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Abstract. This paper aims to illustrate the application of a derivative-
free multistart algorithm with coordinate search filter, designated as the
MCSFilter algorithm. The problem used in this study is the parameter
estimation problem of the kinetic α-pinene isomerization model. This
is a well known nonlinear optimization problem (NLP) that has been
investigated as a case study for performance testing of most derivative
based methods proposed in the literature. Since the MCSFilter algorithm
features a stochastic component, it was run ten times to solve the NLP
problem. The optimization problem was successfully solved in all the runs
and the optimal solution demonstrates that in all runs the MCSFilter
provides a good quality solution.

Keywords: MCSFilter, α-pinene isomerization model, multistart, derivative-
free optimization

1 Introduction

The parameter estimation problem of the α-pinene isomerization model is one of
the optimization problems that has been widely used as a benchmark problem to
assess the performance of optimization algorithms. This is because of the chal-
lenges posed by the multivariable, complex and nonlinear nature of the kinetic
model that describes the α-pinene isomerization phenomena. This system is de-
scribed by the reaction scheme represented in Fig. 1. It comprises five reactions,
one of them is reversible, and five chemical species: α-pinene (A), dipentene (B),
allo-ocimene (C), α and β-pironene (D), and the dimer (E).
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Fig. 1. α-pinene isomerization reaction scheme: A - α-pinene; B - dipentene; C - allo-
ocimene; D - α and β-pironene; E - dimer.

One of the earliest kinetic α-pinene isomerization models was proposed by
Box and Drapper [1], and it was used to estimate the five kinetic rate constants
of this reaction system, using the experimental data obtained by Fuguitt and
Hawkins (see [1] and references therein). A later study [2] has demonstrated
that there could exist linear dependencies between the experimental data on
the concentration of the chemical species involved in the α-pinene isomerization.
This was the cause of numerical difficulties to estimate the parameters and the
consequent error estimates with respect to the experimental observations. For
instance, the concentration of β-pironene was erroneously estimated by 3% of
the total conversion of α-pinene [1]. Besides, these linear dependencies might be
the root cause of some of the difficulties experienced by optimization methods
in getting to the optimal value.

In the work of Ames [3] it is asserted that there are three linear relation-
ships in the experimental chemical species concentration data. The first linear
relationship concerns the mass balance to the mixture of the reacting system.
The second one is due to the fact that the isomerization is an irreversible phe-
nomenon. Finally, the third linear relationship arises from the fact that the sum
of molar fractions of the chemical species in the reacting mixture has to be equal
to one. Box et al. [2] solved this parameter estimation problem using a least
square criterion. The objective function is defined as the sum of the squared de-
viation between the chemical species concentrations predicted by the model and
the measurements obtained over a given time horizon. Tjoa and Biegler [4] have
addressed this estimation problem by solving a constrained nonlinear optimiza-
tion problem where a quadratic objective function is determined by invoking
the numerical integration of the dynamic ODE model of the chemical reaction
system. Their results are very similar to those obtained by [2]. In both works,
the starting point to solve the optimization problem is very close to the optimal
solution, which makes the optimizer convergence easier.

In a followup study based on the earlier works of [5] and [4], Dolan et al. [6] ap-
plies a search filter based method that lead to results similar to the ones obtained
previously with the derivative based optimization methods. Egea-Larrosa [7,8]
has applied the Scatter Search Method (SSm). The SSm is a hybrid populational
method that features a stochastic component made of a metaheuristic scatter



MCSFilter algorithm for α-pinene Problem 3

search associated with a component that uses the derivative function informa-
tion. It constitutes a global optimization method with a random local search
strategy. A previous formulation of this hybrid method by [9], where it is as-
sumed that the problem is unimodal, was as well as implemented by Egea et al.
[7]. The two implementations of the method differ in the local search strategy.
The method in [9] uses a local search based on quasi-Newton procedure, whereas
in [7] a direct search method is implemented based on a stochastic approach.

A recent work [10], in which the α-pinene system was also used for testing
purposes, details the development and implementation of the Firefly Algorithm.
This is a stochastic method for global optimization problems that mimics the
behavior of fireflies considering that the fireflies are unisex and usually attracted
to the brightest light. When applied to the optimization method, the ”light
intensity” is measured according to the function value: the lower the value, the
brightest the light. This means that the points generated by the stochastic part
of the method will converge to lower values of the function. For further details
on this optimization strategy see [10].

The method used in this work to solve the α-pinene isomerization parameter
estimation problem is the Multistart Coordinate Search Filter Method (MCSFil-
ter). It is a derivative-free method based on a multistart strategy coupled with
a local coordinate search filter procedure to find the global minimum. Further
details on the underlying algorithm are given in Sect. 2 We demonstrate the
application of the MCSFilter to solve the α-pinene isomerization parameter es-
timation problem. Also, a comparison of the performance of the MCSFilter with
other optimization strategies is presented regarding the quality of the optimal
solution, as well as the influence of two parameters on the performance of the
algorithm.

The paper is organized as follows. The derivative-free multistart strategy
with coordinate search filter method (MCSFilter) is described in Sect. 2. The
kinetic model and the parameter estimation problem are presented in Sect. 3.
The numerical results and its discussion are presented in Sect. 4. Finally, some
remarks are given in Sect. 5.

2 The Multistart Coordinate Search Filter Method

The MCSFilter algorithm was initially developed by [11] to find multiple solu-
tions of a nonconvex and nonlinear constrained optimization problems of the
following type:

min f(x)
subject to gj(x) ≤ 0, j = 1, ...,m

li ≤ xi ≤ ui, i = 1, ..., n
(1)

where, f is the objective function, gj(x) j = 1, ...,m are the constraint functions
and, at least, one of the functions f, gj : Rn −→ R is nonlinear; l and u are the
bounds and Ω = {x ∈ Rn : g(x) ≤ 0 , l ≤ x ≤ u} is the feasible region.

This method does not use any derivative information and incorporate two
major different parts: the multistart strategy related with the exploration feature
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of the method and a derivative-free local search related with the exploitation of
promising regions.

The multistart strategy is a stochastic algorithm that repeatedly applies a
local search to sampled points aiming to converge to all the solutions of a mul-
timodal problem. When the direct search is repeatedly applied some minimizers
can be found more than once. To avoid a previously computed minimizer, a
clustering technique based on computing the regions of attraction of previously
identified minimizers is used. In this way, if the sampled point belongs to the
region of attraction of an already known minimizer the direct search procedure
will not be performed since it would converge to this known minimizer.

Figure 2 illustrates the influence of the regions of attraction. The red/magenta
lines between the initial approximation and the minimizer represents a local
search that has been performed (red line is used to represent the first local
search which converged to each minimum). The white dashed line between the
two points represents a local search that was discarded, using the regions of at-
traction. A set of benchmark problems [11] as well as a small dimensional real
problem [12] were used to test the algorithm and the results were very promising.
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Fig. 2. Illustration of the Multistart strategy with regions of attraction.

The direct search used is a derivative-free local search that consists of a co-
ordinate search combined with a filter methodology to generate a sequence of
approximate solutions that improve either the constraint violation or the objec-
tive function relative to the previous approximation, called Coordinate Search
Filter algorithm (CSFilter) [11].
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A rough outline of the CSFilter algorithm is as follows and (Algorithm 1 dis-
plays the steps of the algorithm). At the beginning, the problem (1) is rewritten
as a bi-objective optimization problem aiming to minimize both the objective
function f(x) and a nonnegative continuous aggregate constraint violation func-
tion θ(x) defined by

θ(x) = ‖g(x)+‖2 + ‖(l − x)+‖2 + ‖(x− u)+‖2 (2)

where v+ = max{0, v}.The filter is initialized to F = {(θ, f) : θ ≥ θmax}, where
θmax > 0 is an upper bound on the acceptable constraint violation. The D⊕
denotes the set of 2n coordinate directions, defined as the positive and negative
unit coordinate vectors, D⊕ = {e1, e2, . . . , en,−e1,−e2, . . . ,−en}.

Algorithm 1 CSFilter algorithm

Require: x and parameter values, αmin; set x̃ = x, xinf
F = x, z = x̃;

1: Initialize the filter; Set α = min{1, 0.05
∑n

i=1 ui−li
n

};
2: repeat
3: Compute the trial approximations zia = x̃+ αei, for all ei ∈ D⊕;
4: repeat
5: Check acceptability of trial points zia;
6: if there are some zia acceptable by the filter then
7: Update the filter;
8: Choose zbesta ; set z = x̃, x̃ = zbesta ; update xinf

F if appropriate;
9: else

10: Compute the trial approximations zia = xinf
F + αei, for all ei ∈ D⊕;

11: Check acceptability of trial points zia;
12: if there are some zia acceptable by the filter then
13: Update the filter;
14: Choose zbesta ; Set z = x̃, x̃ = zbesta ; update xinf

F if appropriate;
15: else
16: Set α = α/2;
17: end if
18: end if
19: until new trial zbesta is acceptable
20: until α < αmin

The search begins with a central point (the current approximation x̃), and
2n trial approximations zia = x̃ + αei, for ei ∈ D⊕, where α > 0 is a step
size. The constraint violation value and the objective function value of all 2n
points are computed. If some trial approximations improve over x̃, reducing θ
or f and are acceptable by the filter, then the best of these non-dominated
trial approximations, zbesta , is selected, and the filter is updated (adding the
corresponding entries to the filter and removing the dominated entries). This best
approximation becomes the new central point in the next iteration, x̃ ← zbesta .
On the other hand, if all trial approximations zia are dominated by the current
filter, then all zia are rejected, and a restoration phase is invoked.
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When it is not possible to find a non-dominated best trial approximation
(before declaring the iteration unsuccessful) a restoration phase is invoked. In

this phase, the most nearly feasible point in the filter, xinfF , is recovered and
the search along the 2n coordinate directions is carried out from it. If a non-
dominated best trial approximation is found, this point becomes the new central
point and the iteration is successful. Otherwise, the iteration is unsuccessful, the
search returns back to the current x̃, the step size is reduced, α = α/2, and new
2n trial approximations zia are generated from it. If a best non-dominated trial
approximation is still not found, the step size is again reduced since another
unsuccessful iteration has occurred. The search stops when α falls below αmin,
a small positive tolerance. Further details about the multistart strategy and the
CSFilter algorithm can be found in [11].

The MCSFilter algorithm was initially coded in MATLAB and, in this work,
it was coded in Java language. Algorithm 2 shows the main steps of the MCS-
Filter algorithm for finding a global solution to problem (1).

Algorithm 2 MCSFilter algorithm

Require: Parameter values; set M∗ = ∅, k = 1, t = 1;
1: Randomly generate x ∈ [l, u]; compute Bmin = mini=1,...,n{ui − li};
2: Compute m1 = CSFilter(x), R1 = ‖x−m1‖; set r1 = 1, M∗ = M∗ ∪m1;
3: repeat
4: Randomly generate x ∈ [l, u];
5: Set o = arg minj=1,...,k dj ≡ ‖x−mj‖;
6: if do < Ro then
7: if the direction from x to yo is ascent then
8: Set prob = 1;
9: else

10: Compute prob = %φ( do
Ro
, ro);

11: end if
12: else
13: Set prob = 1;
14: end if
15: if ζ‡ < prob then
16: Compute m = CSFilter(x); set t = t+ 1;
17: if ‖m−mj‖ > γ∗Bmin, for all j = 1, . . . , k then
18: Set k = k+ 1, mk = m, rk = 1, M∗ = M∗ ∪mk; compute Rk = ‖x−mk‖;
19: else
20: Set Rl = max{Rl, ‖x−ml‖}; rl = rl + 1;
21: end if
22: else
23: Set Ro = max{Ro, ‖x−mo‖}; ro = ro + 1;
24: end if
25: until the stopping rule is satisfied

In this algorithm, M∗ is the set containing the computed minimizers and ζ is
a uniformly distributed number in (0, 1). Moreover, line 17 means that m /∈M∗



MCSFilter algorithm for α-pinene Problem 7

and in lines 2 and 16, a call is made of the direct search coupled with the filter
methodology, the CSFilter algorithm.

The stopping rule that is used in the MCSFilter algorithm is related to the
number of initial points used in the multistart strategy. In this way, the algorithm
stops when a maximum number of initial points is reached, k ≤ kmax.

3 Parameter Estimation Problem

As it is illustrated in Fig. 1, the isomerization of the α-pinene is characterized
by the formation of dipentene and allo-ocimene, which in turn originates α and
β-pironene through an irreversible process reaction, and a dimer through a re-
versible reaction. Let yi, i = 1, . . . , 5, denote the molar concentration of each
component i, i = 1, . . . , 5, in the mixture, respectively α-pinene, dipentene, allo-
ocimene, α and β-pironene, and dimer. The partial mass balance to the mixture
leads to the following ODE model:

dy1
dt

= −(p1 + p2) y1, (3a)

dy2
dt

= p1 y1, (3b)

dy3
dt

= p2 y1 − (p3 + p4) y3 + p5 y5, (3c)

dy4
dt

= p3 y3, (3d)

dy5
dt

= p4 y3 − p5 y5, (3e)

with t ∈ [0; 36420] and the following initial conditions: y1(0) = 100; y2(0) =
0; y3(0) = 0; y4(0) = 0; y5(0) = 0. pj represents the specific reaction rate of
reaction j, j = 1, . . . , 5. This is the set of kinetic parameters to be determined
in order to fit the model to the experimental data (Table 1).

As mentioned before, because of its complex, nonlinear nature, this model has
been used in several works as a benchmark problem to assess the performance
of optimization algorithms (e.g., [4,6,8,9,10,13,14,15]).

The parameter estimation problem can be formulated as an optimization
problem that applies the least squares method with simple bounds [4]. Since (3)
is a dynamic model, the calculation of the value of the objective function re-
quires its numerical integration over the time horizon of interest (see Table 1).
The kinetic model parameters, p, are the decision variables of the optimization
problem which can be posed as follows:

min
p

J(p) =

5∑
i=1

9∑
k=1

(yexp i,k − yi,k)2

subject to pL 6 p 6 pU,

(4)
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Table 1. Experimental data (e.g.,[7,10]).

α-pinene dipentene allo-ocimene pyronene dimer
k t y1 y2 y3 y4 y5

1 0 100.0 0.0 0.0 0.0 0.0
2 1230 88.35 7.3 2.3 0.4 1.75
3 3060 76.4 15.6 4.5 0.7 2.8
4 4920 65.1 23.1 5.3 1.1 5.8
5 7800 50.4 32.9 6.0 1.5 9.3
6 10680 37.5 42.7 6.0 1.9 12.0
7 15030 25.9 49.1 5.9 2.2 17.0
8 22620 14.0 57.4 5.1 2.6 21.0
9 36420 4.5 63.1 3.8 2.9 25.7

where yexp i,k is the experimental concentration value and yi,k the concentration
predicted by the model (3) for the chemical specie i at the time instant k. The
subscripts U and L on p denote upper and lower limits, respectively.

The best known optimum value of the objective function for this problem
is J(p∗) = 19.872 achieved at p∗1 = 5.9256 × 10−5, p∗2 = 2.9632 × 10−5, p∗3 =
2.0450× 10−5, p∗4 = 2.7473× 10−4, p∗5 = 4.0073× 10−5 [7].

4 Numerical Results

In this section, the practical performance of the MCSFilter algorithm when solv-
ing problem 4 is analyzed. The computational tests were performed on a 2.6 GHz
Core i7, with 8 GB of RAM and an operating system MacOs El Capitan laptop.
The computational framework to solve the optimization problem (4) was imple-
mented using Java programming language and a Java version of the MCSFilter.
During the optimization process, the dynamic model (3) is solved with the ex-
plicit Adams-Bashforth integrator for ODEs in Java, from the Apache Commons
Math 3.0 Library.

In the simulations done in this study, the absolute and relative tolerances
for the integration were set to 1 × 10−8. The upper and lower bounds on the
parameter values were set to:

pU =
[

1× 10−4 1× 10−4 1× 10−4 1× 10−3 1× 10−4
]>

,

pL =
[

1× 10−6 1× 10−6 1× 10−6 1× 10−5 1× 10−6
]>

.

In order to evaluate the influence of the parameter values (αmin and kmax)
on the quality of the solution, an experimental study was conducted to tune the
stopping criteria parameters of the CSFilter and MCSFilter algorithms, in the
context of the α-pinene problem. Nine combinations of αmin and kmax, using the
values αmin = {10−5, 10−6} and kmax = {10, 15, 20, 50, 100}, were tested.



MCSFilter algorithm for α-pinene Problem 9

Table 2 presents the best (Jbest), average (Javg) and worst (Jworst) results
produced by MCSFilter algorithm based on 10 executions, as well as the number
of function evaluations for the best run, nFE,best.

Table 2. Results obtained by MCSFilter, for different combinations of αmin and kmax.

αmin kmax Jbest Javg Jworst nFE,best

10−5 10 29.5107 39.8377 75.8033 2933
10−5 15 26.3374 39.6668 83.9623 4601
10−5 20 23.6566 33.6128 52.1003 2729
10−5 50 22.9355 30.6804 44.8241 14026
10−6 10 20.0165 20.3306 20.9549 5304
10−6 15 19.9517 20.1647 20.6374 5249
10−6 20 19.9122 20.1013 20.3227 8486
10−6 50 19.9157 20.0173 20.1143 20737
10−6 100 19.9074 19.9798 20.1241 34241

Table 2 shows that MCSFilter algorithm converges to the known global min-
imum. The objective of this experimental study was to evaluate the performance
of the MCSFilter algorithm for different values of αmin in order to obtain accu-
rate solutions, but with a low number of function evaluations. However, despite
the reduced number of evaluations of the function for αmin = 10−5 the obtained
solutions are not good with a relative error of 16 % or more of the global opti-
mum known solution. It follows that an increase in the value of the parameter
αmin leads to worst solutions since the global solution was never reached. In
addition, we can also conclude that as kmax increases the number of evaluations
of the function also increases. This is obvious, because if the number of points
generated is greater, the number of evaluations of the function is also greater.

The best value of J(p) = 19.9074 is obtained for αmin = 10−6 and kmax = 100
with a relative error of +0.17% when compared with the best known solution in
[7]. From Table 2 one may conclude that for smaller values of αmin the solution is
better. Thus, increasing the value of αmin leads to a worse solution than reducing
the number of initial points.

Finally, a last experiment with one execution of the MCSFilter algorithm was
performed using αmin = 10−6, kmax = 100 and the following first initial point
(in the multistart part):

p =
[

6.05× 10−5 3.60× 10−5 4.18× 10−5 4.79× 10−4 9.86× 10−5
]>

.

The optimal objective function value found was J(p) = 19.8828. Since this result
is very close to the best known optimum by Egea et al. [7], one can assert that
an execution with a local search starting close to the optimum allows to obtain
a very good solution, in the fastest way as stated by [5]. This means that, in
all the experiments, the points sampled in the multistart stage are farther away
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from the known minimizer than the above initial point; in spite of that, and for
αmin = 10−6, the MCSFilter algorithm always obtained high quality solutions.

The results obtained with the MCSFilter were compared with those obtained
with other methods [7,8,10]. Table 3 aggregates the published best found solu-
tion, Jbest, the average solution (when existent), Javg, and the average number
of function evaluations, nFE,avg, obtained for some methods in the literature.
This table also presents the values for MCSFilter algorithm related with the
9 executions starting from a random initial point plus the execution with the
first initial point closed to the optimum, as described above. The average values
presented for DE, SRES, SSm, FA, and MCSFilter are over 10 executions.

Table 3. α-pinene isomerization parameter estimation problem results reported in the
literature.

Solver Jbest Javg nFE,avg

MCSFilter 19.8828 19.9703 40494
Global[7] 31638 35225 1277
DE [8] 34.856 22515 10000
SRES [8] 31251 32651 10000
DIRECT[8] 36218 - 9996
OQNLP [8] 31252 - 10000
SSm [8] 19.872 19.872 9518
SSm [7] 19.872 24.747 1163
FA [10] 19.8772 25.6777 5860a

fmincon[10] 19.929 - 217
a Number of function evaluations of the best solution.

The methods Global, DE, SRES, DIRECT and OQNLP fail to converge
to the optimum value because of the limit (10000) on the maximum number of
function evaluations [8] and, therefore, cannot be compared to the value obtained
by the other methods. Besides that it is remarked that with αmin = 10−6 and
a smaller number of function evaluations (less than 10000 — see Table 2) the
MCSFilter algorithm achieved a very good results.

Regarding the number of function evaluations, it can be observed that, in
spite of the good quality of the solution and the MCSFilter consistency, the
algorithm requires more function evaluations than the other methods listed in
Table 3. Nevertheless, the MCSFilter presents better average values of the ob-
jective function than SSm [7] and FA [10], and with a relative error of +0.54%.
This demonstrates that the MCSFilter has converged more often to the best
solution than some other methods.

We remark that the best MCSFilter solution is close to its average solution
(see Table 2), which are close to the known best minimum. These results assert
the good quality of the solution presented by the MCSFilter and its consistency.
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Table 4 shows the minimizer of the best solution obtained by MCSFilter for
αmin = 10−6 and kmax = 100 that corresponds to the best and worst solutions
presented in Table 2.

Table 4. Parameter values obtained by MCSFilter for αmin = 10−6 and kmax = 100.

parameter best worst

p∗1 5.936× 10−5 5.904× 10−5

p∗2 2.965× 10−5 2.969× 10−5

p∗3 2.067× 10−5 1.978× 10−5

p∗4 2.776× 10−4 2.835× 10−4

p∗5 4.090× 10−5 4.448× 10−5

Figure 3 illustrates the profiles obtained by solving the ODE model (3) using
the parameter set, p∗, found by the MCSFilter algorithm, for the best solution
in Table 4.
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Fig. 3. Experimental data points and the profiles obtained from (3) with the kinetic
model parameters determined by the MCSFilter.

As it can be observed, the obtained kinetic parameters provide a good fitting
of the model to the experimental data.
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5 Conclusions

The MSCFilter algorithm — a multistart strategy coupled with a coordinate
search filter methodology — was implemented in the Java programming lan-
guage and has successfully estimated the α-pinene isomerization optimal kinetic
parameters.

Some preliminary experiments were carried out in order to tune the param-
eters of the stopping criteria of the CSFilter and MCSFilter algorithms. It is
shown that this issue is crucial to the effective convergence of the algorithm
when solving the α-pinene problem.

In comparison with the results reported in the literature, it is noticeable
that the MCSFilter presents a much higher effort when 100 initial points are
used. This is due to the higher number of function evaluations required by the
MCSFilter method, namely by the CSFilter algorithm based on the set D⊕ with
2n = 10 coordinate directions when it is using 100 initial points. One may con-
clude that increasing αmin has a big impact: CSFilter stops before reaching the
best known solution. Despite this, the MCSFilter algorithm shows good perfor-
mance by converging to the known solution of the problem — the experiments
that were carried out show that (when αmin = 10−6 is used) the best, worst and
the average values of the objective function obtained by MCSFilter algorithm
are closer to the best known in the literature.

The fitting of the model profiles to the experimental data demonstrate that
the obtained solution is of very good quality.

As future work, a strategy of parallelization inside the MCSFilter algorithm,
namely in the multistart strategy stage, should be implemented. The MCSFilter
algorithm will also be applied in the context of dynamic systems where its ability
to handle inequality constraints is of importance.
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