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ABSTRACT 

Water scarcity and pollution are two main ecological focus nowadays. Knowledge of wastewater 

composition, regarding microorganisms and pollutants, is of great importance to improve the capacities 

of the effluent treatment plants (ETP). Advances in Next-generation sequencing (NGS) methodologies 

allowed for faster, cheaper and more accurate study of microbial communities. Besides being an 

extremely powerful analysis resource, whole shotgun metagenomic analysis comprises many challenging 

aspects, regarding the processing and analysis. 

In the present work a shotgun metagenomic bioinformatics analysis was performed comprising three 

samples from common ETPs (CETP) and four samples from a petrochemical complex ETPs (wastewaters 

with low and high salts collected in two distinct timepoints). The samples were sequenced with Illumina® 

HiSeq, generating paired-end reads with 2x150bp length. The main goals of this project were to evaluate 

currently available tools, establish a customized bioinformatics pipeline and to extract relevant biological 

information from the sequenced datasets. 

There were generated simulated datasets representative of the target data, in order to evaluate the 

performance of the available bioinformatics tools. Datasets were generated with three coverage levels and 

were used to test pre-processing, assembly and taxonomic tools. The target datasets, both with and 

without coverage split, were then subjected to processing and analysis using the pre-defined pipeline. A 

preliminary functional study was also performed using MG-RAST and MGX. 

Results from the evaluation of the performance of the bioinformatics tools showed that different tools 

behave differently in distinct datasets. The pipeline was defined using BayesHammer and Fastq-mcf as 

pre-processing tools, SPAdes for assembly and MetaPhlAn v2.0 for the taxonomical analysis. 

The assembly results for the target datasets showed a higher contiguity for high coverage levels and a 

lower contiguity for low coverage levels, highlighting the differences in microorganisms’ abundance and 

diversity and its impact during analysis. 

Taxonomical composition suggests the presence of putative pathogenic and opportunistic 

microorganisms on two of the CETP datasets (A2 and AKR12). It also suggests a more hostile environment 

in petrochemical complex ETPs datasets, which is concordant with a higher abundance of defence 

mechanisms on this datasets. 

The present results must be accounted to the effluent treatment processes. 

Keywords: whole shotgun metagenomic, next-generation sequencing, effluent-treatment plant 
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RESUMO 

A escassez de água e a poluição são dois dos principais problemas ecológicos atualmente. O 

conhecimento da composição das águas residuais, referente a microrganismos e poluentes, é de grande 

importância para melhorar as capacidades das estações de tratamento de águas residuais (ETAR). Os 

avanços nos métodos de sequenciação de nova geração permitiram o estudo mais rápido, barato e 

preciso de comunidades microbianas. Apesar de ser um meio de análise altamente poderoso, a análise 

metagenómica por whole shotgun compreende muitos aspetos desafiadores, no que respeita o 

processamento e a análise. 

No presente trabalho, uma análise bioinformática de dados metagenómicos de shotgun foi efetuada 

incluindo três amostras de ETARs comuns e quatro amostras de ETARs de um complexo petroquímico 

(águas residuais com baixos e altos teores de sais, colhidas em dois momentos distintos). As amostras 

foram sequenciadas com Illumina® HiSeq, gerando paired-end reads com comprimento igual a 

2x150pb. Os principais objetivos deste projeto foram avaliar ferramentas disponíveis atualmente, 

estabelecer uma pipeline bioinformática personalizada e extrair informação biológica relevante dos 

datasets sequenciados. 

Foram gerados datasets simulados representativos dos dados a analisar, de forma a avaliar a 

performance das ferramentas bioinformáticas disponíveis. Os datasets foram gerados com três níveis de 

coverage e foram usados para testar ferramentas de pré-processamento, assembly e taxonomia. Os 

datasets alvo, com e sem divisão por coverage, foram então sujeitos a processamento e análise usando 

a pipeline pré-definida. Um estudo funcional preliminar foi realizado com MG-RAST e MGX.   

Os resultados da avaliação da performance das ferramentas bioinformáticas mostraram que diferentes 

ferramentas comportam-se de forma diferente em datasets distintos. A pipeline foi definida usando 

BayesHammer e Fastq-mcf como ferramentas de pré-processamento, SPAdes para assembly e 

MetaPhlAn v2.0 para a análise taxonómica. 

Os resultados de assembly para os datasets alvo mostraram uma grande contiguidade para altos níveis 

de coverage e baixa contiguidade para baixos níveis de coverage, realçando as diferenças de abundância 

e diversidade dos microrganismos e o seu impacto durante a análise. 

A composição taxonómica sugere a presença de microrganismos potencialmente patogénicos e 

oportunistas nos dois datasets de ETARs comuns (A2 e AKR12). Sugere também um ambiente mais 

hostil nos datasets das ETARs do complexo petroquímico, o que é concordante com uma maior 

abundância de mecanismos de defesa nestes datasets. 

Os presentes resultados devem ser tidos em conta nos processos de tratamento de águas residuais. 

Palavras-chave: metagenómica de whole shotgun, sequenciação de nova geração, estação de tratamento 

de águas residuais 
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1. INTRODUCTION 

1.1 Wastewater treatment and metagenomic analysis 

Besides Earth being largely covered with water, only 3% can be considered freshwater. Problematically, 

two thirds of the whole freshwater is not suitable for human use nor consumption. Anthropogenic 

pollution/contamination of freshwater resources tend to further reduce its availability for human 

consumption (1). 

Around 1.1 billion people worldwide do not have ready access to potable water. This water scarcity allied 

to the massive wastewater production leads to a dire need for its reuse. Consequently, 2.4 billion people 

are exposed to inadequate sanitation and 842000 people are estimated to die each year from diarrhoea 

resulting from drinking unsafe and polluted water, bad sanitation and hand hygiene. The proliferation of 

microorganisms in wastewater derived from poor sanitization processes is of great concern to society as 

it can potentially increase the number of resistant strains and contaminate even more potable water 

sources (1,2).  

Climacteric changes and human activities have been increasing the water scarcity and the increase of 

contamination by pollutants; if the actual consumption rate maintains, it is estimated that by 2025 two-

thirds of the world’s population will experience water scarcity. In order to optimize water decontamination 

it is paramount to assess exactly which organisms and pollutants are present. This is a very important 

step as the wastewater treatments can be adjusted for each more prevalent organism and maximizing 

the efficiency of treatment complexes (1–3).  

As aforesaid, the treatment of domestic and industrial wastewaters is an ecological problem of great 

concern. The wastewater treatments aim to remove or reduce suspended, biodegradable organic 

compounds, nutrients such as nitrates and phosphates that can lead to high algae concentrations and 

pathogenic organisms. Industrial wastewaters contain many and diverse toxic compounds which must 

not be delivered untreated into the environment. Industrial wastewaters are usually treated in effluent 

treatment plants (ETP) comprising physico-chemical and biological treatments. This is usually effective 

for larger industries more than in minor industries as they cannot afford their own ETP. Therefore the 

effluents of small industries are collected in the so called common effluent treatment plant (CETP) which 

may lack specificity for the treatment. Identifying microorganism strains and principal pollutants can prove 

a vital step for optimization of CETPs and wastewater sanitization (4). This work will focus on shotgun 

metagenomic sequencing using next-generation sequencing (NGS) technology aiming to characterize the 
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microbial communities present in ETPs, and thus, providing the necessary insights for optimization of the 

treatment processes. 

Next-generation sequencing can be described as an unsolved puzzle. In this case, the puzzle pieces are 

the DNA fragments, called reads. While working with a single genome, there is a unique puzzle (an 

organism genome) with many pieces (DNA reads) and the objective is to solve the puzzle and find the 

hidden image (genomic information). This puzzle can have equal or quite similar pieces (repeated 

sequences), damaged pieces (sequencing errors), and pieces with patterns that are not from the puzzle 

(adapters and primers contaminants) as well as some missing pieces. This leads to a serious difficulty in 

solving the puzzle, this is, reconstruction the present genome. Moreover, when working with a 

metagenome, besides all the referred challenges, there are an undefined number of repeated different 

puzzles (different organisms) and some puzzles are repeated more times than others (different 

abundances) (5,6).  

Advances in NGS allowed for faster, cheaper and more accurate study of microbial communities. The 

metagenomic study of these samples is able to give information not only about the microorganisms within 

but also about their functions and infer the major components of the sample (5). This information is 

invaluable for the optimization of wastewater treatments and may prove a valid tool for analysis. However, 

this analysis has to be performed with caution regarding the mentioned complexity.  

1.2 Overview/Research goals 

The aim of this study is to perform a thorough analysis of shotgun metagenomic data for identification 

and characterization of different organisms in different wastewaters treatments from India. The samples 

were sequenced with Illumina® HiSeq, generating paired-end reads with 2x150bp length. 

The main goal is to access the microbial samples composition and the main functions presents in the 

metagenome.  

Whole shotgun metagenomic analyses are very challenging and many questions can arise during the 

process. The first step of the process is the selection of the strategies and tools to be used to perform the 

analysis. Then, a question arises: “How to choose the best tools?” In order to answer this question the 

construction of a simulated dataset would permit the comparison between the expected and the given 

results. Since different tools may work better with different datasets characteristics, the simulated dataset 

must be representative of the target datasets.  
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The first objective was, therefore, the construction of a simulated dataset representative of the target 

datasets in order to evaluate the bioinformatics tools to be used. Then, the objective was the selection of 

a pipeline to use to pre-process, assemble and perform taxonomic analysis on the target datasets. Once 

the tool selection is completed, the target data analysis may begin.  

Metagenomic datasets have different organismal abundances. Therefore, another problematic was 

addressed regarding the different coverage of the organisms present. Datasets were split into three 

coverage levels and results from split and not split datasets were compared for assembly, taxonomic and 

function composition.  

The assembly impact on taxonomic and functional analysis was also addressed. 

A functional analysis was also performed on the target data using both datasets with and without coverage 

split and with and without assembly. 

1.3 Dissertation organization 

The present document is structured in five chapters. The introductory chapter highlights the water scarcity 

problematic, the water reuse issues, the wastewater treatment importance and the advantages of the 

metagenomic analysis of those types of samples in order to optimize the treatment processes. 

The second chapter expresses an overview for the NGS concepts, platforms, data analysis steps and main 

tools, focusing on metagenomic analysis and its characteristics. 

A description of the analysed samples and the methodology used can be found in the third chapter.  

In the fourth chapter the main results are presented in two parts. The first part comprises the results 

attained in the tool analysis and the further pipeline assignment are presented. The results obtained with 

the sample’s analysis, discussing their bioinformatics and biological impact, are afterwards thoroughly 

described in a second part. 

Finalizing, in chapter five, a brief general conclusion is provided, focusing on the achievements made, 

qualitative analysis of the work as well as an insight into possible future opportunities for this thematic. 
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2. STATE OF ART 

2.1 Next-Generation Sequencing 

2.1.1 NGS concepts 

NGS platforms are able to sequence millions of small fragments of DNA at the same time, leading to a 

significantly cheaper and faster approach when comparing with Sanger sequencing. In addition it also 

uses less DNA sample as input and it is more precise and consistent (7). The methodology behind NGS 

comprises a library preparation where input DNA sample is fragmented and common adapters added to 

the small fragments. Then, depending on the sequencing technology, clonally clustered amplicons can 

be generated by different approaches, such as in situ polonies, emulsion PCR and bridge PCR. The 

present work will be focus on Illumina sequencing methodology which uses a bridge PCR approach, as 

shown in Figure 1. In bridge PCR cluster generation, the DNA fragments are loaded into a flow cell with 

two types of primers, each one complementary to the adapters in each side of the fragment. The fragment 

hybridizes with one of the complementary primers and a complement of the hybridized fragment is 

generated. The molecule is denatured and the original strand is washed away, then the other adapter 

hybridizes with the second type of primer and the strand is clonally amplified by bridge amplification. This 

process is repeated over and over amplifying all the fragments. After the cluster generation, a sequencing 

by synthesis step takes place. The sequencing begins with the extension of the sequencing primer; 

afterwards dNTPs are then incorporated based on the sequence of the template. Post the addition of each 

nucleotide the clusters are excited by a light source being then the characteristic signal emitted. The 

output at the end of the sequencing process is a numerous amount of small fragments sequenced. 

Bioinformatics tools are needed to reorganize all those fragments into a complete molecule (5,8). 
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Figure 1 Schematic representation of the NGS Illumina sequencing technology 

2.1.2 NGS platforms 

The first NGS technology was the 454 pyrosequencing method by Life Sciences commercialized in 2005 

(acquired by Roche in 2007). This technology generated an output of 20 Mb, approximately 200 000 

reads with 100 to 150bp. In 2006, Solexa released Genome Analyzer, a sequencing by synthesis 

technology with an output of 1G per run. In the next year, Solexa was purchased by Illumina. Also in 2007 

Applied Biosystems, which had acquired Agencourt Personal Genomics in 2006, released the Sequencing 

by Oligo Ligation Detection (SOLiD) generating approximately 3G with 35bp reads. SOLiD uses a 

technology of two-base sequencing based on ligation sequencing (5,9).  
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The mentioned methods have improved and have different characteristics: 454 GSFLX (Roche), which 

was discontinued in 2016, is able to give an output of 700Mb with up to 1000bp reads with a 1% error 

regarding insertions and deletions; HiSeq4000 (Illumina) can generate up to 1500Gb of 2x150bp reads 

with 0.1% substitution error rate; SOLiD5500xl (Applied Biosystems) is capable of generate up to 2 

Human Genomes per run with less than 0.1% adenine/thymine bias (10). 

Ion Torrent released, in 2010, a system with semiconductor technology developed by the 454 founder, 

Jonathan Rothberg. This system, named Persona Genome Machine, generate an output up to 2Gb with 

approximately 200bp reads with 1% insertion/deletion error rate (9,10).  

Other systems were developed such as the SBS system MAX-Seq from Intelligent Bio-Systems (purchased 

by Qiagen in 2012), Polony sequencing, or the single molecule fluorescent sequencing Helicos Genetic 

Analysis System. In 2010 Pacific Biosystems released the, so called, third generation sequencing PacBio 

RS generating up-to-several-kilobase-long reads. This system uses a real-time sequencing by synthesis 

technology (9). 

Oxford Nanopore Technologies released MinION in 2015, a nanopore DNA sequencing sequencer that 

can generate reads with the same length as the input fragment, being theoretically capable of sequencing 

a whole DNA molecule. The longest reported read had between 230 and 300kbp  with a 12% 

insertion/deletion error rate (9–11) 

The methodologies described have different characteristics, involving time, costs, sample type and 

computer requirements (9,10).  

2.2 Data analysis  

2.2.1 Pre processing 

The reads obtained with NGS may contain errors from misidentified nucleotides, low quality base calls, 

adapters used on the sequencing process, duplicates and contaminants. These erroneous bases lead to 

an inefficient interpretation of the generated sequencing data. In order to minimize this issue, different 

bioinformatics tools have been developed (12). 
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 Quality control 

There is a number of tools allowing a first assessment of the data quality before proceeding with any 

correction. FASTQC is a quality control tool with graphical interface that can be used as an overview of 

the data quality. Other tools and toolkits are available not only for quality control but also with pre-

processing capabilities, as for example NGS QC Toolkit, QC chain, FASTX Toolkit and SAMtools (13–16). 

 Error correction 

Correction of misidentified bases relies in the idea that when laying all the reads containing a specific 

position, the correct base is the one that appears more often (17). An approach is the k-mer spectrum 

which works by decomposing the reads in k-mers (read substrings of k size) and relying on their frequency 

to determine if they are solid or insolid. The algorithms proceed then to the correction of the insolid k-

mers (17). Examples of this error correction type are Reptile, Quake, BayesHammer, Musket and RACER. 

Other type of error correction uses the multiple sequence alignment of reads sharing the same k-mers 

seeking for correction relying on the multiple alignments. Coral and Echo are tools built upon this concept 

(17–19). On the other hand, SHREC and HiTEC tools use, respectively, a suffix trie and a suffix array data 

structure instead of an alignment algorithm (20,21). 

 Quality trimming  

NGS outputs contain information of each nucleotide quality score (Phred score) (22). Quality trimming 

tools aim to remove the nucleotides with quality score behind a defined threshold. There are different 

approaches to accomplish this pre-processing step. Running sum algorithms, such as Cutadapt, 

SolexaQA, Erne-Filter and QcReads, which run from one side of the read to the other calculating a sum 

formula based on Phred score and a quality threshold. A position is marked to cut when it reaches a 

minimum. On the other hand, ConDeTri, FASTX toolkit, PRINSEQ, Sickle, SolexaQA, Trimmomatic and 

Btrim use sliding window-based algorithms, where a window size and a mean base quality threshold is 

defined and the window slide from one side of the read to the other until a passing quality window is 

encountered. Other approach is used by UrQT which comprises a probabilistic unsupervised 

segmentation with no need for manual set parameters (23–28). 

Yun et al had also defined masking as an alternative to quality trimming. While trimming leads to the 

removal of bases, masking is the substitution of low quality bases to “N”s. FASTQ Masker available both 

in Galaxy and FASTX Toolkit and SubN are examples of masking tools (29).  
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 Adapter trimming  

One important step in the pre-processing of NGS data is the removal of adapters, primers or other 

exogenous contaminant present in the reads. AdapterRemoval, Alien Trimmer, IeeHom, ngsShoRT, PEAT 

and QcReads are examples of tools designed to remove this exogenous contaminants present in the data 

(30–33). Fastq-mcf removes adapters by scanning it on sequences and performs clipping based on a log-

scale threshold. It performs also skewing detection and quality trimming (34). Btrim and Trimmomatic 

have also an adapter trimming capability. 

Besides the quality and adapter trimming itself, most trimming tools allow also the exclusion of small 

fragments. After the sequencing and trimming processes, if a fragment is considerably small it probably 

does not have biological significance. Accounting for that, it is better to exclude a small fragment which 

will probably compromise the assembly process, given that its biological significance will have almost no 

impact.  

2.2.2 Assembly 

The short reads generated by the NGS platforms leads to a bioinformatics challenge in the assembly 

process. The available tools can be classified in three types: the overlap-and-extend approach, which 

extends two overlapping reads; the string graph assemblers that built a string graph from the data; and 

the de Bruijn graph approach in which the original sequence reads are segmented into smaller fragments 

of k size (k-mers) and a direct graph is constructed using the k-mers as edges and the k-1 prefixes and 

suffixes as nodes (6,35). Although some assemblers with option for metagenomic data exists, this tools 

are based on adaptations and an assembler dedicated at the whole shotgun metagenomic type of data 

is not yet available.  

2.3 Metagenomic analysis 

Metagenomic analysis is the study of genomic DNA from an assemblage of communities. It has an 

important role in the study of organisms that cannot be cultured as well as for the study of microbial 

communities as a whole (6).  

An approach to identify microbes within a sample is the amplicon sequencing. This consists in the 

amplification and sequencing of a genomic marker common to the majority of the organisms in order to 

classify the different microbes. The small-subunit of ribosomal RNA (SSU-rRNA) 16S is often used to 

characterize Bacteria and Archaea. The 16S amplicon sequencing is a useful method to identify different 
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organisms in a community. However, it has some limitations, including PCR and sequencing errors, the 

fact that different organisms have different number of 16S copies, the fact that 16S locus can be 

transferred between distantly related taxa and also because some microorganisms, especially virus, 

cannot be identified with this approach (6,36). 

The development of next generation sequencing techniques provided the possibility to identify and 

characterize each organism in a sample by shotgun metagenomic sequencing. This strategy is an 

alternative to 16S amplicon sequencing which avoids the aforesaid limitations and, since it works with 

the whole sequence, it is possible to infer gene related functions in the metagenome (6,37). 

2.4 Whole shotgun metagenomic sequencing 

The tools used to treat metagenomic data rely on the same approach used for whole shotgun genome 

sequencing. Metagenomics; however, comprises a greater challenge regarding not only the large data 

volume needed to get meaningful results, as also the issues related with indefinite number of organisms, 

some of them not yet characterized or even known (6). The communities’ divergence may lead to 

genomes that are not completely covered by reads. On the other hand, high proximity between organisms 

in the metagenome can lead to overlaps between reads of different organisms leading to chimeras (6). 

The presence of host DNA, such as human, can also be a problem for following assembly. Some tools 

have been developed to minimize this problem (38). 

There are different algorithms and different strategies to treat metagenomic data, which can be roughly 

summarised in pre-processing, assembly, taxonomic classification, gene prediction and functional 

analysis techniques (6).  

2.4.1 Pre-processing 

As mentioned, the tools used for pre-processing a whole shotgun genome sequencing can be also used 

for metagenomic data. Nevertheless, there are some tools designed for metagenomic data pre-

processing, such as Meta-QC-chain and PRINSEQ which work as both as quality control and trimming 

tools (24,39). 

2.4.2 Assembly 

The assembly of reads can be performed comparing to a referenced genome. A high percentage of 

organisms in metagenomic data are, however, unknown, leading to the need of a de novo assembly. The 
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tools used on this strategy are usually based on the de Bruijn graph approach (6,37). A number of tools 

have been adapted and developed for metagenome reconstruction 

Meta-IDB, a de Bruijn graph approach directed to metagenomic assembly, is now out of maintenance, 

being substituted by IDBA-UD (40). The last is an extension of IDBA for assembly of low-depth regions by 

paired end reads and error correction in high depth regions by the usage of progressive depth on contigs. 

It uses an iteration strategy from a minimum to a maximum k, where in each it creates an accumulated 

de Bruijn graph, increases the value of depth cut-off threshold and corrects the errors in the reads. At the 

end of the iteration process it constructs and returns the scaffolds and the maximum confident contig 

(41). This tool performed better than other assemblers regarding the computational speed and contig 

alignment size; however, it has shown a higher percentage of chimeras (42) 

GeneStich uses also a de Bruijn graph approach in which each path in the graph is referent to a gene. 

To infer the paths it uses a reference genome (43). 

RayMeta is an extension of the Ray genome assembler which also uses a de Bruijn graph approach that 

finds specific sub-sequences and extends each one into a contig. This tools have the particularity of 

running in many computers simultaneously, with the possibility of running in just one processor core. In 

addition to the assembly process, RayMeta also performs taxonomic profiling using a graph colouring 

strategy which adds a different colour for each reference genome (44).  

PRICE uses paired-read information to iteratively increase the size of existing contigs. Initially, those 

contigs can be individual reads from a subset of the paired-read dataset, non-paired reads from 

sequencing technologies that provide non-paired data, or contigs that were output from a prior run of 

PRICE or any other assembler (45). A different methodology is the overlap-and-extend approach used by 

Omega (overlap-graph metagenome assembler) (46).  

Metavelvet is an extension of the de Bruijn graph based assembler Velvet which decomposes the de Bruijn 

graph constructed from mixed short reads into individual sub-graphs. To disconnect two subgraphs, it 

identifies nodes shared by both sub-graphs (chimeric nodes) and uses these nodes as the break point.  

Metavelvet- SL is an improvement of Metavelvet with the use of supervised learning for the classification 

of the shared nodes (chimeric nodes). This tool first creates the general de Bruijn graph, extracts and 

classifies each chimeric node with use of a learning module, splits the graph into subgraphs and performs 

the scaffolding procedure. It provides also a pipeline connecting Metavelvet-SL and the profiling method 

MetaPhlan in order to generate the training sample for the supervised learning (47). 

SPAdes, another assembler based on the de Bruijn graph, was primarily created for single cell assembly. 

However, the last release comprises a metagenomic option. SPAdes was created with intuit of reducing 
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sequencing errors, non-uniform coverage, insert size variation, chimeric reads and bireads. It starts by 

creating a de Bruijn graph using k-mers, and then it operates on graph topology, coverage, and sequence 

lengths without the use of the k-mers or the sequence. Finally, the consensus DNA sequence is restored 

(48).  

There have also been described combined assembly strategies in order to conduct to more robust and 

accurate assemblage (42,49). 

2.4.3 Taxonomic characterization 

One of prior interests in metagenomic data analysis is to know which organisms are present in the 

community. The taxonomic characterization of metagenomic data can be assessed by the study of marker 

genes, such as 16S, with the use of binning strategies to assign each read to a taxonomic group or by 

assembling to a known genome (6,37).  

Phymm uses interpolated Markov models to characterize variable-length oligonucleotides into a 

phylogenetic group. PhymmB is a hybrid method gathering information from Phymm and BLAST (50). 

An approach to identify the organisms in the sample is the use of marker genes. MetaPhyler relies on 31 

phylogenetic marker genes. It uses BLASTX to build taxonomic classifiers and classifies the sequences 

concerning the best reference hit (51). AMPHORA also relies on a marker gene database, containing 

bacterial markers. AMPHORA2 is an improvement of AMPHORA including archaeal marker genes (52). 

MetaPhlan2 is an improved version of Metaphlan and uses also an marker gene database approach 

comprising both bacteria and archaea and uses nucleotide BLAST to align the reads into the database 

(53,54).   

Instead of marker genes, PhylOTU relies on operational taxonomic units (OTUs) identified by means of 

SSU-rRNA. The algorithm uses the phylogenetic distance acquired from a phylogenetic tree of  SSU-rRNA 

reads to cluster reads into OTUs (55).  

To perform an taxonomic characterization, PhyloSift call on LAST for sequence similarity search; applies 

the hmmalign program from the HMMER 3.0 software package to perform the alignment to reference 

multiple alignment; uses pplaner to place the sequences into a phylogenetic reference tree; and produces 

Krona plots for visualization (56). Metaxa2 (an improvement of Metaxa), also uses hidden markov models 

(HMM) with HMMER to align the sequences to conserved regions (SSU and LSU-rRNA) (57). HMM is a 

stochastic method to create probabilistic model of randomly changing systems assuming that the future 

states depend only on the present and not on the previous events. A HMM can be presented as a simplest 

dynamic Baysian network (58). 
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Parallel-meta 2.0, the improved version of Parallel-META 1.0, includes functional analysis based on Gene 

Ontology term and SEED annotation. The taxonomy is also assigned based on the HMM algorithm and 

uses both 16 and 18S rRNA markers (59).  

SeMeta is a taxonomic characterization tool using a semi-supervised learning algorithm, which groups 

reads into clusters and then uses the Lowest Common Ancestor algorithm to assigns the lowest common 

taxon to each cluster (60). 

2.4.4 Functional annotation 

Perhaps the greatest advantage of the shotgun metagenomic analysis is the possibility to perform a 

functional analysis and annotation, which can be independent of the identified taxonomy. Thus, the 

functional annotation of coding sequences within the reads permits characterize the organisms present 

and the metagenome. The first step is to predict the coding genes present in the sample. This can be 

performed in assembled or unassembled data with binning processes, protein classification and de novo 

gene prediction techniques (37). 

Using a stochastic approach for predicting bacterial and archaea genes, MetaGene functions in two main 

steps: first it extracts and scores all possible ORFs by their base compositions and lengths; then it 

calculates an optimal combination of ORFs considering both the ORFs’ scores and the scores of 

orientations and distances of neighbouring ORFs (61). MetaGeneAnnotator is an improvement of 

MetaGene including an prophage model, an ribosomal binding site model and a self-training model in 

order to predict both typical and atypical genes (62). 

Ab initio tools have the advantage to identify genes not referenced in the databases. Some of these tools 

uses a HMM approach. MetaGeneMark plugin developed by GeneProbe is an example of a HMM based 

approach which relies on the nucleotide composition (63). 

FragGeneScan is also based on HMM and can be applied both at complete genomes and metagenomic 

fragments. The algorithm relies on codon usage, sequence patterns for start/stop codons and sequencing 

error models (64).  

GlimmerMG uses a interpolated Markov model approach, it uses Phymm to do a phylogenic classification 

of the sequences and to make initial gene predictions; then the sequences are clustered with Scimm 

achieving a final gene prediction (65). 

Some functional annotation tools use a machine learning approach to an ab initio gene prediction. 

Orphelia identifies, extracts and scores all ORFs by its GC content using a machine learning model. Then, 

a combination of highly probable genes is selected by a greedy method with a maximal overlap constraint 
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(66).  MetaGUN is an improvement of MetaTISA using a machine learning approach. First it groups the 

fragments by phylogeny by means of a k-mer based naïve Bayesian sequence binning method. Then, 

extracts and scores all possible ORFs using support vector machine classifiers. To conclude, it adjust the 

translation initial sites of all predicted genes (67). MGC is an improvement of Orphelia which computes 

separate learning models for different GC ranges (68). 

The study of the gene’s functions within a metagenomic sample can be achieved by the use of similarity 

search algorithms such as BLAST. However, the high computational time required by BLAST turns this 

task impossible. Some faster versions of BLAST such as BLAT, LAST, LASTP, UBLAST and USEARCH 

were developed, but their lack of sensitivity turn them insufficient for metagenomic analysis (6,69). An 

approach to improve the speed of the similarity search maintaining sufficient sensitivity is the use of 

graphics processing units (GPUs). GHOSTMO and CLAST are examples of search tools for metagenomic 

analysis implemented as GPU systems (70,71) . 

FR-HIT constructs a k-mer hash table for the reference genome sequences; identifies fragments of 

reference sequences capable of aligning with the query; removes the fragments that do not enclose 

qualified alignments and performs banded alignment (72). 

RAPSearch2 follows the seed-extension approach used in BLAST, with a reduced amino acid alphabet 

using 10 symbols to represent amino acids groups. Instead of using a suffix array as in RAPSearch, 

RAPSearch2 uses a collision-free hash table (data structure that assigns each key to a unique value) to 

index a protein database (73) . 

 Functional annotation databases 

After the gene prediction, it is necessary to get a meaningful function for each gene and correspondent 

protein.  To accomplish this, there have been created several protein databases with sequence, structure 

and function information. Pfam, a database focused on the protein domain level and TIGRFAM, a database 

containing whole protein chains, comprise a large number of family proteins, based on UniProt database, 

and are represented by multiple sequence alignments and HMMs (74,75).   

The gene ontology database uses both ontologies and annotations of the genes and proteins producing a 

scheme to describe function at different levels (76).  

The clusters of orthologous groups (COGs) allows the assignment of orthologues and paralogs for most 

genes. Orthologues are genes from different organisms with a common ancestral. An orthologous family 

is formed by a group of three or more proteins from distant genomes having a higher similarity between 

them than to any other proteins from the same genomes. After a major update in 2014, the COG database 
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comprises 4631 COGs divided in 26 functional categories (77,78). EggNOG database is an extension of 

the COG database, including more genomes and non-supervised orthologous groups (NOGs) which lack 

of manual supervision and annotation (79).  

The KEGG database includes fifteen manually curated databases and a computationally generated 

database, which are divided in four categories (system, genomic, chemical, and health information). 

KEGG orthology (KO) database comprises sequence functional groups and functional orthologs. Unlikely 

COGs, KOs may consist of a single gene or may contain multiple sequence similarity groups. KOs are 

defined taking into consideration pathways, genes clusters and phylogeny (80). 

SEED is another functional database that relies on a subsystem based annotation. A subsystem is defined 

as a collection of functional roles that implement a specific biological process or a structural complex 

(81). 

Many tools have been developed to provide a functional analysis and annotation based in one or more 

databases. Some tools have been developed to perform annotation based only on the SEED system, such 

as RAST and SUPERFOCUS (82,83).  RAMMCAP performs clustering and ORF finder followed by 

annotation with Pfam, Tigrfam and COG (84). COGNIZER framework also provides functional analysis 

with KEGG, Pfam, GO and SEED databases (85).  

MEGAN retrieves taxonomical and functional information on previous aligned data. Regarding the 

functional analysis MEGAN can use InterPro2GO, eggNOG, SEED and KEGG databases (86,87). MG-

RAST, a web-based software can also perform quality control, statistical, clustering, taxonomical and 

functional analysis on assembled or unassembled data (88). Another web-based tool comprising 

metagenomic tools, including quality control, taxonomy, ORF calling, clustering and functional analysis 

tools is the WebMGA server (89). 

2.4.5 Pipelines and Workflows 

The analysis of whole shotgun data requires some knowledge in the bioinformatics field. In order to 

conduct this kind of analyses, there were developed software packages, workflows or simple pipelines to 

enable the biological or medical researcher to analyse the data without advanced knowledge in 

bioinformatics and command line tools. These pipelines may include more or less analysis steps and 

parameter selections. QIIME is a software that performs microbial community analysis (90). Mothur 

software also performs microbial community analysis and allows also trimming, alignment and taxonomic 

analysis based on 16S rRNAs (91). MetAMOS pipeline permits not only the assembly process as also the 

taxonomical and functional analysis. InteMAP is a pipeline for assembly using ABySS, IDBA-UD and 
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CABOG assembler regarding the coverage sequence depth (49). This and other software can be much 

easily used by the operator and are being developed in a large scale. However, different datasets need 

different processing procedures and this type of analysis needs user sensitivity and knowledge to choose 

the best approach for each analysis.    

2.4.6 Coverage 

An important factor to consider when analysing whole shotgun metagenomic data is the fraction of the 

metagenome represented in the dataset. A metagenome is formed from different organisms in different 

abundances and therefore it is important to note that some of these organisms are highly represented in 

the sample and others are represented in small amounts. This different coverage of the organisms in the 

sample dataset is of great importance. After the sequencing process, the DNA’s of the different organisms 

are fragmented and mixed together (92). This and the putative presence of errors can lead to a 

misinterpretation of low coverage reads as erroneous sequences, due to its low prevalence in the dataset. 

This is critic during the assembler steps, as most assemblers are based on de Bruin graphs: the less 

common reads can be assigned to leaves and further discharged. Considering that it is important to treat 

the data in order to ease the assembly process, one way of doing it is a random subsampling. However, 

while subsampling high coverage reads will give a good amount of data to be assembled; subsampling 

low coverage reads could lead to the exclusion of those reads.   

Another strategy is to use a normalization approach, where the highly present reads will be reduced, and 

low coverage ones will be maintained. Also a split of the dataset taking into account the coverage rate 

can be also performed. An example of tool that was designed to access this kind of coverage based 

normalization is bbnorm from BBtools package (93). 
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3. MATERIAL AND METHODS 

3.1 Datasets 

3.1.1 Target datasets  

This works aims to analyse and characterize the organisms present in seven Illumina® MiSeq datasets 

from wastewater treatment procedures from India. The sequenced samples generated paired-end reads 

with 2x150bp length.  

The metagenomes were obtained from activated sludge collected from industrial ETPs. Dataset AKR06 

was collected from Jeedimetla Effluent Treatment Limited (JETL), a CETP at Jeedimetla, which is a 

popular industry area located at the Hyderabad city. Datasets A2 and AKR12 were collected from two 

CETP at Ankleshwar city, a place with lots of dyes and textile industries. Datasets L1, L2, H1 and H2, 

were collected from a petrochemical complex in Western India that generates two types of wastewater, 

one with low total dissolved solids (TDS) –L1 and L2 - and the other with high TDS - H1 and H2. Both 

streams are treated separately in different ETPs. 

For each metagenome dataset, there were collected 9 samples that were then pooled to make a 

homogenous sample. 

The summary description of each dataset can be found in Table 1. 

Table 1 Metagenome datasets description 

Dataset Description Number of      
paired-end reads 

AKR06 JETL CETP activated sludge  5 217 070 

A2 Ankleshwar CETP 4 374 324 

AKR12 Ankleshwar CETP 6 135 013 

L1 Low TDS activated sludge (wastewater from petrochemical complex) timepoint 1  4 421 598 

L2 Low TDS activated sludge (wastewater from petrochemical complex) timepoint 2  5 017 797 

H1  High TDS activated sludge (wastewater from petrochemical complex) timepoint 1 5 279 434 

H2  High TDS activated sludge (wastewater from petrochemical complex) timepoint 2  4 316 467 
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3.1.2 Simulated datasets 

In order to analyse the tools performance and to set a pipeline to subject the target datasets, two 

simulated datasets were generated (Figure 2). 

  

Figure 2 Steps overview to create the simulated datasets. 

Two data clusters were generated using MetaPhlAn v2.0. Then, a coverage split was performed on the 

target datasets using bbnorm from BBTools package. Each dataset was separated in low (less than 3 

times coverage), mid (between 3 and 10 times coverage) and high (higher than 10 times coverage). 

Afterwards, for each level of coverage, the datasets were again submitted to MetaPhlAn v2.0 extracting a 

species list (script1). The reference genome for each specie was extracted from NCBI creating a file with 

each reference genome. These steps are described on S-commands1.  

In order to generate the simulated datasets, the grinder simulator was used with the reference genome 

created for each cluster and coverage level. As the target datasets are paired-end reads with 2x150bp 

length, the average length was set to 150bp. An insert size of 584bp for cluster 1 and 597bp for cluster 

2 was used in order to generate paired end reads. A median of the target datasets insert sizes were used 

as insert size. To model Illumina errors a 4th degree polynome was used as  described by Korbel et al  

(94) : 

3 × 10−3 + 3.3 × 10−8 × 𝑖4 

Regarding the abundance distribution, it was used a logarithmic 1.8 distribution. The dataset size was 

set based on the median dataset size for each coverage level. 
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3.2 Tools  

Table 2 Tools tested in order to generate a pipeline for metagenomic data analysis 

Analysis stage Tools 

Pre-

Processing 

Error correction BayesHammer, Coral, Musket 

Quality and adapter 

trimming  

Fastqmcf; Flexbar; Sickle; Trimmomatic 

Assembly Ray (v2.3.1), SPAdes 3.9  

Taxonomic composition  MetaPhlAn v2.0, Metaxa2 (version 2.1.3) and Parallel-META 3.3.2 

3.2.1 Error correction 

Simulated datasets were subjected to correction tools: BayesHammer, Coral and Musket. BayesHammer 

was used as part the SPAdes genome assembler flagged for metagenomic data. Coral and Musket were 

tested with the default parameters.  

3.2.2 Trimming 

After being subjected to the defined error correction tool, the datasets were trimmed using four different 

tools: Fastq-mcf, Flexbar, Sickle and Trimmomatic. The following adapter sequences were used with 

Fastq-mcf, Flexbar and Trimmomatic: 

Table 3 Adapters used with the trimming tools 

Adapter description Adapter sequence 

Nextera_circularized_duplicate_junction_adapter CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG 

Nextera_circularized_single_junction_adapter CTGTCTCTTATACACATCT 

Nextera_circularized_single_junction_adapter_reverse_complem

ent 

AGATGTGTATAAGAGACAG 

Nextera_read_1_external_adapter ATCGGAAGAGCACACGTCTGAACTCCAGTCAC 

Nextera_read_2_external_adapter GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

 

The minimum read length was set in every tool to two thirds of the main length (100bps). Besides that, 

Fasq-mcf, Flexbar and Sickle were used with default parameters and Trimmomatic was used with the 

quick start as suggested by the authors. 
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3.2.3 Assembly 

The pre-processed samples were subjected to two different assemblers: Ray (v2.3.1) and SPAdes 3.9. 

The k-mer values were selected for each software and dataset regarding the highest reference genomes 

coverage. The remaining parameters were used as default. 

3.2.4 Taxonomic composition 

For taxonomic analysis software selection, the pre-processed simulated datasets were subjected to 

MetaPhlAn v2.0, Metaxa2 (version 2.1.3) and Parallel-META 3.3.2.  

3.2.5 Functional analysis 

The functional analysis were performed in the target datasets with and without coverage split using 

assembled contigs. The analysis was performed with MG-RAST version 4.0 which gives an overview on 

the COG, NOG, KO and SEED databases. COG results were normalized with Musicc for further analysis.  

To assesses the assembly impact on functional analysis, both unassembled and assembled data were 

analysed with MGX, and the COG results were considered to analysis. 

3.3 Evaluation strategies 

3.3.1 Statistical metrics 

In order to compare the contigs generated with different error correction approaches, a Python script was 

created to calculate the Total number of sequences, the smaller and the larger sequence length, the 

mean and median sequence length, the N25, N50, N75 and the GC content  (script 2). 

3.3.2 Pattern matching 

A pattern matching strategy was used to analyse the results achieved with the simulated datasets. The 

pattern matching package MUMmer v3.23 was used as an evaluating tool for the resultant contigs. The 

alignment of the contigs with the reference was performed with NUCmer. The resultant file was filtered 

with delta-filter to retain only the alignments scoring 95% minimum identity. The dnadiff wrapper was 

afterwards used to generate a report quantifying the differences between reference and query. 
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3.3.3 Taxonomy analysis evaluation strategy  

A specific evaluation strategy was defined for the selection of the  taxonomic analysis software, 

considering the software’s different references and outputs. As the genomes used to generate the 

simulated datasets were selected with MetaPhlAn v2.0, the phylum and genus outputs from the two other 

tools were first checked against MetaPhlAn v2.0 database to find any ambiguous result (script 3). With 

the construction of the simulated dataset, grinder generates a relative abundance percentage file (S-tables 

1-6). Using this information there were created reference abundance files for phylum and genus (S-tables 

7-18). Therefore, after the first triage, the outputs were compared with the reference abundance files. 

Two different approaches were used. The first one comprises the real taxonomical abundance and had 

the objective of determining the following metrics (script 4 and 4a): 

 True positives (TP) – number of reads mapped to existing taxa 

 False positives (FP) – number of reads mapped to non-existing taxa 

 False negatives (FN) -  number of reads that did not map 

 Sensitivity – TP/(TP+FN) 

 Positive predictive values – TP/(TP+FP) 

The second analysis comprises only the positive results (TP and FP) and calculate the relative abundance 

log-odds scores (script 5 and 5a). 

Grinder ranks are output as relative abundance percentage. In order to use this reference data in the 

metrics approach, the real abundance was calculated by multiplying the relative values to the number or 

total reads. MetaPhlAn v2.0 also outputs the taxonomic results as relative abundance percentage. To 

achieve the real abundance, the relative abundance was multiplied by the number of reads mapped with 

Bowtie2, which is part of the MetaPhlAn v2.0 analysis.  

Metaxa2 and Parallel-META both outputs the integer number of sequences detected. Then, to use this 

data to calculate the relative abundance log-odds scores, it was needed to calculate this value, by diving 

the number of hits for a given taxa by the total number of hits. 

3.3.4 Alignment and insert size calculation 

In order to access the insert size to use in the simulated datasets, the real datasets were pre-processed 

using BayesHammer and Sickle and assembled with SPAdes. Then, Bowtie2 was used with the aim to 

align reads against contigs, and the insert size values were achieved with CollectInsertSizeMetrics 

command from picardtools. 
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3.4 Python scripts 

Scripts Description Input Output 

Script 1 Saves all species found in a list of 

MetaPhlAn v2.0 output files into a txt file 

Llst with MetaPhlAn v2.0 

output filenames 

txt file with all species found 

Script 2 Calculate the the following statistical 

metrics in a fasta or fastq file: number of 

sequences, smaller sequence length, larger 

sequence length, sequence length mean, 

sequence length median, N25, N50, N75 

and GC percentage. 

fasta or fastq file 

file type 

csv with the statistical 

metric 

Script 3 Check if the taxa found with the software 

tested has the same nomenclature as the 

reference 

software name 

file to check 

csv file with the unmatched 

nomenclature  

Script 4 Compares the total abundance found on the 

given file with the abundance on the 

reference file and calculates true positives 

(TP), false-positives (FP) , false negatives 

(FN), sensitivity (SEN) and Positive 

predictive values PPV). 

software name  

taxa (phylum or genus) 

software filename 

reference file (created 

using ranks from grinder) 

output filename 

csv with metrics (TP, FP, 

FN, SEN, PPV) 

 

Script 5 Compares the relative abundance found on 

the given file with the abundance on the 

reference file and calculates the log-odds 

scores. 

software name  

taxa (phylum or genus) 

software filename 

reference file (created 

using ranks from grinder) 

output filename 

csv with software relative 

abundances, reference 

relative abundances and 

log-odds score 
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4. RESULTS AND DISCUSSION 

4.1 Overall strategy 

In order to access biological important findings regarding the different sampled data, a pipeline was 

defined based on simulated datasets representative of the target data. Then, the selected tools were used 

to analyse the target datasets, comparing both different coverage levels and assembled and unassembled 

data. A summary of the used strategy can be found on the following flowchart: 

 

4.2 Step 1 – Preparation of simulated datasets  

4.2.1 Preliminary analysis of datasets to be analyzed 

Since the simulated datasets are intended to mimic the target data, they were generated based on the 

information extracted from the targets. Primarily, all the target datasets were subjected to MetaPhlAn v2.0 

to extract their taxonomic distribution. The summary of this approach is highlighted in the heat-map graph 

of Figure 3.  

Step 1
• Simulated datasets construction

Step2

• Pre-processing, assembly and taxonomic analysis tool 
selection  

Step 3

• Target datasets pre-processing, assembly and taxonomic 
analysis

Step 4
• Target datasets functional analysis
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Figure 3 Abundance heat-map acquired with MetaPhlAn v2.0 

The heat-map was generated based on MetaPhlAn2 tutorial (95) using hclust2 to get a preliminary 

visualization at the species level and to group the target datasets based on the species content. First, it 

was generated a species abundance table for every dataset. Then, a heat-map was generated with hclust2 

using the parameters suggested in the tutorial. The graph suggests two clusters, one with datasets L1, 

L2 and H2 and a second one formed by datasets A2, AKR06, AKR12 and H1. The first cluster comprises 

the petrochemical complex ETP datasets L1, L2, and H2, excepting H1 which are grouped with the CETP 

datasets A2, AKR06, AKR12. The CETPs from Ankleshwar (A2 and AKR12) show more similarity together 

than with AKR06. 

The target datasets were split in three coverage levels and the species lists were accessed with MetaPhlAn 

v2.0. The genome sequences were downloaded from NCBI and grouped regarding the two mentioned 

clusters and coverage levels, resulting in six reference genomes files. This reference files where further 

used to generate the simulated datasets. In order to accomplish that, some parameters had to be defined, 

such as dataset size and insert size. To calculate the insert size, the target datasets were assembled with 

SPAdes and the resulting contigs aligned with reads. The insert size used on the simulated dataset is the 

median of the median insert sizes of the cluster datasets (as described in Table 4). 
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Table 4 Insert size results obtained with CollectInsertSizeMetrics command from picardtools under the alignemnet of the dataset reads 
against the contigs obtained with SPAdes 

 
  

MEDIAN 
INSERTSIZE 

MEDIAN 
ABSOLUTE 
DEVIATION 

MEAN INSERT 
SIZE 

STANDARD 
DEVIATION 

Cluster 1 

L1 584 100 586.569189 168.636971 

L2 554 132 535.18377 201.494441 

H2 588 112 579.488604 185.67821 

Median 584       

Cluster 2 

A2 528 121 520.620818 181.409958 

AKR06 606 111 600.380093 188.313901 

AKR12 605 108 603.180549 179.309514 

H1 589 106 583.986822 175.249703 

Median 597       

 

After splitting the target datasets, a median of the number of reads for each cluster and coverage level 

was calculated and further used to determine the dataset size of the simulated dataset (Table 5) 

Table 5 Datasets size 

 
 

LOW reads MID reads HIGH reads 

Cluster 1 

L1 4 665 238 2 650 972 1 526 986 

L2 6 346 528 2 997 148 691 918 

H2 5 985 508 2 359 164 288 262 

Median 5985508 2 650 972 691918 

Cluster 2 

A2 3 159 936 2 079 360 3 509 352 

AKR06 7.388.670 2 387 090 658 380 

AKR12 3 228 530 3 915 734 5 125 762 

H1 3 949 704 3 094 100 3 515 064 

Median 3 589 117 2 740 595 3 512 208 

 

The target datasets show different coverage distribution, except H1 which has not significant differences 

between the three coverage levels. Contrasting, dataset H2, corresponding to the second timepoint of 

H1, shows significant discrepancies in coverage distribution. This suggests a more homogenous 

abundance distribution in H1 comparing with H2. Nevertheless, a strange behaviour of H1 was observed 

on further analysis, suggesting that this dataset may have surfer some erroneous treatment between 

sampling and sequencing. H2 LOW reads have more than 20 times the reads of H2 HIGH reads, 

suggesting that H2 comprises a large number of low represented microorganisms and few predominant 

organisms in the sample. However, high coverage reads could also be related with conserved reads 

throughout the organisms, being all grouped together, instead of one or few prevalent organisms.   
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4.3 Step 2 – Pre-processing, assembly and taxonomic analysis tool selection   

4.3.1 Error correction 

 Pattern matching results 

To evaluate the performance of error correction tools, the simulated datasets were treated with three 

different tools: BayesHammer, Coral and Musket. Therefore, the corrected reads were assembled with 

SPAdes and the resulting contigs were aligned with the reference genomes using nucmer (Table 6). 

Table 6 Simulated datasets subjected to different error correction approaches followed by assembled with SPAdes. The treated reads were 
then aligned against the reference genomes. 

  
None Bayes hammer Coral Musket 

LOW1 

 

Aligned bases  79822203 
 (91.16%) 

78924749  
(90.14%) 

79900802  
(91.25%) 

78125117  
(89.23%) 

Total SNPs 375100 310829 373674 422900 

Total Indels 82205 72903 23970 85056 

MID1 

 

Aligned bases 7177418 
 (99.51%) 

 7178535  
(99.53%)  

7175977  
(99.49%)  

7178640 
 (99.53%) 

Total SNPs 227 258 1664 347 

Total Indels 11 6 110 13 

HIGH1 

 

Aligned bases 4172038 
 (99.22%) 

4172971  
(99.25%)  

4172414 
 (99.23%) 

4172969 
 (99.25%) 

Total SNPs 135 133 271 188 

Total Indels 3 2 6 6 

LOW2 

 

Aligned bases 103279138 
(43.35%) 

104277628  
(43.77%) 

103701472 
(43.53%) 

103228102 
(43.33%) 

Total SNPs 1263320 1167508 1266348 1264819 

Total Indels 297702 293478 298355 297634 

MID2 

 

Aligned bases  41880429 
 (94.22%)  

 41628399  
(93.65%) 

41843238  
(94.14%) 

41841606  
(94.13%) 

Total SNPs 166588 131276 165676 168294 

Total Indels 39598 35254 39513 39681 

HIGH2 

 

Aligned bases 7270580  
(99.30%) 

 7272301  
(99.32%) 

7272641 
 (99.33%) 

7267666  
(99.26%) 

Total SNPs 273 337 408 340 

Total Indels 45 40 38 40 

 

Regarding the percentage of the reference aligned bases with the contigs, there is no clear difference 

between the different tools. However a slight improvement can be observed when comparing with the 

untreated data. This may suggest that the error correction tools may be dismissed for some datasets or 

when using assemblers which are less affected by the sequencing errors. 
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 Statistical Analysis 

With the purpose of evaluating the impact of error correction in the data assembly, statistical metrics 

were calculated for the contigs which have been subjected to the mentioned error correction tools (S-

table 19). The N50 is a statistical metric that indicates an average contig length such that 50% of the sum 

of the total length of contigs are achieved in the contig of this size or larger. It is commonly used to analyse 

the data contiguity and the results can be found in Figure 4. 

 

Figure 4 N50 value for contigs obtained by subjecting the simulated datasets to different error correction approaches followed by assembled 
with SPAdes. 

Taking into consideration the described results, BayesHammer seems to have stronger results by 

reference genomes coverage, where it achieved good alignment results both regarding the number of 

aligned bases and the reduced snps and indels. In terms of contiguity, a high N50 value were also 

achieved on data corrected with BayesHammer. Therefore, BayesHammer was chosen to be used in the 

following analysis steps. 
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4.3.2 Trimming 

 Pattern matching results 

In order to assess the trimming tool’s performance, the reads were first corrected with BayesHammer 

and further subjected to four different tools: Fastq-mcf, Flexbar, Sickle and Trimmomatic. Then, the error 

corrected and trimmed reads were assembled with SPAdes and the resulting contigs were aligned with 

the reference genomes using nucmer. Results regarding the number of aligned bases, total SNPs and 

total indels can be found in Table 7.  

Table 7 Simulated datasets subjected to BayesHammer error correction followed by different trimming approaches and assembled with 
SPAdes. The treated reads were then aligned against the reference genomes. 

  
None Fastq-mcf Flexbar Sickle Trimmomatic  

LOW1 Aligned Bases 78924749  
(90.14%) 

77933403 
(89.01%) 

77450098 
(88.46%) 

77933137 
(89.01%) 

77941102 
(89.02%) 

Total SNPs 310829 381591 365472 381781 380944 

Total Indels 72903 95676 92029 95681 95512 

MID1 Aligned Bases  7178535  
(99.53%)  

7174085 
(99.47%) 

7174123 
(99.47%) 

7174085 
(99.47%) 

7174126 
(99.47%) 

Total SNPs 258 198 200 198 199 

Total Indels 6 7 10 7 7 

HIGH1 Aligned Bases 4172971  
(99.25%)  

4171007 
(99.20%) 

4170912 
(99.20%) 

4171007 
(99.20%) 

4171007 
(99.20%) 

Total SNPs 133 129 131 129 129 

Total Indels 2 1 5 1 1 

LOW2 Aligned Bases 104277628  
(43.77%) 

77239246 
(32.42%) 

75250926 
(31.59%) 

77239306 
(32.42%) 

77378103 
(32.48%) 

Total SNPs 1167508 1036219 952099 1036188 1036021 

Total Indels 293478 257052 236525 257061 257000 

MID2 Aligned Bases  41628399  
(93.65%) 

40719842 
(91.61%) 

40520218 
(91.16%) 

40720622 
(91.61%) 

40729435 
(91.63%) 

Total SNPs 131276 169176 161833 169132 168622 

Total Indels 35254 45729 44076 45727 45658 

HIGH2 Aligned Bases  7272301  
(99.32%) 

7269284 
(99.28%) 

7268845 
(99.27%) 

7269284 
(99.28%) 

7269284 
(99.28%) 

Total SNPs 337 452 450 452 427 

Total Indels 40 44 51 44 44 

 

The results obtained suggested that the trimming tools have actually reduced assembly quality, as the 

number of aligned bases decreased with the trimming treatment. However, it has to be taken into account 

that the simulated datasets have only generated two levels of quality score, a high (30) and a low (10) 

score. Sequencing quality scores are given by the sequencer as the base call accuracy in Phred format 

which uses a set of ASCII characters. The present datasets uses Phred+33 with a specific ASCII encoding, 
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comprising scores from 0 to 41. Then, the quality score generated for the simulated datasets, comprising 

only 2 values, instead of the real data quality spectrum may create a bias in the trimming results.  

 Statistical Analysis 

Statistical metrics were also calculated in order to evaluate the impact of the different trimming tools (S-

table 20). Again, the trimming tools don’t seem to improve the results obtained with the simulated 

datasets, being once again worse than the untreated data. Taking into account that the simulated datasets 

do not perfectly mimic the sequencing quality scores of a real dataset, a statistical analysis was performed 

on the (not split) target datasets which were first corrected with BayesHammer. The statistical analysis 

results can be found as supplementary data (S-table 21) and N50 values are plotted in Figure 5. 

 

Figure 5 N50 value for contigs obtained by subjecting the target datasets to Bayes Hammer error correction followed by different trimming 
approaches and assembled with SPAdes 

The analysis of the trimming tools was not conclusive, since the simulated datasets results do not express 

a notorious data improvement with any of the tested tools. However, in the target datasets Sickle, followed 

by Fastq-mcf, seems to have a slightly improvement into the contiguity of the assembled reads. 
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Since Sickle do not trim adapters, which could be present in the target datasets, Fastq-mcf was chosen 

as the tool to be used in the following analysis steps. Fastq-mcf had a consistent performance both in the 

pattern alignment analysis and in contiguity. 

4.3.3 Assembly 

 Pattern matching results 

To select an assembly tool and to define the k-mer values, SPAdes and Ray were tested in every pre-

processed simulated datasets with different k-mer values. The tool and k-mer value was selected regarding 

the percentage of the reference dataset genomes aligned with the contigs, acquired with nucmer (S-tables 

22 and 23). The best results obtained with both tools are shown in Table 8. 

Table 8 Pre-processed simulated datasets subjected to two different assemblers. The resulted contigs were then aligned against the reference 
genomes. 

 Assembly tool  k-mer size Aligned Bases 

LOW1 
 

spades  default 89.01% 

ray 25 73.42% 

MID1 spades  default 99.47%  
ray  33 99.02% 

HIGH1 spades  default 99.20%  
ray  29 99.52% 

LOW2 spades  25 42.95%  
ray  25 16.87% 

MID2 spades  default 91.61%  
ray  25 75.53% 

HIGH2 spades  default 99.28%  
ray  31,33,39-47 98.74% 

 

Concerning SPAdes, there were selected the second bests results for MID1 and HIGH1, since the 

difference between the two better results were only 0.01% and the second best result was acquired with 

the default k-mer length which suggest a stronger k-mer size selection when applied to the target datasets.  

 Statistical Analysis 

The assemblies were also evaluated with statistical metrics (S-table 24). The N50 values suggest that a 

higher contiguity is achieved with SPAdes (Figure 6). 
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Figure 6 N50 value for contigs obtained using Ray and SPAdes assemblers 

Besides Ray having a slightest better result for HIGH1 dataset, SPAdes shown to be a stronger tool and 

therefore it will be used on the target datasets with default k-mer size for every datasets except for the 

ones corresponding to LOW2, where it will be used a k-mer size equal to 25. The k-mer size selection has 

a great impact in assembly, since a smaller value may lead to collapse more repeated areas together. 

However, when using larger k-mer on low coverage regions may lead to prevent the detection of overlaps 

between reads. When using the SPAdes with default k-mer size, the tool performs the assembly with 21, 

33 and 55 k-mer and combines the best results.  

4.3.4 Taxonomy 

Concerning the evaluation of the taxonomic tools, the simulated datasets were pre-processed with 

BayesHammer and Fastq-mcf and analysed with MetaPhlAn v2.0, Metaxa2 and Parallel-meta. The 

number of true positives (TP), false positives (FP) and false negatives (FN) were assessed being the 

sensitivity and positive predictive values calculated (S-tables 25-26). Genus level performance metrics 

can be found in Figure 7. MetaPhlAn v2.0 retrieved the higher number of true positives, with the exception 

of the HIGH1 dataset.  It did not retrieve any false positives or false negatives on the MID and HIGH 

datasets being the best tool regarding this metrics on LOW2 dataset. MetaPhlAn v2.0 had a slight higher 

value than Metaxa2 regarding false positives in the LOW1 dataset. Parallel-meta found more genus when 
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compared with the other tools which can be understood as a better performance in a superficial analysis. 

This tool; however, retrieves a large number of false positives which should be accounted.  

 

 

Figure 7 Genus level metrics’ relative frequencies for the taxonomic analysis tools.   

Expected relative abundances (generated by grinder) and the relative abundances given by the tools were 

also compared and can be found as supplementary data (S-table 27-63). 

Regarding this results, MetaPhlAn v2.0 was chosen as the taxonomic tool to be used. The assembled 

datasets were also subjected to the analysis but no taxa were identified. For that reason, the target 

datasets taxonomy analysis were only performed on unassembled data. 
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4.4 Step 3 - Target datasets pre-processing, assembly and taxonomic analysis  

4.4.1 Pre-processing and Assembly 

The present work comprises the metagenomic analysis of 7 datasets, 3 coming from CETPs and 4 from 

a petrochemical complex ETP. All the datasets were analysed with and without coverage split (as 

described for the simulated datasets). The data was previous pre-processed with BayesHammer and 

Fastq-mcf and assembled with SPAdes. All the datasets (with and without coverage split) where 

assembled with SPAdes default k-mer size. Exception was made for the low coverage fraction of A2, 

AKR06, AKR12 and H1 datasets which correspond to the simulated LOW2, where it was used a k-mer 

size equal to 25. Statistical metrics comparing the assembled datasets with and without coverage split 

can be found in Table 9.  

The highest sequencing depth of coverage showed a higher continuity in the majority of the datasets. In 

contrast, the low coverage datasets fraction exhibited a lower continuity. This may be due to an erroneous 

sequencing depth split. When grouping the reads with higher coverage it is possible that instead of 

grouping organisms with high representability in the sample, there were grouped the conservative and 

repetitive genomic areas of several organisms. This sequences will easily assemble due to its similarities 

and to repetitive areas. Taking this into account, the high contiguity may be due to the chimeras’ formation 

between similar sequences and not to a real genome assembly. 

This further highlights the fragility of evaluating an assembly regarding the contiguity. Contiguity is here 

described using N50 metric and this and other metrics are often used to access the assembly quality. 

However, a high contiguity may be related with the formation of chimeras and the exclusion of important 

specific genomic areas.  

The low coverage datasets here present can be constituted of specific genomic areas from different 

organisms, lacking the more conservative genomic areas and thus hindering the assembly. 
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Table 9 Statistical metrics comparing target datasets with and without coverage split. 
  

Number of 
sequences:  

Smaller 
sequence 
length:  

Larger 
sequence 
length:  

Sequence 
length 
mean:  

Sequence 
length 
median:  

N25:  N50:  N75:  GC 
percentage:  

AKR06 without coverage split 27273 1001 175509 2712.922 1608 8079 3480 1699 60.15% 

high coverage 1642 1003 66625 2758.313 2001 5582 3206 1950 66.89% 

mid coverage 13868 1001 64137 2767.372 1961 6027 3311 1946 60.50% 

low coverage 4734 1001 3972 1282.218 1188 1476 1233 1096 59.98% 

A2 without coverage split 20543 1001 902269 3127.553 1626 17667 4383 1863 59.64% 
 

high coverage 2044 1001 566836 4538.727 1679 119034 15229 2550 54.82% 
 

mid coverage 10970 1001 60653 2875.108 1809 7941 3643 1895 61.32% 
 

low coverage 3750 1001 3223 1267.182 1182 1449 1226 1096 59.37% 

AKR12 without coverage split 27661 1001 828132 3969.401 1683 34536 8226 2401 64.10% 
 

high coverage 2782 1001 398734 6384.213 1797 65775 25220 6077 62.72% 
 

mid coverage 16066 1001 103178 3799.422 2119 12655 5946 2618 65.31% 
 

low coverage 4341 1001 3993 1272.481 1186 1457 1234 1098 62.11% 

L1 without coverage split 31010 1001 821816 2767.616 1555 16466 3239 1653 60.00% 
 

high coverage 1194 1001 188621 7364.967 2328.5 69438 19083 7214 64.39% 
 

mid coverage 12506 1001 197627 3049.36 1639.5 17465 4013 1802 58.56% 
 

low coverage 4369 1001 3627 1249.721 1169 1422 1206 1084 60.47% 

L2 without coverage split 34255 1001 919053 2596.173 1542 8713 2995 1591 63.02% 
 

high coverage 2492 1001 16443 1804.557 1533.5 2628 1838 1377 67.19% 
 

mid coverage 14496 1001 124198 2994.274 1723 11671 3860 1860 63.25% 
 

low coverage 4939 1001 3458 1247.945 1172 1413 1209 1087 60.67% 

H1 without coverage split 22899 1001 623752 3671.049 1622 25893 7170 2164 58.65% 
 

high coverage 2741 1001 352085 5263.494 2322 56684 9434 3850 62.71% 
 

mid coverage 12445 1001 79582 3893.632 2144 14499 6098 2657 58.21% 
 

low coverage 4247 1001 4148 1290.954 1192 1506 1245 1100 56.92% 

H2 without coverage split 18100 1001 104373 2410.085 1503 7182 2707 1503 64.75% 
 

high coverage 757 1001 36395 1750.651 1450 2450 1709 1293 65.25% 
 

mid coverage 10047 1001 109432 3633.44 1815 18697 6086 2241 65.24% 
 

low coverage 3598 1001 3432 1231.968 1154 1384 1189 1077 61.70% 

 

The coverage split is of great importance, since, as also shown by this results, the presence of low 

coverage reads difficult the assembly and may lead to the exclusion of less abundant features and 

organisms. This means that a less abundant organism or a specific function with lower representability 

can be excluded due to the supra representation of other species and more common genomic areas. 

Nevertheless, the coverage split approach has to be better studied in order to accurately split different 

organismal abundances, instead of splitting a unique genome in two different datasets. 
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4.4.2 Taxonomy 

The taxonomy was assessed with MetaPhlAn v2.0, being the reads pre-processed with BayesHammer 

and Fastq-mcf. The datasets were analysed with and without coverage split. Since the main objective of 

the coverage split was the assessment of low coverage species information, it was expected that the split 

data could detect the lowest abundant organisms, translating in a higher diversity. However, this was not 

observed in every dataset. AKR06 and H2 retrieved lower number of found genus in the data split by 

coverage. Taking this into account, the genus appearing in both split and not split datasets were 

considered more robust.  

AKR06 dataset was collected from an industrial area CETP at Jeedimetla. The most abundant genus 

found in this dataset was Thauera. Thauera is the most, or the second most abundant genera in CETP 

datasets, as well as in timepoint 1 of the High TDS activated sludge dataset (H1). Thauera strains are 

found on activated sludge systems that are used for the treatment of wastewater and have a denitrifying 

function. Thauera species were found to be capable of selenite, ammonium and humus reduction under 

anaerobic conditions (96,97). Other denitrifying populations such as Methyloversatilis, Hyphomicrobium, 

Azoarcus and Paracoccus strains were also found (96,98). Pseudomonas strains are also associated with 

denitrification; however, this genus is also associated with opportunistic pathogens (99).  

Alicycliphilus, another abundantly found genus, is also found on activated sludge systems (100,101). 

These organisms grow under aerobic or anoxic conditions having a strictly oxidative metabolism (102). 

Alicycliphilus species have been shown to be capable of degrading high-strength chemical compounds, 

such as cyclohexanol, benzene, and acetone (103–107). 

Nitrosomonas and Nitrobacter species are nitrifying bacteria, the first convert’s ammonia to nitrite and 

the second convert’s nitrite to nitrate. These two genera are abundant in AKR06 dataset. Nitrospira genus, 

also found on AKR06 dataset, comprises bacteria capable of oxidize completely ammonia to nitrate, 

named complete ammonia oxidizers (Comammox) (108). The high abundance of Nitrosomonas and 

Nitrobacter species and the presence of Nitrospira genus, together with the mentioned denitrifying 

population may suggest a higher concentration of ammonia and other nitrogen cycle related compounds 

on this dataset. 

The genus Methylocystis was also found on AKR06 dataset. Methylocystis species are methanotrophic 

bacteria with capability to use different nitrogen sources (109). The presence of this microorganism may 

be related with a high level of methane in this dataset. 

Leucobacter  can be found in a variety of environments and most members of Leucobacter genus are 

chromate-resistant  suggesting a higher concentration of this salt on AKR06 (110,111) 
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Nocardioides species were found to be capable of p-nitrophenol, crude oil and 2,4 dinitroanisole 

degradation (112). Moreover, a denitrifying specie was found on sludge in a sewage-disposal plant (113). 

This genus is present in every dataset, except in the high TDS activated sludge (H1, H2). 

 

Figure 8 AKR06 dataset taxonomy analysis performed by MetaPhlAn v2.0 with and without coverage split 

Datasets A2 and AKR12 are from two CETP at Ankleshwar city. This CETPs receive mainly the residues 

dyes and textile industries. Thauera and Alicycliphilus are the two most abundant genus found in both A2 

and AKR12 datasets. 

Arcobacter genus was found on A2. Arcobacter species have been found in different environments. In 

humans, Arcobacter genus can act as a pathogen, originating diarrhea and other pathology outbreaks. 

The infection is usually originated by contaminated food or water (114). 

The genus Rhodococcus was identified on A2 dataset. This genus is frequently associated with 

bioremediation and biocatalytic processes. Rhodococcus species can degrade a large number of 

compounds, such as steroids, nitriles, lignins, and organosulfur. Moreover, Rhodococcus spp. were 

associated with human, animal and plant infection (115). Acidovorax was also found on A2 dataset, its 

species can be found in soil and water habitats and some are phytopathogenic. A specie with denitrifying 

properties was also identified (116).  

Bordetella genus, a strictly aerobic organism, that cannot ferment carbohydrates such as glucose, was 

found on AKR12 dataset. Most members are primary or opportunistic pathogens. Bordetella, as well as 

Pseudomonas, Mesorhizobium, Pusillimonas, were found to be capable of degrading crude oil sludge 

(117,118). Mesorhizobium and Pusillimonas were also found on AKR12 dataset, which may suggest a 

significant amount of crude oil present in this CETP in Ankleshwar, coming from dyes and textile 

industries.  

The genus Sphingopyxis was found on AKR12 dataset and comprises strictly aerobic, 

chemoheterotrophic, propane-oxidizing bacteria that have been identified in different environments, 

including activated sludge (119,120). 
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Oligotropha genus was also detected on AKR12 dataset. This genus only comprises one specie, the O. 

carboxidovorans, a chemolithoautotrophic bacteria able to use CO, CO2, and H2 that was found on 

wastewater (121). It was also found, although in low abundance, the genus Caulobacter, which are strictly 

respiratory and aerobic and comprises generally aquatic species (122). A few pathogenic cases have 

been identified related with meningitis (123).  

Thiomonas strains are capable of oxidizing arsenite and are found ubiquitously in acid mine drainage 

which have extreme conditions due to the many lethal elements, low levels of organic matter and low pH 

(124). This genus is highly present in the samples collected from the petrochemical complex, with 

exception of H1, suggesting a hostile environment, particularly on L1 where it is the predominant genus. 

Thiomonas strains were also found on AKR12 dataset, albeit in lower abundance.  

 

Figure 9 A2 dataset taxonomy analysis performed by MetaPhlAn v2.0 with and without split by coverage 

 

Figure 10 AKR12 dataset taxonomy analysis performed by MetaPhlAn v2.0 with and without split by coverage 

Regarding low TDS activated sludge datasets, an increase in biodiversity can be observed between 

timepoint 1 and 2, suggesting a transition to a least selective environment. The higher toxicity of the L1 

dataset sample can be also observed, as referred, by the predominance of Thiomonas strains. 

Bppunalikevirus, also named Bpp1virus, was found on L1 dataset but not on L2 dataset. Bpp1virus genus 
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comprises two species, one is a Bordetella phage found to display a marked tropism, and the other is a 

Burkholderia phage (125). None of this bacterium was yet found on this dataset. 

The most abundant genus found on the timepoint 2 dataset (L2), Acinectobacter, was not found on L1. 

This genus comprises a variety of species, many of them being opportunistic pathogens in humans, which 

may be accounted for the effluent treatment process (126). 

Although in small percentage, the genus Variovorax was also detected on both low and high TDS activated 

sludge datasets. Variovorax species were shown to be capable of diuron and linuron mineralization, two 

phenylurea herbicides, be involved on benzene degradation, and on denitrification (127–129). 

Sphingomonas, a chemoheterotrophic, strictly aerobic bacteria that has been identified in distinct 

environments, was also found on L2 (130). 

Afipia genus was found on both L1 and L2 and also on H2. Afipia species are capable of degrading 

haloacetic acids which are disinfection byproducts formed during the chlorination and chloramination of 

drinking water. Since the consumption of haloacetic acids has been linked to human health risks, these 

bacteria can have a significant impact in reducing the concentrations of these compounds in drinking 

water (131). However, Afipia species have also been described to be opportunistic pathogens and to be 

Legionella like amoebae pathogens related with pneumonia cases (132,133). Therefore, the presence of 

Afipia genus has to be considered for the effluent treatment process. 

 

Figure 11 L1 dataset taxonomy analysis (131)performed by MetaPhlAn v2.0 with and without split by coverage 
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Figure 12  L2 dataset taxonomy analysis performed by MetaPhlAn v2.0 with and without split by coverage 

Concerning the high TDS activated sludge datasets, a notable difference can be observed between 

timepoint 1 (H1) and timepoint 2 (H2). Thiomonas genus, which are related with extreme conditions was 

expected to be present on timepoint 1; however, this genus was not found on H1. The two most abundant 

genus found on H1, Thauera and Methanosaeta, were not found on H2. This unexpected behaviour of 

H1 dataset should be confirmed with replicate analyses. Methanosaeta strains are acetoclastic 

methanogens which can suggest a higher acetate concentration on timepoint 1 compared with timepoint 

2 (134). There were also found two different phages with low abundance: Yulikevirus on H1 and 

Bppunalikevirus on H2. 

Legionella was found on H1 dataset. These bacteria are opportunistic pathogens that can occur on tap 

water. Fortunately, this genus did not appear on the timepoint 2 (H2). However, afipia genus, which 

comprises Legionella like amoebae pathogens was found on dataset H2.  

 

Figure 13 H1 dataset taxonomy analysis performed by MetaPhlAn v2.0 with and without split by coverage 
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Figure 14 H2 dataset taxonomy analysis performed by MetaPhlAn v2.0 with and without split by coverage 

A rarefaction curve was constructed in order to assess if there were enough observations to get a 

reasonable estimate of the quantity measured in each sample. As shown on Figure 15, the quantity of 

genus identified in each sample, with exception of A2, had converged on a good estimate of the correct 

value. This is, A2 curve increases as more sequences are added, indicating that a more extensive 

sampling should be performed for this dataset. The remaining datasets’ curves reached a horizontal 

asymptote, suggesting that the quantity of genus found is a good estimate of the real value of genus 

existing in the sample. 

 

 

Figure 15 Rarefaction curve constructed with results without coverage split. 
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The previous results showed a higher biodiversity in the CETPs (AKR06, A2 and AKR12) compared with 

the petrochemical complex ETPs (L1, L2, H1, H2). Also, a prevalence of the Thauera genus in the CETPs 

datasets against the Thiomonas genus prevalence in the ETPs, suggests a more hostile environment on 

the petrochemical complex datasets. 

A hierarchical cluster was also performed using the results without coverage split. The graph has a similar 

behaviour as the heat-map created to separate the data in two clusters in order to generate the simulated 

datasets (Figure 3).  

 

 

Figure 16 Hierarchical clustering for taxonomic results without coverage split 

There were observed two clusters, the first one including the datasets from petrochemical complex ETPs 

and the second including the datasets from CETPs. Exception made for H1, which shows again an 

unexpected behaviour, being clustered with AKR06. Once more, CETPs from Ankleshwar (A2 and AKR12) 

show more similarity between each other than with AKR06. The second timepoint of high TDS (H2) shows 

more similarity with the first timepoint of low TDS (L1), suggesting a distinct microbial content regarding 

the level of dissolved solids.  
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4.5 Step 4 - Target datasets functionality analysis 

The assessment to the genetic functions present in the metagenomes was performed with MG-RAST using 

the assembled datasets. An error occurred and the results regarding the AKR12 dataset weren’t available 

for analysis.  

As performed in taxonomy, there were analysed datasets with and without coverage split. The summary 

functions of COG, NOG, KEEG and SEED from dataset AKR06, showing the differences between coverage 

split and not split data, are shown as example (Figure 17-Figure 20). The remaining data can be found 

on supplementary data (S-figures 1-20). The split data results were summed in order to allow an easier 

visualization.  

 

Figure 17 COG summary functions for AKR06 dataset with and without coverage split. 

 

Figure 18  NOG summary functions for AKR06 dataset with and without coverage split. 

COG and NOG were summarised by MG-RAST in four different categories: “poorly characterized”; 

“information storage and processing”, which was the most predominant function in COG results; 

“metabolism” and “cellular processes and signalling”. NOG results were not taken into consideration to 

further analysis since there were mainly poorly characterized results and also because it is not a 

supervised nor annotated database. The generic function results don’t show a difference between split 

and not split data for both COG and NOG. 
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Figure 19 KO summary functions for AKR06 dataset with and without coverage split. 

KO functions were split into six different categories, being the “metabolism” the most common function 

group found. SEED classification level 1 is used by MG-RAST summary analysis. The most common 

function was the “clustering based subsystems” followed by “carbohydrates”. Again, a difference between 

split and not split data was not noticeable. 

 

Figure 20 SEED functions for AKR06 dataset with and without coverage split. 

After the summary overview displayed by MG-RAST, a more accurate analysis was performed with COG 

database. Before analysis, an inter-sample normalization was performed with Musicc software in order to 

get the abundance of each gene in the microbiome. Results from COG normalization can be found as 

supplementary data (S-table 64).  

The 10 more common COGs found on each dataset can be found in Tables 10 and 11. The most 

abundant COG in every dataset, except H2, (COG1028) is described as a “NAD(P)-dependent 
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dehydrogenase, short-chain alcohol dehydrogenase family”. Short-chain alcohol dehydrogenase are 

enzymes of great  functional diversity, in addition, this COG is assigned to four different functions (“lipid 

transport and metabolism”, “secondary metabolites biosynthesis”, “transport and catabolism” and 

“general function prediction only”). Besides the general ambit of this COG and the presence in every 

dataset, it was noted a slight increase in this function was observed in the second timepoint of both low 

and high TDS datasets from petrochemical complex (L1/L2 and H1/H2). 

 
Table 10 Top 10 most abundant COGs found on CETP datasets 

Dataset COG Function COG description Abundance 

AKR16 COG1028 IQR NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase 
family 

15,87 

COG0642 T Signal transduction histidine kinase 11,68 

COG0745 TK DNA-binding response regulator, OmpR family, contains REC and 
winged-helix (wHTH) domain 

10,52 

COG0477 GEPR MFS family permease 9,36 

COG0500 QR SAM-dependent methyltransferase 8,59 

COG0841 V Multidrug efflux pump subunit AcrB 8,05 

COG1012 C Acyl-CoA reductase or other NAD-dependent aldehyde dehydrogenase 8,01 

COG1960 I Acyl-CoA dehydrogenase related to the alkylation response protein 
AidB 

7,82 

COG1132 V ABC-type multidrug transport system, ATPase and permease 
component 

7,28 

COG1136 M ABC-type lipoprotein export system, ATPase component 7,12 

A2 
COG1028 IQR 

NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase 
family 

17,68 

COG0477 GEPR MFS family permease 
15,78 

COG0642 T Signal transduction histidine kinase 
15,02 

COG1960 I 
Acyl-CoA dehydrogenase related to the alkylation response protein 
AidB 

14,43 

COG0583 K DNA-binding transcriptional regulator, LysR family 
12,57 

COG0841 V Multidrug efflux pump subunit AcrB 
10,82 

COG0745 TK 
DNA-binding response regulator, OmpR family, contains REC and 
winged-helix (wHTH) domain 

8,93 

COG1024 I Enoyl-CoA hydratase/carnithine racemase 
8,77 

COG1012 C Acyl-CoA reductase or other NAD-dependent aldehyde dehydrogenase 
8,62 

COG2204 T 
DNA-binding transcriptional response regulator, NtrC family, contains 
REC, AAA-type ATPase, and a Fis-type DNA-binding domains 

8,48 
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Table 11 Top 10 most abundant COGs found on Petrochemical ETP datasets 

Dataset COG Function COG description Abundance 

L1 COG1028 IQR NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase family 16,58 

COG0642 T Signal transduction histidine kinase 15,02 

COG1960 I Acyl-CoA dehydrogenase related to the alkylation response protein AidB 12,69 

COG0745 TK 
DNA-binding response regulator, OmpR family, contains REC and winged-helix 
(wHTH) domain 11,62 

COG0477 GEPR MFS family permease 11,03 

COG0583 K DNA-binding transcriptional regulator, LysR family 9,86 

COG1012 C Acyl-CoA reductase or other NAD-dependent aldehyde dehydrogenase 8,78 

COG1024 I Enoyl-CoA hydratase/carnithine racemase 8,70 

COG0463 M Glycosyltransferase involved in cell wall bisynthesis 8,38 

COG2204 T 
DNA-binding transcriptional response regulator, NtrC family, contains REC, 
AAA-type ATPase, and a Fis-type DNA-binding domains 8,21 

L2 COG1028 IQR NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase family 19,19 

COG1960 I Acyl-CoA dehydrogenase related to the alkylation response protein AidB 16,23 

COG0642 T Signal transduction histidine kinase 14,50 

COG0477 GEPR MFS family permease 13,62 

COG0745 TK 
DNA-binding response regulator, OmpR family, contains REC and winged-helix 
(wHTH) domain 11,16 

COG1024 I Enoyl-CoA hydratase/carnithine racemase 10,76 

COG0318 IQ Acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II 9,37 

COG0583 K DNA-binding transcriptional regulator, LysR family 9,21 

COG0438 M Glycosyltransferase involved in cell wall bisynthesis 9,02 

COG1012 C Acyl-CoA reductase or other NAD-dependent aldehyde dehydrogenase 8,93 

H1 COG1028 IQR NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase family 18,75 

COG0642 T Signal transduction histidine kinase 17,50 

COG0745 TK 
DNA-binding response regulator, OmpR family, contains REC and winged-helix 
(wHTH) domain 14,46 

COG1960 I Acyl-CoA dehydrogenase related to the alkylation response protein AidB 14,37 

COG0583 K DNA-binding transcriptional regulator, LysR family 11,84 

COG0477 GEPR MFS family permease 10,56 

COG1012 C Acyl-CoA reductase or other NAD-dependent aldehyde dehydrogenase 10,22 

COG0318 IQ Acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II 9,37 

COG0183 I Acetyl-CoA acetyltransferase 9,28 

COG1024 I Enoyl-CoA hydratase/carnithine racemase 9,21 

H2 COG0642 T Signal transduction histidine kinase 24,25 

COG1028 IQR NAD(P)-dependent dehydrogenase, short-chain alcohol dehydrogenase family 19,99 

COG1960 I Acyl-CoA dehydrogenase related to the alkylation response protein AidB 16,86 

COG0477 GEPR MFS family permease 16,16 

COG0583 K DNA-binding transcriptional regulator, LysR family 15,15 

COG0745 TK DNA-binding response regulator, OmpR family, contains REC and winged-helix 
(wHTH) domain 

12,62 

COG2204 T DNA-binding transcriptional response regulator, NtrC family, contains REC, 
AAA-type ATPase, and a Fis-type DNA-binding domains 

11,59 

COG0840 NT Methyl-accepting chemotaxis protein 10,73 

COG0784 T CheY chemotaxis protein or a CheY-like REC (receiver) domain 10,42 

COG1024 I Enoyl-CoA hydratase/carnithine racemase 10,30 
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In the top 10, there were also found two COGs related with signal transduction mechanisms: COG0642 

a signal transduction histidine kinase, and, COG0745 an OmpR family DNA-binding response regulator. 

Proteins from OmpR family are involved in different processes such as osmoregulation, oxidative and acid 

stress response, motility, virulence and outer membrane biogenesis (135). 

As already notice on the taxonomical analysis, H1 appears to have a deviant behaviour in many of the 

analysed functions and therefore it analysis as to be taken carefully. This may be due to an erroneous 

sampling or a problem in sample preparation and sequencing. Therefore, an impact of its results should 

be verified with a replicate. 

COG1960, also found on top 10, is described as an “acyl-CoA dehydrogenase related to the alkylation 

response protein AidB”. Alkaline agents can be present in the cell and in the environment and can 

produce cytotoxic and mutagenic lesions. Therefore they are used as chemotherapy drugs binding to DNA 

and thus preventing proper DNA replication. They are also used in petrochemical industry for the 

production of important intermediates such as ethyl benzene and cumene (136). Concerning the CETP 

datasets, a higher abundance of COG1960 was found on dataset A2. This may be related with the dyes 

and the chemicals from textile production present in this king of CETP. Regarding the petrochemical 

complex datasets, an increase can be observed on the second timepoints (L2 and H2), which may be 

related with the microorganisms defence mechanisms against the alkylating agents related with 

petrochemical processes. This suggests a high abundance of this chemicals which should to be 

considered in the treatment process. 

Besides the top 10, there were found discrepancies in some COG functions that can have an important 

impact. These COGs abundances can be found in Table 12. 
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Table 12 Relevant COGs found 

COG Functions Description 

AKR06 A2 L1 L2 H1 H2 

COG0841 V Multidrug efflux pump subunit AcrB 8.05 10.82 7.13 8.19 6.29 9.86 

COG0845 MV 

Multidrug efflux pump subunit AcrA 

(membrane-fusion protein) 3.30 6.70 5.34 3.97 3.29 8.42 

COG1131 V 

ABC-type multidrug transport system, 

ATPase component 5.49 6.37 7.04 8.80 8.27 7.51 

COG1132 V 

ABC-type multidrug transport system, 

ATPase and permease component 7.28 6.38 6.44 5.13 7.06 6.77 

COG0842 V 

ABC-type multidrug transport system, 

permease component 2.04 2.84 2.94 2.48 1.35 3.97 

COG0577 V 

ABC-type antimicrobial peptide transport 

system, permease component 2.66 2.87 4.89 3.15 2.96 3.29 

COG2274 V 

ABC-type bacteriocin/lantibiotic exporters, 

contain an N-terminal double-glycine 

peptidase domain 0.27 0.70 1.67 0.71 0.75 1.16 

COG0610 V 

Type I site-specific restriction-modification 

system, R (restriction) subunit and related 

helicases ... 1.55 2.58 2.05 1.64 1.80 1.64 

COG4096 V 

Type I site-specific restriction endonuclease, 

part of a restriction-modification system 0.78 0.98 1.08 0.36 0.65 0.34 

COG1002 V 

Type II restriction/modification system, DNA 

methylase subunit YeeA 1.12 1.75 2.27 1.85 1.91 1.60 

COG0286 V 

Type I restriction-modification system, DNA 

methylase subunit 1.38 4.21 1.91 1.87 3.44 1.51 

COG2124 QV Cytochrome P450 1.12 1.47 1.70 3.01 1.09 1.68 

COG1518 V 

CRISPR/Cas system-associated 

endonuclease Cas1 0.19 0.45 1.31 0.41 1.64 0.96 

COG3649 V 

CRISPR/Cas system type I-B associated 

protein Csh2, Cas7 group, RAMP superfamily 0.00 0.19 0.39 0.06 0.10 0.15 

COG1353 V 

CRISPR/Cas system-associated protein 

Cas10, large subunit of type III CRISPR-Cas 

systems, contains HD superfamily nuclease 

domain 0.00 0.10 0.29 0.15 0.17 0.45 

COG2141 HR Flavin-dependent oxidoreductase, luciferase 

family (includes alkanesulfonate monooxygenase 

SsuD and methylene tetrahydromethanopterin 

reductase) 

2.88 3.39 1.47 3.47 1.91 2.55 

COG0543 HC NAD(P)H-flavin reductase 0.841

201 

1.311

74 

1.828

178 

0.818

181 

0.937

5 

2.465

753 

COG2931 Q Ca2+-binding protein, RTX toxin-related 4.94 1.22 2.64 2.71 1.21 4.33 
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Regarding the functions related with defence mechanisms, some variations can be observed between the 

datasets. COG0841 is described as a multidrug efflux pump subunit AcrB, and is highly abundant in all 

datasets. The highest abundance is found on A2. E.coli AcrB works as a proton/drug antiporter being 

part of a tripartite flux system AcrA/AcrB/TolC, related with the efflux of antibiotics, dyes, bile salts and 

detergents (137). Since A2 data refers to a textile and dye industry area CETP, this value may be due to 

the capability of the microorganisms in the sample to pump this type of chemicals. Also, an increase in 

COG0841 is observed between L1 and L2. However, a decrease between this two datasets is observed 

in COG0845, the pump subunit AcrA. 

COG1131, COG1132, COG0842, COG0577 and COG2274 are described as ATP-binding cassette (ABC) 

transporters related with drug transport. The abundance of this transporters decreased between L1 and 

L2, with exception of COG1131 which value increased from L1 to L2. This can suggest an less hostile 

environment in the second timepoint Also, H2 seems to have higher values of this type of transporters 

when comparing with L2, which may be related with a less efficient treatment process regarding the total 

dissolved solids concentration. 

Type I and type II restriction modification systems are abundant in A2 dataset. Furthermore, this systems 

appear to be less abundant on dataset L2 comparing with L1. Restriction modification systems are related 

with defence against bacteriophages, which may be suggestive of the phage abundance in the samples 

(138) .Additionally, the same behaviour regarding the low salts petrochemical ETP, was observed with 

CRISPR/Cas system related COGs, which are also related with defence against bacteriophages (139). 

Cytochrome P450 (COG2124) was highly found on L2 dataset and may be related with the oxidation of 

exogenous and endogenous chemicals (140). 

COG2141, a “flavin-dependent oxidoreductase, luciferase family (includes alkanesulfonate 

monooxygenase SsuD and methylene tetrahydromethanopterin reductase)”, is a member of the Flavin-

utilizing monoxigenase superfamily and it description is associated at a Thiomonas bhuboneswarensis 

protein (UniProtKB). The increase between H1 and H2 can be associated with the taxonomy analysis 

where there was observed an increase in the Thiomonas genus. However, the percentage found on L1 is 

not compatible with the abundance of Thiomonas genus, since it was the prevalent genus found on this 

dataset. COG0543, a NAD(P)H-flavin reductase, behaviors differently, having a decrease from L1 to L2, 

keeping high values on H2. The luciferase family comprise oxidative enzymes that produce 

bioluminescence. Flavin-dependent proteins are important in both aerobic and anaerobic pathways and 

are necessary to maintain basic metabolic functions (141). 
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Ca2+-binding protein, RTX toxin-related, is more abundant on datasets AKR06 and H2, suggesting a more 

cytotoxic capability of the organisms found on those datasets. 

Another analysis was performed with the MGX software using both the pre-processed reads and the 

assembled contigs (S-table 65). The top 10 COG results comparing the results from MG-RAST with 

assembled reads and the results from MGX can be found in Table 13 and 14.  

Table 13 Comparision between COGs percentages for assembled data, using MG-RAST, and unassembled and assembled data using MGX 
on CETP datasets. 

Datasets MG-RAST assembled data MGX unassembled data MGX assembled data 

  COG Percentage COG Percentage COG Percentage 

AKR06 COG1028 0.89% COG0642 0.95% COG0642 1,09% 

COG0642 0.66% COG1028 0.75% COG0438 0,79% 

COG0745 0.59% COG0841 0.67% COG0477 0,61% 

COG0477 0.53% COG1960 0.62% COG0841 0,58% 

COG0500 0.48% COG0477 0.61% COG0515 0,52% 

COG0841 0.45% COG1012 0.52% COG1012 0,51% 

COG1012 0.45% COG2217 0.51% COG1132 0,48% 

COG1960 0.44% COG1132 0.48% COG1028 0,48% 

COG1132 0.41% COG0318 0.45% COG0463 0,47% 

COG1136 0.40% COG2931 0.43% COG2217 0,44% 

A2 COG1028 0.86% COG0642 0.90% COG0642 1,40% 

COG0477 0.77% COG0841 0.88% COG0515 0,84% 

COG0642 0.73% COG0477 0.61% COG0841 0,74% 

COG1960 0.70% COG2217 0.57% COG0477 0,62% 

COG0583 0.61% COG1629 0.55% COG1960 0,61% 

COG0841 0.53% COG1028 0.53% COG1028 0,60% 

COG0745 0.44% COG1960 0.53% COG2801 0,51% 

COG1024 0.43% COG1012 0.47% COG1012 0,50% 

COG1012 0.42% COG3696 0.44% COG0438 0,50% 

COG2204 0.41% COG0845 0.44% COG3696 0,45% 

AKR12 - - COG0642 0,95% COG0642 1,19% 

- - COG0841 0,88% COG1629 1,11% 

- - COG1960 0,75% COG0841 0,80% 

- - COG1028 0,70% COG1960 0,78% 

- - COG0477 0,67% COG0477 0,66% 

- - COG0583 0,58% COG2217 0,63% 

- - COG1012 0,56% COG1012 0,60% 

- - COG2217 0,54% COG0318 0,60% 

- - COG1629 0,51% COG1028 0,60% 

- - COG0318 0,50% COG0582 0,58% 
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Table 14 Comparision between COGs percentages for assembled data, using MG-RAST, and unassembled and assembled data using MGX 
on petrochemical ETP datasets. 

Datasets MG-RAST assembled data MGX unassembled data MGX assembled data 

L1 COG1028 0.88% COG0642 1.52% COG0642 1,41% 

COG0642 0.80% COG1028 0.66% COG0438 0,79% 

COG1960 0.67% COG1960 0.64% COG1960 0,59% 

COG0745 0.62% COG0841 0.63% COG1028 0,57% 

COG0477 0.59% COG0477 0.61% COG0477 0,52% 

COG0583 0.52% COG2204 0.47% COG0841 0,52% 

COG1012 0.47% COG3696 0.47% COG0463 0,51% 

COG1024 0.46% COG0515 0.46% COG0515 0,49% 

COG0463 0.45% COG1012 0.44% COG0457 0,46% 

COG2204 0.44% COG0438 0.43% COG2931 0,42% 

L2 COG1028 0.95% COG0642 1.13% COG0642 1,43% 

COG1960 0.80% COG1028 0.79% COG0515 0,78% 

COG0642 0.72% COG1960 0.76% COG0438 0,78% 

COG0477 0.67% COG0477 0.65% COG1028 0,75% 

COG0745 0.55% COG0515 0.63% COG1960 0,75% 

COG1024 0.53% COG0841 0.62% COG0477 0,61% 

COG0318 0.46% COG0318 0.52% COG0841 0,48% 

COG0583 0.46% COG1012 0.50% COG2217 0,47% 

COG0438 0.45% COG2217 0.44% COG0463 0,45% 

COG1012 0.44% COG0438 0.43% COG0745 0,45% 

H1 COG1028 0.88% COG0642 1.13% COG0642 1,70% 

COG0642 0.82% COG1960 0.94% COG0438 0,64% 

COG0745 0.68% COG1028 0.73% COG1960 0,60% 

COG1960 0.67% COG1012 0.63% COG0477 0,54% 

COG0583 0.55% COG0841 0.58% COG1132 0,54% 

COG0477 0.49% COG0318 0.55% COG1028 0,53% 

COG1012 0.48% COG0477 0.51% COG2217 0,51% 

COG0318 0.44% COG3181 0.49% COG0318 0,46% 

COG0183 0.43% COG2217 0.48% COG0463 0,45% 

COG1024 0.43% COG0183 0.44% COG1012 0,44% 

H2 COG0642 1.02% COG0642 1.51% COG0642 1,63% 

COG1028 0.84% COG1028 0.71% COG0438 0,75% 

COG1960 0.71% COG1960 0.70% COG0477 0,70% 

COG0477 0.68% COG0515 0.69% COG1028 0,69% 

COG0583 0.64% COG0841 0.66% COG1960 0,67% 

COG0745 0.53% COG0477 0.61% COG0515 0,62% 

COG2204 0.49% COG2204 0.53% COG0841 0,51% 

COG0840 0.45% COG3696 0.49% COG0318 0,51% 

COG0784 0.44% COG0318 0.48% COG2204 0,47% 

COG1024 0.44% COG1012 0.46% COG0463 0,46% 
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The main COGs appear to be the same between the different assembled and unassembled data and 

between the two softwares. However, some discrepancies were found comparing the strategies. The 

discrepancies between the different approaches are higher in some COGs than in others. However, even 

minor differences may lead to change the top position, the prevalence of that function comparing with 

other and further implicate a different biological interpretation. Since the MGX is intended to use with 

unassembled data, there were also created pseudo-reads using the assembled data (data not shown). A 

stronger similarity is observed between the MGX  assembled data and pseudo-reads which may suggest 

that the discrepancies may be induced not only by the software performance regarding the sequences 

length but also by the assembly step. 

To highlight the assembly impact on the functional analysis, a hierarchical clustering analysis was 

performed using both assembled and unassembled data analysed with MGX (Figure 21). There can be 

observed three main clusters, the first cluster contains datasets A2 and AKR12 where assembled data 

and reads are grouped together. The second clusters comprises only reads (datasets AKR16, L1 L2, H1 

and H2) and the third cluster contains the remaining assembled data.  

 

Figure 21 Hierarchical clustering analysis for COG results using MGX for both assembled and unassembled data 
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It is also important to notice that the clustering inside the second and third main clusters is different, 

which highlights the discrepancies between analysing reads and assembled contigs. Also, assembly 

appears to have different impacts in different datasets, since A2 and AKR12 behave similar with 

assembled and unassembled data. Considering this, a further study must be performed on this subject  

The discrepancies found in the datasets can be helpfully to fully understand the content of this ETPs and 

CETPs and to access the treatment improvements between timepoints. A higher abundance of defence 

mechanisms on L1 comparing with L2 suggests a transition to a less hostile environment. Nevertheless, 

the putative presence of alkaline agents in A2 and on the second timepoints of the petrochemical complex 

ETPs has to be further analysed to effectively treat this effluents. Also, the higher abundance of COGs 

related with drug transport on H2 when comparing with L2 may has also to be considered for further 

analysis.  

  



 

   63 
A metagenomic approach to identify and characterize wastewater populations                             
Sara Monteiro-Martins 

5. CONCLUSION 

Whole shotgun metagenomic analysis is a very challenging research field. There was designed a strategy 

to process and analyse this type of data and there were performed analysis of seven target datasets 

comprising wastewater treatment processes. 

Two representative simulated datasets were generated from the target data to analyse. This strategy may 

be important to design and perform a further analysis. However, some improvements must be 

implemented regarding the sequencing quality thresholds, coverage depth and inclusion of unknown 

organisms. 

Differences in coverage depth were assessed by splitting the data in three coverage levels. Comparing 

the results from data with and without coverage split highlighted the importance of the different 

abundances in metagenomic data and the need to account for this differences so that low coverage data 

will not be excluded. Further studies must be performed to study different ways of coverage assessment 

in order to split different organismal abundances instead of grouping conservative and repetitive genomic 

areas in one dataset and specific genomic sequences in the opposite dataset. Also, normalization 

techniques may be tested before and after assembly. 

Different assembly tools and k-mers were tested showing the importance of tool and k-mer selection 

regarding the datasets. Unfortunately, the impact of assembly was not extensively assessed, since the 

taxonomic analysis with the assembled data did not retrieved valuable results. This may be explored using 

other taxonomic tools to see the impact on taxonomy analysis. The assembly impact on functional analysis 

was assessed by using unassembled and assembled data on MGX. The results show discrepancies 

between the two datatypes, which were highlighted in a hierarchical clustering analysis. It is possible to 

distinguish three main clusters, a first one containing two datasets where reads and assembled contigs 

are clustered together and two other main clusters, one containing only reads and the other containing 

only assembled data. 

CETP datasets showed to have a higher taxonomical diversity compared with petrochemical complex ETP 

datasets. Important finding genus suggest a higher presence of ammonia, methane and chromate in 

AKR06, comparing with the remaining datasets, which may be accounted on the effluent treatment. Both 

A2 and AKR12 datasets showed the presence of possible pathogenic or opportunistic microorganisms, 

Arcobacter and Rhodococcus genus on A2 and Bordetella genus on AKR12. Also, AKR12 taxonomical 

composition suggests a higher crude oil concentration on this dataset. Moreover, petrochemical complex 

ETP datasets showed to have a predominant genus related with a more hostile environment, Thiomonas, 
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which suggest a more challenging treatment process in this ETPs rather than in the CETPs. Regarding 

the petrochemical complex datasets, H1 showed a divergent behaviour both in taxonomy and functional 

analysis which alerts for some erroneous step in sample collection, preparation or sequencing. This leads 

to questioning the need of at least a replicate for each dataset in order to assure the findings. Comparing 

the low TDS activated sludge datasets, an increase in biodiversity between L1 and L2, together with the 

decrease of Thiomonas genus abundance, suggests a less hostile environment at the second timepoint. 

However, a putative opportunistic organism was identified on L2, Acinectobacter genus, which should be 

considered for the effluent treatment. Also Afipia genus which comprises opportunistic species was also 

found on L1, L2 and H2.  

Analysing the COG functions, the hostile environment in L1 suggested by the identified microorganisms, 

is also supported by the abundance of defence mechanisms found on this dataset.  

The higher abundance of ATP-binding cassette (ABC) transporters related with drug transport on L1 

comparing with L2 suggest a decrease in this compounds prevalence with the effluent treatment. 

However, a higher value of this putative functions on H2 may suggest the need for a more challenging 

treatment for the high TDS petrochemical effluents.  

AKR12 MG-RAST functional results weren’t available for analysis; however, some insights from a CETP at 

Ankleshwar city were achieve with A2 dataset that suggests the presence of alkaline agents. 

In summary, there were tested different approaches and raised questions regarding the metagenomic 

analysis. This data encourages a further analysis of questions such as normalization, coverage, datasets 

discrepancies, assembly parametrization and taxonomic and functional analysis. The biological findings 

may be important to direct the effluent treatments regarding the principal organisms and compounds 

identified in the samples. 
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6. FUTURE PERSPECTIVES 

As already mentioned, metagenomics comprises a really challenging analysis and different aspects have 

to be considered, such as the dataset characteristics, pre-processing, importance of assemble data to 

further analysis, sequence coverage depth and data normalization. 

The use of simulated datasets appears to be a good strategy to select the bioinformatics tools to use on 

the target data; however, some adjustments to the present approach can be made. To access the 

importance and accuracy of coverage split, simulated datasets with and without coverage split may be 

generated. Also, strategies to include and mimic unknown microorganism must be studied. The 

sequencing quality simulation may also be addressed in order to be more representative of the real data.  

Different coverage assessment and split should be tested in order to address the problem of grouping 

conserved and repetitive datasets instead of high abundant organisms. Also, the normalization issue may 

be also addressed both prior and after processing in order to assure a reliable comparative analysis.  

This improvements of the simulated datasets creation will be further useful in understanding not only the 

impact of different processing and analysing tools, as also to visualize the impact of normalization and 

coverage split.  

A more extensive study on taxonomical analysis tools should be performed, including more tools and 

assessing the impact of assembly in the taxonomical analysis. 

In terms of functionality, different tools should be tested, including gene prediction tools and the alignment 

with the different available databases. A further analysis on the impact of the use of unassembled or 

assembled data should be performed. It is important to create a strategy to make use of simulated 

datasets to assure the functional information given. Finally, a parallelism between the different functional 

annotation databases information must be assessed.  
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8. SUPPLEMENTARY DATA DESCRIPTION 

S-commands1 Commands used to create a reference genome file for each cluster and coverage level 

S-table 1_LOW1_grinder-ranks 

S-table 2_MID1_grinder-ranks 

S-table 3_HIGH1_grinder-ranks 

S-table 4_LOW2_grinder-ranks 

S-table 5_MID2_grinder-ranks 

S-table 6_HIGH2_grinder-ranks 

S-table 7_LOW1_phylum_ranks 

S-table 8_LOW1_genus_ranks 

S-table 9_MID1_phylum_ranks 

S-table 10_MID1_genus_ranks 

S-table 11_HIGH1_phylum_ranks 

S-table 12_HIGH1_genus_ranks 

S-table 13_LOW2_phylum_ranks 

S-table 14_LOW2_genus_ranks 

S-table 15_MID2_phylum_ranks 

S-table 16_MID2_genus_ranks 

S-table 17_HIGH2_phylum_ranks 

S-table 18_HIGH2_genus_ranks 

S-table 19 Statistical analysis of the simulated datasets assembled contigs resulted from different error 

correction strategies 

S-table 20 Statistical analysis of the simulated datasets assembled contigs resulted from different 

trimming tools 

S-table 21 Statistical analysis of the target (not split) datasets assembled contigs resulted from different 

trimming tools 

S-table 22 Simulated datasets subjected pre-processed and assembled with Ray with different k-mer 

values. The treated reads were then aligned against the reference genomes. 

S-table 23 Simulated datasets subjected pre-processed and assembled with SPAdes with different k-mer 

values. The treated reads were then aligned against the reference genomes. 

S-table 24 Statistical analysis of the contigs obtained with the best k-mer size of SPAdes and Ray. 
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S-table 25 Simulated datasets phylum absolute abundance metric analysis for the three analysed tools 

(MetaPhlAn v2.0, Metaxa2 (version 2.1.3) and Parallel-META 3.3.2) 

S-table 26 Simulated datasets genus absolute abundance metric analysis for the three analysed tools 

(MetaPhlAn v2.0, Metaxa2 (version 2.1.3) and Parallel-META 3.3.2) 

S-tables 27-62 Simulated datasets phylum and genus relative abundance analysis for the three analysed 

tools (MetaPhlAn v2.0, Metaxa2 (version 2.1.3) and Parallel-META 3.3.2). 

S-figures 1-20. COG, NOG, KO and SEED summary functions for A2, L1, L2, H1 and H2 datasets with 

and without coverage split. 

S-table 63 COG results for each dataset acquired with MG-RAST and normalized with musicc software.  

S-table 64 COG results for each unassembled and assembled dataset acquired with MGX for CETP 

datasets 

S-table 65 COG results for each unassembled and assembled dataset acquired with MGX for 

petrochemical complex ETP datasets 

 


