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Abstract. The heat treatment of γ-TiAl alloy (Ti-47Al-2Cr-2Nb (at.%)) diffusion brazed joints was 

investigated. Joining was performed using a Ti/Ni/Ti clad-laminated braze alloy foil at 1050 and 

1150ºC with a dwell time of 10 minutes. The joints were subsequently heat treated at 1250 and 

1350ºC for 240 and 30 minutes, respectively. The microstructure and the chemical composition of 

the interfaces were analysed by scanning electron microscopy (SEM) and by energy dispersive 

X-ray spectroscopy (EDS), respectively. Microhardness tests performed across the interface were 

used to roughly predict the mechanical behaviour of the as-diffusion brazed and of the heat treated 

joints. Diffusion brazing produced interfaces with two distinct layers essentially composed of 

α2-Ti3Al and of TiNiAl; γ-TiAl was also detected for joining at 1150ºC. After heat treating, the 

as-diffusion brazed microstructure of the interface was completely replaced by a mixture essentially 

composed of γ-TiAl and α2–Ti3Al single phase grains and of (α2 + γ) lamellar grains. 

Microhardness tests showed that the hardness of the as-diffusion brazed interfaces, which ranges 

from 567 to 844 HV (15 gf), is significantly higher than that of the titanium aluminide alloy  

(272 HV). All post-joining heat treatments lowered substantially the hardness of the interface, as the 

hardness of the main phases detected at the interfacial zone after heat treating the joints is 

comprised between 296 and 414 HV. 

 

Introduction 

Titanium aluminide alloys based on the intermetallic compound γ-TiAl are promising candidates for 

high performance applications on aircraft engine components, aerospace vehicles and automotive 

engines, owing to their low density (3,7 – 4,0 g.cm
-3

) high specific stiffness, excellent strength 

retention at high temperature and good creep and oxidation resistance [1,2,3]. More recently the 

potential possibility of using γ-TiAl alloys as biomaterials for endoprothesic applications has been 

investigated. In vitro experiments showed that pre-oxidised Ti-45Al-2W-0.6Si-0.7B is better than 

the Ti6Al4V alloy currently used as biomaterial [4]. 

Joining is a key technology for the practical application of γ-TiAl alloys. Brazing and diffusion 

brazing are straightforward joining routes to produce γ-TiAl joints [5-9]. In our previous 

investigations Tini 67 [10,11] and Ticuni [11-13] were found to be adequate fillers to produce  

γ-TiAl diffusion brazed joints in the temperature range of 1000 to 1200ºC. In comparison to fusion 

welding processes this technique does not induce high residual thermal stresses at the interface, 

which in conjunction with the formation of brittle phases at the interface are the main causes of 

solid state cracking of joints. Additionally, diffusion brazing does not require the application of 

elevated bonding pressures, as does solid state diffusion bonding, and contrarily to the latter it can 

be successfully applied to nearly all joint geometry. Avoiding or decreasing the formation of brittle 

phases at interface is actually one of the main concerns of the investigation on the joining by 

diffusion brazing of γ-TiAl alloys. This could be accomplished either by (1) selecting adequately 

the chemistry of the filler, but it often results on the formation of soft reaction products that are not 
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able to withstand the temperatures at which γ-TiAl alloys are projected to operate as structural 

materials for engine components, or by (2) performing a post-joining heat treatment in order to 

dissolve total or partially the undesirable brittle compounds formed at the interface. Unfortunately 

heat treating the joints is not always an industrially viable procedure as it may require extremely 

long dwell times (several days) and elevated temperatures [5], which raise dramatically the final 

cost of the joining process. 

The present investigation is focused on the effect of post-joining heat treatments on the 

microstructure and hardness of γ-TiAl alloy diffusion brazed joints, using a Ti-Ni-Ti clad-laminated 

alloy foil (Tini 67) as filler. The dissolution of the majority of the “undesirable” brittle phases 

formed at the as-diffusion brazed interface was obtained after heat treating using substantially 

shorter dwell times than those reported in the literature. 

 

Materials and experimental procedures 

The γ-TiAl alloy (Ti-47Al-2Cr-2Nb, at.%) used in this investigation was produced from gas 

atomised elemental powders by Crucible Research and has a duplex microstructure, which consists 

of a mixture of γ-TiAl grains and lamellar (α2-Ti3Al + γ-TiAl) grains. A Tini 67 foil (71.3Ti-

28.7Ni, at.%) with a thickness of 50 µm was selected as filler alloy. Tini 67 is a clad-laminated 

alloy produced by Wesgo Metals, whose solidus and liquidus temperatures are 942 and 980ºC, 

respectively. This braze alloy consists of a 12 µm Ni foil sandwiched between two 19 µm Ti foils. 

Diffusion brazing was performed at 1050 and 1150ºC with a dwell time of 10 minutes at the joining 

temperature. The details of the joining procedure are described elsewhere [10,11]. The joints brazed 

at 1050 were heat treated at 1350ºC for 30 minutes; those obtained for joining at 1150ºC were heat 

treated at 1250 and 1350ºC for 240 and 30 minutes, respectively. Heat treatments were performed in 

vacuum in an electrical furnace. The furnace chamber was evacuated by a combination of rotary 

and turbomolecular pumps to a vacuum level that remained better than  

8 x 10
-5

 mbar during the entire thermal cycle. The heating and cooling rates were fixed at 3ºC.min
-1

 

by a temperature controller. 

Samples for microstructural and chemical characterisation and for microhardness tests were cut 

perpendicularly to the interface; cold mounted in epoxy resin and prepared using standard 

metallographic techniques. The interfaces were examined by SEM and chemically analysed by EDS 

at an accelerating voltage of 15 keV. Vickers microhardness tests were performed throughout the 

interface. The load (15 gf) was applied in 15 s with a dwell time of 15 s. 

 

Results and discussion 

The reaction between the Tini 67 foil and the γ-TiAl alloy induced the formation of interfaces, 

apparently free of pores and cracks, essentially composed of Ti, Al and Ni that could be divided 

into two distinct reaction layers (labelled as A and B) as shown in figure 1. No perceptible 

alterations were detected either on the chemical composition or on the microstructure of the γ-TiAl 

alloy after joining. Attending to the results of the EDS analysis performed across the interface 

[10,11], in conjunction with the information supplied by the Ti-Al [14] and the Al-Ni-Ti [15] phase 

diagrams, the main phases formed at the interfaces are the intermetallic compounds α2-Ti3Al and 

TiNiAl; a small amount of γ-TiAl was also detected for joining at 1150ºC (see figure 1). A detailed 

discussion of the nature of the phases formed at the interface is done elsewhere [10,11]. It should be 

noted that all of these phases have been identified by X-ray diffraction analysis performed on the 

fracture surfaces of shear tested samples [11].  

The microstructure of the interface after heat treating as well as the results of the EDS analysis 

performed across the interface of the heat treated joints are presented in figure 2 and in table 1, 

respectively. Additionally, the compositional plots of the EDS analysis results after heat treating are 

marked on the Al-Ni-Ti isothermal section at 750ºC shown in figure 3. First it should be noted that 

the resulting microstructure of the interface is mainly determined by the heat treatment conditions, 

i.e., if joints are processed at different temperatures and subsequently subjected to the same heat 
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treatment, then the resulting interfacial microstructure is the same. Secondly, none of the heat 

treatments produced noticeable changes either on the microstructure or on the chemical composition 

of the γ-TiAl alloy. The main effects of both heat treatments on the features of the interface could 

be summarized as follows: 

(1) The extension of the interface increases significantly, from about 110/120 µm in the as-diffusion 

brazed condition, to approximately 545/610 µm after heat treating; 

(2) The as-diffusion brazed microstructure of the interface is completely replaced by a mixture 

mainly composed of α2–Ti3Al (zones 3 and 4 in Fig. 2(b) and Table 1) and γ-TiAl (zone 2) single 

phase grains and of (α2 + γ) lamellar grains (zone 1); most of the TiNiAl phase was dissolved (small 

particles, as the ones identified as zone 5, are still present); 

(3) The chemical composition of the phases detected at the interface after heat treating is 

independent of the heat treating temperature; 

(4) An extensive formation of γ-TiAl (only detected for joining at 1150ºC) as well as of a (α2 + γ ) 

lamellar constituent (not detected after joining) is observed throughout the interface. 

 

A AB

110 µm

γ-
T

iA
l 
al

lo
y

γ-
T

iA
l 
al

lo
y

a) b)
A AB

BEI - Tini67 1150ºC, 10 min

CEMUP  X800  E0=15kV  WD=15mm 8 µµµµm

BEI - Tini67 1050ºC, 10 min

CEMUP  X800  E0=15kV  WD=15mm 8 µµµµm

119 µm

α2-Ti3Al TiNiAl

γ-TiAl

α2-Ti3Al TiNiAl

 
Fig. 1 – Backscattered electron images (BEI) of the interface, obtained after joining at:  

a) 1050ºC; b) 1150ºC. 
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Fig. 2 – Backscattered electron images (BEI) of the interface, obtained after heat treating at:  

a) and b) 1250ºC for 240min.; c) 1350ºC for 30min.. b) is a detail of the central region of the 

interface. 

 

Table 1 – EDS chemical analysis results of the specimens after heat treating. 
 

Ti Al Ni Cr Nb Temperature, dwell time 

(ºC, min) 
Zone 

(at.%) 
Ti/Al Possible phase(s) 

1 54.5 41.2 1.0 1.5 1.8  α2-Ti3Al + γ-TiAl 

2 52.4 44.2 0.9 0.8 1.7 1.2 γ-TiAl 

3 62.2 34.5 0.3 1.5 1.5 1.8 α2-Ti3Al 

4 60.0 31.3 2.0 4.7 2.0 1.9 α2-Ti3Al 

1250, 240 

1350, 30 

5 36.1 39.9 18.6 3.8 1.6  TiNiAl 

 

Materials Science Forum Vols. 514-516 1335



Microhardness measurements showed that the interface is significantly harder than the γ-TiAl 

alloy (272 ± 29 HV), since the hardness of the main phases detected at the interfaces is comprised, 

between 567 ± 34 (α2-Ti3Al, for joining at 1050ºC) and 844 ± 20 HV (TiNiAl, for joining at 

1150ºC). Both heat treatments lowered substantially the hardness of the interface. The hardness of 

the main phases detected at the interface after heat treating the joints is comprised between 296 ± 35 

(γ-TiAl) and 414 ± 32 HV (α2–Ti3Al).A comparison between the hardness of the main phases that 

constitute the as-brazed interfaces and those detected after heat treating the joints is presented in 

table 2. 
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Fig. 3 – Ti-Al phase diagram [14] and Al-Ni-Ti isothermal section at 750ºC [15] where are marked 

the compositional plots of the EDS analysis results after heat treating. 

 

 

Table 2 - Hardness values (HV 0.015) of the γ-TiAl alloy and of the main phases/constituents 

detected at the interface in the as-diffusion brazed condition and after heat treating the joints. 
 

Diffusion brazing temperature (ºC) 
Possible phases/constituents 

1050 1150 

Post-joining heat treatment 

(1250 or 1350ºC) 

α2–Ti3Al 567 (34) 570 (38) 414 (32) 

γ-TiAl - - 296 (35) 

TiNiAl 594 (39) 844 (20) - 

Lamellar constituent (α2 + γ) - - 385 (32) 

γ-TiAl alloy 272 (29) 

Standard deviation in parenthesis 

 

The results obtained in this investigation, in conjunction with the information supplied by the  

Ti-Al and the Al-Ni-Ti equilibrium phase diagrams; allow inferring some of the transformations 

induced by the heat treatments. The Ti-Al phase diagram (Fig. 3) shows that the α2–Ti3Al phase is 

not stable at 1250ºC neither at 1350ºC. On heating to the heat treating temperature, this phase 

undergoes one of the following sequences of transformations: α2-Ti3Al → Ti (α) (when heated to 

1250ºC) and α2-Ti3Al → Ti (α) → Ti (β) (when heated to 1350ºC); the inverse sequences occur 

when cooling to room temperature. Taking into account the Al-Ni-Ti ternary phase diagram (see 

Fig. 4), TiNiAl melts bellow 1250ºC and the resulting liquid coexists in equilibrium with γ-TiAl 

and a Ti solid solution. We presume that the liquid ensuing from the melting of TiNiAl will 

dissolve part of the Ti (α) (for heat treating at 1250ºC) or part of the Ti (β) (for heat treating at 

1350ºC) until the solubility limits are reached. Then, γ-TiAl and Ti (α) or Ti (β) begin to precipitate 

from the liquid. The Ti solid solution will transform into α2-Ti3Al upon cooling to room 

temperature while the remaining liquid originates TiNiAl. Finally, the α2 + γ lamellar constituent 

should correspond to the loci of the interface where the undissolved Ti solid solution has a 
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composition close to that of the Ti-Al eutectoid at 1119ºC; upon cooling Ti (α) will transform into 

the α2 + γ lamellar constituent as a result of the eutectoid reaction. 
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Fig. 4 – Isothermal sections through the Al-Ni-Ti phase diagram at 1227 and 1327ºC [15]. 

 

Conclusions 

Post-joining heat treatments performed at 1250 and 1350ºC with dwell times of 240 and 30 minutes, 

respectively, modify radically the microstructure of joints: the main constituents detected at the 

interface evolve from α2-Ti3Al and TiNiAl (in the as-brazed condition) to γ-TiAl and α2-Ti3Al after 

heat treatment. Most of the TiNiAl compound is dissolved; only very small particles are still 

present. 

The hardness of the interface decreases with the post-joining heat treatments, from values 

comprised between 567 and 844 HV, to values comprised between 296 and 414 HV. This is 

essentially the result of the combined effect of both the dissolution of TiNiAl (hardest constituent) 

and the extensive formation of γ-TiAl (softer constituent). However, the hardness of interface still 

remains higher than that of the intermetallic alloy (272 HV). 
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