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Abstract

The success of Fiber Reinforced Polymers (FRP) strengthening methodologies for rein-

forcing concrete structures is highly related to the interfacial bond properties between

reinforcement and concrete, which depends upon a number of parameters. Several

studies were carried out investigating the short-term bond behavior of Near Surface

Mounted (NSM) FRP strengthening systems. However, there has been only limited

investigation of its long-term behavior resulting in a significant lack of available ex-

perimental data about this relevant aspect. The bond performance of the materials

involved in the NSM FRP strengthening system (FRP, adhesive and concrete), due

to its nature, is susceptible to be affected by both the sustained loading and envi-

ronmental conditions. In this study, bond of NSM Carbon FRP (CFRP) laminates

in concrete was investigated experimentally using pull-out tests. The experimental

program consisted of both short-term tests, in which the load was applied monoton-

ically up to failure, and long-term tests in which different levels of sustained loading

were applied. The specimens were tested under sustained loading using bonded length,
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adhesive thickness and sustained loading level as the main parameters of the study.

Results in terms of slip evolution with time are presented to explore the effects of the

studied parameters on the long-term bond behavior between NSM CFRP laminates

and concrete. Moreover, an analytical procedure to predict the slip variation versus

time is proposed and compared to experimental results.
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1. Introduction1

The use of Fiber Reinforced Polymer (FRP) reinforcement in the strengthening2

of Reinforced Concrete (RC) structures has received considerable attention within3

the civil and structural engineering fields. Their unique properties, such as the high4

strength-to-weight ratio and excellent corrosion resistance, make them a suitable and5

effective alternative to conventional steel for both reinforcing and strengthening pur-6

poses [1–5].7

The most common techniques for strengthening RC structures using FRP materials8

are those usually known as Externally Bonded Reinforcement (EBR) and Near Surface9

Mounted (NSM) reinforcement [3, 6–14]. Recently, researchers have shown an increased10

interest in the NSM technique due to several potential advantages, such as: (i) less11

prone to debonding from the concrete substrate, (ii) does not require any surface12

preparation work except grooving, (iii) being the FRP reinforcements better protected13

by the concrete cover, this technique is then suitable to strengthen the negative moment14

regions of beams and slabs, and (iv) the aesthetics of a strengthened structure with15

NSM reinforcement are virtually unchanged [8, 15].16

Surveys such as those reported in [8, 16, 17] showed that Carbon FRP (CFRP)17

has been used in most existing studies for NSM strengthening of concrete structures.18

CFRP reinforcement has higher tensile strength and elastic modulus compared to other19
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available FRP materials, resulting in some advantages such as: use of smaller cross-20

sectional area, need of smaller groove size, and reduction in the amount of the groove21

filling material.22

Bond between FRP and concrete is a fundamental property that influences the23

success and the efficiency of the strengthening system as it controls the composite24

action development between both materials [18–20]. Besides, it affects the load carrying25

capacity, spacing and width of cracks, as well as the failure mode of the strengthened26

member [21].27

Many parameters may affect the bond behavior and load capacity of the NSM pro-28

cedure, bonded length, groove size and adhesive properties being among those more29

influencing [17, 22–28].30

Bond tests (direct pull-out and beam-pull out tests) adapted from those existing31

for steel RC can be used to determine the bond capacity of the strengthening system32

and concrete splitting resistance along the reinforcement. The direct pull-out test is33

one of the most common types of bond tests due to its simplicity and advantages: (i)34

specimens can be easily manipulated, (ii) the area of interest can be easily inspected35

and (iii) variety of tests specimens and setups can be used [29, 30]. Direct pull-out36

tests can be divided into two main types: single-shear pull-out test, in which one con-37

crete block is used and the FRP reinforcement is bonded to one face of the specimen38

having the advantage of simple preparation; and double-shear pull-out test, in which39

one or two concrete blocks are used and the FRP reinforcements are bonded to two40

opposite faces of the specimen. Although double-shear pull-out test is considered a way41

to overcome the eccentricity of the reinforcement, single-shear configuration has been42

more widely used due to its simplicity in preparation and inspection (some issues re-43

lated to preparation and execution may affect the possible advantages of double-shear44

configuration: eccentricities, influence of embedded steel bars, or the need to measure45
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in both reinforcements). A more detailed analysis of these tests is provided elsewhere46

[17, 31–34]. Another issue related to the performance of direct pull-out tests is the47

presence of compression in the concrete in the most classical setup of the test, which48

may introduce some confinement affecting the bond performance (also for steel RC).49

However the possible effect of this confinement may depend on the interrelation be-50

tween geometrical and mechanical parameters of the test and was not always found to51

be present [17]. It can be said that most of the studies carried out used the single-shear52

pullout test due to its simplicity. Although its specific setup may not exactly represent53

the conditions in strengthened elements, it has been considered an effective method to54

obtain results able to quantify, check and compare the bond performance of different55

joint configurations.56

A primary concern of strengthened RC structures performance is its long-term bond57

behavior under serviceability limit state (SLS) conditions, which may be affected by58

several parameters in case of NSM systems. The impact of adhesive properties on the59

long-term bond behavior between NSM CFRP strips and concrete was investigated and60

reported in [35], where the temperature, the adhesive curing time and the initial tensile61

strip force were the test variables. Results showed that the creep effects were reduced62

due to the increase in the adhesive curing period, and that the creep was dependent63

on the stress level in the adhesive layer. In addition, the system performance was64

affected significantly due to the exposure to high temperature. In the same study, a65

model to simulate the interaction between adhesive and bond of NSM FRP strips was66

introduced. The model was based on the non-linear bond-slip law (composed of four67

different regions) presented in [36] and used for bond of deformed steel bars in concrete.68

Costa and Barros [37] have investigated experimentally and analytically the creep69

effects on NSM systems applied with a certain prestress level and concluded that up70

to sustained stress levels of 60% the adhesive endured up two times the instantaneous71
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strain without rupturing. Since the reduction of the values of the Kelvin components72

was verified, the time period between adhesive production and its application is a73

relevant aspect for maintaining the aimed prestress level in the NSM CFRP systems.74

With the aim of studying the durability of RC elements strengthened with the NSM75

technique, Silva et al. [38] experimentally tested beam pull-out and slab specimens76

strengthened with NSM CFRP strips under sustained loading. Some specimens were77

kept in the laboratory conditions, others were immersed in water containing 0% and78

3.5% of chlorides, while others were subjected to wet/dry cycles. The effect of creep79

was found to be practically negligible in the case of beam pull-out specimens; however,80

a noticeable creep effect was observed in case of slab specimens.81

Derias et al. [39] studied the durability of RC beams strengthened with NSM CFRP82

strips. Sustained load equal to 40% of the ultimate load carrying capacity was applied.83

Some beams were subjected to high temperature, while some others were left in room84

conditions. Results showed deterioration in the epoxy-concrete interface and changes85

in failure modes due to the extreme environmental conditions.86

On the other hand, numerous works have been carried out to study the long-term87

bond behavior between CFRP plates Externally Bonded (EB) to concrete blocks. Maz-88

zotti and Savoia [40] tested double shear pull-out specimens under sustained loading89

equal to 50% of the ultimate load using three different bonded lengths. Significant90

redistribution of the shear stresses was observed along the bonded length due to the91

creep deformation. Based on the experimental results, a simplified model was proposed92

to predict the evolution of strain and shear stress with time for EBR. The model was93

developed by using the effective modulus (EM) method, and a linear bond-slip law to94

model the FRP-concrete anchorage.95

Meshgin et al. [41] performed an experimental study in which the effect of applied96

sustained stress, epoxy thickness and epoxy curing time before loading, on the long-97
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term behavior of EB FRP plates was analyzed. Results revealed that the applied98

sustained stress (as a percentage of the ultimate stress) and the epoxy curing time99

before loading could be the most critical parameters affecting creep of epoxy at the100

concrete-FRP interfaces. Similar conclusions were observed in NSM CFRP systems by101

Costa and Barros [37]. Furthermore, it was observed that more creep was developed102

as the applied sustained stress increased, so that the application of high sustained103

stress levels may result in unexpected failures. Based on the experimental results, a104

modification of the Maxwell creep model was suggested in order to model the long-105

term behavior of epoxy at the interfaces. By modifying the Burger’s model, taking106

into account the experimental creep test results, Costa and Barros [37] demonstrated107

the good applicability of this approach for predicting the long-term behavior of NSM108

CFRP systems.109

Dash et al. [42] performed an experimental program concerning the time-dependent110

deformation of EB CFRP sheets bonded to concrete surface. Single shear pull-out spec-111

imens were subjected to sustained loading equal to 40% of the ultimate load. Some112

of the specimens were subjected to different environmental conditions of temperature113

and relative humidity, while some others were immersed in water. Larger creep dis-114

placements were observed in case of specimens exposed to elevated temperature with115

the presence of sustained loading, as well as in those immersed in water compared to116

those exposed to high humidity.117

Results of the study reported in [43] show that, in case of EBR, increasing the118

thickness of the adhesive layer helped in reducing the peak shear stress over time due119

to creep. They also observed that transfer length increased with time due to the120

presence of sustained load.121

The long-term bond behavior of strengthened RC structures under SLS conditions122

is a key aspect that influences the performance of an FRP strengthened RC structure.123
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The review of the existing literature provides evidence that up to date there has been124

limited investigation concerning the long-term bond behavior of NSM FRP strength-125

ening, with the consequent lack of available data and of studies about the effect of126

the influencing parameters. This paper presents the results of an experimental pro-127

gram aimed to investigate the time-dependent bond behavior between NSM FRP and128

concrete considering sustained load level, bonded length and adhesive thickness as the129

main parameters of the study. Results in terms of slip evolution with time are pre-130

sented and discussed. Moreover, an analytical procedure to predict the slip variation131

versus time is proposed. The experimental results are satisfactorily compared to those132

obtained with the proposed model.133

2. Experimental program134

In this experimental program, single shear pull-out specimens were used to obtain135

the bond-slip response of NSM FRP strengthened elements due to its simplicity, as136

mentioned previously. Some specimens were tested under monotonic loading up to137

failure and others under sustained loading. The parameters of the study were the138

sustained loading level (25% and 50% of the failure load), the groove width (5 and 10139

mm) and the bonded length (60, 90 and 120 mm). The bonded lengths were selected140

based on the available literature to introduce bonded lengths shorter, equal and longer141

than the expected effective bonded length. The effective bonded length of the system142

was calculated as 90 mm, based on the equations presented in [44], and similar value143

was reported in [45]. The slip evolution with time under the different loading and144

environmental conditions were monitored during the test period (i.e. 1000 hours).145

For both monotonic pull-out and long-term pull-out test setups, a steel plate having146

a groove of 30 mm × 30 mm allowing the CFRP laminate to pass through, was placed147

at the top of the concrete specimen to restrain its movement when applying the pull-148
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out force. An unbonded length of 50 mm was left from the top of the concrete block149

to improve the behavior in front of possible premature splitting, confinement stresses150

and simulation of intermediate crack debonding [18, 31, 46–48].151

2.1. Material properties152

Specimens were cast with ready mixed concrete with compressive strength of 32153

MPa (CoV 1.5%) obtained by testing three concrete cylinders of 150 mm diameter154

and 300 mm height (28 days after casting) in accordance with UNE 12390-3 [49]. The155

concrete tensile strength and modulus of elasticity were 3 MPa (CoV 1.6%) and 31156

GPa (CoV 2%), respectively. The commercially produced CFRP strips from Clever157

Reinforcement Iberica with 1.4 mm thickness and 10 mm width were used as FRP158

reinforcing material. The CFRP strips were tested in accordance with ISO 527-5159

[50], and a tensile strength of 2400 MPa (CoV 3.8%) and a modulus of elasticity of160

160 GPa (CoV 2%) were obtained. According to manufacturer’s recommendations,161

the two components epoxy resin under the commercial name of S&P220 was used for162

bonding the laminates to concrete. The tensile strength and modulus of elasticity of163

the adhesive used were obtained (after 10 days of curing at 20 ◦C and 55% RH) in164

accordance with ISO 527-2 [51], and were found to be 20 MPa (CoV 2.3%) and 6600165

MPa (CoV 2.5%), respectively.166

2.2. Specimen’s preparation167

Eighteen concrete blocks with the dimensions equal to 200 mm × 200 mm × 250168

mm, as shown in Fig. 1, were cast and cured under normal laboratory conditions. Once169

cured, grooves (adapted to the required width and 15 mm depth) were cut and cleaned170

with compressed air. Both components of epoxy were mixed, in a proportion of 4A:1B171

(in weight), until a uniformly gray color (without any streaks) was obtained. Once172

prepared, the groove was filled with resin to the required bonded length, followed by173
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the placement of the laminate into the groove. Finally, the surface was leveled and the174

resin was left for curing 10 days before testing at the conditions of 20 ◦C and 55% RH.175

Fig. 1: Test specimen configuration (units in mm)

176

2.3. Monotonic pull-out test177

Single shear specimens, with three different bonded lengths (Lb=60, 90 and 120178

mm) were tested under direct pull-out shear test (Fig. 2) to obtain their failure loads.179

For every bonded length, three specimens were tested, thus making a total of nine180

single shear pull-out tests. Two LVDTs were used to measure the loaded and free end181

slips. The load was applied using a servo-hydraulic testing machine with displacement182

controlled rate of 0.2 mm/min.183
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(a) (b)

Fig. 2: (a) Sketch of short-term setup (units in mm) and (b) test setup

2.4. Long-term pull-out test184

A total of nine specimens were tested under sustained loading conditions. Similarly185

to the short-term tests, three different bonded lengths (60, 90 and 120 mm) were186

considered. The sustained load to be applied was defined as 25% and 50% of failure187

load found in the short-term monotonic pull-out shear tests described in the previous188

section. The load was applied by means of gravity loading systems through special189

designed frames as shown in Fig. 3. These frames had a magnification factor of 8.3190

and the load was applied by using small concrete blocks. With the aim to analyze the191

effect of the groove width, three additional tests were performed, whose groove width192

was doubled. Specimens were kept loaded, for 1000 hours, in a climatic chamber at193

20 ◦C of temperature and 55% of relative humidity. Test specimens were identified as194

follows: the letter L followed by the bonded length in mm, the letter S followed by the195

percentage of applied stress level, and finally, the letter G followed by the groove width196

used in mm (see Table 1). The general instrumentation in these long-term pull-out197
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tests consisted on two LVDTs that measured the loaded and free end slips.198

(a)

(b)

Fig. 3: (a) Sketch of sustained loading frame (units in mm) and (b) test setup
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Table 1: Test matrix.

Specimen ID Bonded length Load level Groove width

(mm) (%) (mm)

L60S25G5 60 25 5

L90S25G5 90 25 5

L120S25G5 120 25 5

L60S50G5 60 50 5

L90S50G5 90 50 5

L120S50G5 120 50 5

L60S50G10 60 50 10

L90S50G10 90 50 10

L120S50G10 120 50 10

3. Results and discussion199

3.1. Monotonic loading200

Fig. 4 shows the experimental load-slip curves for the direct short-term tests. Each201

curve was extracted from average results of specimens tested for each bonded length202

(60, 90 and 120 mm).203

The average load carrying capacities were 25 kN for specimens with Lb equal to 60204

mm and 30 kN for specimens with Lb equal to 90 mm and 120 mm. Specimens with205

Lb equal to 60 mm failed by concrete failure, while specimens with Lb equal to 90 mm206

and 120 mm showed similar behavior but failing by FRP rupture (see Fig. 5).207
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Fig. 4: Load vs. loaded end slip for short-term tests

(a) (b)

Fig. 5: Failure modes (a) Concrete failure (Lb=60 mm) and (b) CFRP rupture (Lb=90 and 120 mm).

3.2. Sustained loading208

The total slip values due to sustained loading were registered along the testing209

period (i.e. 1000 hours) for each specimen. Fig. 6 shows the evolution of the total210
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loaded-end slip with time due to the application of a sustained loading level equal to211

25% of the failure load. When this sustained load was applied, similar evolution of slip212

was observed for specimens with bonded length equal to 90 mm and 120 mm (i.e. spec-213

imens L90S25G5 and L120S25G5, respectively). This similar behavior indicates that214

the bonded length was not fully activated. For shorter bonded length (i.e. specimen215

L60S25G5), lower total slip values were obtained as lower value of sustained loading216

was applied according to the percentage of the failure load.

Time (hours)
0 200 400 600 800 1000

S
lip

 (
m

m
)

0

0.02
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0.08

0.1

0.12

L120S25G5
L90S25G5
L60S25G5

Fig. 6: Total loaded-end slip with time at sustained load level of 25%

217

The experimental slip evolution with time at sustained load level equal to 50%, for218

the case of specimens with groove width equal to 5 mm, is presented in Fig. 7. Again,219

similar behavior was observed for specimens having Lb equal to 90 mm and 120 mm,220

being the initial slip of these specimens larger than that of Lb equal to 60 mm, being this221

observation in agreement with that obtained from the short-term tests. Taken together222

(i.e. Fig. 6 and Fig. 7), the maintained similarity in the behavior of specimens with Lb223

equal to 90 mm and 120 mm indicate that up to sustained loading level equal to 50%224
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of the failure load, the bonded length was not fully activated. Similar tendencies were225

observed in case of increasing the groove width at sustained loading equal to 50% that226

can be shown in Fig. 8, which illustrates the total slip with time due to the application227

of sustained loading equal to 50% of the failure load for the case of specimens with228

groove width equal to 10 mm.

Time (hours)
0 200 400 600 800 1000
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L120S50G5
L90S50G5
L60S50G5

Fig. 7: Total loaded-end slip with time at sustained load level of 50 % (groove width =5 mm)

229

When the applied sustained loading level increased from 25% to 50%, the total slip230

increased, for all specimens by almost constant ratio of increase along the test period231

equal to 2.03, 2.06 and 2.07 for specimen with Lb equal to 60 mm, 90 mm and 120 mm,232

respectively. It can be concluded that doubling the sustained loading level, doubled233

the total slip at any time along the test period. This finding supports results from the234

monotonic test (Fig. 4) in which up to 50% of the failure load, the behavior was almost235

linear. On the other hand, increasing the groove width from 5 mm to 10 mm slightly236

reduced the total slip values for all bonded lengths. This might be attributed to the237

better and more homogeneous redistribution of shear stress along the bonded length238
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Fig. 8: Total loaded-end slip with time at sustained load level of 50 % (groove width =10 mm)

as a result of increasing the adhesive thickness [19, 43]. Increasing the groove width239

reduced the average total slip by 18%, 9% and 7% for specimen with Lb equal to 60240

mm, 90 mm and 120 mm, respectively.241

Experimental data presented in this study show that at a sustained load of 25%242

of the failure load, the ratio between the total slip at 1000 hours of sustained loading243

to the instantaneous slip at the time of application of the sustained load (t=0) was244

found to be 1.77, 1.77 and 1.88 for specimens L60S25G5, L90S25G5 and L120S25G5,245

respectively. When sustained loading equal to 50% was applied, similar ratios were246

obtained with values of 1.75, 1.76 and 1.75 in case of specimens L60S50G5, L90S50G5247

and L120S50G5, respectively. On the the other hand, the ratio slightly increased, to be248

2.1, 1.82 and 1.83 for specimens L60S50G10, L90S50G10 and L120S50G10, respectively,249

when the groove width increased from 5 to 10 mm. It was observed that the obtained250

ratios were almost constant for all cases, however a slight increase was found, as a251

result of increasing the adhesives volume, when the groove width increased. This slip252
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creep increase ratio is directly related to the tensile creep of the adhesive, since for this253

time period and stress level in the adhesive, Costa and Barros [37] and Emara et al.254

[52] have measured a tensile strain between two and three times the instantaneous one.255

No visible changes were appreciated in the appearance of the specimens during the256

test. By the end of testing period, specimens were unloaded and there were no visible257

cracks or signs indicating failure either in the concrete or in the epoxy.258

4. Analytical modeling259

In this section a simplified procedure to simulate the long-term behavior, under SLS260

conditions and sustained loading, of the NSM joint is proposed. First the governing261

equations for short-term bond behavior are described and then the simulation of the262

long-term behavior is introduced.263

4.1. Short-term bond behavior264

In a monotonic pull-out test, forces are transferred from reinforcement to concrete265

through the adhesive by means of shear stresses that appear at their interfaces. Fig. 9266

shows an infinitesimal element of CFRP strip of length dx, showing the shear stresses267

at the interface and tensile stresses at the transversal section (of dimensions hf x tf ).

Fig. 9: Infinitesimal element of NSM strip

268

Equilibrium equation of this infinitesimal element, along with the assumption of269

CFRP strip having a linear elastic behavior and CFRP-concrete joint being at the270
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elastic stage, allows obtaining the differential equation governing the stress transfer271

process (Eq. 1):272

dσf
dx

=
τ(x)

teq
(1)

273

teq = Af/Lp (2)

Lp = (tf + ta) + 2 (hf + ta) (3)

where σf is the tensile stress in the FRP, τ is the shear stress, teq is the ratio between274

the FRP cross-sectional area (Af ) and the intermediate perimeter in the adhesive layer275

(Lp), ta is the thickness of the adhesive layer, and tf and hf are the thickness and the276

width of the FRP strip, respectively (see Fig. 10).

h
f

t f

L b

hg

t
g

CFRP strip
Adhesive

Concrete

block

(a) (b)

Fig. 10: (a) NSM system and (b) Details of cross section.

277

According to the literature [8, 17, 40, 44, 53–59], the bond-slip behavior of FRP278

reinforced elements can be satisfactorily simulated by using a local bilinear law as that279
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Fig. 11: Bi-linear bond-slip

shown in Fig. 11 and described by Eq. 4.280

τ =



τ0
s0
s for 0 < s ≤ s0

τ0
sf−s0

(sf − s) for s0 < s ≤ sf

0 for s > sf

(4)

where τ and s are the interfacial shear stress and its corresponding slip, respectively,281

τ0 is the maximum interfacial shear stress, s0 is the slip at τ0 and sf is the maximum282

slip of the τ -s relationship.283

This study aimed to simulate the effects of sustained loading under SLS conditions.284

For this purpose, it was assumed that the slip between CFRP and concrete can be285

represented by a local bond-slip law applied to the adhesive layer, that the deformability286

of the concrete can be neglected and that the adhesive is subjected to pure shear287

[40, 45, 53, 56, 59–61]. The interfacial shear stress in the ascending branch of the288

bilinear bond-slip law can be obtained by:289

τ = Ke s (5)

where s is the slip of the CFRP strip and Ke is the stiffness of the τ -s relationship,290
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that can be described as:291

Ke = τ0/s0 (6)

being τ0 and s0 the maximum interfacial bond stress in the τ -s relationship and its292

corresponding slip, respectively.293

The first derivative of Eq. 5 yields:294

dτ

dx
= Ke εf (7)

where εf is the strains in FRP strip.295

296

By using Eq. 7 and Eq. 1, the following differential equation can be obtained:297

d2σf
dx2

− α2σf = 0 (8)

where298

α2 =
Ke

Ef teq
(9)

being Ef is the modulus of elasticity of the FRP.299

300

Eq. 8 can be solved applying the following boundary conditions: at x=0 (free end),301

σf = 0 and at x=L (loaded end), σ = σ0 (the applied stress in the FRP). After solving302

the distribution of the axial FRP stress, shear stress and the slip along the bonded303

length (at any distance x from the free end) are given by:304

σf (x) = σ0
sinh(αx)

sinh(αLb)
(10)
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τ(x) = teq ασ0
cosh(αx)

sinh(αLb)
(11)

s(x) =
teq
Ke

ασ0
cosh(αx)

sinh(αLb)
(12)

4.2. Bond behavior under sustained loading305

The bases of the approach presented in [36] for modelling the long-term bond be-306

havior of steel bars in concrete have been followed in this work, with the difference307

that the creep effects are introduced here into the bilinear bond-slip model for short-308

term behavior of the NSM system previously described (Fig. 11). According to this309

approach, the evolution of the local bond-slip with time can be estimated based on the310

initial local bond-slip law and the creep function of the joint, in such a way that slip311

at any time can be described by:312

s(t) = s0(1 + φ(t, t0)) (13)

where s(t0) and s(t) are the slip values at time t0 and t from loading, respectively, and313

φ(t, t0) is the creep function of the joint at time t with respect to time t0.314

The application of this assumption to the short-term bond-slip model (Fig. 11)315

would cause a shift on the right of the curve for t0, resulting in a set of curves for316

different times as indicated in Fig. 12. Nevertheless, to avoid an unrealistic increment317

in the available energy under long-term loading (area under the curves), the use of318

the bond-slip law at time t0 as an envelope was proposed, meaning that the maximum319

available energy corresponds to short-term bond law [36]. Therefore the final set of320

curves for long-term would correspond to the modified ascending branches for each time321

t intersecting with the descending branch for short-term as indicated in Fig. 12. This322
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assumption was shown to be adequate in previous works using a non-linear bond-slip323

law composed of four zones, similar to that used for deformed steel bars in concrete324

[35].325

Fig. 12: Bond-slip evolution with time (Arrows show the new bond-slip law at time t)

The practical application of this methodology can be carried out using the so-326

called Effective Modulus Method (EMM) in which an effective stiffness Ke(t) [40] for327

the ascending branch is used as follows:328

Ke(t) =
Ke(t0)

(1 + φ(t, t0))
(14)

329

τ0(t) = Ke(t) s0(t) (15)

where Ke(t0) and Ke(t) are the stiffness of the ascending branch at times t0 and t,330

respectively, τ0(t) and φ(t,t0) are the maximum interfacial shear stress and the creep331

factor at time t, respectively, and s0(t) is the slip corresponding to τ0(t).332

This is represented in Fig. 12 through the reduction in the slope of the ascending333

branch of the bond-slip relationship at time t (t > t0). With this reasoning, the334

time-dependent behavior can be introduced in the analytical equations describing the335
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short-term bond problem (Eq. 9 to Eq. 12) just by changing the stiffness with time336

(Ke(t)).337

The evolution of bond-slip law with time , presented in Fig. 12, is mainly dependent338

on the adhesive’s properties. These properties can be determined through a tensile339

creep test that allows for creep coefficients at different times (φ(t)) to be obtained,340

and therefore, for bond-slip relationships at any time to be determined. Through341

this procedure, the analytical equations describing the distribution of the axial CFRP342

stress, the shear stress and the slip along the bonded length with time read:343

α2(t) =
Ke(t)

Ef teq
(16)

σf (x, t) = σ0
sinh(α(t)x)

sinh(α(t)Lb)
(17)

τ(x, t) = teq α(t)σ0
cosh(α(t)x)

sinh(α(t)Lb)
(18)

s(x, t) =
teq
Ke(t)

α(t)σ0
cosh(α(t)x)

sinh(α(t)Lb)
(19)

Application of previous equations indicate that under sustained loading more creep344

in the joint develops with time, this leading to reduction in the effective stiffness and345

consequently more slip takes place along the bonded length and more bonded length346

is activated. Furthermore, this effect leads to a redistribution of stresses resulting in a347

decrease of the maximum shear and local concrete stresses.348
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5. Comparison between analytical and experimental results349

The experimental results obtained in the current work are used to check the pre-350

sented analytical model.351

Assuming a short-term load-slip curve as that shown in Fig. 13 and that the axial352

stiffness of the FRP strip is much smaller than that of the concrete, the maximum353

bond-stress at time t0 (τ0(t0)) can be obtained as [40, 53]:354

τ0(t0) =
P 2
max

LpAf Ef sf
(20)

where Pmax and sf are the load and slip values at the peak point of the load-slip curve355

(i.e. point B) at which the interface shear stress reaches its maximum value, and s0 is356

the slip at the end of the linear-elastic part of the curve (point A).

Fig. 13: Load-slip under monotonic loading

357

The adhesive’s creep coefficients were obtained from a tensile creep test carried out358

by the authors [52] at the same environmental conditions as the pull-out tests and359

with the same batch of epoxy resin. Experimental values of creep coefficients and the360

corresponding equivalent stiffness are presented in the second and third columns of361

Table 2, respectively, while the bond-slip parameters (τf (t) and s0(t) in Fig. 12) for362
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the long-term equivalent curves at different times are indicated in the fourth and fifth363

columns, respectively.

Table 2: Bond-slip parameters at different times

Time φ(t) Ke(t) τ 0(t) s0(t)
(hours) (N/mm3) (MPa) (mm)
0 0 229 18.35 0.08
10 0.21 189 18.04 0.10
50 0.45 158 17.71 0.11
100 0.67 137 17.41 0.13
500 1.66 86 16.20 0.19
1000 2.40 68 15.42 0.23

364

Once the equivalent stiffness (Ke(t)) has been obtained, analytical predictions of365

the evolution of slip with time (Eq. 19) are compared to experimental values of the366

experimental program and presented in Fig. 14 to Fig. 16, for specimens with bonded367

length of 60, 90 and 120 mm, respectively. As it can be seen, good agreement is in368

general observed for the analyzed cases, thus indicating that the proposed methodology369

predicts reasonably well the slip evolution with time.370

For the purpose of clarification, Table 3 presents a summary of experimental and371

predicted values for the loaded-end slips at loading (t=0 hours) and at the end of the372

testing period (t=1000 hours). The ratios between experimental and predicted slip373

values are also shown along with the mean and the standard deviation showing good374

correlation between experimental and analytical results.375
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Fig. 14: Comparison of analytical and experimental evolution of slip with time for specimens with
Lb=60 mm
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Fig. 15: Comparison of analytical and experimental evolution of slip with time for specimens with
Lb=90 mm
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Fig. 16: Comparison of analytical and experimental evolution of slip with time for specimens with
Lb=120 mm

Table 3: Comparison between experimental and analytical long-term predictions.

Specimen loaded-end slip at t= 0 hours (mm) loaded-end slip at t= 1000 hours (mm)
sexp. smodel smodel/sexp. sexp. smodel smodel/sexp.

L60S25G5 0.053 0.052 0.98 0.094 0.103 1.10
L60S50G5 0.103 0.104 1.01 0.180 0.201 1.10
L90S25G5 0.063 0.064 1.02 0.112 0.122 1.09
L90S50G5 0.131 0.132 1.01 0.230 0.241 1.04
L120S25G5 0.063 0.064 1.02 0.109 0.119 1.09
L120S50G5 0.132 0.131 0.99 0.231 0.241 1.04

Mean 1.01 1.06
Standard deviation 0.01 0.04
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6. Conclusions376

Results of a study designed to investigate the time-dependent bond behavior be-377

tween NSM FRP and concrete have been presented. Sustained load level (25% and 50%378

of the failure load), bonded length (60, 90 and 120 mm) and adhesive thickness were379

the main parameters studied. A simplified analytical methodology was introduced to380

predict the time-dependent behavior. From the specimens tested in the current study381

the following conclusions may be drawn:382

• Specimens with bonded length equal to 90 and 120 mm showed similar behaviors383

within the same test condition.384

• For all bonded lengths used, increasing the sustained loading level from 25% to385

50% increased the total slip, by almost the double, at any time along the testing386

period. This observation is coherent with the monotonic test results obtained.387

• When the groove width increased from 5 to 10 mm, the total slip values reduced388

for all bonded lengths. The average reduction was 0.82, 0.91 and 0.93 for specimen389

with Lb equal to 60, 90 and 120 mm, respectively.390

• The ratio between the total slip at 1000 hours of sustained loading to the in-391

stantaneous slip at the time of application of the sustained load (t=0) was found392

to be similar for all specimens tested. The ratios obtained were 1.77, 1.77 and393

1.88 for specimens subjected to sustained loading equal to 25% with Lb equal to394

60, 90 and 120 mm, respectively, and 1.75, 1.76 and 1.75 in case of specimens395

subjected to sustained loading equal to 50% with Lb equal to 60, 90 and 120 mm,396

respectively.397

• A simplified analytical methodology has been developed, based on a bi-linear398

interface model, using the effective modulus method. Good agreement is observed399
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between analytical and experimental results.400
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