
Lissom, a Source Level Proof Carrying Code Platform
João Gomes, Daniel Martins, Simão Melo de Sousa Jorge Sousa Pinto

Universidade da Beira Interior Universidade do Minho

Traditional PCC architectures center their certificate generation
mechanisms on the output of the compilation. Along the lines of recent
projects, we believe that there are strong benefits in moving the certificate
generation to the source code level. Because there exist good tools for
source code verification and for formal verification in general, it is a
feature of the Lissom platform that existing tools are used as much as
possible at key points of its infrastructure.

Our vision of PCC is based on the following two underlying principles:

• Source level PCC is the way. It is our belief that the realistic formal
verification of mobile code should be performed at source level.
Programmers may be unaware of the target architecture details,
and in general algorithmic constructions are expressed at source
level.

• Reuse as much as possible. There exist plenty of powerful tools for
the formal verification of source code. Such tools already have
experienced user communities, and have reached an appreciable
level of maturity and flexibility that make them natural choices in the
context of a source level PCC architecture.

Started as a challenge for final year Computing students, Lissom was
thought as a mean to prove to a skeptic community, and in particular to
students, that formal verification tools can be put to practice in a realistic
environment, and be used to solve complex and concrete problems. The
attractiveness of the problems that PCC addresses has already brought
students to show interest in this project. Aside this context, our main goal
with Lissom is to get experienced with PCC and to put it into practice.

After the present prototyping phase, the platform must have proved to be
adequate for mobile code security. The relevance and conceptual solidity
of previous works on formal verification (e.g. [2]) on which this is based
lead us to believe in the success of the enterprise.

Our road-map is the following, where the points highlighted as in progress
are the modules which are currently in active development.

1.To design an annotation language for Liss (in progress);

2.To extend the why tool to contemplate this annotation language,
allowing to use why as a generator of proof obligations for source
code (in progress);

3.To design a proof system for the Liss language, integrated in Coq
(starting phase);

4.To extend the Liss compiler with the capability to translate
certificates (starting phase);

5.To design a proof system for the virtual machine and its language,
integrated in Coq (in progress);

6.To design a proof obligation generator for compiled code (in
progress).

We finish with a few examples of the many interesting problems that will
be raised in this work, along with the classical challenges that every PCC
platform must address. A first problem is the automation of the COQ
proof process and its impact on the consumer effort; the tension between
expressiveness and automation is a well-known problem that must be
carefully studied. It also remains to see to what extent the techniques
presented in [7] allow for conciseness of COQ certificates. The language
Liss and the virtual machine used are non-trivial, but are still relatively
simple when compared to platforms such as JAVA or .NET. The capacity
of the platform to scale up to such platforms must thus be evaluated.
Finally, it will be important to apply our choices in an appropriate case
study that starts from the security policy specification to the certificate
verification (proof of concept)

Future Work and Directions
• Short and mid term objectives: Lissom is at an early development

stage we must conclude the implementation and test the Lissom
platform.

This will include: the LISS Certificate Translation Compiler,
narrowing and automatizing the use of the proof system and the
VCGen to a specific class of security policies.

• Long term objective:

Deployment of a source level PCC architecture for constrained
embedded systems.

Due to high security concerns:

• embedded code execution schemes are very constrained. For
instance: no dynamic facilities, heavy resources (memory,
etc...) confinement, no firmware/software updates, In general
one purpose induces one dedicated architecture.

• Embedded software development models usually rely on
software components outsourcing and contractors have
difficulties to perform safe integration of the outsourced
software components

In this context, Safety mechanisms based on verifiable evidences
(certificates) potentially will:

• ease the distributed development model (e.g. safe
outsourcing: outsourced code comes with evidences that it
does not contain flaws identified by the contractor);

• give rise to a new embedded software paradigm. Safety
certificates allow new execution scheme where, for instance,
(a) a program can provide static evidences that it will not use
unsafe operations or resources ;(b) two applications can
safely cohabit in a embedded system.

References
[1] G. Barthe, B. Grégoire, C. Kunz, and T. Rezk. Certificate
translation for optimizing compilers. In Proceedings of the 13th
International Static Analysis Symposium. LNCS, Springer-Verlag,
2006.

[2] G. Barthe, P. Courtieu, G. Dufay, and S. Melo de Sousa, Tool-
Assisted Specification and Verification of Typed Low-Level
Languages. Journal of Automated Reasoning, Jan 2006.

[3] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe
Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll, An
overview of JML tools and applications, International Journal on
Software Tools for Technology Transfer (STTT) 7 (2005), no. 3, 212-
232.

[4] J.-C. Filliâtre, Resources for the compilation course - the virtual
machine, from the author’s webpage.

[5] J.-C. Filliâtre, Why: a multi-language multi-prover verification tool,
Research Report 1366, LRI, Université Paris Sud, March 2003.

[6] J.-C. Filliâtre and Claude Marché, Multi-Prover Verification of C
Programs, Sixth International Conference on Formal Engineering
Methods (ICFEM) (Seattle), Lecture Notes in Computer Science, vol.
3308, Springer-Verlag, November 2004, pp. 15-29.

[7] G. C. Necula and P.Lee, Efficient representation and validation of
logical proofs, Proceedings of the 13th Annual Symposium on Logic
in Computer Science. IEEE Computer Society Press, 1998, pp. 93-
104.

Proposed Architecture
The Source Language and the Compiler. LISS (Language for
Integers Sets and Sequences) is a non-trivial toy language that
also features a realistic type system (with e.g. sets, vectors a la
Java, etc.) and high-level constructs. LISS is intended here as a
suitable test-bed before aiming at an industrial-level language.

This language must be extended in order to provide an
annotation system for the source code. In a source level PCC
architecture, the compiler has to compile source code but also
proofs into their machine level counterpart. A very interesting
challenge is to transform a source level structural proof (proofs
heavily rely on the structure of the analyzed program) into a proof
that is still structurally close to the machine level code. We follow
here the contributions of [1]).

The Virtual Machine. Lissom uses a sequential, stack-based
virtual machine, which despite its simplicity has the capacity to
support real languages (such as C or Java), and is, together with
LISS, a suitable test-bed. The machine is an adaptation of
Filliâtre’s original virtual machine[4], used for teaching several
Courses at our universities (e.g. Compiler Construction and
Formal Methods).

The Proof System and the Proof Checker. As far as the Trusted
Computing Base (TCB) is concerned, it is important for it to be as small
and solid as possible; we believe that an adequate choice of proof
system may help attaining such a goal. Also, it is important to be able to
express high level polices as well as lower level ones.

These requirements have led us to consider using the COQ proof
system and its higher-order specification language and underlying proof
mechanisms. This system, based on the calculus of inductive
constructions, has been used with success for the formal verification of
critical and large-scale systems. As�far as source code is concerned,
integration with COQ is guaranteed by the existence of a numberof tools
suited for code annotation and proof (e.g. [6]). Lissom will feature a
source code verification system based on Why and the COQ system.
Thus we intend to use COQ proof objects as certificates.

The Verification Condition Generator. This will be obtained using
Filliatre’s WHY tool [5], which is capable of producing proof obligations
for various systems, including COQ. We are presently working on a
WHY module �for the language LISS (equivalent to Caduceus for C[6])
and for the input language of the virtual machine. The annotation
language used for this will be an adaptation of JML[3] specialized for the
security policy specification.

