t′) ∈ R for some t′ ∈ StT

3. t IO
==⇒d

T t
′, d ∈ R≥0, I 6= ∅ then s

IO
==⇒d

S s
′ and (s′, t′) ∈ R for some s′ ∈ StS

where Is is either ∅, or has only inputs shared by both automata, Is ⊆ IT .

Condition 1 expresses that any delay allowed from s, must be a delay allowed from t,
possible by taken some internal steps. Condition 2 expresses that any output transition,
which may have inputs that are shared by both systems, and that can be taken from s
after a delay d, possible by taking some internal steps, must simulate a (sequence of)
transition(s) from t. Notice that if there is a multi-action transition with outputs and
inputs, such that the inputs include inputs available only in the implementation, this
is considered as new behaviour incorporated by the use of new inputs, and as such,
it is ignored. Condition 3 expresses that any input transition, with possible outputs,
taken from t after a delay d, possibly with some internal steps, must be simulated by
a (sequence of) transition(s) from s.

In comparison with de Alfaro et. al., we relax some of the requirements made over
the states being compared, s and t. In particular, when considering input labeled
transitions (condition 3), de Alfaro et. al. defines that s and t are in a refinement
relation, only if, whenever in t is possible to receive an input, s may receive the same
input. Here, we require that whenever in t is possible to receive an input within a
certain time, possibly trough a sequence of internal steps, s may receive the same
input within the same time, possibly through a series of internal steps. In other words,
de Alfaro requires T to be immediately ready to receive the input in state t, while we
require that T must receive the input within the same amount of time, but may still
perform internal actions from t before that.

6.2.3 IFTA Refinement

Before formalizing refinement for families of timed automata, let us consider refinement
for IFTS. Informally, given two IFTS, S and T , S refines T if for each valid product in
S, the projection of S onto such a product refines the projection of T onto the same
product. However, depending on the relation existing between the set of products of S
and T , this can lead to different notions of refinement. As presented in Section 6.2.1,
we propose that S should preserve the variability of T , i.e. S should allow exactly
the same products as T , although it may also increase the set of features and allow

104 CHAPTER 6. REFINEMENT OF IFTA

more products with respect to the new features. We will discuss other possibilities in
Section 6.4. Formally, refinement of IFTS and IFTA are defined as follows.

6.2.4 Definition (Refinement of IFTS). Given two IFTS, S and T , S refines T ,
denoted S � T , if and only if,

fmS v fmT (variability refinement)

∀ FS ∈ JfmS KFS · S ↓Fs � T ↓Fs (behaviour refinement)

6.2.5 Definition (Refinement of IFTA). Given two grounded IFTA A and B, A
refines B, denoted A � B, if and only if, JAK � JBK.

Figure 6.2 shows an implementation of a family of payment selection methods, P ′

(right), which refines the IFTA P (left), previously introduced in Figure 5.3. The new
automaton introduces a new input, cancel that depends on a new feature c which
represents the support for cancelling the payment request. In addition, P ′ ensures that
the method of payment or the cancellation will be chosen faster than in P , as indicated
by the invariant c ≤ 3 .

Figure 6.3 shows a more complex example of refinement incorporating internal ac-
tions (represented with a ; after the action name). The IFTA represents a more detailed
implementation of the automaton PP introduced in Figure 5.4. The specification re-
quires that whenever the user makes a payment through PayPal, the system will issue
an error or a success signal in less than ten units of time. The implementation deals
with the actual login into PayPal and confirmation of the payment. In PP ′, after the
user requests to issue a payment through PayPal, the user must login within 5 units
of time, or an error will be issued. The log in can be successful or can issue an error
in less than one unit of time. In case the user login is successful, a confirmation of the
payment must be issued in less than one unit of time after which the system issues
a signal of error or success. Both, PP and PP ′, share the same feature model. The
implementation PP ′ guaranties that whenever a payment is made through PayPal, the
system will issue an error or success signal in less than seven units of time, satisfying
the requirements of PP . Thus, PP ′ � PP .

6.2.4 Properties

Refinement of IFTA is a pre-order and it is compositional. The latter allows decom-
position of refinement proofs, improving efficiency in refinement checking.

6.2. REFINEMENT 105

`0 `1

[c ≤ 5]
paypal

cc, c ≥ 1

pay , pp ∨ cc
c := 0

creditcard
pp, c ≥ 1

pay?
pp ∨ cc

paypal !
pp

card !
cc

P

fm = pp ∨ cc

�
(refined by)

`0 `1

[c ≤ 3]
paypal

cc, c ≥ 1

pay
pp ∨ cc, c := 0

creditcard
pp, c ≥ 1

cancel , cc pay?
pp ∨ cc

paypal !
pp

card !
cc

cancel?
c

P ′

fm = pp ∨ cc

Figure 6.2: Example of a family of payment selection methods P ′ with new variability,
interfaces and time restrictions, refining the family P .

6.2.2 Theorem (� is pre-order). For any grounded IFTA A1, A2 and A3, A1 � A1,
and if A1 � A2 and A2 � A3, then A1 � A3.

Proof. A1 � A1 is trivial by definition of �. For transitivity note that by transitivity
of v we have fm1 v fm3. Then, by definition of � and transitivity of v, we have that

∀ Fs∈Jfm1 KF1 · JA2K ↓Fs � JA3K ↓Fs (6.5)

This is, projecting a transition system into a set of features containing a valid feature
selection and features that are not part of the system, results in the same projection
than projecting only against the valid set of features.

Then, let us assume that ∀ Fs∈Jfm1 KF1 ,

R12
Fs ⊆ St1 × St2, with (s01 , s02) ∈ R12

Fs

R23
Fs ⊆ St2 × St3, with (s02 , s03) ∈ R23

Fs

are the refinement relations for A1 � A2, and A2 � A3, respectively.
For all Fs ∈ Jfm1K

F1 , we show there exists a relation R13
Fs, such that (s01 , s03) ∈

R13
Fs, and each (s1, s3) ∈ R13

Fs satisfies the conditions of Definition 6.2.3 as follows.
∀ Fs∈Jfm1 KF1 , we have that for each (s1, s2) ∈ R12

Fs, including (s01 , s02)

(delay) if there exists some s1
τ∗

==⇒d
JA1 K↓Fs s

′
1 then by A1 � A2 there exists some

s2
τ∗

==⇒d
JA2 K↓Fs s

′
2 such that (s′1, s

′
2) ∈ R12

Fs, and, by A2 � A3 and (6.5), we know

that there exists some (s2, s3) ∈ R23
Fs such that s3

τ∗
==⇒d

JA3 K↓Fs s
′
3 and (s′2, s

′
3) ∈ R23

Fs.
Thus, {(s1, s3), (s′1, s

′
3)} ⊆ R13

Fs.

106 CHAPTER 6. REFINEMENT OF IFTA

`0 `1

[c ≤ 5]

`2 [c ≤ 1]

`3 [c ≤ 1]`4[c ≤ 1]

paypal?
pp, c := 0

{error !, timeout ; }
pp, c == 5

userinfo;
pp, c < 5 , c := 0

ok ;
pp

c := 0

confirm;
pp, c := 0

error !
pp

ok !
pp

{error !, incorrect ; }
pp

paypal?
pp

error !
pp

ok !
pp

PP ′ (PayPal Implementation)

fm = >

Figure 6.3: An example of IFTA refinement with internal actions, where PP ′ refines
the IFTA PP from Figure 5.4

.

(output) if there exists some s1
OIs==⇒d

JA1 K↓Fs s
′
1, for O 6= ∅ and Is = ∅ or Is ⊆ I3, then,

by A1 � A2, there exists some s2
OIs==⇒d

JA2 K↓Fs s
′
2 such that (s′1, s

′
2) ∈ R12

Fs, and,
by A2 � A3 and (6.5), we know that there exists some (s2, s3) ∈ R23

Fs such that
s3

OIs==⇒d
JA3 K↓Fs s

′
3 and (s′2, s

′
3) ∈ R23

Fs. Thus, {(s1, s3), (s′1, s
′
3)} ⊆ R13

Fs.

(input) if there exists some s3
IO

==⇒d
JA3 K↓Fs s′2 for I 6= ∅, then there exists some

s2
IO

==⇒d
JA2 K↓Fs p

′, and, by A1 � A2 and (6.5) , we know that there exists some

(s1, s2) ∈ R12
Fs such that s1

IO
==⇒d

JA1 K↓Fs s
′
1 and (s′1, s

′
2) ∈ R12

Fs. Thus, (s′1, s
′
3) ∈ R13

Fs.

Therefore A1 � A3, and refinement is a pre-order.

In order to be compositional, refinement must be congruent with respect to IFTA
operations, i.e., product and synchronization. However, stronger pre-conditions are
required to ensure congruency for both operations.

In both cases the problem arises with feature model refinement. In the case of
product, let us consider three automata A1,A2 and B such that A1 � A2. We want to
ensure that A1 ×B � A2 ×B holds. The problem is that A1 and B can share features

6.2. REFINEMENT 107

as well as A2 and B. Thus, we can not infer how each product will affect the resulting
feature model. As an example, consider the following arbitrary feature models,

Jfm1K
F1 = {{f1, f2, f3}, {f1, f3}, {f3}}

Jfm2K
F2 = {{f1, f2}, {f1}, {}}

JfmB KFB = {{f1, f2, f3}, {f4}}

with F1 = {f1, f2, f3}, F2 = {f1, f2}, and FB = {f1, f2, f3, f4}. We have that Jfm1K
F1 |F2

=

Jfm2K
F2 , thus fm1 v fm2. However, when we do the corresponding feature model

conjunctions (as in the product), we have that Jfm1 ∧ fmB KF1B = {{f1, f2, f3}} and
Jfm2 ∧ fmB KF2B = {{f1, f2, f3}, {f4}}. Thus, we have that

Jfm1 ∧ fmB KF1B |F2∪FB
= {{f1, f2, f3}} 6= Jfm2 ∧ fmB KF2B

and fm1B 6v fm2B.
In order to guarantee that refinement is congruent with respect to product we fix

the assumption that neither A1 and B, nor A2 and B share any features.

6.2.3 Theorem (� congruence w.r.t. ×). For any grounded IFTA A1, A2, and
B, such that Ai and B have disjoint set of features, for i = 1, 2, if A1 � A2, then
A1 ×B � A2 ×B.

Proof. Let us consider first feature model refinement. First, by fm1 v fm2 we have
that F1 ⊇ F2, and therefore F1 ∪ FB ⊇ F2 ∪ FB. Now, we want to show that
Jfm1 ∧ fmB K

F1∪FB |F2∪FB
= Jfm2 ∧ fmB K

F2∪FB . According to the semantics of a feature
expression, and because F1 ∩ FB = F2 ∩ FB = ∅, we have the following equivalences.

Jfm1 ∧ fmB K
F1∪FB |F2∪FB

= {(Fs1 ∩ F2) ∪ FsB | Fs1 ⊆ F1, FsB ⊆ FB,

Fs1 |= fm1 and
FsB |= FB}

(6.6)

Jfm2 ∧ fmB K
F2∪FB = {Fs2 ∪ FsB | Fs2 ⊆ F2, FsB ⊆ FB,

Fs2 |= fm2 and FsB |= FB}
(6.7)

By fm1 v fm2 we know that every Fs1 ∩ F2 such that Fs1 ⊆ F1 and Fs1 |= fm1

are exactly all the sets Fs2 ⊆ F2 such that Fs2 |= fm2. Therefore, equation (6.6) is
equivalent to (6.7), and fm1B v fm2B.

108 CHAPTER 6. REFINEMENT OF IFTA

Now, let us consider behavioral refinement. Assume that ∀ Fs ∈ Jfm1K
F1 ,

R12
Fs ⊆ St1 × St2, with (s01 , s02) ∈ R12

Fs

is the refinement relation for A1 � A2.
We want to show that, for all Fs ∈ Jfm1B K

F1B , there exists a relation R1B2B
Fs ,

such that (s01b
, s02b

) ∈ R1B2B
Fs , and each (s1b, s2b) ∈ R1B2B

Fs satisfies the conditions in
Definition 6.2.3.

For any Fs ∈ Jfm1B K
F1B , we have that:

(delay) if there exists some 〈(l1, lb), ηA1B〉 τ∗
==⇒d

JA1×BK↓Fs
〈(l′1, l′b), ηA

′
1B′〉, by definition

of IFTA product, there exists some 〈l1, ηA1〉 τ∗
==⇒d

JA1 K↓Fs
〈l′1, ηA

′
1〉 and there ex-

ists some 〈lb, ηB〉
τ∗

==⇒d
JBK↓Fs

〈l′b, ηB
′〉; by A1 � A2, we have that there exists

some 〈l2, ηA2〉 τ∗
==⇒d

JA2 K↓Fs
〈l′2, ηA

′
2〉, such that (〈l1, ηA1〉, 〈l2, ηA2〉) ∈ R12

Fs\FB
1 and

(〈l′1, ηA
′
1〉, 〈l′2, ηA

′
2〉) ∈ R12

FS\FB . Thus, by definition of IFTA product, there ex-

ists some 〈(l2, lb), ηA2B〉 τ∗
==⇒d

JA2×BK↓Fs
〈(l′2, l′b), ηA

′
2B′〉, such that (〈(l1, lb), ηA1B〉,

〈(l2, lb), ηA2B〉) ∈ R1B2B
Fs , and (〈(l′1, l′b), ηA

′
1B′〉, 〈(l′2, l′b), ηA

′
2B′〉) ∈ R1B2B

Fs .

(output) if there exists some 〈(l1, lb), ηA1B〉 OI
==⇒d

JA1×BK↓Fs
〈(l′1, l′b), ηA

′
1B′〉, we have to

consider three cases depending on which automaton takes the observable trans-
ition: 1) independent transition from A1, i.e., OI ⊆ O1 ∪ I2; 2) independent
transition from B, i.e., OI ⊆ OB ∪ IB; or 3) simultaneous transition from A1

and B, i.e., OI ⊆ O1B ∪ I2B. Here we consider case 1) only; the reasoning
is analogous for the other cases. In this case, by definition of IFTA product,
we have that there exists some 〈l1, ηA1〉 OI

==⇒ d
JA1 K↓Fs

〈l′1, ηA
′
1〉 and there exists

some 〈lb, ηB〉
τ∗

==⇒d
JBK↓Fs

〈l′b, ηB
′〉. Then, by A1 � A2, we have that there exists

some 〈l2, ηA2〉 OI
==⇒ d

JA2 K↓Fs
〈l′2, ηA2〉 such that (〈l1, ηA1〉, 〈l2, ηA2〉) ∈ R12

FS\FB and

(〈l′1, ηA
′
1〉, 〈l′2, ηA

′
2〉) ∈ R12

FS\FB . Thus, by definition of IFTA product, we have

that there exists some 〈(l2, lb), ηA2B〉 OI
==⇒ d

JA2×BK↓Fs
〈(l′2, l′b), ηA

′
2B′〉, such that

(〈(l1, lb), ηA1B〉, 〈(l2, lb), ηA2B〉) ∈ R1B2B
Fs and (〈(l′1, l′b), ηA

′
1B′〉, 〈(l′2, l′b), ηA

′
2B′〉) ∈ R1B2B

Fs .

1Note that Fs ∈ Jfm1B K, and that Fs \FB ∈ Jfm1K since F1 ∩ FB = ∅. Thus, we use JA1K ↓Fs

instead of JA1K ↓Fs\FB
since this results in the same automaton. Similarly, we use JA2K ↓Fs instead

of JA2K ↓Fs\FB
.

6.2. REFINEMENT 109

(input) if there exists some 〈(l2, lb), ηA2B〉 IO
==⇒ d

JA2×BK↓Fs
〈(l′2, l′b), ηA

′
2B′〉, similarly as

before, we have to consider three cases depending on which automaton takes the
observable transition: 1) independent transition from A2, i.e., IO ⊆ I2 ∪ O2;
2) independent transition from B, i.e., IO ⊆ IB ∪ OB; or 3) simultaneous trans-
ition from A2 and B, i.e., IO ⊆ I2B ∪ O2B. As before, we consider only case 1);
the reasoning is analogous for the other cases. In this case, by definition of IFTA
product, we have that there exists some 〈l2, ηA2〉 IO

==⇒ d
JA2 K↓Fs

〈l′2, ηA
′
2〉 and there

exists some 〈lb, ηB〉
τ∗

==⇒d
JBK↓Fs

〈l′b, ηB
′〉. Then, by A1 � A2, we have that there

exists some 〈l1, ηA1〉 IO
==⇒d

JA1 K↓Fs
〈l′1, ηA1〉, such that (〈l1, ηA1〉, 〈l2, ηA2〉) ∈ R12

FS\FB

and (〈l′1, ηA
′
1〉, 〈l′2, ηA

′
2〉) ∈ R12

FS\FB . Thus, by definition of IFTA product, we

have that there exists some 〈(l1, lb), ηA1B〉 IO
==⇒d

JA1×BK↓Fs
〈(l′1, l′b), ηA

′
1B′〉, such that

(〈(l1, lb), ηA1B〉, 〈(l2, lb), ηA2B〉) ∈ R1B2B
Fs and (〈(l′1, l′b), ηA

′
1B′〉, 〈(l′2, l′b), ηA

′
2B′〉) ∈ R1B2B

Fs .

Thus, we have that A1 × B � A2 × B.

In the case of synchronization, a similar problem arises as well with feature model
refinement. Intuitively, by definition of refinement, in the implementation an input can
be present in more products, and an output can be present in less products than in the
specification. Thus, it is natural that the feature expressions associated to the input
and output that we want to synchronize in the implementation differ from the feature
expressions in the specification. Thus, if an implementation refines a specification, after
synchronization, the feature model of the implementation does not necessarily refines
the feature model of the specification.

Intuitively, a possible solution is to require that an implementation can only re-
place the specification if it does not add new connections and maintains all connections
already in the specification. This means that, for each valid product in the implement-
ation, the corresponding automata in the implementation can be synchronized over
a given set of input and outputs, if and only if, the corresponding automata in the
specification can be synchronized over the same inputs and outputs. The following
theorem captures this property.

6.2.4 Theorem (� congruence w.r.t. ∆). For any grounded IFTA A1, A2, and
actions i, o such that (i, o) ∈ Ii × Oi for i = 1, 2, if A1 � A2, then ∆i,oA1 � ∆i,oA2,
only if, fm1 → ((Γ1(i)↔ Γ1(o))↔ (Γ2(i)↔ Γ2(o))) is satisfiable.

Proof. Let us consider feature model refinement. First, by fm1 v fm2 and because ∆
does not affect features, we have that F∆1 = F1 ⊇ F2 = F∆2. Second, we want to show

110 CHAPTER 6. REFINEMENT OF IFTA

that Jfm1 ∧ (Γ1(i) ↔ Γ1(o))KF∆1 |F∆2
= Jfm2 ∧ (Γ2(i) ↔ Γ2(o))KF∆2 . According to the

semantics of a feature expression, we have the following equivalences:

Jfm1 ∧ (Γ1(i)↔ Γ1(o))KF∆1 |F∆2
= {FS 1 ∩ F∆2 | FS 1 ⊆ F∆1,

FS 1 |= fm1, and
FS 1 |= (Γ1(i)↔ Γ1(o))}

(6.8)

Jfm2 ∧ (Γ2(i)↔ Γ2(o))KF∆2 = {FS 2 | FS 2 ⊆ F∆2,

FS 2 |= fm2, and
FS 2 |= (Γ2(i)↔ Γ2(o))}

(6.9)

By fm1 v fm2 we know that all sets FS 1 ∩ F∆2 such that FS 1 ⊆ F∆1 and FS 1 |= fm1,
where F∆1 = F1, are exactly all the sets FS 2 ⊆ F∆2 such that FS 2 |= fm2. In addition,
we know that FS1 |= Γ1(i)↔ Γ1(o), if and only if, FS1 |= Γ2(i)↔ Γ2(o), and because
F∆1 ⊇ F∆2, we have that FS1 |= Γ2(i) ↔ Γ2(o) ⇐⇒ FS1 ∩ F∆2 |= Γ2(i) ↔ Γ2(o).
Therefore, equation (6.8) is equivalent to (6.9), and fm∆1 v fm∆2.

Now, let us consider behavioural refinement. Assume that for all FS ∈ Jfm1K
F1 ,

R12
FS ⊆ St1 × St2, with (s01 , s02) ∈ R12

FS

is the refinement relation for A1 � A2.
We want to show that for all FS ∈ Jfm∆1K

F∆1 , there exists a relation R∆1∆2
FS ,

such that (s0∆1
, s0∆2

) ∈ R∆1∆2
FS , and each (s∆1, s∆2) ∈ R∆1∆2

FS satisfies the conditions in
Definition 6.2.3 as follows.

For each FS ∈ Jfm∆1K
F∆1 , we have that:

(delay) if there exists some 〈l∆1, η
∆1〉 τ∗

==⇒d
J∆A1 K↓FS

〈l′∆1, η
∆1′〉, we have to consider two

cases regarding the nature of this transition in A1 ↓FS 2. That is, this trans-
ition can correspond to two kinds of (sequences of) transitions: 1) includes, if
any, only internal transitions – thus, the same transition existed in JA1K ↓FS ;
and 2) includes at least one transition with i and o in its set of actions – thus,
we can decompose this transition in smaller cases. In case 1), this transition
corresponds to a (possible sequence of internal) transition(s) in A1 ↓FS , and
since these transitions are not affected by ∆, we have that there exists some
〈l∆1, η

∆1〉 τ∗
==⇒d

JA1 K↓FS
〈l′∆1, η

∆1′〉. Then by A1 � A2, we have that there ex-

ists some 〈l2, η2〉 τ∗
==⇒d

JA2 K↓FS
〈l′2, η2′〉, such that (〈l∆1, η

∆1〉, 〈l2, η2〉) ∈ R12
FS and

2Projection of IFTA is defined analogous to projection of IFTS

6.2. REFINEMENT 111

(〈l′∆1, η
∆1′〉, 〈l′2, η2′〉) ∈ R12

FS . Therefore, since the transition in A2 ↓FS consists
only of internal transitions, if any, then there exists some 〈l∆2, η

∆2〉 τ∗
==⇒d

J∆A2 K↓FS

〈l′∆2, η
∆2′〉, such that (〈l∆1, η

∆1〉, 〈l2, η2〉) ∈ R∆1∆2
FS , and (〈l′∆1, η

∆1′〉, 〈l′2, η2′〉) ∈
R∆1∆2

FS . In case 2), this transition corresponds to a sequence of transitions in
A1 ↓FS , which contains internal transitions, if any. Let us assume that, without
loss of generality, there is only one transition with i and o in its set of actions.
That is, there exists some

l∆1
τ

=⇒ A1↓FS
li
{i,o}−−−→ A1↓FS

lj
τ

=⇒ A1↓FS
l′∆1

where l τ
=⇒ A l′ is defined as a sequence of one or more internal transitions

l
τ−→ A l

1 . . . ln
τ−→ A l

′. Then, by JA1K there exists some

〈l∆1, η
∆1〉 {i,o}−−−→ d′

JA1 K↓FS
〈lj, η∆1

j 〉
d′′

==⇒ JA1 K↓FS
〈l′∆1, η

∆1′〉

such that d = d′ + d′′. Then, because A1 � A2, and because i, o ⊆ Ii × Oi for
i = 1, 2, this is,

{i,o}−−−→ d′

JA1 K↓FS
corresponds to an output transition, we have that

there exists some

〈l2, η2〉 {i,o}−−−→ d′

JA2 K↓FS
〈lk, η2

k〉
d′′

==⇒ JA2 K↓FS
〈l′2, η2′〉

such that (〈l∆1, η
∆1〉, 〈l2, η2〉) ∈ R12

FS , (〈lj, η∆1
j 〉, 〈lk, η2

k〉) ∈ R12
FS and (〈l′∆1, η

∆1′〉,
〈l′2, η2′〉) ∈ R12

FS . Then, by definition of ∆, there exists some

〈l2, η2〉 {i,o}−−−→ d
J∆A2 K↓FS

〈l′2, η2′〉

such that (〈l∆1, η
∆1〉, 〈l2, η2〉) ∈ R∆1∆2

FS , and (〈l′∆1, η
∆1′〉, 〈l′2, η2′〉) ∈ R∆1∆2

FS .

(output) if there exists some 〈l∆1, η
∆1〉 OI

==⇒ d
J∆A1 K↓FS

〈l′∆1, η
∆1′〉, we can decompose

this transition as

〈l∆1, η
∆1〉 τ∗

==⇒d
J∆A1 K↓FS

〈lj, η∆1
j 〉

IO−−→ J∆A1 K↓FS
〈l′∆1, η

∆1′〉

Since we already proved the delay case, we know that there exists some
〈l∆2, η

∆2〉 τ∗
==⇒d

J∆A2 K↓FS
〈lk, η∆2

k 〉 such that (〈l∆1, η
∆1〉, 〈l∆2, η

∆2〉) ∈ R12
FS , and

112 CHAPTER 6. REFINEMENT OF IFTA

(〈lj, η∆1
j 〉, 〈lk, η∆2

k 〉) ∈ R12
FS . Thus, we just need to consider the observable trans-

ition and two possible cases regarding this transition in automata A1 ↓FS : 1) cor-
responds to a transition in A1 ↓FS – i.e., the same transition exists in A1 ↓FS ; and
2) corresponds to an updated transition in A1 ↓FS – i.e. it corresponds to a trans-
ition label with the actions IO∪{i, o}. In case 1), there exists some 〈lj, η∆1

j 〉
OI−−→

JA1 K↓FS
〈l′∆1, η

∆1′〉 and, by A1 � A2, we know that there exists some 〈lk, η∆2
k 〉

OI−−→

JA2 K↓FS
〈l′∆2, η

∆2′〉 such that (〈l′∆1, η
∆1′〉, 〈l′∆2, η

∆2′〉) ∈ R12
FS . Therefore, there

exists some 〈lk, η∆2
k 〉

OI−−→ J∆2K↓FS
〈l′∆2, η

∆2′〉, such that (〈l∆1, η
∆1〉, 〈l∆2, η

∆2〉) ∈
R∆1∆2

FS , (〈lj, η∆1
j 〉, 〈lk, η∆2

k 〉) ∈ R∆1∆2
FS , and

(〈l′∆1, η
∆1′〉, 〈l′∆2, η

∆2′〉) ∈ R∆1∆2
FS . The reasoning is analogous for case 2).

(input) if there exists some 〈l∆2, η
∆2〉 IO

==⇒ d
J∆A2 K↓FS

〈l′∆2, η
∆2′〉, we need to consider

two cases in A2 ↓FS 1) corresponds to a transition in A2 ↓FS – i.e. the same
(sequence of) transition(s) exists in A2 ↓FS ; and 2) corresponds to an updated
transition in A2 ↓FS – i.e. it corresponds to a (sequence of) transition(s) where
some of the transitions had the actions i and o in its set of actions. Since case
1) is trivial, we focus in case 2). Let us assume, without loss of generality,
it corresponds to a sequence of transitions in A2 ↓FS where there is only one
transition labelled by {i, o}, and that the observable transition is also labelled by
{i, o}. This corresponds to the following transition in the semantic representation:

〈l∆2, η
∆2〉 d′

=⇒ JA2 K↓FS
〈li, η∆2

i 〉
{i,o}−−−→ JA2 K↓FS

〈l′i, η∆2
i′ 〉

IOio
===⇒ d′′

JA2 K↓FS
〈l′∆2, η

∆2′〉

where, d = d′ + d′′. Then, by A1 � A2, we have that there exists some

〈l∆1, η
∆1〉 d′

=⇒ JA1 K↓FS
〈lj, η∆1

j 〉
{i,o}−−−→ JA1 K↓FS

〈l′j, η∆2
j′ 〉

IOio
===⇒ d′′

JA1 K↓FS
〈l′∆1, η

∆1′〉

such that (〈l∆1, η
∆1〉, 〈l∆2, η

∆2〉) ∈ R12
FS , (〈li, η∆1

i 〉, 〈lj, η∆2
j 〉) ∈ R12

FS , (〈l′i, η∆1
i′ 〉,

〈l′j, η∆2
j′ 〉) ∈ R12

FS , and (〈l′∆1, η
∆1′〉, 〈l′∆2, η

∆2′〉) ∈ R12
FS . Then by definition of syn-

chronization, we conclude that there exists some

〈l∆1, η
∆1〉 IO

==⇒ d
J∆A1 K↓FS

〈l′∆1, η
∆1′〉

such that (〈l∆1, η
∆1〉, 〈l∆2, η

∆2〉) ∈ R∆1∆2
FS , and (〈l′∆1, η

∆1′〉, 〈l′∆2, η
∆2′〉) ∈ R∆1∆2

FS .

Therefore, ∆i,oA1 � ∆i,oA2.

6.3. VARIABILITY-AWARE REFINEMENT 113

Let us consider again the IFTA PP composed with the router R from Figure 5.4.
If we want to check if we can replace PP by PP ′ (Figure 6.3) in the system composed
by PP and R, because refinement is compositional, instead of checking if

PP ′ 1(o1 ,paypal) R � PP 1(o1 ,paypal) R

it suffices to verify the following conditions:

1. FPP ∩ FR = FPP ′ ∩ FR = ∅

2. fm1 → ((ΓCM ′(o1)↔ ΓCM ′(paypal))↔ (ΓCM (o1)↔ ΓCM (paypal)))

3. PP ′ � PP

Conditions 1 and 2 correspond to the precondition for refinement to be a congruence
with × and ∆, respectively. In our example, all conditions are satisfied. However, let
us assume now that we have an IFTA PP ′′ which differs from PP only by changing the
feature expression associated to the transition labelled with paypal from pp to pp ∨ op
where op represents the support for online payment. In this case, when we try to
replace PP by PP ′′ condition 2 does not hold. This is because in PP , paypal appears
only when pp is present, however in PP ′′ paypal can appear when op is present and pp
is absent. Thus, the resulting composed system with PP ′′ and R, models a concrete
automaton that enables a synchronization between o1 and paypal that was not possible
before.

6.3 Variability-aware Refinement
The same way in which we defined a bisimulation relation between IFTS (Section 5.2.4)
that takes into consideration the variability encoded in a single model, we can define a
refinement relation over IFTS that it is also variability aware. In order to do this, we
first define the feature expression of a sequence of transitions.

6.3.1 Definition (Feature expression of =⇒). Given an IFTS S = (St, s0, A, T, fm,

F, γ,Γ), we define the feature expression of a sequence of transitions, as follows

γ̂(s
ω

=⇒d s′) = γ(s
ω0−−→ s0) ∧ γ(s0

ω1−−→ s1) ∧ . . . ∧ γ(sn−1
ωn−−→ sn) ∧ γ(sn

ω−→ s′)

if s ω
=⇒d s′ = s

ω0−−→ s0
ω1−−→ s1 . . . sn−1

ωn−−→ sn
ω−→ s′, and such that for i = 0 . . . n,

ωi ∈ τ] R≥0, and if ω ∈ R≥0, then (
∑

ωi∈R≥0
ωi) + ω = d, and if ω ∈ 2A, then

(
∑

ωi∈R≥0
ωi) = d.

114 CHAPTER 6. REFINEMENT OF IFTA

Now we can formalize the variability-aware refinement function that takes a pair of
states and calculates the set of products for which the two states are in a refinement
relation.

6.3.2 Definition (Variability-aware refinement). Given two IFTS S and T , a
variability-aware refinement for S and T is a function R : StS × StT → FE (F) such
that

R(s, t) =

(∧
s
τ∗==⇒d

Ss
′

(
γ̂(s

τ∗
==⇒d

S s
′)⇒

∨
t
τ∗==⇒d

T t
′

(
γ̂(t

τ∗
==⇒d

T t
′) ∧R(s′, t′)

)))
∧

∧
(∧
s
OIs==⇒d

Ss
′

(
γ̂(s

OIs
==⇒d

S s
′)⇒

∨
t
OIs==⇒d

T t
′

(
γ̂(t

OIs
==⇒d

T t
′) ∧R(s′, t′)

)))
∧

∧
(∧
t
IO==⇒d

T t
′

(
γ̂(t

IO
==⇒d

T t
′)⇒

∨
s
IO==⇒d

Ss
′

(
γ̂(s

IO
==⇒d

S s
′) ∧R(s′, t′)

)))

where Is is either Is = ∅ or Is ⊆ IT . Then, given a valid product Fs ∈ Jfm KFS , S
refines T for product Fs , if and only if, Fs |= R(s0, t0). Furthermore, the set of all
products for which S refines T is encoded by R(s0, t0).

6.3.1 Theorem. Given two IFTS, S and T , and a valid product Fs ∈ JfmS KFS ,
Fs |= R(s0, t0)⇔ S ↓Fs� T ↓Fs .

Proof. Let us first consider (⇒). If Fs |= R(s0, t0) we have that

for all s0
τ∗

==⇒d
S s
′ there exists some t0

τ∗
==⇒d

T t
′

such that

Fs |= R(s′, t′) and if Fs |= γ̂(s0
τ∗

==⇒d
S s
′) then Fs |= γ̂(t0

τ∗
==⇒d

S t
′)

In other words, for all transitions s0
τ∗

==⇒d
S s′ that exist in a product Fs , i.e., exist

in S ↓Fs , there is at least a transition t0
τ∗

==⇒d
T t′ that exist in T ↓Fs , and because

Fs |= R(s′, t′), then this is also valid for transitions with s’ and t’ as origin states.
This is exactly condition 6.1 in Definition 6.2.3. The reasoning is analogous for the

6.4. DISCUSSION 115

other two cases, i.e., transitions labelled with OIs and IO. Thus, we conclude that
(s0, t0) ∈ RFs , where RFs is a refinement relation for S ↓Fs� T ↓Fs .

Let us now consider (⇐). If S ↓Fs� T ↓Fs for a valid product Fs ∈ JfmS KFS , then
let RFs be a refinement relation for S ↓Fs� T ↓Fs , such that (s0, t0) ∈ RFs . As before,
this means that for all (s, t) ∈ RFs , including (s0, t0), we have that

for all s τ∗
==⇒d

S↓Fs
s′ there exists some t τ∗

==⇒d
T↓Fs

t′ such that (s′, t′) ∈ RFs

and since this is a projection over Fs , we have that

if Fs |= γ̂(s0
τ∗

==⇒d
S s
′) then Fs |= γ̂(t0

τ∗
==⇒d

S t
′)

The reasoning for the other two cases from Definition 6.2.3 is analogous. Thus, we
have that Fs |= R(s0, t0).

6.4 Discussion
First we proposed a refinement relation for families of timed automata modelled as
Interface Featured Timed Automata. Since each IFTA can be seen as: 1) a feature
model, which determines a set of valid feature combinations; and 2) a set of concrete
automata, where each of the concrete automata is determined by a valid set of features;
we separated the notion of IFTA refinement into variability refinement and behavioral
refinement. Furthermore, we decomposed IFTA resorting to other formalisms and
define the corresponding notion of refinement, namely Interface Featured Transition
System (IFTS) and Interface Transition Systems (ITS).

Additionally, we proposed a refinement function over IFTS that takes into account
the variability encoded in the model. Thus it is possible to verify over a single model,
the set of products for which an IFTS refines another.

The refinement relation proposed here is a pre-order and congruent with respect
to IFTA product and synchronization, meaning refinement is compositional. However,
in order to be congruent stronger conditions are required to hold. In particular, the
implementation can only replace the specification in a composed environment, if 1)
neither the implementation nor the specification may share features with the environ-
ment; and 2) the implementation does not add new interface connections and maintains
all connections of the specification.

Although the requirement of not allowing new connections and maintain existing
ones is reasonable, it can be too strict. For example, in alignment with the notion
of ITS refinement, which allows to incorporate new behavior through new inputs, it
might be desirable to incorporate new behavior in terms of new features. This way

116 CHAPTER 6. REFINEMENT OF IFTA

the example of PP ′′, introduced in Section 6.2.3, can be considered a refinement of
PP . In fact, in [53], de Alfaro et. al. requires only that no new connections with
the environment are made, while some connections can be lost. However, this is not
sufficient to ensure that IFTA refinement is compositional. In this sense, as future work
we would like to explore and formalize other notions of refinement and how these can
affect the properties that one can expect from a refinement. For example, in the case
of behavioural refinement, we could have defined that A refines B, if and only if, for
every feature selection Fs in fmB (instead of fmA), JAK ↓Fs � JBK ↓Fs . The advantage
is that we can now incorporate behaviour in terms of new features. However, on the
one hand, this requires that fmA contains at least all feature selections allowed by fmB,
meaning fmA can not incorporate mandatory features. On the other, it can be too
flexible, since we can not account for how the system will behave for new variability.

Chapter 7

Variability and Coordination

In Section 4.3 we presented the Reo coordination language. A main advantage of Reo
is that synchronization is propagated through connectors by composition. Thus, we
can use very simple primitive channels and nodes to build large complex coordination
protocols. In alignment with our work, we would like as well to have variability being
propagated through connectors by means of composition. The aim is to define variable
and generic coordination protocols that adapt to the variability of the components they
coordinate simply by linking ports that are variable. Towards this goal, we model Reo
connectors as IFTA.

Intuitively, given a set of components with variable ports, we want to define a co-
ordination protocol for the entire family parametrized by features, such that different
feature selections determine the different protocols. The protocols themselves merely
define how variability propagates through their ends, while the actual variability is
given by the variability of the components being coordinated. The composition mech-
anism for IFTA determines what are the valid feature selections, if any, for the protocol
and for the entire composed system.

Since components have their own variability, the propagation could either be suc-
cessful, implying that there is at least one product derivable from the composed system;
or could fail due to a contradiction on the variability constraints of the components
being coordinated. In the latter case, the envisaged set of components cannot be co-
ordinated in such a way and thus there is no product derivable from the resulting
composed system.

Chapter organization. Section 7.1 presents two approaches to model some com-
monly used Reo connectors as IFTA. Section 7.2 illustrates with an example how
variable connectors from both approaches are combined to model a complex coordina-
tion protocol. Finally, Section 7.3 discusses some benefits of this semantics and some

117

118 CHAPTER 7. VARIABILITY AND COORDINATION

challenges faced when defining variable connectors to orchestrate families of compon-
ents.

7.1 Variable Reo Connectors

Various approaches can be designed to model Reo connectors as IFTA. Each of them
provides connectors with different degrees of variability. We describe two possibilities:
a conservative approach in which a connector is present in a product only if all of its
ports are present, and is not present if some port is absent; and a more relaxed one in
which connectors allow some of their ports to be absent. The latter approach allows
higher degree of variability, however, it can easily increase the number of products
modelled by the SPL beyond what it is actually intended by the modeller, requiring
the manual inclusion of variability restrictions upon the resulting composed feature
model.

The type of approach used with each connector depends on the expected depend-
ability between the components being coordinated. In practice often both approaches
are used. We discuss this in more detail, illustrating with an example, in Section 7.2.

7.1.1 The Conservative Approach

In the conservative approach each connector behaves as it usually does in Reo only if
all of its ports are present in a given product. In case some port is absent, so is the
entire connector. This is useful when the intention is to orchestrate components that
should all depend on each other in every product.

When modelling generic connectors, their variability is defined in terms of a single
unique feature. Figure 7.1 shows how the Reo connectors introduced in Section 4.3
are modelled as IFTA using a conservative approach. For example, in the case of the
Merger, we assign a feature fi1 i2o to each transition. Its feature model, fm = >, allows
this feature to be either present or absent. When the connector is composed and the
ports are synchronized with other components’ ports, the composition of IFTA creates
the necessary variability dependencies, i.e. the components become all present or all
absent.

The Sync connector automata behaves as the identity when composed with other
automata. This is formally captured by the following property.

7.1.1 Proposition (Sync behaves as identity). Given any IFTA A and the IFTA
of the Sync connector, we have that ∆i,a(A× Sync(i, o)) ∼ A[o/a], if {i, o} 6⊆ AA, and
a ∈ AA, where A[o/a] is A with all occurrences of a replaced by o.

7.1. VARIABLE REO CONNECTORS 119

`0
{i , o}

fio

i?
fio

o!
fio

fm = >

(a) Sync

`0
i1

fi1 i2

i2
fi1 i2

i1 ?
fi1 i2

i2 ?
fi1 i2

fm = >

(b) AsyncDrain

`0
{i1 , i2}

fi1 i2

i1 ?
fi1 i2

i2 ?
fi1 i2

fm = >

(c) SyncDrain

`0 `1

{i}
fio

{o}
fio

i?
fio

o!
fio

fm = >

(d) FIFO1

`0
{i , o1 , o2}

fio1o2

i?
fio1 o2

o1 !
fio1 o2

o2 !
fio1 o2

fm = >

(e) Replicator

`0
{i1 , i2 , o}

fi1 i2o

i1 ?
fi1 i2 o

i2 ?
fi1 i2 o

o!
fi1 i2 o

fm = >

(f) Join

`0
{i1 , o}
fi1 i2o

{i2 , o}
fi1 i2o

fm = >

i1 ?
fi1 i2 o

i2 !
fi1 i2 o

o!
fi1 i2 o

(g) Merger

`0
{i , oi}
fio1o2

{i , o2}
fio1o2

i?
fio1 o2

o1 !
fio1 o2

o2 !
fio1 o2

fm = >

(h) Router

Figure 7.1: Example of Reo connectors modelled as IFTA using the conservative ap-
proach.

Proof. First, let us notice that because of how we define bisimulation between IFTA,
we need to make the following updates to prove bisimilarity:

– fmA[o/a] = fmA ∧ (fio ↔ ΓA(a))

– γA[o/a](`
g,ω,r−−−→A[o/a] `

′) = γA(`
g,ω[a/o],r−−−−−−→A `′) ∧ fio, if o ∈ ω

– FA[o/a] = FA ∪ {fio}

120 CHAPTER 7. VARIABILITY AND COORDINATION

– ΓA[o/a](o) = ΓSync(o)

However, in practice, this is not necessary, since in essence these updates are done on
top of a counterfeit feature that would be added if A is composed with Sync, i.e. fio ,
and the restrictions added do not affect the set of products allowed by A, they simply
extend the set of features with fio .

For simplicity, let AS = (A× Sync(i, o)), and A′ = ∆i,a(AS). Let us note that the
set of edges in A′ is defined as follows

EA′ ={(`1, `0)
g,ω,r−−−→AS (`′1, `0) | i /∈ ω and a /∈ ω} ∪ (1)

{(`1, `0)
g,ω\{i,a},r−−−−−−−→ (`′1, `0) | (`1, `0)

g,ω,r−−−→AS (`′1, `0)

and i ∈ ω and a ∈ ω} (2)

where `0 is the initial and only location of Sync. Let F1 and F2 be the underlying
FTS of A′ and A[o/a], and note that R = {(〈(`1, `0), η〉, 〈`1, η〉) | `1 ∈ SA[o/a]} is a
bisimulation relating F1 and F2. Let (〈(`1, `0), η〉, 〈`1, η〉) ∈ R. The proof for delay
transitions follows trivially from the fact that Inv(`1, `0) = Inv(`1) for all `1 ∈ SA[o/a].

Let us consider any action transition 〈(`1, `0), η〉 ω−→ 〈(`′1, `0), η′〉 ∈ TF1 . If it comes

from an edge in (1), then there exists some `1
g,ω,r−−−→ `′1 ∈ EA s .t . a 6∈ ω, thus there exists

some 〈`1, η〉
ω−→ 〈`′1, η′〉 ∈ TF2 ; if it comes from (2), then there exists some `1

g,ω1,r−−−−→

`′1 ∈ EA s .t . a ∈ ω1, thus there exists some 〈`1, η〉
ω1[o/a]−−−−→ 〈`′1, η′〉 ∈ TF2 , where

ω = ω1∪{i, o}\{i, a} = ω[o/a]. Conversely, if there exists some 〈`1, η〉
ω−→ 〈`′1, η′〉 ∈ TF2

and o 6∈ ω, then there exists some (`1, `0)
g,ω,r−−−→ (`′1, `0) ∈ EAS s .t . i /∈ ω ∧ a /∈ ω, thus

there exists some 〈(`1, `0), η〉 ω−→ 〈(`′1, `0), η′〉 ∈ TF1 ; if o ∈ ω, then there exists some

(`1, `0)
g,ω1∪{o}\{a},r−−−−−−−−−→ (`′1, `0) ∈ EA′ , such that ω = ω1[o/a] = ω1 ∪ {o} \ {a}, thus there

exists some 〈(`1, `0), η
ω−→ 〈(`′1, `0), η′〉〉 ∈ TF1 .

In both cases, we have γF1(〈(`1, `0), η〉 ω−→ 〈(`′1, `0), η′〉) = γF2(〈`1, η〉
ω−→ 〈`′1, η′〉).

Furthermore, fm ′A = fmA[o/a].

7.1.2 The Relaxed Approach

We propose now a more flexible model for Reo connectors in which some ports might
be absent. This sort of flexibility is useful when the components being coordinated are

7.1. VARIABLE REO CONNECTORS 121

independent and do not always need to be present in the same product. By independent
we refer to the fact that they are variability independent, thus the components do not
need to be present when the others components connected to the protocol are present,
nor absent if the others are absent. If such were the case, the conservative approach is
suitable to model the coordination protocol.

`0

{i1 , i2 , o}
fi1 ∧ fi2 ∧ fo

{i1 , o}
fi1 ∧ ¬fi2 ∧ fo

{i2 , o}
¬fi1 ∧ fi2 ∧ fo

i1 ?
fi1 ∧ fo

i2 ?
fi2 ∧ fo

o!
(fi1 ∨ fi2) ∧ fo

fm = (fi1 ∨ fi2)↔ fo

(a) Join

`0

{i , o1 , o2}
fi∧ fo1

∧ fo2

{i , o1}
fi ∧ fo1

∧ ¬fo2

{i , o2}
fi∧ ¬fo1

∧ fo2

i?
fi ∧ (fo1 ∨ fo2)

o1 !
fi ∧ fo1

o2 !
fi ∧ fo2

fm = fi ↔ (fo1 ∨ fo2)

(b) Replicator

`0

{i1 , i2}
fi1 ∧ fi2

i1
fi1 ∧ ¬fi2

i2
¬fi1 ∧ fi2

i1 ?
fi1

i2 ?
fi2

fm = >

(c) SyncDrain

`0
i1
fi1

i2
fi2

i1 ?
fi1

i2 ?
fi2

fm = >

(d) AsyncDrain

`0
{i , o1}
fi ∧ fo1

{i , o2}
fi ∧ fo2

i?
fi ∧ (fo1 ∨ fo2)

o1 !
fi ∧ fo1

o2 !
fi ∧ fo2

fm = fi ↔ (fo1 ∨ fo2)

(e) Router

`0
{i1 , o}
fi1 ∧ fo

{i2 , o}
fi2 ∧ fo

i1 ?
fi1 ∧ fo

i2 !
fi2 ∧ fo

o!
fo ∧ (fi1 ∨ fi2)

fm = (fi1 ∨ fi2)↔ fo

(f) Merger

Figure 7.2: Example of Reo connectors modelled as IFTA using the relaxed approach.

122 CHAPTER 7. VARIABILITY AND COORDINATION

In practice, this only makes sense for some of the connectors introduced in Sec-
tion 4.3. In particular, in the case of the Sync and FIFO1 connector, it does no make
sense that only one of the ports is present.

In the case of Sync, whose aim is to synchronize two components, such that inform-
ation flows from the input to the output, if one end is missing, the connector should
not be able to create outputs, nor receive and loose inputs. A similar reasoning applies
to the FIFO1 connector.

In this approach, the variability of each connector is defined in terms of a set of
generic features: we assign a feature fa for each port a of the connector and define its
generic variability in terms of these features. Figure 7.2 shows the resulting models
using a relaxed approach.

In all cases, connectors behave as their Reo counterparts if all ports are present.
In addition, they allow the following behaviour:

SyncDrain. It behaves as an asynchronous drain if one of its ends is missing. If both
inputs are missing the entire connector is not present.

AsyncDrain. It always behaves as its Reo counterpart in the sense that it accepts
only one input at a time. The difference with the original and the conservative
connector is that it does not requires both inputs to be present in a given product.

Join. It allows one of the inputs to be missing, in which case it behaves as a Sync,
synchronizing the corresponding input with the output. In all inputs or the
output are missing, so does the entire connector.

Merger. It always behaves as its Reo counterpart in the sense it synchronizes only
one of its inputs with the output. The difference lays in that it does not require
both inputs to be present in a given product. In this sense, it encodes two Sync
connectors. In all inputs or the output are missing, so does the entire connector.

Router. It always behaves as its Reo counterpart in the sense it synchronizes the input
with only one of its outputs. The difference again lays in that it does not require
both outputs to be present in a given product. Thus, it encodes as well two
possible Sync connectors. In all outputs or the input are missing, so does the
entire connector.

Replicator. It allows one of the outputs to be absent, in which case it behaves as
Sync, synchronizing the input with the corresponding output. In all outputs or
the input are missing, so does the entire connector.

It is also possible to describe connectors using the relaxed approach and achieve
the conservative approach just by tweaking the feature model. In practice, the most

7.2. EXAMPLE: SYNCHRONOUS MERGER 123

flexible approach would be to define the variability of all ports to be independent from
each other and allow the user to express restrictions through the feature model.

7.2 Example: Synchronous Merger

This section illustrates how to compose variable connectors to make a complex coordin-
ation protocol. We use the synchronous merger described in [148] and defined in [130]
using Reo connectors.

The original protocol coordinates two components C1 and C2 , each of which has
an input port and an output port. The coordination is as follows: C1 and C2 can
execute together, in which case the protocol waits for both components to produce an
output, merging the outputs when ready; or only one component executes, in which
case the protocol waits for the output of the corresponding component.

In our example, components C1 and C2 are variable, i.e. each one can be present
or absent. Thus, the protocol needs to adapt to the presence or absence of such
components. We assume that C1 and C2 , as well as their input and output ports,
depend on a feature c1 and c2 , respectively. The feature model of the variable protocol
should allow any combination of these features, including the absence of both.

The resulting model for this protocol is shown in Figure 7.3 and consists of 29
variable Reo connectors: four merger (>-), three router (Xor), nine replicator (-<),
seven FIFO1 ([]), and six syncdrain (>-<). Out of these, there are 22 conservative
connectors (represented by white boxes), two connectors using the relaxed approach
(represented by light grey boxes), and five connectors using the relaxed approach with
additional restrictions over their feature model (represented by dark grey boxes). There
is one available input port, and one available output port that can be connected to the
environment, i.e. other components, through which it is possible to invoke C1 and C2
and wait for their termination. They are represented by two ellipses labelled in and
out, respectively. There are two additional boxes labelled C1 and C2, representing the
components being coordinated.

The resulting feature model allows four products, fm = {{c1 , c2}, {c1}, {c2}, {}}.
For simplicity, we only show features associated to the components C1 and C2 . How-
ever, the resulting feature model also contains the features corresponding to the con-
nectors present. By selecting concrete products we can see how the protocol adapts
to the presence or absence of the components. Figure 7.4 exemplifies this. In particu-
lar, Figure 7.4a shows the resulting model when only C1 is present, while Figure 7.4b
shows the resulting model when only C2 is present. Black arrows indicate what con-
nections between ports remain present in the product, while light grey arrows indicate
lost connections.

124 CHAPTER 7. VARIABILITY AND COORDINATION

Figure 7.3: Synchronous merger with support for variable components

In order to accomplish a model with these four possible products it is necessary to
use the right type of connector, and as it can be seen, even then it might be necessary
to add additional restrictions to prevent undesired variability.

As mentioned, there are five relaxed connectors with additional restrictions over
their feature models. For example, the Router (Xor center left) requires that its output
port connected to the four-output replicator must be present if and only if C1 and C2
are present. Otherwise, because the router is relaxed, this output can be present or
absent. In the latter case, the entire four-output replicator is absent, as well as all
the conservative connectors it is connected to, propagating the absence of conservative
connectors along the way until reaching the two relaxed mergers on the right side.

(a) Feature selection: Fs = {c1} (b) Feature selection: Fs = {c2}

Figure 7.4: Two instantiations of the variable synchronous merger from Figure 7.3.
Black arrows represent active port connections, while light grey arrows represent absent
connections.

7.2. EXAMPLE: SYNCHRONOUS MERGER 125

Figure 7.5 illustrates the projected model for a product with features c1 and c2 present.
In this case components can execute in an exclusive manner, but never together.

Similar issues occur with the other connectors. The restriction imposed in these
case are as follows:

– Merger(>- top left): it requires that its top input must be present if and only if
its output is present.

– Merger(>- bottom left): it requires that its bottom input port must be present
if and only if its output is present.

– Router(Xor top right): it requires that its top output must be present if and only
if the input is present.

– Router(Xor bottom right): it requires that its bottom output must be present if
and only if the input is present.

Figure 7.5: Example of an undesired projected product allowed when no additional
restrictions are made over the variability model of the leftmost Router.

The figures shown here were automatically generated by a proof-of-concept proto-
type1 developed as part of this thesis. In this case, the tool allows to visualize a network
of IFTA, it calculates the valid products allowed by the composed system, and allows
to select the different products, showing the corresponding projected architecture. The
layout and the colours to distinguish the different types of approaches were adapted
manually.

1https://github.com/haslab/ifta

https://github.com/haslab/ifta

126 CHAPTER 7. VARIABILITY AND COORDINATION

7.3 Discussion
The initial intention was to defined variable connectors that quickly adapt to the vari-
ability of the components they coordinate. However, the example shown in Section 7.2
illustrates the complexity of modelling variable coordination mechanism and the need
for more than one approach to deal even with basic connectors. Even then, it might
be necessary to manually add restrictions to the feature model in order to reduce the
variability allowed for the composed system.

It would not have been feasible to define the correct type of connectors, nor the
variability restrictions, without having a tool to calculate all possible feature selections
of the composed system, and and to visualize all possible port connections in a given
feature selection. As future work, we intend to work on other approaches to model Reo
connectors that may simplify even more the definition of these protocols in a way that
takes away the burden from the user of defining additional restrictions. A possible path
can be to work on a constraint solver to automatically suggest variability restrictions
in order to achieve a given desire outcome.

Finally, it is possible to observe how defining multi-action transitions simplifies
significantly de design ofReo connectors in comparison with other approaches as shown
in Section 5.1.

Chapter 8

A Virtual Factory Approach

This chapter introduces the idea of the proposed virtual factory approach. A virtual
factory can be seen as a framework, populated with tools and guidelines, to automate
and make more efficient the development of families of digital public services, particu-
larly, in this thesis, we focus on a family of public transport licensing services, within
the smart mobility domain. The virtual factory comprises artefacts contributing to
three stages in the service development process, namely, planning, domain engineering
and software engineering.

Chapter Organization. Section 8.1 describes the concept of a virtual factory. Then,
Sections 8.2 to 8.4 discusses each component of the virtual factory, namely, the ones
concern with planning, domain engineering, and software engineering, respectively. Fi-
nally, Section 8.5 discusses some advantages and limitations of the framework proposed.

8.1 Virtual factory

A virtual factory refers to a framework comprising software tools, procedures, guidelines,
practices, models and other artefacts that assist different type of stakeholders – e.g.,
policy makers, government officials, and software engineers, to automate and make
more efficient the development of a families of digital public services.

The idea of the virtual factory seeks to shift the paradigm from silo-based develop-
ment of services to a component-based development, using software engineering tech-
niques, particularly those related to SPLs, and by proactively identifying and taking
advantage of common features, as well as commonalities on business processes present
on different members of a family of services. The virtual factory seeks to contribute to
the different stages in the development of a predetermined family of services, namely

127

128 CHAPTER 8. A VIRTUAL FACTORY APPROACH

planning, domain engineering and software engineering.

Service 1
specification

Service 2
specification

Service n
specification

. . .

DPS Family

Service 1
SW App

. . .

Service 1
Model

Service Development Process

Planning Domain Engineering SW Engineering

Tools Guidelines Models Service 2
SW App

Service 2
Model

Service 2
SW App

Service 2
Model

Figure 8.1: Virtual factory concept

Figure 8.1 shows a scheme of the virtual factory concept. The concept of the virtual
factory relies on three principles: 1) service family specific – it is configurable for a given
family, in the case of this thesis, for a family of licensing of public transport services;
2) scalable – it can be extended with other components; and 3) generalizable – it can
be applicable to other families. Then, in the context of a specific family, stakeholders
can specify an envisaged service, and automatically obtain, to some extent, concrete
models and software applications for it. As in any SPL development process, this may
require the development of additional features not supported by the family considered.
The software applications should implement the requirements specified by the formal
models. In addition, the models are used to verify if the derived application of a
concrete service satisfies the specified requirements.

For the virtual factory proposed in this thesis, the current state of development
includes the components shown in Figure 8.2. The figure depicts elements comprised
for each of the stages. Grey boxes highlight contributions of the thesis, while white
boxes represent existing concepts and tools on top of which we build such contributions.

8.1. VIRTUAL FACTORY 129

The hexagon represents concrete models. The rest of the figures represent concrete
information (e.g., specifications, properties, etc.) related to a family of services.

The virtual factory deals with different levels of abstraction. Firstly, it deals with
the strategic planning of services in a given dimension of a smart city (planning). Then,
it gradually focuses on a specific family, documenting the structural properties of the
domain, for example by fixing the vocabulary (domain engineering). Finally, it focuses
on specific elements of the structural domain and documents behavioural properties
associated to such elements (software engineering).

Software EngineeringDomain Engineering

Case study:
Licensing public transport services

o  Actors
o  Entities
o  Documents
o  Validation controls
o  Processes

o  Structural models
o  Specifying vocabulary

Planning

Taxonomy
o  Strategic planning
o  Defining business models
o  Prioritizing services

Ontology

Identify

Component-based
development +
SPL techniques

IFTA
specification

IFTA
composition

Verification
Engine

o  Behavioural
models

Family of
services

Family of services
specification

Feature
selection

Service
Models

Feature model

Individual
Models

Properties

Figure 8.2: Components of the virtual factory

For the planning stage we provide the taxonomy of smart mobility services proposed
in Chapter 3. The taxonomy serves as a tool for government practitioners involved in
the planning and design of smart mobility services, by identifying stakeholders to whom
to deliver services, types of services to be delivered, and public value delivered by such
services, facilitating the definition of business models for developing initiatives. In

130 CHAPTER 8. A VIRTUAL FACTORY APPROACH

addition, the taxonomy can help in the identification of types of mobility services to
be delivered at the city level. In fact, it contributed to the identification of a concrete
family of services to serve as a case study to model families of services in a compositional
way, in particular, a family of licensing public transport services.

For the domain engineering stage the virtual factory provides an ontology to capture
the common structural vocabulary of the identified family. As discussed before, most
of the services identified by the taxonomy of smart mobility services were developed by
non-government entities or co-created with government. However, government must
ensure the provision of public transport services as a basic service. The provision
of licenses help government to ensure and regulate such provision. In addition, this
family of services is provided by local government worldwide, and as such it is of interest
and scalable to be reused by governments with different levels of resources and legal
backgrounds. The ontology fixes a common vocabulary for the domain, by modelling
structural elements, their attributes, and relationships.

Finally, for the software engineering stage, the virtual factory uses component-based
development and SPL techniques to rapidly model families of services and to derive
concrete models of members of the family. In particular, the virtual factory uses IFTA,
the compositional formalism introduced in Chapter 5, to model behavioural aspects of
the elements identified in the domain engineering stage. To illustrate the advantages of
using a compositional formalism, IFTA, and the principles of exogenous coordination
to rapidly model the behavioural aspects of a family of services, we present in this
chapter models of behavioural aspects for the identified family. In addition, we briefly
describe a proof-of-concept tool developed to specify, compose, visualize, and translate
IFTA models to other formalisms.

The following sections present the components provided by the virtual factory for
each development stage.

8.2 Planning

The taxonomy proposed in Chapter 3 provides a common vocabulary to describe,
discuss, and share information about smart mobility initiatives. This is a first step
towards a conceptual framework for smart mobility services supporting standardized
information, and enabling knowledge sharing about smart mobility initiatives, which
can address some of the challenges discussed in Section 3.6. The faceted structure of
the taxonomy enables different stakeholders to recover information in ways that better
suit their interests, e.g., recovering benefits or technology associated to a given type of
service. In particular, we recognize three main potential users of the taxonomy: policy
makers and government officials, IT staff, and researchers. Usage scenarios for each

8.2. PLANNING 131

type of user are discussed below and summarized in Figure 8.3.

Figure 8.3: Usage scenarios of the taxonomy

Uses of the taxonomy by government practitioners – i.e. policy makers and gov-
ernment officials involved in the development of smart mobility initiatives include: 1)
strategic planning and policy making – the taxonomy helps to identify stakeholders to
whom services shall be delivered, to identify and illustrate different types of services to
be delivered, and to identify corresponding benefits and beneficiaries, facilitating the
justification of business cases for each initiative. For example, government practition-
ers motivated by a specific need can use the taxonomy to identify type of services that
address those needs, benefits they provide, and functionality offered by the services.
Conversely, given a type of service, government practitioners can use the taxonomy
to understand the benefits that it delivers in order to convince different stakeholders
involved to implement and use such a service; and 2) learning from others’ experi-
ences – the taxonomy facilitates standardize documentation of initiatives, as well as
the creation of a catalogue of such initiatives, whether successful or not.

Uses of the taxonomy for IT staff, whether in government or not, include: 1) identi-
fying families of public services – the taxonomy specifies common functionality that
can be used to develop reusable components for smart mobility services. Furthermore,
it can be used to study and identify families of service, i.e. services with a high level
of similarities in their functionality but differing in some aspects. Families of services
can then be developed following techniques from Software Product Line Engineering
(SPLE), simplifying development efforts, improving service interoperability, and redu-
cing service development time; and 2) identifying innovation – the taxonomy can relate
technologies used in different types of services. This is also useful to identify innovative
uses of existing technology, which can serve to reduce costs.

132 CHAPTER 8. A VIRTUAL FACTORY APPROACH

Uses of the taxonomy by researchers include: 1) understanding the domain – the
taxonomy provides a thorough view of different aspects of smart mobility services; and
2) development of new research lines – researches can use the taxonomy for discovering
research opportunities, e.g., by identifying new dimensions or by evolving existing
dimensions based on new technology trends and innovations.

Taking full advantage of the benefits discussed above requires an online knowledge
base of smart mobility initiatives, with customizable searching tools, where each ini-
tiative is described using the dimensions and concepts proposed. In practice, it is
challenging to achieve a unique global repository of initiatives. However, having a
taxonomy that standardizes the domain, encourages various interested actors, mainly
governments, in providing their own repositories. Thus, although information is not
available in a unique place, it is consistent and structured, and facilitates (automatic)
retrieval of information. In this sense, governments are considered the most interested
stakeholders responsible for providing such online platforms.

8.3 Domain Engineering

We identified a family of licensing public transport services to pre-define and to serve
as a case study for validation. As discussed in Chapter 1, this kind of services are
present in most local governments and are required to regulate the provision of many
public transport services , as explained in Section 2.4.2.

The services in the family share common vocabulary and functionality and are
amendable to be delivered through similar business processes. The domain engineering
components of the virtual factory aim at fixing the general vocabulary, attributes,
properties, and architectural schemes of such a domain.

In order to do this we include an ontology as one of the components for this stage.
To develop the ontology, first, we selected two countries, Ireland and Portugal, to study
services of licensing public bus passenger services, and we analysed how the services
were delivered in both cases. We analysed government guidelines and application
forms from both countries with the purpose of identifying: 1) licenses required for the
provision of public bus transport services, 2) documentation required for the application
of each license, 3) application process activities, and 4) entities involved in the provision
of the licensing services.

Based on the analysis, we propose an ontology of public bus passenger services to
capture the common vocabulary of the domain and to standardize knowledge. The
proposed ontology captures common concepts – e.g. actors, supporting documents,
and attributes required in the application and processing stage of three licenses: 1) a
license to operate passenger services, 2) a license to provide a bus passenger service

8.3. DOMAIN ENGINEERING 133

across specified pick up and set down points following a predefined schedule and a fare
scheme, and 3) a license for each vehicle used to transport passengers.

In the following subsections we describe the methodology used to build the ontology
and the ontology itself.

8.3.1 Methodology

The research methodology comprises four activities explained below and it is illustrated
in Figure 8.4.

– Literature Review – 1) assessing existing related work on the development of
digital licensing services, and on the use of ontologies to support Digital Govern-
ment, 2) identifying a family of licensing public transport services to serve as case
study, sharing common vocabulary and functionality amendable to be delivered
through similar business processes.

– Domain Analysis – to understand the licensing public transport service domain,
in particular by studying government guidelines and application forms from two
case studies of licensing public bus passenger services. The domain analysis
produced UML Class and Activity Diagrams, contributing to identifying main
domain elements and business processes used during the licensing application
and processing stages.

– Ontology Analysis – studying methodologies and tools used to define ontologies
and selecting a suitable approach to define an ontology for licensing public trans-
port services. The background study on ontologies was described in [40].

– Ontology Definition – defining an ontology for licensing public transport services
able to capture common vocabulary of the various services in the family analysed
in the domain analysis, and using methodologies and tools selected from the
ontology analysis activity.

8.3.2 Ontology

This section describes each of the steps applied to build the ontology of public transport
licensing services.

We follow the Representation Formalism for Software Engineering Ontologies (REF-
SENO) methodology [142]. It is a representation formalism to model the structure of
an experience base for software engineering. The motivation behind this formalism is
to build ontologies to: collect experiences from software projects; capture and reuse

134 CHAPTER 8. A VIRTUAL FACTORY APPROACH

Figure 8.4: Methodology for ontology development.

explicit software development know-how; provide support for software organizations in
collecting, packaging, validating and reusing experiences; and formalize informal know-
ledge. The methodology suggests a process model to develop ontologies using a set of
pre-defined tables to structure knowledge, including tables for defining: a glossary of
concepts, attributes of the concepts, relationships among concepts, and instances of
the concepts to capture experience. The main advantage of REFSENO over other
formalisms is 1) its support for similarity-based retrieval knowledge, and 2) a clear
distinction between stable knowledge (concepts) and example knowledge (experience).

The following sections elaborate on each of the steps of the REFSENO process
model and illustrate some of the tables developed during this process. The complete
tables can be found in [39].

Ontology specification

The first step comprises specifying the ontology. This includes information about the
domain being modelled, the purpose of the ontology, its scope, and relevant information
regarding its authors, development date, and other data. Table 8.1 defines the ontology
specification.

Glossary of concepts

The second step consists of defining all concepts identified in the scope of the ontology,
as defined during the specification step. For this purpose the methodology proposes a
table listing all concepts alphabetically with their definitions. Table 8.2 presents the
glossary of concepts for some of the main concepts in the public transport licensing
service ontology.

Concepts relationships

The third step consists of identifying semantic relationships between concepts. For this
purpose, the methodology proposes a graphical notation using boxes for the concepts

8.3. DOMAIN ENGINEERING 135

Table 8.1: Ontology specification

Domain Licensing Public Transport Services
Date November, 2015
Conceptualized by Guillermina Cledou, Elsa Estevez, Luis Barbosa
Purpose To model required information when providing and requesting public

transport licensing services in order to: 1) facilitate the transition from
service delivery through traditional channels to electronic channels, 2)
serve as a tool defining a common vocabulary to share knowledge and
have a common understanding between domain experts and software
engineers, and 3) be used as a supporting tool for the development of
a SPL for the modelled domain.

Level of formality Semi-formal
Scope List of concepts: Additional Information, Appeal, Application Payment

Receipt, Application Process Criteria, Approved License, Bus Stop Ap-
proval, Business Stakeholder, Criminal Record Certificate, Day Spe-
cific Schedule, Eligibility Criteria, Existing License, Financial Capabil-
ity Evidence, Individual Stakeholder, Journey, Legal Person Card, Li-
cense Application, License Application Supporting Documents, License
Decision, License for Passenger Transport, License for Transport Oper-
ator, License for Vehicle, Life Cycle Stage per License, Livery, Map,
Market Information, Ownership Certificate, Registration Certificate,
Regular Schedule, Rejected License, Request, Road Transit-able Cer-
tificate, Route, Route Existing License, Route Supporting Documents,
Schedule, Stakeholder, Stakeholder Supporting Documents, Stop, Sub-
contracting Contract, Tax Clearance Evidence, Transport License Ser-
vice, Vehicle, Vehicle Existing License, Vehicle Inspection Certificate,
Vehicle Insurance, Vehicle Supporting Documents Instances: none.

Source of
knowledge

Guidelines and forms from Portugal’s transport related licensing ser-
vices [81–83] Guidelines and forms from Ireland’s transport related li-
censing Services [54,84,85]

and edges between concepts to express their relationships – this constitutes a graphical
representation of the ontology. The edges can be annotated with the kind of relation
they represent – i.e. “is-a”, “instance-of”, “has-decomposition”, and “has-parts”; and the
cardinality at both ends. The predefined relations and their notation can be seen in
Figure 8.5 – relations read from left to right.

Each time a new kind of relationship is used it is necessary to define it in a supple-
mentary table. For each relation, the table defines: name, reversed name (enabling to
reading relationships both ways), purpose of the relation, the structure the relationship
establishes on instances of the concepts, and properties of the relationship. Table 8.3
defines the new relations identified for the proposed ontology, following REFSENO
methodology.

136 CHAPTER 8. A VIRTUAL FACTORY APPROACH

Table 8.2: Glossary of concepts

Name Description

Application
processing criteria

It specifies a set of criteria for modelling the application processing
workflow.

Approved license The outcome of an accepted license application.

License application It represents all relevant information submitted in request of a license.

License application
supporting document

Documentation that can be requested by the corresponding authorities
to complete a valid application.

License decision It represents the outcome of a license application.

License for passenger
transport

A license that enables the holder to provide a public bus passenger
transport service across specified pick up/set down points following a
predefined schedule and fare scheme.

License for transport
operator

A license that enables the holder to operate hire and reward passenger
transport services.

License for vehicle A license that enables a vehicle to be used for transporting passenger
for hire and reward.

Life cycle stage per
license

It defines possible status of the application, such as request, renew,
amend, cancel, transfer, and revoke.

Rejected license The outcome of a rejected license application.

Stakeholder It represents a party involved in the process of requesting a license.

Stakeholder supporting
document

Stakeholder’s official documentation that can be requested by the cor-
responding authorities to make a valid application.

Transport license service A service providing the necessary functionality for applying, processing,
and issuing a particular type of transport license.

A graphical representation of the ontology for transport licensing services showing
each concept and their relationships is depicted in Figure 8.6. The essence of the
concepts and the relationships defined in the ontology are summarized below.

A Government Authority can provide various Transport Licensing Services. Each
license service corresponds to one type of license (for example but not limited to, Pas-
senger Transport, Transport Operator, and Vehicle) and provides functionality to one
or more types of applications (Life Cycle Stage per License) for that type of license –
e.g., request, renew, amend, cancel, etc. Each type of application for a particular license
implements: 1) eligibility criteria that will support authorities in deciding whether to
grant the license or not – e.g., suitability of applicant, interference with other granted
licenses, etc. and 2) application processing criteria that defines procedural require-

8.3. DOMAIN ENGINEERING 137

Figure 8.5: Predefine relation types

Figure 8.6: Transport licensing services ontology

ments for authorities when processing the applications and procedural requirements
for applicants when submitting applications – e.g., deadlines for processing applica-
tions, whether resubmission of incomplete applications are allowed, if a fee is required,
etc.

Each License Application involves various stakeholders, either individuals or busi-
nesses, such as the applicant (mandatory), members of the business in the case the
applicant is a business, and subcontractors if the applicant intends to subcontract
part of the future license obligations to other stakeholder. A license application may
require various supporting documents for each stakeholder. The type of documents
required will vary on the type of license, the type of the application and the actual
implementation of the licensing services. In the proposed ontology, we define typical
documents requested from stakeholders that were identified from the case studies: legal

138 CHAPTER 8. A VIRTUAL FACTORY APPROACH

Table 8.3: Custom relationships identified

Name Reverse
Name

Purpose Structure Properties

allows allowed-by The Bus Stop Approval document al-
lows the pick up and set down of pas-
sengers in a Stop of a particular route.
The same Stop is required to be ap-
proved for different routes.

DAG* Transitivity

requests requested-by License Application requests a partic-
ular type of licensing service at a given
Life Cycle Stage per License. Given
the state, applications must conform to
the application’s pre-defined require-
ments for each license.

DAG* Transitivity

provides provided-by A Government Authority provides
Transport Licensing Services and is re-
sponsible for authorizing and regulat-
ing the issuing of licenses as well as
ensuring accountability of the decision
process.

DAG* Transitivity

*DAG = Directed Acyclic Graph

person card and registration certificate (businesses only), tax clearance evidence, crim-
inal record certificate, subcontracting contract, financial capability evidence, and other
exiting licenses.

In addition, a license application requires different supporting documents that are
related to the application itself and the type of application. As before, the required
documents will vary depending on the type of license and type of application. Here
we define typical documents required for the three types of licenses identified from the
case studies: a formal request, proof of application payment, market information that
can support the application, vehicle related information, route related information, and
any additional information the applicant considers relevant.

Vehicle related information includes: information about the vehicles it self, intended
livery for vehicles of a passenger transport service, and supporting document for the
vehicles such certificates of insurances and inspections, proof of ownership, certificate,
and previous licenses involving the vehicle, if any.

Information related to a route is typically required when applying for a passenger
transport license. This includes: inherent information about the intended route to
serve, information about bus stops, detailed schedule, and supporting documents such
as a map of the city highlighting the route and bus stops, previous licenses of the route,

8.3. DOMAIN ENGINEERING 139

a certificate to attest that the route is transit- able, and certificates of approval to pick
up and set down passengers in each of the intended bus stops for the route.

Finally, a license application will result in a decision whether to accept or to reject
the issuing of the license. In case the license application is rejected, the applicant may
have the right to appeal such decision.

Concept attribute table

The fourth and fifth steps in the process model consist of identifying and defining
terminal and non-terminal attributes for each of the concepts defined in the ontology.
The methodology proposes a pre-defined table to capture such knowledge. The table
is divided in two sections – concept related information, and attributes information.
The former specifies the concept and its super-concept, if any. It is assumed that
the concept inherits attributes from its super-concept. The latter specifies attribute
information such as name, description, cardinality, type and whether it is mandatory
or not. Both terminal and non-terminal attributes are defined in the concept table.
However, for reasons of clarity and to respect the order in which the activities of each
step are performed we present them here using two separate tables. We introduce
these activities and present some results from the proposed ontology below. Attributes
for each concept were extracted from guidelines and application forms from both case
studies.

A terminal concept attribute serves to model how software engineering entities are
specified for storage and retrieval. It can be seen as a property or a data element of
a concept. Table 8.4illustrates various concept attributes tables for some of the main
concepts identified in the ontology.

Table 8.4: Concept attribute table – terminal attributes

Concept Transport License Service
Super-Concept -

Name Description Card Type Mand.

license id Identification code for the license 1 Text Yes
license name Name of the license 1 Text Yes

Concept License Cycle Stage per License
Super-Concept -

Name Description Card Type Mand.

license duration Time during which the license is granted 1 Integer Yes
license duration
unit

Unit of measure for the duration of the license 1 Date Unit No

140 CHAPTER 8. A VIRTUAL FACTORY APPROACH

license fee The fee to be paid by the applicant for issuing
the license

1 Integer Yes

application fee The fee to be paid by the applicant for particular
license life cycle

1 Integer Yes

processing time Indicative processing time of an application 1 Integer Yes
processing time
unit

Unit of measure for the license application pro-
cessing time

1 Date Unit No

license life cycle A particular license life cycle stage that is avail-
able for a license service

1 License
Life Cycle

Yes

Concept Stakeholder
Super-Concept -

Name Description Card Type Mand.

id Identification code for a stakeholder 1 Integer Yes
name Stakeholder’s name – first, middle and last name

of a person in the case of individuals, or business
name in the case of businesses.

1 Text Yes

address Stakeholder’s primary address 1 Text Yes
phone Stakeholder’s phone number 1 Text Yes
e-mail Stakeholder’s e-mail address 1 Text Yes
city City of the stakeholder’s address 1 Text Yes
zip-code Zip-code of the stakeholder’s address 1 Text Yes
role Role of the stakeholder within the application

and licensing process
1 Stakeholder

Role
Yes

Concept Business Stakeholder
Super-Concept Stakeholder

Name Description Card Type Mand.

legal number Number of the legal person 1 Text Yes
business type Type of business 1 Business

Type
Yes

Card: Cardinality; *: many; 1:one; Mand.: Mandatory

Each time a new type of terminal attribute is identified, it shall be defined in a
supplementary table. REFSENO contains some predefined types including: Boolean,
Text, Integer, Date, Symbol (symbols ordered alphabetically), and OrderedSymbol
(symbols ordered from lowest to highest). For simplicity, we consider the type “At-
tachment” (attribute of Stakeholder Supporting Document) as a predefine type. This
type represents an attached digital file. Table 8.5 shows the type’s definitions for each
new attribute type identified in Table 8.4. Each type definition includes the name of
the type, the super-type, and the range of possible values for attributes of this type.

8.3. DOMAIN ENGINEERING 141

The legend DYNAMIC following the range definition informs that the range of possible
values can be extended.

If the types table includes declarations of symbol types it is necessary to define a
glossary of symbols including a narrative definition for each possible value. Table 8.6
shows the symbol definition for some of the symbols types identified.

Table 8.5: Types

Name Super-Type Value Range

Date Unit OrderedSymbol “Day”, “Week”, “Month”, “Year”
License Life Cycle OrderedSymbol “Request”, “Renewal”, “Transference”, “Amend-

ment”, “Cancelation”, “Revocation”
Application Life Cycle OrderedSymbol “Submitted”, “Processing”, “Rejected”, “Accepted”

DYNAMIC
Payment Method Symbol “Card”, “Cash”, “Cheque”, “Postal Order”, DY-

NAMIC
Stakeholder Role Symbol “Applicant”, “Business Member”, “Subcontractor”,

DYNAMIC
Business Type Symbol “Company”,“Cooperative”, “Partnership” “Sole

Trader”, DYNAMIC

Similarly, we identify non-terminal attributes. A non-terminal attribute models
how a particular software engineering entity is related to other software engineering
entities. It can be seen as an association to other non-terminal concept. Non-terminal
attributes of the predefined kind “is-a” are not represented explicitly in the table since
such relationship is represented through the declaration of the super-concept. Following
the table structure introduced in the previous section, Table 8.7 illustrates the concept
attribute tables with non-terminal attributes for the concepts defined in Table 8.4.

Table 8.7: Concept attribute table – non-terminal attributes

Concept Transport License Service
Super-Concept -

Name Description Card Type Mand.

life cycle Stages in the license life cycle that
the license service supports and
provides functionality for

* has-parts[Life Cycle
Stage per Li-
cense].[license service]
* Yes

142 CHAPTER 8. A VIRTUAL FACTORY APPROACH

responsible
agency

Government agency responsible for
the provision of the licensing service

1 part-of[Government
Agency].[licensing
services]

Yes

Concept License Cycle Stage per License
Super-Concept -

Name Description Card Type Mand.

license service A particular type of transport li-
cense service for the license life cycle
stage available

1 part-of[Transport
License Service].[life
cycle]

Yes

eligibility criteria Eligibility criteria associated with
a particular life cycle stage of a
transport license service to sup-
port the decision-making when pro-
cessing an application

* has-parts[Eligibility
Criteria].[license
types]

Yes

application pro-
cessing criteria

Application processing criteria to
be considered when implementing
the transport license application
service

1 has-parts[Application
Processing Cri-
teria].[license types]

No

applications Applications made to request this
particular stage and license type

* requested-
by[License Applic-
ation].[application
type]

Yes

Concept Stakeholder
Super-Concept -

Name Description Card Type Mand.

supporting docu-
ments

Required documents related to the
stakeholder that support the applic-
ation

* has-parts[Stakeholder
Supporting Docu-
ment].[stakeholder]

Yes

license application License applications in which the
stakeholder is involved

* part-of[License
Applica-
tion].[applications]

Yes

Concept Business Stakeholder
Super-Concept Stakeholder

Name Description Card Type Mand.

related stakehold-
ers

Stakeholders related to the business
and their position in or relation to
the business

* has-parts[Individual
Stakeholder].[related
business]

No

8.3. DOMAIN ENGINEERING 143

Table 8.6: Glossary of symbols

Name Super-Type Value Range

License Life Cycle Request Request for a new license
Renewal Request to renew an existing license
Transference Request to transfer an existing license from one indi-

vidual or business to another
Amendment Request to make changes to some of the terms and con-

ditions of an existing license
Cancellation Request to cancel the validity of an existing license
Revocation Request to withdraw an existing valid license

Stakeholder Role Business Member A person that is member of or related to a business
stakeholder

Subcontractor A stakeholder that posses a required license and is sub-
contracted to perform the obligations related to the li-
cense

Applicant A stakeholder that is the main responsible for the ap-
plication process and the beneficiary of the license if
granted

Completeness check

The sixth step in the process model involves checking the completeness of all concept
attribute tables. As defined in Table 8.1, the purpose of the proposed ontology is to
provide common vocabulary for the modelled domain with the intention of facilitating
the generation of families of transport licensing services. This implies that the ontology
will potentially be used to instantiate licensing public bus passenger services in very
different environments – different countries with different laws and regulations. There-
fore, the approach is only to define most elemental attributes for each concept. Each
instantiation of the ontology can later define additional attributes and even additional
concepts. Thus, completeness check is performed considering only elemental attributes
that will likely be present in every instantiation of the concept. Based on this, each
concept attribute table is complete with respect to the small set of such attributes.

Instantiation

The final step in building an ontology using REFSENO involves defining the instances
specified in the ontology definition table (Table 8.1). For each instance, the methodo-
logy proposes a table containing an instance identification name, the concept associated
to the instance, and the values for each of the attributes defined in the concept attribute

144 CHAPTER 8. A VIRTUAL FACTORY APPROACH

table. However, this goes out of the scope of the intended use.

8.3.3 Discussion

An advantage of building ontologies with REFSENO is that by construction it ensures:
1) completeness – in the sense that all relevant knowledge to instantiate a knowledge
base is defined; and 2) consistency – in the sense that some consistency criteria have
to be fulfilled during the construction such as: a) no concept, types, instances or
attributes of a same concept have the same name, b) graphical representation of the
non-terminal attributes and their relationships must match the tabular representation,
etc. In addition, the table structure used to defined the ontology is easy to understand
by domain experts.

The main aim of the proposed ontology is to facilitate the definition of generic
models to support the definition of a family of software applications for licensing public
transport services adopting SPL engineering methods and tools. However, by defin-
ing a common vocabulary, the ontology can serve other purposes: 1) facilitating the
transition from paper-based delivery channels to electronic ones; 2) facilitating the in-
tegration of different licensing systems, and 3) improving government interoperability.
The last two are important because they facilitate information sharing between agen-
cies enabling the delivery of one-stop, seamless services, and the implementation of the
“only-once” principle for reducing administrative burden [66].

As a limitation of the ontology, we highlight that the ontology itself does not define
which supporting documents correspond to which type of license application.

8.4 Software Engineering
The software engineering component deals with the rapid modelling of digital public
services in a given family and the automatic generation of software applications that
support the delivery of such services, implementing the requirements specified by the
models. In particular, it relies on component-based and software product line tech-
niques. The current components of the virtual factory supporting this stage focus on
the rapid modelling of behavioural aspects of a family of services, and comprise the
following elements:

a) A specification language for service modelling and assembly by feature composi-
tion;

b) A proof-of-concept prototype to specify, compose, visualize, and translate the
relevant models to other well-known formalisms;

8.4. SOFTWARE ENGINEERING 145

c) A verification engine to check whether properties documenting the family are
satisfied by the models.

In particular, the formalism used to define the behavioural models is IFTA as
introduced in Chapter 5; while for the verification engine c) we use of-the-shelf tools,
particularly the Uppaal real time model checker, to which we translate IFTA models
to verify temporal properties of the services in the family.

To populate the virtual factory and to illustrate its usage, we model some behavi-
oural aspects of the identified family, providing in particular:

– A feature model specifying domain variability in terms of common and optional
functionality present in the services of the selected family

– Behavioural models characterising features representing functionality of the do-
main and Temporal properties of such models

8.4.1 Case Study

This section presents the behavioural characteristics identified from the analysis of
the family of services studied. In particular, we use IFTA to formally specify the
behaviour. It is worth to mention that in both cases, Ireland and Portugal, the licensing
services were being delivered by paper-based solutions. In this sense, some functionality
described here, such as the support for online payments, was not present in the original
case studies.

Feature model

We propose a feature model, illustrated in Figure 8.7, to express the valid combina-
tion of features present in the family of licensing public transport services. It follows
directly from the identification of the structural (Section 8.3) and behavioural aspects
(Section 8.4.1) of the case study.

The root feature represents the family of licenses. The top sub-features – license,
documents, and license life cycle correspond to features identified from the structural
analysis of the case study and coming from the respective elements of the ontology.
Intuitively, only one type of license can be derived at a time (alternative features):
transport operator, passenger transport, or passenger vehicle. Each license must have,
at least (mandatory features), documents associated to the stakeholder and the applic-
ation. The specific documents depend on each particular context (optional features),
i.e. specific local government. A license service must support at least the request of a
new license, but it can optionally provide functionality to support other requests in the

146 CHAPTER 8. A VIRTUAL FACTORY APPROACH

license life cycle. The last sub-feature of the root represents the support for business
processes identified from the case study. All licenses provide support for three main
process – submission of the application, processing of the application, and issuing of the
license. In addition, some submissions require payments, which can support payments
by credit card or by PayPal; and resubmitting documents in case some documents are
missing. In addition, some licenses can support an appeal on a rejected license.

8.4. SOFTWARE ENGINEERING 147

Figure 8.7: Proposed feature model for the family of public transport licensing services

148 CHAPTER 8. A VIRTUAL FACTORY APPROACH

Behavioural models

We exemplify the use of IFTA by producing models representing functionality associ-
ated to the features under the workflow feature in Figure 8.7.

The behaviour of these features, as identified from the analysis of the case studies,
is as described below. All services in the family share a common business process:
1) submitting licensing requests (submission), 2) assessing requests (processing), and
3) issuing the corresponding decision (issuing). Some licensing services, in addition,
support require an online payment before submitting a request (pa), and appeals on re-
jected requests (apl). Furthermore, services that support online payments can support
credit card payments (cc), PayPal payments (pp), or both. For simplicity, given that
features submission, processing and issuing are mandatory, we avoid representing this
feature and simply assign the feature expression > to the corresponding transitions.

Functionality is divided into components and provided as follows. The IFTA for
each component can be visualized in Figures 8.8 and 8.9, while the architectural view of
the composed family can bee seen in Figure 8.10 These figures have been automatically
generated by the proof-of-concept prototype that we briefly explain in Section 8.4.2.
We divided the processing stage into two components to simplify the design – one that
deals with the completeness of the documentation, and another to assess the request.
For simplicity, we use the same action name in two different automata to indicate a
pair of actions to be linked.

Submission – the component models licenses requests. An applicant must submit
the corresponding documentation (subdocs), pay for the application (payapp) if
pa is present, and confirm the submission (submit). If the submission is accepted
(accept) or considered incomplete (incomplete), then the application is closed,
i.e. the request is no longer active and the applicant can start a new application.
If it is rejected (reject) and it is not possible to appeal (¬apl), the application
is closed, otherwise a clock (tapl) is reset to track time the applicant has to
appeal. In particular, the applicant has up to 31 days to submit an appeal on
the decision (InvApp(`5)), otherwise the application is cancelled (cancelapp) and
closed. If an appeal is submitted (appeal), it can be rejected or accepted, and
then the application is closed.

Credit Card – the component models payments through credit cards. If a user re-
quests to pay by credit card (paycc), a clock is reset to track payment elapsed
time (topp), after which the user has less than 1 day (InvCC (`1)) to enter the
details and proceed with the payment which can result in success (paidcc) or
cancellation (cancelcc).

8.4. SOFTWARE ENGINEERING 149

(a) CreditCard (b) PayPal

(c) Appeal (d) Assessment

(e) Preassessment

Figure 8.8: IFTA models for the Preassessment, Assessment, Appeal, Credit Card, and
Paypal components.

PayPal – the component models payments through Paypal accounts. If a user re-
quests to pay by Paypal (paypp), a clock is reset to track payment elapsed time
(tocc), after which the user has less than 1 day (InvPP(`1)) to enter login and
proceed with the payment which can result in success (paidpp) or cancellation
(cancelpp).

Appeal – the component models the process of handling appeal requests. When an
appeal on a decision (appeal) is received, a clock is reset to track the appeal
submission elapsed time (tas), after which the corresponding authority has up to
20 days (InvAppeal(`1)) to start assessing the request (assessapl).

Preassessment – the component models the process of checking if a request contains
all required documentation. When a submission is received (submit), a clock
is reset to track the submission elapsed time (ts), after which the corresponding
authority has up to 20 days (InvPreassesment(`1)) to check if all required documents

150 CHAPTER 8. A VIRTUAL FACTORY APPROACH

Figure 8.9: IFTA models for to the Submission component.

have been submitted and notify of its incompleteness (incomplete) or proceed to
the assessment of the request (assessapp).

Assessment – Models the process of analysing a request. When a request is ready
to be assessed (assess), a clock is reset to track the processing elapsed time (tp),
after which the corresponding authority has up to 90 days to make a decision of
weather accept (accept) or reject (reject) the request.

We use a set of Reo connectors in order to orchestrate the way these components
interact as discussed in Chapter 7. In this case, it was necessary to use the relaxed
approach to model each protocol.

The final model can be seen in Figure 8.10. For simplicity, we omit the feature ex-
pressions associated to ports and the resulting feature model. Broadly, we can identify
three main components in this figure: (1) Application of requests (Submission), (2)
Processing of requests (right of Submission), and (3) Payment of requests (below of
Submission). The functionality of the new components is given as follows.

8.4. SOFTWARE ENGINEERING 151

Figure 8.10: Architectural view of the composed family of licensing services

Payment – Models the orchestration of payment requests based on the availability of
payment methods. It is composed by components CC, PP, a router and two mer-
ger connectors. If a request for payment is received (payapp) a router enables
to choose between pay by Credit Card or Paypal (paypp or paycc). A merger
synchronizes the successful response (paidpp or paidcc), while other merger syn-
chronizes the cancellation response (cancelpp or cancelcc) from either CC or PP.
In addition to the feature model generated by the composition of these IFTA, the
payment component imposes the additional restriction that payment is suppor-
ted by the system, if and only if, Credit card or Paypal payment are supported
(pa ↔ cc ∨ pp).

Processing – Models the orchestration of processing licenses requests and appeals on
decisions (when apl is present). It is composed by components Appeal, Preassess,
Assess, and a merger connector that synchronizes assessment request from either
Appeal or Preassess (assessapl or assessapp) with Assess (assess).

As composition of IFTA combines the variability models of each individual auto-
mata and imposes new restrictions based on the interfaces connected, the resulting
model will adapt automatically based on the feature selection. For example, if pp is

152 CHAPTER 8. A VIRTUAL FACTORY APPROACH

not present, the router in Figure 8.10 will behave as a Sync connector, synchronizing
only actions payapp and paycc. Similarly, both merger that synchronize the outputs of
PP, will behave as a Sync that synchronizes cancelcc with cancelpay , and paidcc with
paidapp. In Section 7.2 we illustrated how the prototype developed facilitated the visu-
alization with a network of IFTA specifying a complex connector how the prototype
developed facilitates the visualization of these changes based on the possible feature
selections.

By specifying the previous components using the prototype described in the next
section, we can translate them to Uppaal as a network of TA, or as an unique TA
resulted from using IFTA composition, and verify properties such as:

– Deadlock free – A[] not deadlock;

– Liveness – a submition will eventually result in answer (App.`4 -> App.`0), an
appeal will eventually result in answer (App.`6 -> App.`0), etc.; and

– Safety – it can not take longer than 110 days to process a submission (A[] App.`4

imply App.tsub <=110), it can not take longer than a day to pay a request after
the payment was initiated (A[] App.`2 imply App.tpay <=1), etc.

8.4.2 Prototype

This section presents the proof-of-concept prototype implemented in the context of
this thesis, and discusses some implementation decisions. Further documentation and
discussion can be found in [37].

The prototype was developed in Scala1 and consists of a small Domain Specific
Language (DSL) to support specification of IFTA and networks of IFTA (NIFTA),
and some operations over them. By a network of any kind of automata we understand
a set of automata composed in parallel (||) and synchronized over a set of shared
actions.

Scala DSL for IFTA

Some of the main features supported by the DSL include: 1) specification of (N)IFTA,
2) composition, product and synchronization over IFTA, 3) conversion of (N)IFTA to
(networks of) FTA (NFTA) with committed states (CS), 4) conversion of (N)IFTA and
NFTA to DOT2 graph description language, 5) conversion of (N)IFTA to an interactive

1https://github.com/haslab/ifta
2http://www.graphviz.org/about/

https://github.com/haslab/ifta
http://www.graphviz.org/about/

8.4. SOFTWARE ENGINEERING 153

.html file using the Vis.js3 visualization library, and 6) conversion of NFTA to Uppaal
networks of TA (NTA) with features. We informally explain the DSL and some of the
operations through a simple example.

8.4.1 Example. The payment network described in Section 8.4.1 can be specified us-
ing the DSL as shown in Listing 8.1. A new automaton is created with the constructor
newifta, which builds an empty IFTA. New transitions are added through the oper-
ator ++. In the case of the credit card IFTA, three transitions are specified between
parenthesis, followed by the declaration of the ports. Each transition in the example
specifies:

– the origin and destination location indicated by natural numbers and by the
linking operator between them ->;

– the actions labelling the transition, using the operator by followed by the set of
actions encoded as a string where actions are separated by a comma;

– the associated feature expression, using the operator when, followed by the feature
expression, where features are expressed as strings and the logical operators are
encoded as usual, &&, ||, ->, not, and <->; and

– the set of clock to reset, using the operator reset, preceding each clock to reset,
encoded as a string, and any clock constraint if it were the case.

Each port, encoded as a string, is preceded by the operator get, if it is an input port,
and pub if an output port. The feature model is specified by a feature expression using
the operator when as before. In this case the feature model is not specified, thus it is
automatically assumed that the feature model is >. A net can be created by composing
automata in parallel as in the case of paymentNet. The DSL provides a set of Reo
connector constructs, such as the router and merger used in the example. Finally, the
net is converted to a network of Uppaal TA, toUppaal, and stored in a given XML
file. /

The full list of the functionality provided and other examples, including the case
study presented in Section 8.4.1 can be found in the implementation repository.

Conversion to other formalisms

A network of IFTA can be step-wisely converted into a network of FTA with committed
states, which in turn can be converted into a network of Uppaal TA, as follows.

3http://visjs.org

http://visjs.org

154 CHAPTER 8. A VIRTUAL FACTORY APPROACH

val creditcard = newifta ++ (
0 --> 1 by "paycc" when "cc" reset "toutcc",
1 --> 0 by "cancelcc" when "cc",
1 --> 0 by "paidcc" when "cc"
) startWith 0 get "paycc" pub "cancelcc,paidcc" inv(1,"toutcc"<=1) name "CC"

val paypal = newifta ++ (
0 --> 1 by "paypp" when "pp" reset "toutpp",
1 --> 0 by "cancelpp" when "pp",
1 --> 0 by "paidpp" when "pp"
) startWith 0 get "paypp" pub "cancelpp,paidpp" inv(1,"toutpp"<=1) name "PP"

val paymentNet = (
router("payapp", "paycc", "paypp") ||
paypal || creditcard ||
merger("cancelcc", "cancelpp", "cancelpay") ||
merger("paidcc", "paidpp", "paidapp")) when "pa" <-> ("pp" || "cc")

// To Uppaal network of TA
toUppaal(paymentNet,"mynetwork.xml")

Listing 8.1: Example specification of a network of IFTA using the prototype DSL.

NIFTA
NFTA

+
committed states

Uppaal NTA
+

features

2A to A + CS FE to Variables + Context + FM

1) NIFTA to NFTA. Informally, this is achieved by converting each multi-action
transition to a set of transitions with single actions that must execute atomically. The
atomicity is achieved through committed states between them. In addition, the new
set of transitions should support all possible combinations of execution order in the
original multi-action transition. However, in practice this can quickly lead to a state
explosion. To reduce this problem, we allow only combinations were the execution
flows from inputs to outputs. For example, the following IFTA on the left is converted
into the FTA on the right. Ideally, i and o should be enabled at `0, however, we
only model the combination were i executes followed by o (dark arrows). The other
possibility when o executes first (light grey) is not created. It is worth to mention
that the word first refers here to the syntactic order, since semantically, due to the
committed locations, the sequence of transitions is done atomically, i.e. time does not
pass.

8.4. SOFTWARE ENGINEERING 155

`0
{i , o}
fi ∧ fo

→ `0
`2
C

`1
C

i
fi ∧ fo

o
fi ∧ fo

o
fi ∧ fo

i
fi ∧ fo

2) NFTA to Uppaal NTA. To create a network ready for simulation and veri-
fication in Uppaal, this activity involves three steps. Firstly, takes the NFTA obtained
in the previous step and creates an Uppaal TA per each FTA in the network, where
features are encoded as boolean variables, and transition feature expressions as a logic
guard over Boolean variables. Secondly, the feature model of the network is solved us-
ing a SAT solver to find the set of all valid feature selections (or products). This set is
encoded as a TA with an initial committed location and with an outgoing transition to
a new location for each element in the set. Each transition represents a valid selection
of features by initializing the corresponding set of variable representing those features.
The initial committed state of the feature model that ensures a feature selection is
made before any other transition is taken. Thirdly, a TA is created to represent the
context of the network, which corresponds to the interface of the network. The context
is represented as TA with an unique state and a loop transition for each action of
the context. Figure 8.11 illustrates how the IFTA of the PayPal component, and the
feature model of the payment net (Listing 8.1) are translated into Uppaal as TA. The
composed feature model allows four products, from top to bottom: 1) feature cc, 2)
features pp and cc, 3) feature pp, and 4) none. The additional features modelled with
a prefix v_, represent generic features associated to the connectors.

A main issue when translating networks of IFTA to networks of Uppaal TA are
sequences of committed states. Because of how Uppaal deals with such sequences,
it can lead to a deadlock when verifying properties. When the model checker sees
that the first transition in such type of sequence is enabled, it executes the transition,
moving to the next committed state. If there are no enabled transitions from that
state, or another committed state, then the system is in a deadlock. This is a problem
inherent to Uppaal rather than a problem of the model.

Another issues when translating IFTA to FTA with committed states, is that the
complexity of the model grows quickly. For example, the IFTA of a simple replicator
with 3 output ports consists of a location and seven transitions, while its corresponding
FTA consists of 23 locations and 38 transitions. Without any support for composing
variable connectors, modelling all possible cases is error prone and it quickly becomes
unmanageable.

This simplicity in design achieved through multi-action transitions leads to a more
efficient approach to translate IFTA to Uppaal TA in particular by using the compos-

156 CHAPTER 8. A VIRTUAL FACTORY APPROACH

(a) PayPal as Uppaal TA

(b) Feature model as Uppaal TA

Figure 8.11: Example of an Uppaal TA consisting of the PayPal component (Fig-
ure 8.8b), and the feature model of the payment net specified in Listing 8.1.

ition of IFTA. The IFTA resulting from composing a network of IFTA, can be simply
converted to an FTA by flattening the set of actions in to a single action, and later
into an Uppaal TA, avoiding the use of committed states.

In addition to this translations, it is possible to convert the networks of IFTA and
IFTA to an HTML file with JavaScript code. In this case, one may interactively select
features and see how the selection affects the models, as it was illustrated in Section 7.2.

8.5 Discussion

The aim of this chapter was to introduce the virtual factory approach for digital public
service development. This is a conceptual framework for the rapid development of
digital public services for a given smart city domain. The approach was illustrated by
taking the smart mobility dimension as a case study.

In particular, we proposed a taxonomy of smart mobility services which deals with
the understanding of the domain, the identification of types of services to be delivered,
technologies used, public value delivered by the services, and stakeholders to whom
they can be delivered. Thus, it provides a tool for policy makers to plan and design
smart mobility services.

8.5. DISCUSSION 157

Through planning, it is possible to identify a concrete family of services. Firstly,
the virtual factory fixes the vocabulary of the domain, actors, documents, processes,
involved in the delivery of the family, through ontologies to structure information. From
the ontology it follows immediately the features of the domain, which facilitates the
creation of a feature model. Secondly, the virtual factory proposes to use the vocabulary
identified to produce behavioural models and associate them to such features, making
it possible to verify properties of the services.

By using techniques from component-based and SPL development it is possible to
quickly model the behaviour of the entire family in a compositional way, and to derive
models of concrete services by selecting a desired set of features.

The approach suggested presents some advantages over other silo-based approaches
that can contribute to address some of the challenges discussed in Section 2.2.2. In
particular:

– rapid development – by identifying families of services in a proactive manner
through the use of planning tools, and develop them using SPL techniques;

– service and business process integration – by using ontologies to standardize the
vocabulary of the domain it can contribute to sharing information among different
government levels. In addition, the development of digital public services in a SPL
brings the benefits of mass production and customization, contributing to the easy
adoption of standardized but customized solutions by different local governments,
facilitating sharing information across different agencies and government levels;

– conformance with laws and regulations – by using formal methods to model ser-
vices en verifying them against expected properties;

– usability – using an SPL approach can increase the quality of the delivered
products. Intuitively, the SPL enables to deliver products that can be quickly
adopted by many clients – more government agencies using the services in a fam-
ily would lead to more feedback to improve the services which will increase the
quality of the services.

– development costs – by using and SPL approach; and

– matching citizen needs – the use of a taxonomy to plan the delivery of services
contributes to move to qualitative approach to deliver DPS to citizens, since
governments can identify first public value that needs to be delivered, instead of
delivering services in a quantitative approach.

We envision a fourth component of the virtual factory, an implementation stage, to
automate the development of software applications implementing the structural and

158 CHAPTER 8. A VIRTUAL FACTORY APPROACH

behavioural models specified in the domain and software engineering stages. A feasible
approach would be to define a formal model to link the structural elements of the
domain, and the behavioural and variability models with concrete code implementing
the specification provided by such models.

Finally, although not provided in this thesis, we envision a formal mechanism to
link each feature of the feature diagram with the structural elements of the domain,
similar to the way IFTA uses feature expressions to annotate behavioural models. In
addition, such a mechanism should link each structural element of the domain with
corresponding behavioural models. For example, in the case of the documents, the
typical behaviour to be supported is the CRUD cycle: creating, reading, updating, and
deleting documents.

Chapter 9

Conclusions and Future Work

The aim of this research work was to provide a conceptual framework with tools for
both, government officials and software developers, to rapidly plan and design integ-
rated smart city DPS on a specific city domain. In particular, by relying on software
product line techniques and formal methods to address concrete challenges in the de-
velopment of DPS, such as rapid development of software applications supporting the
delivery of DPS, service integration, reducing costs in service development, and ensur-
ing conformance with laws and regulations. Further challenges were discussed in see
Section 2.2.2.

For the research problem defined in the thesis, the following research questions
where formulated:

RQ1) What kind of smart mobility services are delivered in the context of smart
cities?

RQ2) How are such services delivered?

RQ3) What kind of public value is delivered by smart mobility services and to whom?

RQ4) Which modelling technologies are suitable for specifying common features of a
family of digital public services delivered by local governments in the context of
smart cities?

RQ5) Based on such modelling techniques, how to provide a domain-specific frame-
work, including modelling tools that can automatically generate behavioural
models for the members of the identified family of digital public services?

In order to understand the background of the domain we began by exploring DPS
across the various dimensions of a smart city. However, we focused on smart mobility,

159

160 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

due to the positive impact theses services have in the development of smart cities, as
discussed in Section 2.4. We conducted a state of the art review to address research
questions RQ1, RQ2 and RQ3, and consolidated the findings in a taxonomy of smart
mobility service. The taxonomy serves as a tool for government practitioners, such
as policy makers and government officials involved in the strategic planning of smart
mobility initiatives, by identifying types of services to be delivered, stakeholders to
whom deliver such services, and public value delivered, facilitating the definition of
business cases for developing initiatives, as well as for prioritizing what services should
be delivered. In addition, the taxonomy provides a common vocabulary to describe,
discuss and share information about smart mobility initiatives, which can contribute
to the sharing of knowledge and good practices among different governments. Further
usages of the taxonomy by different stakeholders was discussed in Section 8.2.

The taxonomy also contributed to address RQ6. Most of the services identified
by the taxonomy were developed by non-government entities or co-created between
government and non-government entities. In this sense, the role of government seems
to move away from service provider, to become an enabler and regulator of such services.
With this in mind, and the fact that governments must ensure the provision of public
transport services as a basic service to city residents , we identified a family of licensing
public transports services to serve as a concrete case study. Licenses help government to
ensure the provision of services complies with the established regulations. In addition,
they are provided by local governments worldwide, and as such, are widely used by
governments with different levels of resources and legal backgrounds.

To understand how services in the identified family were being delivered, we studied
licensing public bus passenger services in two countries, Ireland and Portugal. From
the analysis we identified 1) licenses required for the provision of such services, 2)
documentation required for the application of each license, 3) entities involved in the
provision of the licensing services, and 4) application process activities. In order to fix a
common vocabulary for the domain, in particular considering the structural properties,
we proposed an ontology of licensing public transport services, modelling structural
elements, their attributes, and relationships.

The main aim of the ontology was to facilitate the definition of generic structural
models for the given family. The ontology will serve to relate the structural models with
behavioural models and parametrize both by features. This will be further explore as
future work. The development of the ontology contributed to a better understanding of
the domain and due to the standardizing nature of ontologies, it serves other purposes
as well, including: the automation of service features so to facilitate the transition
from paper-based delivery channels to electronic ones and the integration of different
licensing systems; and improving government interoperability.

As mentioned, during the analysis of the family we identified the processes required

161

to obtain and issue the licences. At this stage, it was evident that time was a recur-
rent requirement for the analysed services and that processes were distributed across
various actors, which required service coordination. Thus, we studied SPL modelling
formalisms that could deal with such requirements. We identified FTA as a promising
formalism which included tools for verification. However, since FTA is a fine grain
approach to model SPL, it could not deal with model composition. As discussed in
Section 4.1.2, modelling complex SPLs requires modular and scalable modelling form-
alisms. In particular, the complex nature of DPS due to the different stakeholders
and processes involved in their delivery, requires a specification formalism capable of
simplifying their design, as well as, of delegating the modelling of different processes to
the relevant stakeholders. The simplification can be achieved, for example, by dividing
functionality into simpler modules. The findings of this stage contributed to answer
the research question RQ4. Details of the proposed solution are explained below

We proposed a compositional formalism, IFTA, based on FTA. The formalism ex-
plicitly defines interfaces for the models, which restrict the way automata interact.
This interfaces are variable, i.e. they are parametrized by features and may not be
present in every product that can be derived from the SPL. The main contribution
of IFTA is its compositionality, which makes possible the incremental design of SPLs.
We argue that this is a truly compositional formalism in the sense that it composes
families of systems, instead of products, as most approaches do in the literature (see
Section 4.1.2). In addition, because composition composes variability as well, it is
possible to verify if the set of products that can be derived from the composed system
it is the intended. We implemented a proof-of-concept prototype to specify, compose,
visualize, and translate IFTA models to other formalisms. The most relevant func-
tionalities of the prototype are the translation of models into Uppaal networks of
TA, which enables the verification of behavioural properties over the models; and the
interactive visualization of IFTA and networks of IFTA, which enable to quickly see
which are the valid set of products that can be derived from the models, and how each
particular selection affects them. In particular, it is possible to visualize how feature
selections affect transitions, in the case of IFTA models, and interfaces and connections
between different components, in the case of networks of IFTA.

Towards addressing the issue of delegating the design and development of systems to
various stakeholders, we proposed a refinement relation for IFTA. The relation serves
to compare two IFTA – one representing an abstract model specifying a family of
systems, and another representing a more detailed implementation of such specific-
ation; and it helps to determine if the implementation can replace the specification
in every environment where the specification is used, to obtain a congruent system.
The are various notions of refinement that could have been considered as discussed
in Section 6.2, each with its advantages and limitations. Here we opted for defining a

162 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

relation that maintains the reactivity of the systems, i.e. it ensures that the implement-
ation can react to the same inputs than the specification, and that it will not produce
unexpected outputs. In this trade-off, the relation does not ensures that the imple-
mentation preserves safety properties of the specification. The relation is a pre-order
and compositional. The latter allows decomposition of refinement proofs, improving
efficiency in refinement checking. However, to simplify the definition, we separated the
notion of variability refinement from behavioural refinement, which entails to conduct
refinement proofs following a product-by-product approach, hindering efficiency. Thus,
we proposed as well a variability-aware refinement relation that can be applied over
the entire family.

Related to the modular and scalable approach to model SPLs, and the need to
coordinate services with variable interfaces, we studied Reo, an exogenous coordin-
ation language to orchestrate how components interact through their interfaces. In
accordance with the principles of SPL, namely the development of reusable assets for
systematic reuse in the development of products, we argue that exogenous coordina-
tion presents an opportunity for increasing the reusability of both, domain models, and
models of the coordination protocols used to orchestrate them. Since in our case, com-
ponents have variable interfaces, coordination protocols need to adapt to their presence
or absence. We proposed to model Reo connectors as IFTA, providing them with a
variable semantics. The original intention was to enable protocols to automatically ad-
apt their variability based on the variability of the components they interact. However,
in practice, this is not a simple task, and it required to model connectors with different
degrees of variability depending the case. In particular we proposed two different ap-
proaches to model Reo, a conservative and a relaxed one, offering different degrees of
variability. However, other approaches may be required. In practice, connectors from
both approaches are combined to achieve an expected outcome. Nevertheless, using
IFTA to model connectors simplifies significantly the design of coordination protocols.
The prototype developed was of utmost help to visualize how complex coordination
protocols and understand which approach should be used for modelling each connector.

Finally, we introduced the concept of a virtual factory, which aims at facilitating
the rapid development of models and software applications supporting the delivery of
DPS. This contributed to address RQ5. The virtual factory seeks to shift the paradigm
from silo-based development of services to a component-based development, by identi-
fying families of services from an early stage and accompanying various stakeholders
through the various stages in the development of DPS. The concept relies on three
principles: 1) service family specific -– the virtual factory is configurable for a given
family, in the case of this thesis, for a family of licensing of public transport services; 2)
scalable – it can be extended with other components; and 3) generalizable – it can be
applicable to other families. In this thesis, we populate the virtual factory with com-

163

ponents that contribute to the planning, domain engineering, and software engineering
stages of DPS development of smart mobility services. In particular, the taxonomy
contributed to the strategic planning of smart mobility initiatives; the ontology con-
tributed to the domain engineering stage by providing structural models and fixing
a common vocabulary for the concrete family; and the specification formalism, IFTA
and related contributions, namely the refinement relation, models for Reo, and the
proof-of-concept prototype, contributed to the software engineering stage, providing
mechanism to specify behavioural aspects of DPS and verify properties.

Future Work

The research conducted as part of this thesis enables to define several problems to be
explored as future work, as discussed below.

The taxonomy of smart mobility services introduced in Section 3.3 can be extended
and improved following guidelines and suggestions provided in Section 3.5.

The ontology introduced in Section 8.3 can be formalized using the W3C Web
Ontology Language1 (OWL) to verify properties such as consistency, or to infer new
knowledge. In addition, as envisioned, it is necessary to define a mechanism to associ-
ate the ontology elements with variability, as well as with behavioural models related
to such elements. A possible path is to define a meta-ontology comprising products, to
which we associate elements which correspond to structural elements of the domain.
Then, we can associate behavioural models to such elements, and finally, we associate
features to elements and behavioural models. With the assistance of a feature model
documenting valid feature combinations, the envision mechanism should enable select-
ing a product, for example a concrete public transport license like transport operator,
and infer which features are available for such product. Finally, based on a concrete
feature selection, to offer tools to derive the concrete structural and behavioural models
for the selected features.

Regarding IFTA, there are many opportunities for exploration particularly con-
cerning refinement. As discussed in Chapter 6 it is of interest to study other alternat-
ives of behavioural and variability refinement. In particular, exploring how these new
definitions affect the properties that we can expect from a refinement relation, mainly
regarding compositionality and the properties that the implementation can preserve
from the specification. In the case of variability refinement, one possibility to explore
is to allow the feature model of the implementation to introduce new behaviour through
new features, which would align better with the notion of behavioural refinement. In
the case of behavioural refinement, simulation relations are usually used as refinement

1https://www.w3.org/standards/techs/owl

https://www.w3.org/standards/techs/owl

164 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

relations. Such relation preserves safety properties at the expense of allowing the im-
plementation to react to less inputs. It would be interesting to explore if a new notion
of refinement can be achieved for families of IFTA, to preserve both, the reactivity of
the system and the safety properties satisfied from the specification. In addition, other
ways of composing feature models can be explored when defining IFTA composition.

Another area of exploration for IFTA are Reo models. As discussed, in practice
different degrees of variability are required depending on the context. As future work,
other approaches to model Reo connectors can be explored to simplify even more the
definition of these protocols taking away the burden from the user from selecting the
right approach. A possible path can be to work on a constraint solver to automatically
suggest variability restrictions in order to achieve a given desired outcome.

Finally, regarding the virtual factory, new components can be added such as: a
Domain Specific Language for domain users (non-software engineers) to easily specify
services; a mechanism for automatic code generation based on structural and behavi-
oural models; a suitable logic for specifying and verifying structural properties of the
domain; and its adaptation to other domains of a smart city and other families within
the smart mobility domain.

Bibliography

[1] M. Acher, P. Collet, P. Lahire, and R. France. Composing feature models. In
M. van den Brand, D. Gašević, and J. Gray, editors, Software Language Engin-
eering, pages 62–81, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[2] A. Aldama-Nalda, H. Chourabi, T. a. Pardo, J. R. Gil-Garcia, S. Mellouli, H. J.
Scholl, S. Alawadhi, T. Nam, and S. Walker. Smart cities and service integration
initiatives in North American cities. In Proceedings of the 13th Annual Interna-
tional Conference on Digital Government Research, page 289, New York, New
York, USA, 2012. ACM Press.

[3] L. Allulli, G. F. Italiano, and F. Santaroni. Exploiting GPS Data in Public
Transport Journey Planners. In 13th International Symposium on Experimental
Algorithms, 2014.

[4] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183 – 235, 1994.

[5] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement
relations, pages 163–178. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[6] G. Anastasi, M. Antonelli, A. Bechini, S. Brienza, E. D’Andrea, D. De Guglielmo,
P. Ducange, B. Lazzerini, F. Marcelloni, and A. Segatori. Urban and social
sensing for sustainable mobility in smart cities. 2013 Sustainable Internet and
ICT for Sustainability, SustainIT 2013, 2013.

[7] S. Apel, D. Batory, C. Kstner, and G. Saake. Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer Publishing Company, Incorpor-
ated, 2013.

[8] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer. Detection of
feature interactions using feature-aware verification. In Proceedings of the 2011

165

166 BIBLIOGRAPHY

26th IEEE/ACM International Conference on Automated Software Engineering,
ASE ’11, pages 372–375, Washington, DC, USA, 2011. IEEE Computer Society.

[9] F. Arbab. Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science, (3):329–366, 2004.

[10] F. Arbab. Puff, The Magic Protocol, pages 169–206. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[11] F. Arbab, C. Baier, F. de Boer, and J. Rutten. Models and temporal logical
specifications for timed component connectors. Software & Systems Modeling,
6(1):59–82, Mar 2007.

[12] F. Arbab, N. Kokash, and S. Meng. Towards Using Reo for Compliance-Aware
Business Process Modeling, pages 108–123. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[13] F. Arbab and J. J. M. M. Rutten. A Coinductive Calculus of Component Con-
nectors, pages 34–55. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[14] R. Arnott and E. Inci. An integrated model of downtown parking and traffic
congestion. Journal of Urban Economics, 60(3):418–442, 2006.

[15] C. Baier. Probabilistic models for reo connector circuits. Journal of Universal
Computer Science (J. UCS), 11(10):1718–1748, oct 2005.

[16] C. Baier, J.-P. Katoen, and K. G. Larsen. Principles of model checking. 2008.

[17] C. Baier, M. Sirjani, F. Arbab, and J. Rutten. Modeling component connectors
in reo by constraint automata. Sci. Comput. Program., 61(2):75–113, July 2006.

[18] K. D. Bailey. Typologies and Taxonomies: An Introduction to Classification
Techniques. Number 07. 1994.

[19] M. Bakillah, S. H. L. Liang, and A. Zipf. Toward coupling sensor data and
volunteered geographic information (VGI) with agent-based transport simula-
tion in the context of smart cities. Proceedings of the First ACM SIGSPATIAL
Workshop on Sensor Web Enablement - SWE ’12, pages 17–23, 2012.

[20] F. Bannister and D. Wilson. O(Ver)-Government?: Emerging Technology, Cit-
izen Autonomy and the Regulatory State. Information Polity, 16(1):63–79, Jan.
2011.

BIBLIOGRAPHY 167

[21] R. Barrero, J. V. Mierlo, and X. Tackoen. Enhanced Energy Storage Systems for
Improved On-Board Light Rail Vehicle Efficiency. IEEE Vehicular Technology
Magazine, (September):26–36, 2008.

[22] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement.
IEEE Transactions on Software Engineering, 30(6):355–371, 2004.

[23] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature
models 20 years later: A literature review. Inf. Syst., 35(6):615–636, Sept. 2010.

[24] C. Benevolo, R. P. Dameri, and B. D. Auria. Smart Mobility in Smart City -
Action Taxonomy, ICT Intensity and Public Benefits. 11:13–29, 2016.

[25] J. Bengtsson and W. Yi. Timed Automata: Semantics, Algorithms and Tools,
pages 87–124. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[26] J. Bertot, E. Estevez, and T. Janowski. Universal and contextualized public
services: Digital public service innovation framework. Government Information
Quarterly, 33(2):211–222, 2016.

[27] P. Blythe. RFID for road tolling, road-use pricing and vehicle access control. In
IEE Colloquium (Digest), number 123, pages 67–82, 1999.

[28] D. Bruno and H. Richmond. The Truth About Taxonomies. Information Man-
agement Journal, 37(2):44–53, 2003.

[29] C. Busold, A. Taha, C. Wachsmann, A. Dmitrienko, H. Seudié, M. Sobhani,
and A.-R. Sadeghi. Smart keys for cyber-cars: secure smartphone-based NFC-
enabled car immobilizer. Proceedings of the third ACM conference on Data and
application security and privacy, pages 233–242, 2013.

[30] J. Candamo, M. Shreve, D. Goldgof, D. Sapper, and R. Kasturi. Understanding
Transit Scenes: A Survey on Human Behavior-Recognition Algorithms. IEEE
Transactions on Intelligent Transportation Systems, 11(1):206–224, mar 2010.

[31] E. M. Cepolina and A. Farina. A new shared vehicle system for urban areas.
Transportation Research Part C: Emerging Technologies, 21(1):230–243, 2012.

[32] S. L. Cisco and W. K. Jackson. Creating Order out of Chaos with Taxonomies.
Information Management Journal, 39(3):44–50, 2005.

168 BIBLIOGRAPHY

[33] D. Clarke, D. Costa, and F. Arbab. Connector colouring i: Synchronisation and
context dependency. Science of Computer Programming, 66(3):205 – 225, 2007.
Special Issue on the 4th International Workshop on Foundations of Coordination
Languages and Software Architectures (FOCLASA ’05).

[34] A. Classen, Q. Boucher, and P. Heymans. A text-based approach to feature
modelling: Syntax and semantics of tvl. Sci. Comput. Program., 76(12):1130–
1143, Dec. 2011.

[35] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. Symbolic model check-
ing of software product lines. International Conference on Software Engineering,
ICSE, pages 321–330, 2011.

[36] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin. Model
checking lots of systems: efficient verification of temporal properties in software
product lines. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering-Volume 1, pages 335–344. ACM, 2010.

[37] G. Cledou. A proof-of-concept prototype for ifta. Technical report, HASLab
INESCTEC and University of Minho.

[38] G. Cledou. A virtual factory for smart city service integration. In Proceedings
of the 8th International Conference on Theory and Practice of Electronic Gov-
ernance, ICEGOV ’14, pages 536–539, New York, NY, USA, 2014. ACM.

[39] G. Cledou and L. S. Barbosa. An ontology for licensing public transport services.
Technical report, HASLab INESCTEC and University of Minho.

[40] G. Cledou and L. S. Barbosa. An ontology for licensing public transport services.
In Proceedings of the 9th International Conference on Theory and Practice of
Electronic Governance, ICEGOV ’15-16, pages 230–239, New York, NY, USA,
2016. ACM.

[41] G. Cledou and L. S. Barbosa. Modeling families of public licensing services: A
case study. In Proceedings of the 5th International FME Workshop on Formal
Methods in Software Engineering, FormaliSE ’17, pages 37–43, Piscataway, NJ,
USA, 2017. IEEE Press.

[42] G. Cledou, E. Estevez, and L. S. Barbosa. A taxonomy for planning and design-
ing smart mobility services. Government Information Quarterly, 35(1):61 – 76,
2018. Internet Plus Government: Advancement of Networking Technology and
Evolution of the Public Sector.

BIBLIOGRAPHY 169

[43] G. Cledou, J. Proença, and L. S. Barbosa. A refinement relation for families
of timed automata. In S. Cavalheiro and J. Fiadeiro, editors, Formal Methods:
Foundations and Applications, pages 161–178, Cham, 2017. Springer Interna-
tional Publishing.

[44] G. Cledou, J. Proença, and L. Soares Barbosa. Composing families of timed
automata. In M. Dastani and M. Sirjani, editors, Fundamentals of Software
Engineering, pages 51–66, Cham, 2017. Springer International Publishing.

[45] P. Clements and L. Northrop. Software product lines. Addison-Wesley, 2002.

[46] M. Cordy. Model Checking for the Masses. PhD thesis, 2014.

[47] M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay. Behavioural modelling
and verification of real-time software product lines. In Proceedings of the 16th
International Software Product Line Conference-Volume 1, pages 66–75. ACM,
2012.

[48] M. Cordy, P. Y. Schobbens, P. Heymans, and A. Legay. Beyond Boolean product-
line model checking: Dealing with feature attributes and multi-features. Proceed-
ings - International Conference on Software Engineering, pages 472–481, 2013.

[49] E. Daniel and J. Ward. Integrated service delivery: exploratory case studies of
enterprise portal adoption in uk local government. Business Process Management
Journal, 12(1):113–123, 2006.

[50] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. Timed i/o
automata: A complete specification theory for real-time systems. In Proceedings
of the 13th ACM International Conference on Hybrid Systems: Computation and
Control, HSCC ’10, pages 91–100, New York, NY, USA, 2010. ACM.

[51] S. M. Davis. Future perfect. Basic Books, 1997.

[52] L. de Alfaro and T. A. Henzinger. Interface automata. SIGSOFT Softw. Eng.
Notes, 26(5):109–120, Sept. 2001.

[53] L. de Alfaro and T. A. Henzinger. Interface-Based Design, pages 83–104. Springer
Netherlands, Dordrecht, 2005.

[54] Department of Transport Tourism and Sport. Transport Operator License -
Guidelines and Forms. https://www.rtol.ie/rtol-online/forms. Accessed:
2015-05-20.

https://www.rtol.ie/rtol-online/forms

170 BIBLIOGRAPHY

[55] A. V. Deursen. Where to Go in the Near Future : Diverging Perspectives on On-
line Public Service Delivery. In Electronic Government, pages 143–154. Springer
Berlin Heidelberg, 2007.

[56] A. V. Deursen, J. V. Dijk, and W. Ebbers. Why E-government Usage Lags
Behind : Explaining the Gap between Potential and Actual Usage of Electronic
Public Services in the Netherlands. In Electronic Government, pages 269–280.
Springer Berlin Heidelberg, 2006.

[57] Deutsche Gesellschaft für Internationale Zusammenarbeit. Urban Transport and
Energy Efficiency. 2012.

[58] S. Djahel, N. Smith, S. Wang, and J. Murphy. Reducing Emergency Services
Response Time in Smart Cities : An Advanced Adaptive and Fuzzy Approach.
(October), 2015.

[59] C. Dobre and F. Xhafa. Intelligent services for Big data science. Future Gener-
ation Computer Systems, 37:267–281, 2014.

[60] V. Douwe, E. Estevez, A. Ojo, and T. Janowski. Software infrastructure for
egovernment - E-appointment service. Communications in Computer and In-
formation Science, 62:141–152, 2009.

[61] E. Estevez. Programmable Messaging for Electronic Government. PhD thesis,
Universidad Nacional del Sur, 2009.

[62] E. Estevez. EGOV Infrastructure and Services, Executive Training for Govern-
ment Information Officers, Module 5, 2014.

[63] E. Estevez and T. Janowski. Building a dependable messaging infrastructure for
electronic government. In 2nd International Conference on Availability, Reliab-
ility and Security, ARES, pages 948–955, 2007.

[64] European Commission. EU eGovernment Action Plan 2016-
2020. https://ec.europa.eu/digital-single-market/en/
european-egovernment-action-plan-2016-2020. Accessed: 2018-05-17.

[65] European Commission. European Interoperability Framework for Pan-European
eGovernment Services, 2004.

[66] EY and Danish Technological Institute. Study on eGovernment and the Reduction
of Administrative Burden. 2014.

https://ec.europa.eu/digital-single-market/en/european-egovernment-action-plan-2016-2020
https://ec.europa.eu/digital-single-market/en/european-egovernment-action-plan-2016-2020

BIBLIOGRAPHY 171

[67] M. Fang and C. Jianping. A Novel System for Interactive Mobile Multimedia
Service in Public Transports. pages 867–870, 2013.

[68] B. Fazenda, H. Atmoko, F. G. F. Gu, L. G. L. Guan, and a. Ball. Acoustic
based safety emergency vehicle detection for intelligent transport systems. 2009
Iccas-Sice, (1):4250–4255, 2009.

[69] J. Firnkorn and M. Müller. What will be the environmental effects of new free-
floating car-sharing systems? The case of car2go in Ulm. Ecological Economics,
70(8):1519–1528, 2011.

[70] R. Giffinger, C. Fertner, H. Kramar, R. Kalasek, P.-M. Natasa, and E. Meijers.
Smart cities Ranking of European medium-sized cities. October, 16(October):13–
18, 2007.

[71] P. Gora. A genetic algorithm approach to optimization of vehicular traffic in
cities by means of configuring traffic lights. Studies in Computational Intelligence,
369:1–10, 2011.

[72] P. Gora and P. Wasilewski. Adaptive System for Intelligent Traffic Management
in Smart Cities. In D. Ślęzak, G. Schaefer, S. Vuong, and Y.-S. Kim, editors,
Active Media Technology SE - 44, volume 8610 of Lecture Notes in Computer
Science, pages 525–536. Springer International Publishing, 2014.

[73] P. Gottschalk. Maturity levels for interoperability in digital government. Gov-
ernment Information Quarterly, 26(1):75–81, Jan. 2009.

[74] D. F. Gray. Introduction to the Formal Design of Real Time Systems. Springer-
Verlag London, 1999.

[75] M. L. Griss, J. Favaro, and M. d’Alessandro. Integrating feature modeling with
the rseb. In Proceedings. Fifth International Conference on Software Reuse (Cat.
No.98TB100203), pages 76–85, Jun 1998.

[76] R. E. Hall, J. Braverman, J. Taylor, and H. Todosow. The Vision of A Smart
City. In 2nd International Life Extension Technology Workshop, Paris, France,
2000.

[77] J. Harper, R. Fuller, D. Sweeney, and T. Waldmann. Human factors in technology
replacement: A case study in interface design for a public transport monitoring
system. Applied Ergonomics, 1998.

172 BIBLIOGRAPHY

[78] C. Harrison, B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam, J. Para-
szczak, and P. Williams. Foundations for Smarter Cities. IBM Journal of Re-
search and Development, 54(4):1–16, jul 2010.

[79] G. Hinterwälder, C. T. Zenger, F. Baldimtsi, A. Lysyanskaya, C. Paar, and
W. P. Burleson. Efficient e-cash in practice: NFC-based payments for public
transportation systems. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
7981 LNCS:40–59, 2013.

[80] G.-J. Horng, J.-P. Li, and S.-T. Cheng. Traffic congestion reduce mechanism
by adaptive road routing recommendation in smart city. 2013 3rd International
Conference on Consumer Electronics, Communications and Networks, pages 714–
717, nov 2013.

[81] Instituto da Mobilidade e dos Transportes IP. Carreiras de Serviço
Público - Guidelines and Forms. http://www.imtt.pt/sites/IMTT/
Portugues/TransportesRodoviarios/TransportePublicoPassageiros/
CarreirasServicoPublico/Paginas/CarreirasdeServi{ç}oPublico.aspx.
Accessed: 2015-05-20.

[82] Instituto da Mobilidade e dos Transportes IP. Licenciamento de
Empresas - Guidelines and Forms. http://www.imtt.pt/sites/IMTT/
Portugues/TransportesRodoviarios/TransportePublicoPassageiros/
LicenciamentoEmpresas/Paginas/LicenciamentoEmpresas.aspx. Accessed:
2015-05-20.

[83] Instituto da Mobilidade e dos Transportes IP. Licenciamento de Veículos -
Guidelines and Forms. Accessed: 2015-11-01.

[84] Ireland’s National Police Service. Licensing of Large Public Service Vehicles -
Requirements. http://www.garda.ie/Controller.aspx?Page=100. Accessed:
2015-05-20.

[85] Ireland’s National Transport Authority. Licensing of Public Bus Passen-
ger Services - Guidelines and Forms. https://www.nationaltransport.ie/
taxi-and-bus-licensing/bus/. Accessed: 2015-11-01.

[86] T. Janowski. Digital government evolution: From transformation to contextual-
ization. Government Information Quarterly, 32(3):221–236, 2015.

http://www.imtt.pt/sites/IMTT/Portugues/TransportesRodoviarios/TransportePublicoPassageiros/CarreirasServicoPublico/Paginas/CarreirasdeServi{�}oPublico.aspx
http://www.imtt.pt/sites/IMTT/Portugues/TransportesRodoviarios/TransportePublicoPassageiros/CarreirasServicoPublico/Paginas/CarreirasdeServi{�}oPublico.aspx
http://www.imtt.pt/sites/IMTT/Portugues/TransportesRodoviarios/TransportePublicoPassageiros/CarreirasServicoPublico/Paginas/CarreirasdeServi{�}oPublico.aspx
http://www.imtt.pt/sites/IMTT/Portugues/TransportesRodoviarios/TransportePublicoPassageiros/LicenciamentoEmpresas/Paginas/LicenciamentoEmpresas.aspx
http://www.imtt.pt/sites/IMTT/Portugues/TransportesRodoviarios/TransportePublicoPassageiros/LicenciamentoEmpresas/Paginas/LicenciamentoEmpresas.aspx
http://www.imtt.pt/sites/IMTT/Portugues/TransportesRodoviarios/TransportePublicoPassageiros/LicenciamentoEmpresas/Paginas/LicenciamentoEmpresas.aspx
http://www.garda.ie/Controller.aspx?Page=100
https://www.nationaltransport.ie/taxi-and-bus-licensing/bus/
https://www.nationaltransport.ie/taxi-and-bus-licensing/bus/

BIBLIOGRAPHY 173

[87] T. Janowski, A. Ojo, and E. Estevez. Rapid Development of Electronic Public
Services — Software Infrastructure and Software Process. In 8th Annual Inter-
national Digital Government Research Conference Rapid, pages 294–295, 2007.

[88] T. Janowski, A. Ojo, and E. Estevez. Rapid development of electronic public
services: Software infrastructure and software process. In Proceedings of the 8th
annual international conference on Digital government research: bridging discip-
lines & domains, pages 294–295. Digital Government Society of North America,
2007.

[89] M. Janssen and E. Estevez. Lean Government and Platform-based Governance
- Doing More with Less. Government Information Quarterly, 30(1):S1–S8, jan
2013.

[90] Z. Ji, I. Ganchev, M. O’Droma, L. Zhao, and X. Zhang. A Cloud-Based Car
Parking Middleware for IoT-based Smart Cities: Design and Implementation.
Sensors, 14(12):22372–22393, 2014.

[91] S.-S. T. Q. Jongmans and F. Arbab. Overview of thirty semantic formalisms for
reo. Sci. Ann. Comp. Sci., 22:201–251, 2012.

[92] T. B. Jørgensen and B. Bozeman. Public Values - An Inventory. Adminsitration
& Society, 39(3):354–381, 2007.

[93] M. Jung, J. Weidinger, W. Kastner, and A. Olivieri. Building Automation and
Smart Cities: An Integration Approach Based on a Service-Oriented Architec-
ture. 27th International Conference on Advanced Information Networking and
Applications Workshops, pages 1361–1367, Mar. 2013.

[94] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (foda) feasibility study. Technical report, Software En-
gineering Institute, Carnegie-Mellon University, 1990.

[95] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. Form: A feature-
oriented reuse method with domain-specific reference architectures. Ann. Softw.
Eng., 5(1):143–168, Jan. 1998.

[96] E. I. A. Kareem and A. Jantan. An intelligent traffic light monitor system using
an adaptive associative memory. International Journal of Information Processing
and Management, 2(2):23–39, 2011.

174 BIBLIOGRAPHY

[97] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in software product lines.
In Proceedings of the 30th International Conference on Software Engineering,
ICSE ’08, pages 311–320, New York, NY, USA, 2008. ACM.

[98] D. Kitchin, W. R. Cook, and J. Misra. A language for task orchestration and
its semantic properties. In C. Baier and H. Hermanns, editors, CONCUR 2006
– Concurrency Theory, pages 477–491, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[99] J. Kostiainen, C. Erkut, and F. B. Piella. Design of an audio-based mobile journey
planner application. Proceedings of the 15th International Academic MindTrek
Conference on Envisioning Future Media Environments - MindTrek ’11, page
107, 2011.

[100] H. Kung and D. Vlah. Efficient location tracking using sensor networks. 2003
IEEE Wireless Communications and Networking, 2003. WCNC 2003., 3, 2003.

[101] B. H. Kwasnik. The Role of Classifiction in Knowledge Representation and Dis-
covery. Library Trends, 48(1):22–47, 1999.

[102] M. Ladeira, F. Michel, and L. Senna. Public Transport Monitoring and Control:
The Case of Porto Alegre, Brazil. ICTIS 2011, pages 275–281, 2011.

[103] K. G. Larsen, U. Nyman, and A. Wasowski. Modal i/o automata for interface
and product line theories. In European Symposium on Programming, pages 64–79.
Springer, 2007.

[104] K. Layne and J. Lee. Developing fully functional E-government: A four stage
model. Government Information Quarterly, 18(2):122–136, 2001.

[105] F. Li and B. Li. Aggregating heterogeneous services in the smart city: The
practice in china. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10135
LNCS:449–458, 2017.

[106] L. Li, F.-Y. Wang, N.-N. Zheng, and Y. Zhang. Research and developments
of intelligent driving behaviour analysis. Zidonghua Xuebao/Acta Automatica
Sinica, 2007.

[107] V. M. A. d. Lima, R. M. Marcacini, M. H. P. Lima, M. I. Cagnin, and M. A. S.
Turine. A generation environment for front-end layer in e-government content

BIBLIOGRAPHY 175

management systems. In Proceedings of the 2014 9th Latin American Web Con-
gress, LA-WEB ’14, pages 119–123, Washington, DC, USA, 2014. IEEE Com-
puter Society.

[108] M. Lochau, S. Mennicke, H. Baller, and L. Ribbeck. Incremental model checking
of delta-oriented software product lines. Journal of Logical and Algebraic Methods
in Programming, (1):245–267, 2016.

[109] M. Mallus, G. Colistra, L. Atzori, M. Murroni, and V. Pilloni. Dynamic car-
pooling in urban areas: Design and experimentation with a multi-objective route
matching algorithm. Sustainability (Switzerland), 9(2), 2017.

[110] M. Mannion. Using first-order logic for product line model validation. In Proceed-
ings of the Second International Conference on Software Product Lines, SPLC 2,
pages 176–187, London, UK, UK, 2002. Springer-Verlag.

[111] J.-V. Millo, S. Ramesh, S. N. Krishna, and G. K. Narwane. Compositional
verification of evolving software product lines. arXiv preprint arXiv:1212.4258,
2012.

[112] E. a. Morris. Should we all just stay home? Travel, out-of-home activities, and life
satisfaction. Transportation Research Part A: Policy and Practice, 78:519–536,
2015.

[113] G. Motta, D. Sacco, A. Belloni, and L. You. A system for green personal integ-
rated mobility: A research in progress. Proceedings of 2013 IEEE International
Conference on Service Operations and Logistics, and Informatics, SOLI 2013,
pages 1–6, 2013.

[114] G. Motta, L. You, D. Sacco, and G. Miceli. Mobility Service Systems : guidelines
for a possible paradigm and a case study. In Proceedings of 2014 IEEE Inter-
national Conference on Service Operations and Logistics, and Informatics, SOLI
2014, number Figure 1, pages 48–53, 2014.

[115] R. Muschevici, J. Proença, and D. Clarke. Feature nets: behavioural modelling
of software product lines. Software & Systems Modeling, pages 1–26, 2015.

[116] T. Nam and T. a. Pardo. Conceptualizing Smart City with Dimensions of Tech-
nology, People, and Institutions. In Proceedings of the 12th Annual International
Digital Government Research Conference on Digital Government Innovation in
Challenging Times - dg.o ’11, page 282, New York, New York, USA, 2011. ACM
Press.

176 BIBLIOGRAPHY

[117] S. Nawaz, C. Efstratiou, and C. Mascolo. ParkSense: a smartphone based sens-
ing system for on-street parking. Proceedings of the 19th annual international
conference on Mobile computing and networking - Mobicom ’13, 2013.

[118] P. Neirotti, A. De Marco, A. C. Cagliano, G. Mangano, and F. Scorrano. Current
trends in Smart City initiatives: Some stylised facts. Cities, 38:25–36, jun 2014.

[119] J. D. Nelson and C. Mulley. The impact of the application of new technology
on public transport service provision and the passenger experience: A focus on
implementation in Australia. Research in Transportation Economics, 39(1):300–
308, 2013.

[120] R. C. Nickerson, U. Varshney, and J. Muntermann. A method for taxonomy
development and its application in information systems. European Journal of
Information Systems, 22(3):336–359, 2012.

[121] S. Noei and A. Sargolzaei. Reducing Traffic Congestion Using Geo-fence Tech-
nology : Application for Emergency Car. pages 15–20, 2014.

[122] OECD. Recommendation of the Council on Digital Government Strategies. Pub-
lic Governance and Territorial Development Directorate, July:12, 2014.

[123] J. Opiola and S. Wilson. Bank payments in transportation - freedom and interop-
erability for congestion pricing. In 15th World Congress on Intelligent Transport
Systems and ITS America Annual Meeting 2008, volume 2, pages 1303–1318,
2008.

[124] S. Panichpapiboon and W. Pattara-atikom. A Review of Information Dissemin-
ation Protocols for Vehicular Ad Hoc Networks. IEEE Communications Surveys
& Tutorials, 14(3):784–798, 2011.

[125] M. C. Penadés, P. Martí, J. H. Canós, and A. Gómez. Product Line-based
customization of e-Government documents. In N. Loutas, F. Narducci, A. Ojo,
M. Palmonari, C. Paris, and G. Semeraro, editors, PEGOV 2014: Personalization
in e-Government Services, Data and Applications, volume 1181 of UMAP 2014
Extended Proceedings, Aalborg, Denmark, July 2014. CEUR-WS.

[126] G. Perboli, A. De Marco, F. Perfetti, and M. Marone. A new taxonomy of smart
city projects. Transportation Research Procedia, 3(July):470–478, 2014.

[127] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

BIBLIOGRAPHY 177

[128] B. Pokriü, S. Krþo, and M. Pokriü. Augmented Reality based Smart City Services
using Secure IoT Infrastructure. In Proceedings - 2014 IEEE 28th International
Conference on Advanced Information Networking and Applications Workshops,
IEEE WAINA 2014, 2015.

[129] F. E. Prettenthaler and K. W. Steininger. From Ownership to Service Use Life-
style. Ecological Economics, 28(3):443–453, 1999.

[130] J. Proença. Synchronous Coordination of Distributed Components. PhD thesis,
2011.

[131] J. Sánchez, M. Galán, and E. Rubio. Applying a traffic lights evolutionary optim-
ization technique to a real case: "Las Ramblas" area in Santa Cruz de Tenerife.
IEEE Transactions on Evolutionary Computation, 12(1):25–40, 2008.

[132] G. Santos, H. Behrendt, and A. Teytelboym. Part II: Policy instruments for
sustainable road transport. Research in Transportation Economics, 28(1):46–91,
2010.

[133] F. Schnitzler, A. Artikis, M. Weidlich, I. Boutsis, T. Liebig, N. Piatkowski,
C. Bockermann, K. Morik, V. Kalogeraki, J. Marecek, A. Gal, S. Mannor, D. Kin-
ane, and D. Gunopulos. Heterogeneous Stream Processing and Crowdsourcing for
Traffic Monitoring: Highlights. In T. Calders, F. Esposito, E. Hüllermeier, and
R. Meo, editors, Machine Learning and Knowledge Discovery in Databases SE -
49, volume 8726 of Lecture Notes in Computer Science, pages 520–523. Springer
Berlin Heidelberg, 2014.

[134] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps. Generic se-
mantics of feature diagrams. Comput. Netw., 51(2):456–479, Feb. 2007.

[135] T. Semertzidis, K. Dimitropoulos, A. Koutsia, and N. Grammalidis. Video sensor
network for real-time traffic monitoring and surveillance. IET Intelligent Trans-
port Systems, 4(2):103, 2010.

[136] M. Seredynski, P. Ruiz, K. Szczypiorski, and D. Khadraoui. Improving Bus Ride
Comfort Using GLOSA-based Dynamic Speed Optimisation. In Proceedings of
the International Parallel and Distributed Processing Symposium, IPDPS, 2014.

[137] C. Sommer, O. K. Tonguz, and F. Dressler. Traffic information systems: Efficient
message dissemination via adaptive beaconing. IEEE Communications Magazine,
49(5):173–179, 2011.

178 BIBLIOGRAPHY

[138] D. H. Stolfi and E. Alba. Red Swarm: Reducing travel times in smart cities
by using bio-inspired algorithms. Applied Soft Computing Journal, 24:181–195,
2014.

[139] T. Suzumura, S. Kato, T. Imamichi, M. Takeuchi, H. Kanezashi, T. Ide, and
T. Onodera. X10-based massive parallel large-scale traffic flow simulation. Pro-
ceedings of the ACM SIGPLAN 2012 X10 Workshop on - X10 ’12, pages 1–4,
2012.

[140] R. Szabo, K. Farkas, M. Ispany, A. A. Benczur, N. Batfai, P. Jeszenszky, S. Laki,
A. Vagner, L. Kollar, C. Sidlo, R. Besenczi, M. Smajda, G. Kover, T. Szincsak,
T. Kadek, M. Kosa, A. Adamko, I. Lendak, B. Wiandt, T. Tomas, A. Z. Nagy, and
G. Feher. Framework for smart city applications based on participatory sensing.
In Cognitive Infocommunications (CogInfoCom), 2013 IEEE 4th International
Conference on, pages 295–300, dec 2013.

[141] S. Tarapiah, S. Atalla, L. Autonomo, and B. Alsayid. Smart On-Board Trans-
portation Management System Geo-Casting Featured. In 2014 World Congress
on Computer Applications and Information Systems, WCCAIS 2014, 2014.

[142] C. Tautz and C. Gresse von Wangenheim. REFSENO : A Representation Form-
alism for Software Engineering Ontologies. Technical Report 015, 1998.

[143] D. Teodorović and P. Lučić. Intelligent parking systems. European Journal of
Operational Research, 175(3):1666–1681, 2006.

[144] T. Thum, D. Batory, and C. Kastner. Reasoning about edits to feature models. In
Proceedings of the 31st International Conference on Software Engineering, ICSE
’09, pages 254–264, Washington, DC, USA, 2009. IEEE Computer Society.

[145] UNEP. Sustainable, Resource Efficient Cities – Making it Happen! 2012.

[146] United Nations. World Urbanization Prospects: The 2014 Revision, Highlights.
2014.

[147] U.S. Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emis-
sions and Sinks: 1990 - 2013. Technical report, 2015.

[148] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distributed and parallel databases, 14(1):5–51, 2003.

[149] D. Washburn, U. Sindhu, S. Balaouras, R. A. Dines, N. M. Hayes, and L. E.
Nelson. Helping CIOs Understand “ Smart City ” Initiatives, 2010.

BIBLIOGRAPHY 179

[150] M. a. Wimmer. A European perspective towards online one-stop government:
the eGOV project. Electronic Commerce Research and Applications, 1(1):92–
103, Mar. 2002.

[151] L. Wischhof, A. Ebner, and H. Rohling. Information dissemination in self-
organizing intervehicle networks. IEEE Transactions on Intelligent Transport-
ation Systems, 6(1):90–101, 2005.

[152] T. Yahiaoui, L. Khoudour, and C. Meurie. Real-time passenger counting in buses
using dense stereovision. Journal of Electronic Imaging, 19(3):031202, 2010.

[153] X. Yang and L. Zhang. A Dynamic Method to Monitor Public Transport based
on. In 17th International Conference on Intelligent Transportation Systems
(ITSC), pages 924–929, 2014.

[154] I. Yaqoob, I. A. T. Hashem, Y. Mehmood, A. Gani, S. Mokhtar, and S. Guizani.
Enabling communication technologies for smart cities. IEEE Communications
Magazine, 55(1):112–120, 2017.

[155] S. E. Yoo, P. K. Chong, T. Park, Y. Kim, D. Kim, C. Shin, K. Sung, and H. Kim.
DGS: Driving guidance system based on wireless sensor network. Proceedings -
International Conference on Advanced Information Networking and Applications,
AINA, pages 628–633, 2008.

[156] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-
drive: Driving directions based on taxi trajectories. Proceedings of the 18th
SIGSPATIAL International Conference on Advances in Geographic Information
Systems - GIS ’10, (2010):99, 2010.

	Página 1
	Página 2
	Página 3
	Página 4
	thesis.pdf
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Research Problem
	Solution Approach
	Contributions
	Thesis Structure

	Domain Background
	Digital Government
	Digital Public Services
	Benefits
	Challenges

	Smart Cities
	Smart Mobility Services
	State of Research
	State of Practice

	A Taxonomy of Smart Mobility Services
	Building Taxonomies
	Taxonomy Structure
	Taxonomy Development

	Methodology
	Planning
	Data Collection
	Taxonomy Construction
	Validation
	Maintenance

	A taxonomy of smart mobility services
	Type of Services
	Level of Maturity
	Type of Users
	Technology
	Delivery Channels
	Benefits and Beneficiaries
	Common Functionality

	Validation
	Maintenance
	Challenges and Lessons Learnt
	Related Work
	Conclusions

	Technical Background
	Software Product Lines
	Variability
	Modelling SPLs
	SPLs and Digital Government

	Featured Timed Automata
	Timed Systems
	Families of Timed Systems

	Reo Coordination Language
	Primitive Channels
	Nodes
	Connectors
	Reo Semantics

	Compositional Modelling of SPLs
	Motivation
	Coordinating Variable Services
	Composing Variable Services

	Interface Featured Timed Automata
	Syntax
	Operational Semantics
	Composition
	Equivalence
	Properties

	Related Work
	Discussion

	Refinement of IFTA
	Introduction
	Refinement
	Variability Refinement
	Behavioural Refinement
	IFTA Refinement
	Properties

	Variability-aware Refinement
	Discussion

	Variability and Coordination
	Variable Reo Connectors
	The Conservative Approach
	The Relaxed Approach

	Example: Synchronous Merger
	Discussion

	A Virtual Factory Approach
	Virtual factory
	Planning
	Domain Engineering
	Methodology
	Ontology
	Discussion

	Software Engineering
	Case Study
	Prototype

	Discussion

	Conclusions and Future Work
	Bibliography
	Página em branco
	Página em branco

