Dexamethasone-loaded Carboxymethylchitosan/poly(amidoamine) Dendrimer Nanoparticles Enhances Bone Formation In Vivo

http://hdl.handle.net/1822/58599

Metadata

Issue Date 2008-06
Abstract [Excerpt] Dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles, CMC/PAMAM-Dex were successfully synthesized to find applications as a controlled system of relevant molecules in Bone Tissue Engineering. These are aimed at modulating the proliferation and differentiation of stem cells, both in vitro and in vivo. In previous work, we have demonstrated that CMC/PAMAM-Dex nanoparticles are internalized with high efficiency by different cell types, namely osteoblastic-cells, SaO

Publisher Mary Ann Liebert Inc.
Keywords bone, Carboxymethylchitosan/poly(amidoamine) dendrimer, Nanoparticles
Type conferenceAbstract
Peer Reviewed yes
Collections <e)3B’s - Resumos em livros de atas de conferências - indexados no ISI Web of Science

This page was automatically generated in 2019-07-11T21:59:34Z with information provided by RepositoriUM
MEETING ABSTRACTS

June 22–26, 2008
Porto Congress Center–Alfândega
PORTUGAL

Conference Chair:
Rui L. Reis

Organized by:
3B’s Research Group, University of Minho, Braga, Portugal
Dexamethasone-loaded carboxymethylchitosan/poly(amideamine) dendrimer nanoparticles, CMC/PAMAM-Dex were successfully synthesized to find applications as a controlled system of relevant molecules in Bone Tissue Engineering. These are aimed at modulating the proliferation and differentiation of stem cells, both in vitro and in vivo. In previous work, we have demonstrated that CMC/ PAMAM-Dex nanoparticles are internalized with high efficiency by different cell types, namely osteoblastic-cells, SaOs-2 and rat bone marrow stromal cells, RBMSCs. The biocompatibility of HA and SPCL scaffolds was also assessed by means of seeding RBMSCs onto the materials and performing a luminescent cell viability assay, after 24 and 72 hrs.

In this work, the ability of the nanoparticles to induce the osteogenic differentiation of RBMSCs and bone formation was investigated by exposing the nanoparticles (dispersed in culture media) to RBMSCs during expansion period, then cells were trypsinized and seeded (cell number of 1×10^6 per scaffold) over-night onto the hydroxyapatite, HA and starch-polycaprolactone, SPCL scaffolds. Afterwards, the constructs were implanted subcutaneously on the back of F344 rats for the period of 4 weeks. After the implantation period, the animals were sacrificed and constructs retrieved. Micro-Computed Tomography (μ-CT) analysis, ALP activity, osteocalcin content (ELISA), and calcium content were performed to investigate new bone formation. For routine examination of undecalcified constructs, Haematoxylin & Eosin (H&E) and Toluidine blue staining were also carried out. Results have shown that CMC/PAMAM-Dex nanoparticles are biocompatible and enhanced new bone formation as compared to controls (RBMSCs/scaffolds that were not exposed to nanoparticles), in vivo.