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ABSTRACT

The constant growth of high-throughput data generation and omics approaches require
informatics support and (semi) automated processes to be developed. With increasing number
of sequenced genomes available, metabolic engineering processes will allow a rational alter-
ation of the genetic architecture to achieve specific phenotypes. These alterations will allow
to generate and optimize features of some organisms with economic and health interest.

Lactobacillus helveticus is an important industrial lactic-acid bacterium being used in
the production of several types of cheese. The metabolic activities of the bacterium contribute
to the cheese flavour and reduce bitterness. Lb. helveticus is a growing body of literature on
the health-promoting properties of its various strains and generally accepted as probiotic for
its anti-mutagenic, immunomodulatory and anti-diarrheal effects.

The aim of this project was to reconstruct a genome-scale metabolic network of Lb. hel-
veticus CNRZ32, based on its genome sequence annotation as well as known biochemical and
physiological characteristics. The generated model contained 790 reactions, 894 metabolites
and 1687 genes. The growth rate predicted by the model on sugar was comparable to the
reported in literature.

This model provides the basis for a constraint-based mathematical model capable of
simulating the phenotype of the organism under different growth conditions and guiding in-
depth physiological studies and hypothesis generation.

Keywords: metabolic network, Lactobacillus helveticus, Metabolic Models Reconstruc-
tion using Genome-Scale Information (merlin), computational biology; enzymes; transporters;
TRIAGE; COBRA; OptFlux
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RESUMO

O crescimento constante do volume de dados de alto rendimento gerados e de aborda-
gens ómicas urgem de desenvolvimento de suporte informático e processos (semi) automatiza-
dos. O aumento do número de genomas sequenciados disponíveis, os processos de engenharia
metabólica permitirá uma alteração racional da arquitetura genética para alcançar fenótipos
específicos. Estas alterações irão permitir gerar e otimizar características de organismos com
interesse económico e de saúde. Lactobacillus helveticus é uma bactéria lática com importân-
cia para o uso industrial e utilizada na produção de vários tipos de queijo. A atividade
metabólicas da bactéria contribui para o sabor do queijo e para a redução da sua acidez. Lb.
Helveticus é geralmente aceite como probiótico, com um crescente volume de literatura sobre
as suas propriedades que contribuem positivamente para a saúde em várias das suass estirpes,
assim como os seus efeitos antimutagénicos, imunomoduladores e antidiarreicos.

O objetivo deste projeto é gerar uma reconstrução da rede metabólica à escala geneomica
de Lb. helveticus CNRZ32 baseado na anotação de sequência do genoma, bem como das suas
características bioquímicas e fisiológicas. O modelo gerado continha 790 reações, 894 reações
e 1687 genes. A taxa de crescimento prevista pelo modelo sobre o açúcar é comparável ao
relatado na literatura.

A reconstrução deste modelo serve como base para a rescontrução de modelo matemático
baseado em restrições capaz de simular o fenótipo do organismo sob diferentes condições de
crescimento e orientar estudos fisiológicos em profundidade e geração de hipóteses.
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1

INTRODUCTION

This document describes the thesis developed in the context of the dissertation for the
Masters in Bioinformatics.

1.1 context and motivation

Lactobacillus helveticus is an important industrial lactic-acid bacterium being used in
the production of several types of cheese. The metabolic activities of the bacterium con-
tribute to the cheese flavour and can help reduce bitterness. This organism belongs to the
Lactobacillus delbrueckii phylogenetic group and is able to grow at high temperatures, to pro-
duce high quantities of lactic acid in milk and to express a complexity of strong proteolytic
enzymes. Therefore, Lb. helveticus has an increasing economic impact in industrial dairy
fermentations [8]. In addition, is a growing body of literature on the health-promoting prop-
erties of Lb. helveticus, such as their anti-mutagenic, immunomodulatory and anti-diarrheal
effects. It is a Generally Recognized as Safe (GRAS) organism and considered as probiotic.
Furthermore, due to its abilities to survive gastrointestinal transit, adhere to epithelial cells
and antagonize pathogens, Lb. helveticus seems to have some effect against diseases such as
intestinal inflammation and cancer. [9]. In this project, the genome of Lb. helveticus was
functionally annotated using state-of-the-art semi-automated tool Metabolic Models Recon-
struction using Genome-Scale Information (merlin) [3]. This tool is an application in contin-
uous development based on Java™created to semi-automatically help in the reconstruction
of genome-scale metabolic models for any organism with fully sequenced genome. It provides
automated steps for reconstruction process, integrating diverse web servers functionalities and
information. The functional annotation was then used to generate a draft metabolic network
reconstruction. This draft was subjected to manual curation and refinement using literature
as well as experimental data on the organism metabolism and physiology. Furthermore, the
reconstruction was converted into a mathematical model and constraint-based methods were
used to analyze the model and fill its gaps. Finally, wet-lab experiments were conducted at
Chr.Hansen facilities in Hørsholm, for validating the metabolic model.
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1.2 objectives

The main goal of this work is the development of a genome scale metabolic network of
the lactic-acid bacterium Lactobacillus helveticus CNRZ32. In detail, it is aimed to perform
the reconstruction of the genome-scale metabolic model using merlin’s approach. merlin
allows obtaining an up-to-date, high-quality functional annotation of a representative Lb.
helveticus genome and a semi-automated generation of a draft network reconstruction. merlin
also facilitates the conversion of the network into a model via the semi-automatic generation
of an equation representing the drains of biomolecules to the biomass and other constraints,
which were then included in the model. Finally, the metabolic model should be complemented
with experimental data, obtained from laboratory experiments and understanding and the
usage of basic microbiological techniques for the cultivation and phenotypic characterization
of bacterial cells.

1.3 thesis outline

This thesis is organized in five different chapters. The subjects are introduced on this
chapter and final conclusions and remarks on chapter 5. The scientific research is covered in
the other chapters.

Chapter 2 contains an insight of systems biology evolution and current status, as well
the process involved in a metabolic annotation and model reconstruction. It also contains
the bacteria description, taxonomy, interest context and general features of some main com-
ponents.

Chapter 3 goes through the used materials, softwares and techniques. It is separated
in two main sections. The first is regarding functional annotation, where the genome and
transporter annotation methods are described. The second describes the tools and methods
leading to the final model reconstruction.

Chapter 4 follows the same distribution as the previous chapter. Along the chapter the
obtained results and troubleshooting processes are described. The chapter finishes with the
simulations results and a description of main pathways constituting the model and a final
metabolic map.

It should be taken also in consideration that along the thesis it can be used different
terms which should be considered to have the same meaning:

• lactate and lactic acid

• D-lactate and (R)-lactate

• L-lactate and (S)-lactate

• drains and exchange reactions

2



• sugar and carbohydrates

• glutamic acid and glutamate

• aspartic acid and aspartate

Amino acids will be referred by their nomenclature and symbols in agreement with Interna-
tional Union of Pure and Applied Chemistry (IUPAC) convention [10].
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2

STATE-OF -THE-ART

2.1 background/problem analysis at systems-level

Since more than 60 years ago there have been several efforts to recreate and model
metabolisms. With his work in cybernetics, Wiener created the first draft of what is known
today as a network [11]. Most of the work was on phenomenological analysis of physiological
processes. Before him, biochemical approaches were also tested, and although restricted to
steady-state flow, these have been successfully used to explore system-level properties of the
biological metabolism [12]. General systems theory has also been previously performed [13].
Systems biology has therefore been built on multiple efforts with distinct approaches, but all
sharing the same vision: comprehend the living species as a whole.

The evolution of research down to a molecular level allowed to apply dogmatic princi-
ples to systems biology [14]. The completion and publication of the Haemophilus influenzae
genome sequence in 1995 became a turning point in the history of biological research [15]. It
marked a metamorphosis from a data-poor discipline into a data rich one together with other
high-throughput experimental technologies. Advanced automation techniques in genome se-
quencing protocols allowed the number of fully sequenced organisms to increase rapidly in
the past few years. This exponential shift in bioinformatics and genomic fields, demanding
new tools to enable high-throughput generation of functioning genome-scale metabolic models.
The big challenge now is to deal and interpret all this large-scale data produced and integrate
it with the fundamentals in biology in order to generate good quality models with informa-
tion about the whole system. However, there are significant precautions to take when dealing
with the big datasets produced by the modern post-genomic era. For instance, technological
platforms, both hardware and software, are available for several omics data types analysis,
but some of these are prone to introducing technical artifacts [16]. This can bias in the data,
as it creates sample differences with no evident biological cause. Moreover, data is not always
represented in a standardized or uniform manner, complicating cross-experiment comparisons
[17]. Data quality, context and lab-to-lab variations represent another important hurdle that
must be overcome in genome-scale science.
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With a functional model, it is possible to identify poorly annotated regions of metabolic
network and predict minimum culture conditions. Phenotypes predictions can be gathered
together with the experimental data to be validated [18]. The social and economic impact of
such projects is expected to be high as many of those organisms have important industrial
applications or represent important human pathogens [19].

2.2 systems biology

A system-level understanding requires changing the study focus. Although identifying
and understanding genes and proteins functions is important, it is necessary to look to the
problem in a wider perspective. The identification of all genes and proteins just provides a
catalog of individual components. It is necessary to know how to assemble all its parts in
order to form and know the system’s structure and its dynamics [20].

Many high-throughput experimental technologies have been developed in the last few
years years and it is likely the speed and potential of this new tools will continue to increase.
These developments led to a change in scientific thinking and now it is becoming universally
accepted that cells should be viewed as systems. Understanding complex biological systems
requires the integration of experimental and computational research. Computational biol-
ogy, through pragmatic modelling and theoretical exploration, involves the development and
application of data-analyses and computational simulation techniques for the study of the
biological system. This system-bases approach provides a powerful foundation to address
critical scientific questions head-on.

Covert describes the reality of a biological systems as consisting in a large numbers
of functional diversity and frequently multifunctional [21]. Systems biology is defined as
sets of elements that interact selectively and non-linearly. It rather attains a coherent and
simpler behavior instead of a complex behaviorism. It is also claimed that the system-level
understanding of a biological system can be derived into three key properties:

1. System dynamics: a system behavior over time and under various conditions can be
understood through metabolic analysis, sensitivity analysis, dynamic analysis methods
such as phase portrait and bifurcation analysis, and by identifying essential mechanisms
underlying specific behaviors. Bifurcation analysis traces time-varying change(s) in the
state of the system in a multidimensional space where each dimension represents a
particular concentration of the biochemical factor involved.

2. The control method: mechanisms that systematically control the state of the cell can
be modulated to minimize malfunctions and provide potential therapeutic targets for
treatment of disease.
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3. The design method: strategies to modify and construct biological systems having desired
properties can be devised based on definite design principles and simulations, instead
of blind trial-and-error.

The system-wide genome, transcriptome, proteome and fluxome experiments allow to
understand the hidden layers of the relationships between all the different levels. Computa-
tional systems biology abilities the design and manipulation of robust models, contributing
to practical innovations in medicine, drug discovery and engineerings and therefore, to the
understanding of life.

2.2.1 Omics Data

Systems biology methods accumulate a vast array of information to generate hypotheses
and discover new cellular relationships. Since the assembly of the first complete genome using
Sanger capillary sequencing in 1977, scientific and industrial developments have improved the
so called Omics technologies [22]. A combination of these technologies provides important
proof of biochemical predictions and creates new opportunities for understanding cellular
functional architecture [23]. The integration of data from distinct Omics technologies allows
to identify unexpected regulations modes in cellular metabolism. The understanding of the
cell functioning and reciprocal relationships in different levels, namely the metabolite and
enzyme concentration levels, is allowed with the data integration.

2.2.1.1 Genomics

Genomics is defined as the study of the whole genome sequence and the information
contained therein, aiming the collective characterization and quantification of each gene. It
is the most mature of the different Omics fields. The raw sequence data allows performing
quantitative and comparative genomic studies, contributing to the construction of the tree
of life [24]. Having the full sequence of the genome per se is not enough to provide all the
answers. The human genome sequencing project, for instance, was widely expected to bring
a huge revolution toward understanding human evolution, the causation of diseas and the
interplay between the environment and heredity [25]. But without interdisciplinarity and
complement of other omics, this field by itself is not enough for the comprehension of the
living world.

2.2.1.2 Proteomics

Proteomics is the study of the function of all expressed proteins. Holds promise for
an unbiased, systematic discovery route. The term proteome was first attributed to describe
the set of proteins encoded by the genome. Despite the levels of complexity and dynamic
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ranges and the difficulty to measure and analyse body fluids, the proteome are a rich source
of potential biomarkers [26].
Tremendous progress has been made in the past few years, now evoking the set of all protein
isoforms and modifications.in any given cell. Progresses in the ‘post-genomic’ era allowed to
generate large-scale data sets for protein–protein interactions, organelle composition, protein
activity patterns and protein profiles, for instance in cancer patients [27].

2.2.1.3 Transcriptomics

The transcriptome is the complete set and their quantity of transcripts in a cell, for
a specific developmental stage or physiological condition. The comprehension of the tran-
scriptome is essential for interpreting the functional elements of the genome and revealing
the molecular constituents of cells and tissues and also for understanding development and
disease.
Transcriptomics provides powerful tools for understanding gene structures and Ribonucleic
acid (RNA)-based regulation in any organism. In contrast to the genomics approach, tran-
scriptomics provide a bird’s-eye view of selected phenomena in all genes simultaneously. The
key aims of transcriptomics are catalog all species of transcript, including messenger RNA
(mRNA), non-coding RNA and small RNA, determine the transcriptional structure of genes,
in terms of their start sites, 5’ and 3’ ends, splicing patterns and post-transcriptional modi-
fications and quantify the changing expression levels of each transcript during development
and under different conditions [28]. Although whole-transcriptome studies have been highly
productive in eukaryotes for more than a decade, the transcriptomes of bacteria and Archaea
have been largely overlooked until recently [29].

2.2.1.4 Metabolomics

Metabolomics regards the naturally-occurring, low molecular weight organic endogenous
metabolites within a cell, tissue or biofluid [30]. Metabolites detection is carried by either
nuclear magnetic resonance or mass spectrometry. Metabolomics, when used as a transla-
tional research tool, can provide a link between the laboratory and clinic. This happens
because metabolic and molecular imaging technologies particularly, such as positron emis-
sion tomography and magnetic resonance spectroscopic imaging, enable the discrimination of
non-invasive metabolic markers in vivo [31].

Understanding such gene-to-metabolite networks in primary and secondary metabolism
through integration of transcriptomics and metabolomics can lead to identification of gene
function and subsequent improvement of production of useful compounds [32].
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2.2.1.5 Localizomics

Localizomics can be defined as a field aiming to identify the sub- cellular location of all
proteins in the cell, which can provide key insights into the cellular function of the individual
proteins as well as their probable interacting partner. Generally localizomics compared with
other omics data types requires extraordinary efforts. Nonetheless, experimental efforts have
generated a genome-wide resource of individual promoter constructs. Moreover computational
techniques are also allowing for the in silico prediction of protein localization in eukaryotes
[1].

2.2.1.6 Other Omics

Colquhoun describes the omics trend as excessive [33]. Still, adding to the better
described above, some other deserve the reference:

• In metagenomics, the genomic Deoxyribonucleic acid (DNA) of a microbial community
is recovered from the environment and sequenced [34], unlike traditional techniques for
studying a prokaryotic species that rely on the ability to grow it in a pure culture.
The rationale for this is that most of prokaryotic species cannot be readily grown in
laboratory conditions [35]. Metagenomics has been successfully used to assess species
diversity in the soil [36], ocean [37] and other niches [38].

• Lipidomics objectives to identify and classify the complete inventory of lipids and their
associated interacting factors within the cell [39];

• Glycomics aim to do the same for carbohydrates and glycans. However, these methods
are in their infancy and relatively few data sets have been generated so far. Therefore,
data-integration efforts using this data type remain on the horizon [40].

Integrating all these omics data, will allow building robust, good quality system-based
models.
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Figure 1.
Omics data in the comprehensive descriptions of components and interactions within the cell [1].

Data is generally classified into three categories: components, interactions and functional-
states (Fig1). Components data detail the molecular content of the cell or system, interactions
data specify links between molecular components, and functional-states data provide an in-
tegrated readout of all omics data types by revealing the overall cellular phenotype. The
central pathway traces the biological information flow from the genome to the ultimate cel-
lular phenotype and the available omics data types that are used to describe these processes
are indicated in the adjacent boxes. DNA (genomics) is first transcribed to mRNA (tran-
scriptomics) then translated into proteins (proteomics), which can catalyze reactions acting
on metabolites (metabolomics), glycoproteins and oligosaccharides (glycomics), and various
lipids (lipidomics). Many of these components can be tagged and localized within the cell
(localizomics). The processes that are responsible for generating and modifying these cellular
components are generally dictated by molecular interactions, for example by protein–DNA
interactions in the case of transcription, and protein–protein interactions in translational
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processes as well as enzymatic reactions. Ultimately, the metabolic pathways comprise inte-
grated networks, or flux maps (fluxomics), which dictate the cellular behavior, or phenotype
(phenomics).

2.3 constraint-based metabolic modeling

Covert makes an analogy between simulation of traffic conditions in a typical city and
simulation of a microbial cell using systems analysis [21]. For both simulations, the first
step is to generate a list of all the relevant components (e.g. roads or gene products) of
the system. Then, the integration of these components must be determined and specified.
In addition, some qualitative predictions are made about the performance of the system.
Finally, mathematical modeling is used to quantitatively analyze the system as it responds
to a number of environmental factors or a change in the network.
Constraint-based models of metabolisms are a widely used framework for predicting flux
distributions in genome-scale biochemical networks. These network reconstructions contain
all the known metabolic reactions and the genes encoding each enzyme in an organism but
they are absent of regulatory information.

The number of published methods for integration of transcriptomic data into constraint-
based models has been rapidly increasing due to the speeding-up of amounts of high-throughput
data and the better understanding of information in different omic levels create conditions to
(re)construct metabolic models [41, 42].

2.3.1 Genome-wide scale Modeling Models (GSMM)

Genome-scale metabolic reconstructions and their analysis with constraint-based mod-
eling techniques have gained enormous momentum [43]. Genome Scale Metabolic Network
(GSMN) can be defined as the set of biological reactions retrieved from the enzymes encoded
in the target organism’s genome [44]. Following the complete sequencing of a genome, this
is the next step to take in account in systems biology analysis. These kind of models are
built bottom-up from the genes to the enzymes encoding those genes. These reconstructions
contain large amounts of structured and pertinent information providing bases to biochemical
understanding in specific target organisms.

Afterwards, a mathematical conversion is necessary to facilitate the computational bi-
ology studies. Thus, these models should be able to foretell the prototypical behavior of a
cell, an organism, or an individual. After this in silico analysis the work is directed towards
to the best predicted output[3].
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Figure 2.
Adapted scheme of the phases and data used to generate a metabolic reconstruction [2].

As shown in figure 2 the reconstruction of genome-scale metabolic models can be di-
vided into four consecutive major phases. These phases are the draft reconstruction, curated
reconstruction and Genome Scale Metabolic Models (GSMM) which together will produce a
platform for design and discovery. An additional characteristic of the reconstruction process
is the iterative refinement of reconstruction content that is driven by experimental data from
the three later phases. If after all the stages performed, the model is not properly working a
reverse engineering process is performed, revisiting previous steps.

2.3.2 merlin

merlin is an open-source application, distributed under the GNU General Public License
at http://www.MERLIN-sysbio.org. merlin’s methodology provides an automated genome-
wide functional annotation assigned with a numeric confidence level score, based on the
taxonomy and frequency within the similar sequences to each one of the genes, according to
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Eqs. (1) to (3). With minimum user interaction, it establishes a comparison between biological
sequences from the organism being studied with all of the National Center for Biotechnology
Information (NCBI) databases. Furthermore, Gene-Protein-Reaction (GPR) associations are
automatically generated and included in the model. With the ‘Draw in Browser’ option,
merlin aids the user in the gap filling process by showing enzymes and reactions annotated
directly in the selected Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway browser.
Also, it allows compartmentation of the model predicting the organelle localisation of the
proteins encoded in the genome. Finally, merlin converts the genomic data to draft metabolic
models reconstructions in the Systems Biology Markup Language (SBML) standard format,
allowing a preliminary view of the biochemical network [3].

score f =

n

∑
i=1

vi

n
(1)

if Enzyme Commission (EC) number exists vi is 1. Otherwise is 0.

scoret =

n

∑
i=1

(vi × ti)x × penaltyscore

MaxTaxonomy × min(
n

∑
i=1

vi, nHomologies)
(2)

scoreannotation = α.score f requency + (1 − α).scoretaxonomy (3)

Although there are another platforms with similar individual tools for metabolic en-
gineering, merlin has the advantage to combine all platforms in a unique and completely
capable software. This tools are listed in Table 8. merlin is the only available tool to our
knowledge that provides an integrated framework for the reconstruction of GSMM for both
prokaryotes and eukaryotes that retrieves enzymatic, transport and localisation information.
Other frameworks have some of the merlin capabilities but none of them can gather all of the
features in one platform. Namely, Flux Analysis and Modeling Environment (FAME) [45],
MEtabolic MOdel research and development System (MEMOSys) [46], MicrobesFlux [47] and
the Pathway Tools [48] do not allow metabolic (re)annotations. Comparative ReConstruction
of genome-scale metabolic networks (CoReCo) [49] and Reconstruction, Analysis and Visu-
alization of Me tabolic Networks (RAVEN) toolbox are only able to perform genome-wide
functional annotation. ModelSEED [50] and RAVEN [51] do not perform transports anno-
tation and obligate the users’ data to be shared to SEED’s web server. ModelSEED does
not support eukaryotic GSMM as well. A more visual comparison of this tools is available in
Figure 3.

12



Figure 3.
A comparison between merlin capabilities on genome-scale models reconstruction when compared to
other tools [3]

2.3.2.1 Annotation of Transporter Systems and Transport Reactions Annotation and Gen-
eration (TRIAGE)

TRIAGE is a tool based on the identification and classification of genes that encode
transmembrane proteins. It allows to identify metabolites transported by each transmembrane
protein and its transporter family. In the reconstruction of GSMMs transport reactions are
added as a complementary element for the model, but usually without association to specific
genes. This is a big limitation when considering changes prone to happen in the system,
such as gene deletions. TRIAGE is a novel approach for genome-wide transporter functional
annotation and appeared as a response to the lack of good transporters annotation. Increasing
the compartments indicates compounds needing to reach enzymes and as such have to cross-
cell or organelle-specific membranes for reactions to happen. Transport reactions are built
considering the metabolites annotated in the TCDB records identified as similar to the TCG)
in the target genome. The transporter candidates’ layer (dynamic layer) is organism specific
and is connected to the shared layer of the database, the transport reactions layer (static
layer), by three connections. It allow Transporter Candidate Gene (TCG)s to be assigned
with a TC family, a range of metabolites to be transported and a direction for such transport.
The metabolites used to construct transport reactions are retrieved from TCDB records.
KEGG, Chemical Entities of Biological Interest (ChEBI) and semantics SBML [52] 2.0 for
collecting additional data. Uniprot was used to retrieve phylogenetic data in order to assign
the transport reactions to the candidate gene. These reactions can be directly integrated with
GSMMs since all metabolites involved have KEGG and/or identifiers [53].
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2.3.3 Principles and methods in constraint-based metabolic modeling

In the last few years a myriad of computational modelings of cellular metabolism in
biotechnology have been complemented [54]. From the different mathematical formalisms
proposed for computational modeling of cellular metabolism in biotechnology, kinetic and
constraint-based models are among the most widely adopted ones [55]. Constraint-based
models describe the range of steady-state flux distributions of a metabolic network, using a
Flux Balance Analysis (FBA) approach [56].

Despite of requiring a big amount of experimental data for determining the rate laws
and kinetic parameters of biochemical reactions, constraint-based modeling mainly demands
knowledge of the stoichiometry of the metabolic network. This information can be obtained
from annotated genome sequences and metabolic pathway databases.

The simplicity and scalability of FBA, coupled with the advances in genome sequencing,
led to an explosion in the number of GSMM currently available [57].

2.3.3.1 Online Databases

Online databases access is mandatory to retrieve and collect the necessary data sources
for the GSMM construction. Different online sources and respective tools work in synesthesia
with merlin, allowing the Enzyme Encoding Candidate Genes (EECG) validation, collection
of data or literature research (Table 1).

NCBI is a repository of several databases that provides analysis, visualization, and
retrieval resources for biomedical, genomic, and other biological data. Basic Local Align-
ment Search Tool (BLAST) [58] allowed a similarity search performed with merlin used all
non-redundant sequences (including GenBank coding sequences translations, RefSeq Proteins,
Brookhaven Protein Data Bank (PDB), SwissProt, Protein Information Resource (PIR), Pro-
tein Research Foundation (PRF) databases (nrDB) available in the NCBI [59] databases to
find any protein sequence similar to the target organism.

The Entrez Protein http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein database
is a collection of sequences from several sources, including GenBank Coding Sequences (CDS)
translations, RefSeq Proteins, SwissProt, PIR, PRF, and PDB [59].

The UniProtKB/Swiss-Prot http://www.UniProt.org/ database is a manually curated
protein sequences database which provides annotations with minimal redundancy and high
level of integration with other databases [60].

BRaunschweig ENzyme DAtabase (BRENDA) http://www.brenda-enzymes.info/
provides enzyme functional data obtained directly from literature by professional curators.
This database was used to confirm the information gathered in the previous two databases,
thus being the third reference database selected for this work. TCDB http://www.tcdb.org/
details a comprehensive classification system, approved by the Union of Biochemistry and
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Molecular Biology (IUBMB), for membrane transporter proteins known as the Transporter
Classification (TC) system. (Universal Protein Resource Knowledgebase (UniProtKB)) is the
central hub for the collection of accurate, rich, and consistent functional information on pro-
teins. It consists of two sections: a section containing manually annotated records with infor-
mation extracted from literature and computational analysis (referred to as UniProtKB/Swiss-
Prot) and a section with computationally analyzed records waiting full manual annotation
(UniProtKB/TrEMBL)

MetaCyc is a database of nonredundant metabolic pathways. MetaCyc is curated from
the scientific literature and contains pathways involved in primary and secondary metabolism
and associated compounds, enzymes and genes.

KEGG is an online public repository that is, currently, the most extensive combined
collection of information on genes, metabolites, reactions, and pathways. KEGG contains
genomic and metabolic data.

Expert Protein Analysis System (ExPASy) is the Swiss Institute of Bioinformatics Re-
source Portal in different areas of life sciences including systems biology. Furthermore, Ex-
PASy is one of the main bioinformatics resources for proteomics in the world.

BRENDA–KEGG–MetaCyc reactions (BKM-react) is an integrated and non redundant
database containing known enzyme-catalyzed and spontaneous biological reactions collected
from BRENDA, KEGG, and MetaCyc by aligning substrates and products.

BioCyc is a collection of pathway/genome databases (PGDB)s. Each PGDB in the
BioCyc collection describes the genome and metabolic pathways of a single organism. These
PGDBs contain additional features, including transport systems and gap fillers. Also, the
BioCyc website contains tools for the visualization and analysis of the PGDBs.

ChEBI is a freely available dictionary of molecular entities focused on small chemical
compounds stored in a relational database. ChEBI incorporates an ontological classification,
whereby the relationships between molecular entities or classes of entities and their parents
and/or children are specified. ChEBI provides its chemical structures and additional data in
structure-data file (SDF) format. It uses nomenclature, symbolism and terminology endorsed
by the following international scientific bodies: IUPAC and Nomenclature Committee of the
International Union of Biochemistry and Molecular Biology (NC-IUBMB).

Pathosystems Resources Integration Center (PATRIC)[61] allows genome assembly,
genome annotation and provides a protein family sorter, a comparative pathway tool and
genome metadata.

The Department of Energy (DOE) Joint Genome Institute (JGI) [62] is a national user
facility with massive-scale DNA sequencing and analysis capabilities dedicated to advancing
genomics for bioenergy and environmental applications. Beyond generating tens of trillions
of DNA bases annually, the Institute develops and maintains data management systems and
specialized analytical capabilities to manage and interpret complex genomic data sets. The
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JGI Genome Portal http://genome.jgi.doe.gov provides a unified access point to all JGI
genomic databases and analytical tools. Genomes OnLine Database (GOLD)[63] is a web-
based resource for comprehensive information regarding genome and metagenome sequencing
projects, and their associated metadata, around the world. Since 2011, the GOLD database
has been run by the DOE-JGI.

The Center for Biological Sequence Analysis (CBS) at the Technical University of Den-
mark was formed in 1993, and conducts basic research in the field of bioinformatics and sys-
tems biology. CBS has a highly multi-disciplinary profile (molecular biologists, biochemists,
medical doctors, physicists and computer scientists). CBS has produced a large number of
computational methods, which are offered to others via WWW servers, as is for instance the
Transmembrane Helices Prediction using hidden Markov models (TMHMM).

Stockholm Bioinformatics Center (SBC) provides the tool Phobius that provides com-
bined transmembrane topology and signal peptide predictor [64].

Biochemical, Genetic and Genomic knowledge base (BiGG) contains high-quality, manually-
curated genome-scale metabolic models containing information for metabolites and reactions.
Users can browse and visualize models. BiGG Models connects genome-scale models to
genome annotations and external databases [65]. ModelSEED is a source for the reconstruc-
tion, exploration, comparison, and analysis of metabolic models. ModelSEED is based in
Rapid Annotation using Subsystem Technology (RAST) fully-automated service for annotat-
ing complete or nearly complete bacterial and archaeal genomes. RAST provides high quality
genome annotations for these genomes across the whole phylogenetic tree. Automated Model
Construction and Genome Annotation for Large-Scale Metabolic Networks (MetaNetX) is an
online platform for accessing, analyzing and manipulating genome-scale metabolic networks
and biochemical pathways. It integrates a great variety of data sources and tools and pro-
vides a single identifier to every single metabolic reaction as well as the existing aliases for
each reaction over several databases [66, 67, 68]. Structured Query Language (MYSQL) is
an open-source relational database management system in which merlin is supported.

2.3.3.2 Genome Annotation

Genome annotation can be defined as the process of identifying and labeling all the
relevant features on a genome sequence [69]. It is the first step of a genome-sale metabolic
reconstruction. It is absolutely critical this stage to provide a good quality annotation, as
it will henceforward constitute the basis of the reconstruction process. This process assigns
genes with functions, providing unique identifiers, such as the EC and TC numbers, to the
reconstruction [70, 71]. Genes encoding enzymes or transport systems are labeled metabolic
genes, and are mandatory for the development of the GSMMs. Due to its importance, the re-
annotation of the genome is encouraged to assure quality and reliability of the gene functional
assignments. An example of the iterativity of the process is the E. coli metabolic network
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BiGG BiGG Models, metabolites and reactions
NCBI National Center for Biotechnology Information

With the tools:
The first Basic Local Alignment Search Tool
(BLAST)
RefSeq Proteins
Entrez Proteins
PubMed

EMBL-EBI/ European Bioinformatics Institute/
SBI SIB Swiss Institute of Bioinformatics with the

tools:
The UniProtKB/Swiss-Prot Universal Protein Re-
source
SwissProt

BRENDA The Comprehensive Enzyme Information System
BRaunschweig ENzyme DAtabase

JGI Joint Genome Institute
and tools:
GOLD Genomes OnLine Database
IMG/M Integrated Microbial & Microbiome Sam-
ples

KEGG Kyoto Encyclopedia of Genes and Genomes
ExPASy SIB Bioinformatics Resource Portal
KEGG Kyoto Encyclopedia of Genes and Genomes
BioCyc Pathway/Genome Database Collection
PATRIC Pathosystems Resources Integration Center
CBS Center for Biological Sequence Analysis
SBC Stockholm Bioinformatics Center, Phobius
ChEBI Chemical Entities of Biological Interest database
Semantincs Systems Biology Markup Language with the tool:
SBML 2.0 TransMembrane Helices prediction based on a Hid-

den Markov Model (TMHMM)
TCDB Transport Classification DataBase

Table 1.
Online Databases and respective tools.
This databases work with merlin to retrieve and process information.
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Top Level codes
EC 1 Oxireductases
EC 2 Transferases
EC 3 Hydrolasess
EC 4 Lyases
EC 5 Isomerases
EC 6 Ligases

Table 2.
EC number classification and organization.
The EECG are classified by their function (e.g. Oxidoreductases Transferases, Hydrolases,
Lyases, Isomerases or Ligases), following the Enzyme Nomenclature, in which the first level
number is associated with the enzyme function (adapted from International Union of Bio-
chemistry and Molecular Biology on the Nomenclature and Classification of Enzymes [70].

process studies, going trough a series of expansions and refinement [72]- [79]. This involves
looking to specific data, such as gene or Open Reading Frames (ORF) names, product names,
and, if available, EC numbers. Other genes involved in regulatory control or signaling are not
included in GSMMs but may be useful for later integration in the model.

For the annotation merlin utilizes two different tools (BLAST [58] and biosequence
analysis using profile hidden Markov models (HMMER) [80]) to perform the (re) annotation of
genomes [3, 81]. The similarity search results are then evaluated and an automatic annotation
of the genome is presented, as the tool assigns annotations to each gene of the target organism
[82].

2.3.3.3 Assembling the metabolic network

In this stage, the biochemical reactions are identified and collected to build the backbone
of the network. The reactions catalyzed by enzymes and transport systems encoded in the
annotated genome are used.

Genes, Proteins, and Reactions
The association between annotated genes, proteins, and reactions (the GPR associa-

tions) is performed by searching biological databases (table 1) with the protein names, EC
numbers, or other identifiers (e.g., KEGG reaction number) to which the reaction was associ-
ated [83]. TCDB is the only transport protein classification database adopted by the IUBMB
(Table 3). The TCDB can be accessed for retrieving the metabolites and type of transport
supported by a given carrier protein . These transport reactions should also be added to the
draft network [82].

Spontaneous Reactions

18



Top Level codes
TC 1 Channels/Pores
TC 2 Electrochemical Potential-driven Transporters
TC 3 Primary Active Transporters
TC 4 Group Translocators
TC 5 Transmembrane Electron Carriers
TC 8 Accessory Factors Involved in Transport
TC 9 Incompletely Characterized Transport Systems

Table 3.
Organization of the transporters classified on TCDB (top levels.)
From these, sub-levels are defined, going from types, to superfamilies and families of trans-
porters. The TC number represent protein which promote metabolites relocation. These
follow a classification based on the Transporter Classification Database (TCDB),a freely acces-
sible reference database for transport protein research, which provides structural, functional,
mechanistic, evolutionary and disease/medical information about transporters. The TC code
contains five elements, separated by four dots (#.*.#.#.#). The left most number represents
one of the seven main divisions to which the transporters may belong to, namely, channels/-
pores, electrochemical potential-driven, primary active, group translocators, transmembrane
electron carriers, accessory factors involved in transport, and incompletely characterized trans-
port systems. The second element is a letter and the remainder elements are numbers. Each
element to the right of the main class restricts the classification of the transporter. The
TCDB can be accessed for retrieving the metabolites and type of transport supported by a
given carrier protein. The ones classified in TC9 group are still not completely characterized
and with the information and new studies performed will the transporters be likely to move
the other categories. These transport reactions should also be added to the draft network
(adapted from http://www.tcdb.org/browse.php on June 30th, 2016) [82].
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The next step is adding spontaneous reactions that do not require enzymatic catalysis
to the network. These reactions can be found in published literature or in a few online data
sources, such as KEGG and are included in merlin.

Stoichiometry
After collecting the set of reactions, their stoichiometry should be revised. The re-

action’s stoichiometry provides information regarding quantities of reactants consumed and
products formed [84]. Information on this step may be found in databases such as BRENDA
KEGG, MetaCyc reactions or BKM-react.

Stoichiometric models have been used to estimate the metabolic flux distribution under
given circumstances in the cell at some given moment (metabolic flux analysis), to predict
it on the basis of some optimality hypothesis (flux balance analysis), and as tools for the
structural analysis of metabolism providing information about systemic characteristics of the
cell under investigation (network-based pathway analysis) [85].

Localization/Compartmentation
The compartmentation of the reactions in the cell may induce the regulation of an enzyme
function. The localization of an enzyme inside or outside a determined compartment deter-
mines the organelle wherein the enzyme will operate. For instance, similar reactions with the
same metabolites and stoichiometry, but taking place in different compartments need to be
distinguished, as these are considered distinct reactions [86].
The compartamentation evolves as organisms become more complex, for instance:

• Prokaryotes: compartments are typically limited to the cytosol, periplasmic space, and
extracellular space.

• Fungi and other eukaryotes: the reactions can occur in various compartments including
Golgi apparatus, lysosome, mitochondrion, endoplasmic reticulum, or glyoxysome.

• Higher eukaryotes: it may be further necessary to differentiate between tissues [82].

Hence, each metabolite should include in its name an identifier reflecting its localization.
Otherwise reactions and metabolites are usually assigned to the cytosol.

This area is still in development, but in continuous improvement. For instance, S.
cerivisae’s first GSMM reconstruction accounted for 3 compartments, the second 8 different
locations, and the consensus 15 compartments [87, 88, 89].

Manual Curation
All automated processes provide only the basics towards a reconstruction of the metabolic

network from a sequenced genome. Unfortunately, despite being very useful and process-
accelerating, automated methods ate still fallible and produce incomplete or inappropriate
reconstructions [90, 91, 92].

Manual curation is therefore a requirement and includes:

20



(i) Inspection of the annotation present in the source databases in order to solve incorrect
entries [92].

(ii) Resolving inconsistencies between protein and function identifiers in different databases.
For instance, due to these inconsistencies, different annotations published for the small
genome of Mycoplasma genitalium deviated for 8% the gene product [93].

(iii) Addition of new and/or organism-specific reactions or pathways that are absent in the
queried databases.

(iv) Judging the correctness of the coupling between query sequence and the sequence in
the resource database. The homology and profile-based methods do not always yield a
correct coupling [94, 95].

(v) Evaluation of the coupling between the function identifiers and the retrieved reactions .
The use of unspecific functional identifiers (like incomplete EC numbers) could lead to
false reaction associations, which have to be checked manually [96].

Phylogeny, gene context and high-throughput data
The curation should reconsider all individual proteins within the context of the initial

reconstruction. Comparative genomics can be applied to generate additional data to support
or reconsider the functional attributes of individual proteins [97]. This might involve the
analysis of phylogeny [98], gene fusions [99], gene order [100], co-occurrence [101], regulatory
motifs [102] or experimental evidence. Instead of a single indicator, several aspects, should
be weighed when performing this assessment.

Pathway analysis: filling gaps and completing the network
The process of reconstructing a metabolic model is never really finished. Therefore,

a few minimal quality requirements should be fulfilled. First, the metabolic capabilities
represented by the reconstructed network should be consistent with the physiology of the
organism. Furthermore, when the reconstruction is used to produce a genome-scale metabolic
model with the purpose of yield and flux predictions, its reactions should be elementary
balanced and essential pathways should be reviewed [103]. Moreover, unbalanced reactions
or gaps in pathways should also be reviewed [104].

Finally, after these aspects are weighed, a debugged GSMN is obtained, which is then
converted into a mathematical computational GSMM in the next stage.

2.3.4 Converting the Metabolic Network to a Stoichiometric Model and Validation

S ∗ v = 0 (4)

Stoichiometric modeling avoids difficulties in the development of kinetic models, such as
the lack of intracellular experimental measurements. Thus, allows to explore the knowledge
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Figure 4.
Example of a metabolic network with five metabolites (A to E) and 9 fluxes (v1 to v9) [4].
The reaction scheme is shown in (1), where the boundaries of the system are also outlined.
Fluxes v7 to v9 represent exchange fluxes of both, metabolic substrate (A) and products
(C and E). Reversible reactions are shown by double arrows, and irreversible reactions are
indicated with a forward arrow. The stoichiometry of the network is represented in panel
(2). Panel (3) shows the steady-state mass balances, and panel (4) illustrates the constraints
around the flux values (a represents the maximum uptake rate for the consumption of the
substrate A). Note that a flux value can be negative for reversible reactions with unconstrained
fluxes. Panel (5) shows the representation of the mass balances in matrix format.

about the structure of cell metabolism, without having to consider the intracellular kinetic
processes. When the metabolic network is complemented with the biomass equation and the
nongrowth Adenosine triphosphate (ATP) requirements, the set of reactions can be repre-
sented in the form of a stoichiometric matrix (S) and its flux vectors (v) Eq. (4). In this
matrix the columns represent the reactions and rows the metabolites. The classic principles
of chemical engineering can be used to construct the matrix that represents the dynamic be-
havior of the metabolite concentration, by performing dynamic mass balances with ordinary
differential equation.

2.3.4.1 Biomass formation abstraction

Before converting the network to a GSMM, the biomass formation equation should be
included in the reactions set [82]. The biomass equation represents the cell macromolecular
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composition and the building blocks used to generate those molecules. Hence, this reaction
denotes a drain of biomolecules (e.g., amino acids, nucleotides) into the biomass.

2.3.4.2 FBA

Once the mathematical representation of the model is created, it can be used to predict
the behavior of the target organism and compare it to experimental data.

The core feature of this representation is a tabulation, in the form of a numerical matrix,
of the stoichiometric coefficients of each reaction. These stoichiometries impose constraints
on the flow of metabolites through the network. Constraints are represented in two ways, as
equations that balance reaction inputs and outputs and as inequalities that impose bounds
on the system. The stoichiometric matrix imposes flux balance constraints on the system,
ensuring that the total amount of any compound being produced must be equal to the total
amount being consumed at steady state. Every reaction can also be limited by upper and
lower bounds, which define the maximum and minimum allowable fluxes of the reactions.

These balances and boundaries define the space of allowable flux distributions of a
system and the rates at which every metabolite is consumed or produced by each reaction.[56,
105].

2.3.4.3 parsimonious Flux Balance Analysis (pFBA)

There is an underlying assumption that when cells are growing exponentially it occurs
selection for the fastest growers. Among the fastest growers, there will be a fitness advantage
to cells using the least amount of enzyme as they can process the growth substrate the most
rapidly and efficiently. The flux parsimony tries to emulate this behavior by minimizing
the total material flow required to achieve an objective. pFBA changes the objective to the
minimum total flux objective [106].

2.3.4.4 Data assessment

Independently of the methodology used to validate the model, it should be thoroughly
inspected to find all possible errors. The fact is that if the model does not comply with in
vivo data, further debugging must be performed. Data sources should be queried subsequently
and the reactions set and stoichiometric matrix corrected. A validation with experimental
data should be performed, and when not not in conformation with the experimental data, the
process of reconstruction should be repeated. The final step is revisiting decisions taken in
the manual curation step, in which wrong conclusions may have been inferred [87].
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2.4 lactic acid bacteria (lab)

Lactic Acid Bacteria (LAB) are a group of Gram-positive, non-spore forming, anaerobic
bacteria which excrete lactic acid or lactate as the main fermentation product into the medium
when supplied with suitable carbohydrates [107].

Present in the human body and environment, can colonize the mouth and the na-
sopharyngal mucosa (oral streptococci the gut and intestine (bifidobacteria, enterococci, some
lactobacilli) and the mucosa of the vagina (specific lactobacilli) [108]. Although LAB are only
just a small portion of the total gastrointestinal microbial community, they are predominant
microbiota in the small intestine and considered and essential to its protection [109, 110].
These microorganisms are prominent in fermentation of organic matter of various animal and
plants niches containing sufficient levels of mono and dissaccharides, playing a play a key
role in the production of fermented foods and beverages [111]. The first scientific exploration
of lactic fermentations started with the isolation and chemical characterization of lactic acid
from fermented milk by Carl Wilhelmscheele (1780). It was followed by reports from Pasteur
(1857) which destroyed the theory of spontaneous generation and Lister (1873) who obtained
the first bacterial pure culture. Wilhelm Storch and German Weigmann were the first to
isolate the LAB from spontaneously fermented milk and cream that are responsible for sour
milk and cheese fermentation. Lactic acid bacteria also contributed to the field of genetics,
biochemistry and molecular biology in Griffith’s work (1928) and later in the DNA work by
Avery, MacLeonard and McCarthy (1944). In biochemistry and physiology, LAB allowed to
perform quantitative determinations of vitamins by Snell (1952) [112]. The ability to funda-
mentally understand the genotype–phenotype relationship began to change in the mid 1990s,
on completion of the first bacterial genome-sequencing projects in 1995 [113].

2.4.1 Lactobacillus helveticus

Lactobacilli demand carbohydrates, protein breakdown products, vitamins, and usually
a total absence or low oxygen tension. Lactobacillus helveticus is a homofermentative ther-
mophilic rod-shaped LAB with a genome composed by one circular chromosomal sequence
with around 2MB and around 1700 coding sequences with biotechnological interest and poten-
tial. It has low G+C content and it is acid tolerant [5]. The bacteria includes 163 predicted
pseudogenes (excluding transposases) and 356 complete or partial insertion sequence (IS) ele-
ments. The large number of pseudogenes and IS elements is consistent with a previous report
for Lb. helveticus DPC 4571 and supports the hypothesis that this species has experienced
significant genome decay. Lactobacillus helveticus strain CNRZ 32 was the selected organism
for the model reconstruction as exists structured knowledgebase on its biochemical, genetic
and genomic features. As other other strains, is characterized primarily by the ability to
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form various isomers of lactic acid from the fermentation of glucose producing as byproducts
(L)-lactate and (D)-lactate.

2.4.1.1 Taxomony

Orla Jensen divided the Lactobacilli into the three groups (Thermobacteria, Strepto-
bacteria and Betabacteria) based on growth temperature and biochemical reactions [114].
Although those three groups have been replaced for different classifications, the three names
are still in common use. London classified Lactobacillus as part of a phylogenetic cluster
with close relations to the genera Streptococculs, Pediococcus and Leuconostoc [115]. This
microorganism belongs to the family of Lactobacillaceae and to the Lactobacillus delbrueckii
phylogenetic group that is characterized by being able to grow at high temperatures, to pro-
duce high quantities of lactic acid in milk and to express a complexity of strong proteolytic
enzymes. In 2008 it was confirmed the proximity between Lb. helveticus, L. acidophilus and
L. delbrueckii [116] (Fig.9).

2.4.1.2 Cell wall

Gram-positive bacteria have as main component of their cell wall peptidoglycan. It
is mainly composed of alternated two sugar chains attached to a chain of amino acids.
The cross-linking of this structures create a rigid 3-D structure offering stability to the
cell [117]. The wall includes anionic polymers such as teichoic acid which are cross-linked
to the N-acetylmuramyl and residue of the peptidoglycan, N-acetyl glucosamine and lesser
amounts of membrane bound Lipoteichoic acids (LTA), neutral carbohydrates, and proteins
(Fig.10a). LTA with a poly glycerol-phosphate main chain represents the most common type
of membrane-anchored anionic polymer The type of peptidoglycan structure can be also a
complement for taxonomic classification as it can vary in each specie and strand [118].Lb.
helveticus belongs to the subtype A4α species [5, 119] (Fig 10b).

2.4.1.3 Exopolyssacharide (EPS) production

EPS are long-chain polyssaccharides consisting of branched, repeating units of glucose,
galactose and rhamnose, in different ratios. They are secreted to the surrounding of cells
during growth, not remaining attached permanently to cell surface [122]. They have a major
role in the manufacturing fermented dairy products in Northen, Eastern Europe and Asia
such as yogurt, drinking yogurt, cheese, fermented cream, milk based desserts. EPS may
act both as texturizers and stabilizers, firstly increasing the viscosity of a final product, and
secondly by binding hydration water and interacting with other milk constituents. They can
decrease syneresis and contribute to the texture, mouth-feel, taste perception and stability
of the final product. The use of EPS avoid the use of aditives which is attractive for the
consumer and as consequence for the dairy market of this products [123].
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2.4.1.4 Amino acids auxotrophies and transport system

Lb. helveticus usually grows in rich environments and has evolutionarily lost the ca-
pacity to synthesize most of the amino acids by itself being distinguished by selective gene
loss [116]. The bacteria possesses a proteolytic system to release amino acids from the milk
protein, casein.

It presents auxotrophies to 14 amino acids, being able to synthesize only alanine, cys-
teine, lysine and serine. These are called prototrophic amino acids. Glutamine is obtained
from glutamate and glycine from serine [124, 125]. So, in order to obtain the remaining es-
sential amino acids, Lb. helveticus needs to uptake them from the medium surrounding it
using a myriad of mechanisms. They can also vary depending of the availability of energy
or sugar in the organism. The transport systems of Lb. helveticus are similar to the ones in
L. Lactis [126]. Cysteine, leucine, isoleucine, valine, threonine, lysine, aspartic acid, glutamic
acid, tryptophan, tyrosine, arginine, and histidine are actively transported when glucose is
available [127]. Leucine, isoleucine, valine, threonine, and lysine are transported by a proton
motive force coupled system by hybrid membranes. Lb. helveticus has also a gene encoding
a proton motive force coupled di and tripeptide transporter with better efficiency for Pro-
Ala, Phe-Val and Leu-Val dipeptides [128]. Methionine has usually a low concentration in
milk, so it is liberated from casein by the proteases and uptaked in tripeptides [129]. The
amino acids aspartate, glutamate, histidine, arginine, and tyrosine are most likely transported
by primary ATP-driven systems . Five secondary amino acid transporters (branched amino
acids, alanine and threonine, serine and threonine, and lysine transporters) and glutamine-
glutamate and asparagine-aspartate have ATP coupled systems [130]. Histidine, tyrosine and
arginine can also be transported by a special class of secondary transport systems such as as
precursor/product antiport systems [131].

2.4.1.5 Sugar uptake and metabolism

There are multiple sugar uptake systems reported for LAB. Uptake of mono and dis-
sacharides can be performed by phosphoenolpyruvate dependent phosphotransferase system
(PEP-PTS), symport, permease or antiport systems. It have been reported mechanisms for
fructose galactose, glucose, lactose or sacarose. Lactobacillus helveticus can uptake glucose
trough PEP-PTS. It also possesses a permease uptake system for lactose (encoded by the gene
lhe1439, lacS) and galactose. It is capable of metabolize both galactose and glucose moieties of
lactose by the Leloir pathway and does not accumulate free galactose in the external medium
[132]. Hence, it exhibits glucokinase and phospho-β-galactosidase and β-galactosidase activity
[133]. Lb. helveticus possess a gal gene cluster consituted of galK, galT and galM plus lacL
lacM and galE, possibly constituting an operan [134]. Ganzle also suggests the presence of
possible genes for internal metabolism of oligossacharides such maltose and maltodextrins, de-
spite the transport mechanism being limited or non-occurring [135]. Thus, in Lb. helveticus,
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as in other organisms, the galE product might be involved in preparation of carbohydrate
residues for incorporation into complex polymers, such as exopolysaccharides [136].

2.4.1.6 Health, Economical, Industrial and Scientific Interest

Lb. helveticus can be used in the manufacture of dairy products such as acidophilus
milk, yogurt, buttermilk, and cheeses. It has also commercially importance in the processing
of meats (sausage, cured hams), alcoholic beverages (beer, fortified spirits), and vegetables
(pickles, and sauerkraut) Lb. helveticus is generally recognized as safe having probiotic fea-
tures. Probiotics are defined as living microorganisms that, upon ingestion in certain numbers,
exert health benefits and have potential applications for conditions such as gastro-intestinal
infections and certain bowel disorders [137]. Furthermore, its behavior both in batch [138, 139]
and continuous [140]-[142] lactic acid fermentation has been extensively studied [143]. LAB
are nutritionally fastidious and cannot synthesize several essential amino acids necessary for
growth. Therefore, the lack of the ability to biosynthesize these amino acids is compensated
through the expression of a complex proteolytic enzyme system that provides essential amino
acids via hydrolysis of casein. Besides providing essential amino acids, these proteolytic en-
zymes are involved in the development of flavor in fermented dairy products [144]. This
bacteria is used extensively as a starter or adjunct culture for manufacturing swiss type and
aged italian cheese and fermented milk [145, 121]. It is the dominant microflora of the natural
whey starters used for Parmigiano Reggiano cheese making [146]. Lb. helveticus CNRZ32
has the ability to reduce bitterness and accelerate the development of cheese flavor [147]. The
genomes of a number of lactobacilli have been determined [148]-[153], creating good basis
for the reconstruction of metabolic models. This background coupled with the industrial
interest in the production of a wide range of fermented milk, meat, and plant and health-
benefiting products and supplements reveals the potential and importance of the metabolic
model reconstruction of Lb. helveticus.
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Figure 5.
Phylogenetic tree of bacteria

Figure 6.
Gram-positive bacteria

Figure 7.
lactic acid bacteria and related Species

Figure 8.
L. delrueckii group

Figure 9.
Taxonomic grouping in pylogenetic trees of lactobacilli in different contexts [5].
Based upon 16s rRNA sequence comparison. Each bar represents 10% of expected sequence
divergence
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(a)
Schematic representation of cell wall [120]

(b)
Peptidoglycan structure [6]

Figure 10.
General constitution of a gram positive bacteria cell wall and peptidoglycan structure [6].
Covering the plasma membrane there is a peptidoglycan structure embedded with LTA and
Teichoic acids (TA) [121]. Peptidoglycan contains the sugar unit of N-acetylglucosamine
(GlcNAc) and N-acetylmuramyl(MurNAc) with an aminoacid chain constituted of L-Alanine
D-Glutamate, L-Lysine and D-Alanine. Each repetitive peptidoglycan unit is connect by a
bond of D-Asparagine
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3

MATERIALS AND METHODS

3.1 functional annotation

3.1.1 merlin interface and integration for the annotation process

merlin has a friendly-usage window interface with tools and options available by mouse-
clicking. It has a menu bar in the top and a clipboard on the left side. Different views
will be render for each selected option on the clipboard (Fig. 11). The process starts by
creating a new project, connecting it to a MYSQL database, choosing the project name and
the Taxonomy ID of the target organism. It is also required a FASTA file with the genomic
CDS from NCBI Assembly. Afterwards, a BLAST is performed with personalized options for
the user (fig. 12).

3.1.2 Enzymes annotation

After the rendered BLAST results it is necessary an analysis of the alpha-value and
subsequent score annotation. The alpha-value is defined in merlin by the user and it controls
the weight given to the frequency comparatively to taxonomy (See Equation 3). This choice
will allow now to define a threshold. Above this defined threshold, the Upper Bound (UB), all
the EECG can be automatically accepted and annotated. An inferior level is also necessary
to be set. All the EECG with the score level below this threshold will be rejected [154]. This
inferior threshold, the Lower Bound (LB) will be the one defined by the user in merlin. Even
so, a manual curation is still necessary, in the range of the threshold in order to reduce as
maximum as possible the number false-positives (FP) annotated. This task is facilitated by
merlin fast two-clicks access to Uniprot and BRENDA information on each EECG.

Another defined parameters are the β-value, that defines the weight of the taxonomy
and is fixed in 0.15 and the Minimum number of homologies, defined as 3.

After this analysis the re-annotation is performed leading the process of reconstructing
a genome-scale metabolic model to the next steps.
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Figure 11.
Screenshot of merlin v.3.0 beta interface
On the top bar, multiple options are available for integrate, edit or remove data in the software.
On the left is present a clipboard. The main levels on the clipboard represent the created
project (cnrz_project), the hosting database (lhelveticus 193.173.11.210), and then Model,
Annotation and Tables, which one with their own sublevels. Clicking in any of this levels or
sublevels will render a view in the right side (grey when nothing is selected).

Figure 12.
Parameters definition for BLAST performance
In this example, ’blastp’ and ’protein’ options are selected to obtain the EECG. The E-value
represents the minimum accepted E-value for an annotated enzyme be accepted. UniprotKB
was the chosen remote database which blastp was performed against. Finally, 100 results
were maximum number of aligned sequences to display, and chosen substitution matrix was
BLOSUM62
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Figure 13.
Annotation pipeline for the assignment of enzymatic functions.
In step A, the locus-tag on each EECG was verified on Uniprot. In case of no correspondence,
a BLAST with the SwissProt Database was performed, advancing to step C if conditions are
fulfilled. In step C the EC number was checked and revised on BRENDA If the EC number
was complete and function confirmed, then the gene was annotated. If the EC number is
incomplete, alternatives with complete EC were tried to be found. If there were less than 3
homologies, they were dumped and the partial EC was annotated. If there found at least 3
homologies with the complete EC, the revision made before was performed again and then,
again if was an entry with the accomplished requirements, then it was annotated. Also
research was made in the databases listed in Table 1. For instance, a search on ExPASy was
performed to confirm the product name as there were several EECG that had alternative
accepted names.

3.1.2.1 EECG Annotation Curation Pipeline

The manual curation on the enzyme annotation was performed for the EECG which
annotation confidence score was between the determined UB and LB thresholds. This curation
follows the described work-flow described in Fig. 13.

The definition of the UB and LB consists in a stage with multiple steps:

1. Definition of True (T) / False (F), Positive (P) / Negative (N). It has in consideration
the pipeline (Fig. 13) and the annotation performed by merlin.
-TP: if there is correspondence between the pipeline workflow and annotation;
-FP: Exists an EC but in the pipeline it is considered non-metabolic or determines a
different EC;
-FN: lower score than threshold but by the work-flow an EC number is attributed;
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Figure 14.
Example of annotation analysis appearance
In the first column will be the threshold values, varying from 0 to 1. In the second column
the EECG randomly chosen (5 genes between each 0.1 interval of threshold( In the following
column will be the confidence score. (The genes were chosen with an alpha-value of 0.5)
Afterwards, each column will have respectively the classification of T/F, P/N for each alpha-
value from 0.2 until 0.8 and the next column the corresponding confidence score.

-TN: lower score than the threshold and non-metabolic gene.
So all the genes with EC attributed by merlin will be considered as positive.

2. Annotation analysis: There are selected randomly fifty EECG, five between each 0.1
confidence score gap from 0 until 1. Afterwards, each gene is evaluated in each alpha-
value level from 0.2 until 0.8 (gaps of 0.1). The classification will be TP, FP, TN or FN
under the conditions described above. This procedure is better described in Fig. 14

3. Confusion matrix: it is built counting the number of genes in each classification (Fig.
15).

4. Choice of alpha-value and upper and lower bounds. Using the values obtained in the
confusion matrix, another table is built considering different metrics:
- Accuracy: allows to choose the most adequate alpha-value (Equation 5).

Accuracy =

n

∑
i=1

(TP + TN)

n

∑
i=1

(Total_Population)
(5)

- Precision/ Positive Predictive Value (PPV): from this calculation is defined the UB.
The Precision is calculated for each cell. The biggest value of precision on each column
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Figure 15.
Example of a confusion matrix construction
After the annotation analysis, this confusion matrix is built counting the number of occur-
rences of T,F,P,N. It will be the basis for the matrix calculations.

is chosen, which will correspond to the UB for the corresponding alpha-value of the
column (Equation 6).

PPV =

n

∑
i=1

(TP

n

∑
i=1

(Test_outcome_positive(TP + FP))
(6)

- Negative Predictive Value (NPV): allows to determine the LB. In each column corre-
sponding to each alpha-value, the one with biggest value will correspond to the LB for
that alpha (Equation 7).

NPV =

n

∑
i=1

(TN

n

∑
i=1

(Test_outcome_negative(TN + FN))

(7)

- ’y-value’ and ’z-value’: after the previous calculations to decide the correct alpha and
threshold values, it was used a metric. A ”y-value” is computed, equal to the number
of genes that would need to be curated (genes with confidence score between the lower
and upper bounds) for each alpha-value, divided by the total number of genes. After,
a ”z-value” is computed which will be equal to the accuracy divided by the ”y-value”.
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So, the alpha-value corresponding to the biggest ”z-value” was chosen and therefore the
respective LB and UB determined for that alpha-value.

y − value =

n

∑
i=1

(curated_genes)

(
n

∑
i=1

(Total_number_o f_genes)
(8)

z − value =
Accuracy
y − value

(9)

3.1.3 Transporter Proteins Annotation

The annotation was performed with TRIAGE tool, included in merlin. TRIAGE works
with Phobius tool to retrieve the transporter proteins [64]. Phobius identifies transmembrane
protein topology and signal peptide predictor based on a hidden Markov model (HMM)
that models the different sequence regions of a signal peptide and the different regions of a
transmembrane protein in a series of inter-connected states.

3.1.3.1 Transporter Proteins Annotation Curation Pipeline

After the TRIAGE running in merlin, there are still transport proteins that are not
annotated, so they have to be manually added to the model (Fig. 16). The process is made
by filling an internal database in which 5 major columns are fulfilled, as they are the parame-
ters merlin will use in its smith-waterman alignment algorithm performed in TRIAGE. This
parameters are direction, metabolite, reversibility(T/F), reacting metabolites and equation.
The curation is performed by reviewing the genes one by one, retrieving information from
different levels: TCDB structure, Uniprot description, family, subfamily and super family
descriptions and literature.

3.1.3.2 Transport Reactions Creation and Integration

After completing the manual annotation of the missing metabolites, the TRIAGE
database information is integrated in merlin. The information is linked to the genes data
to create the transport reactions and finally integrated to the model.
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Figure 16.
merlin output after TRIAGE performance.
It contains information on the total number of homologies found (2137) and the number of
genes that are still not in merlin database (385). For those, a manual annotation should be
performed, fillings the fields of direction, metabolite, reversibility, reacting metabolites and
equation
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3.2 draft network reconstruction

After the annotation and curation of enzymes and transporters, the Enzyme Annotation
is committed and integrated to the model (clickable options on ’Enzyme Annotation view’).
Then with the ’Load Metabolic Data’ tool a list of all the pathways and reactions with
homology to the KEGG database is generated. In this view, it is possible to select each
pathway individually and visualize the active reactions using the ’Draw in Browser’ option.
It connects to the KEGG maps opening it in a new browser window. When used together
with the ’unconnected reactions’ tool, the active reactions will appear on the pathway map
with associated colors.

3.2.1 Pathways and Reactions Curation

A pathway by pathway analysis was performed. For each pathway was performed the
following workflow:

• Identifying the putative routes within the pathway;

• Screenshot of annotation view of Lb. helveticus CNRZ 32;

• Screenshot of KEGG reference organism model annotation view;

• Describe differences between annotated model and reference one and relevant notes;

3.2.1.1 Unconnected reactions

This feature available in merlin allows to differentiate the reactions in a color scale by
their interconnection as described below:

• Green EC numbers are integrated in the model. Generally recognized as the main
active enzyme to a given reaction.

• Blue EC numbers are integrated in the model. Generally recognized as secondary
enzyme, often associated with another pathways, to a given reaction.

• Cyan EC numbers are integrated in the model, but connected to a dead end, i. e., the
next connected EC number is not in the model.

• Red EC numbers integrated in the model, but represent a dead end reaction, i. e. their
products are end results of the pathways.

• Colorless EC number are absent in the model
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3.2.1.2 Directionality and Reversibility of Reactions

As the reactions are obtained from KEGG database, they are established as reversible by
default. To try to approximate the model to the constraints of the real world it is necessary to
identify the irreversible reactions and constrain them as unidirectional. To fulfill this purpose,
merlin automated tool ’correct reversibility’ was used. This tool was constructed based on
previous studies combining BRENDA results with ones in KEGG [155, 156]. Reactions are
turned irreversible settling the flag ’reversibility’ to ’0’. Initially the UB and LB are settled in
thousands, simulating a hypothetical unlimited flux (-99999 to 10000). To settle the direction
of the reaction the lower and upper bounds are adjusted. Therefore, if a reaction is supposed
to occur in the direction of the products, the LB is changed to ’0’ and in the case of a reaction
occurring in the reactants direction it is the UB that is changed to ’0’. However, the process is
still liable to errors. To try to correct most of the possible errors a complementary process was
developed combining knowledge obtained from MetaNetX, BiGG and modelSEED databases,
which are manually curated. An in-house python script was written to correlate the reactions
in the model (KEGG based) with the aforementioned databases (unpublished data kindly
provided by Ahmad Zeidan). The final output was an excel file with the single identifier
of MetaNetX for every single reaction aligned with the respective aliases of the other three
databases by identifier, equation, directionality and reversibility. When information for a
reaction was just partial or not in agreement between the different databases it was corrected
following the trustworthy scale:

1. BiGG

2. modelSEED

3. KEGG

3.2.1.3 Redundant and active pathways curation

Firstly, general and complex pathways were removed. This removal process is performed
in merlin on the ’Reactions’ view. For the remaining pathways their removal was performed
after a comparative analysis with the following criteria:

• no reference model found on KEGG (no Lb. Helveticus CNRZ32 or other strains found);

• few active reactions on the pathway and the the main product of the pathway is not
produced. For instance, the ’Tyrosine metabolism’ has just two active enzymes, both
redundant to other pathways and the tyrosine metabolite itself is not being produced.
In this case, the tyrosine metabolism pathway would be removed;

• redundant reactions. If all the reactions on the pathway are linked to other pathways,
then the pathway is removed.
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After the removal of the redundant pathways a new and deeper pathway-by-pathway analysis
was performed. For each ongoing active pathway it was described the putative routes and
taken screenshots of the pathway in reconstructed network and the KEGG reference organism
annotation views. All the differences and potential gaps were evaluated and notes were taken
for further evaluation.

3.2.1.4 Unbalanced reactions

In order to have a running model it is necessary to all reactions to be balanced. For
this task, merlin has a built-in tool retrieving the reactions with the wrong mass balance. On
the reactions view, this unbalanced reactions appear in bold to be easiyl identified for further
analysis. It also calculates the difference between the components in reactants and products
resulting in the missing elements to obtain a balanced reaction. The unbalanced reactions
could then be analyzed and corrected.

3.2.2 Biomass Equation

For the biomass equation construction merlin has a built-in tool to create a draft ver-
sion for the equation. Named ’e-biomass equation’, it allows to create semi-automatically the
reactions that lumped together will correspond to the biomass production. The user provides
FASTA files with genomic, proteic and the different RNA (tRNA, mRNA, rRNA) sequences
and indicates the content amount (from 0 to 1) of each one of the main macromolecules consti-
tuting the cells. These macromolecules are proteins, carbohydrates, DNA, RNA and cofactors,
generating the respective ’e-protein’, ’e-carbohydrates’, ’e-DNA’, ’e-RNA’, ’e-cofactors’ and
finally the ’e-Biomass’ reactions. It is important to mention that this process only provides
in an assisted starting point for the Biomass equation construction. It is necessary to add,
remove or adapt the equations for the model under construction. For that, literature data
on the composition of different macromolecules in Lb. helveticus or closely related organisms
were used to refine the biomass equation. Experiments were also conducted to determine the
macromolecular composition of Lb. helveticus CNRZ 32 cells.

3.2.2.1 Energy Requirements

Energy is necessary for the cell metabolism. This energy is available in the form of ATP
to the organism. For the model construction it is necessary to take in consideration two types
of energy. The energy associated to growth which should be included in the main biomass
equation and the maintenance energy or non-growth associated energy. The latter considers
the energy spent by the cell in other functions other than growing new cell material [157].
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3.2.3 Experimental Determination of the Macromolecular Composition of Biomass

a) Medium and Growth Conditions

Lactobacillus helveticus CNRZ32 cells were inoculated in a chemically defined medium
(CDM) supplemented with 2% of glucose. The medium contained as main elements glucose
Trace Elements Basal Solution (80.2%), Magnesium Chloride (1%), Calcium Chloride (1%),
Cysteine Hydrochloride (1%), Urea (1%), Amino Acid Stock Solution (3.8%), Vitamin Basal
Solution (1%) and Bases Solution (1%). The medium components are fully described in the
Support Material. An exponential growing culture was selected and incubated over night
at 40 ◦C. Afterwards, 200 milliliter (mL) of CDM were inoculated at the 0.05 - 0.1 value
of Optical Density (OD)600 and then incubated up to the exponential phase, commonly
achieved round OD600 of 1. When the exponential phase was achieved, samples of 10 mL
were collected and split according to its destination. Samples used for macromolecular content
determination were centrifuged and its supernatant kept at −20 ◦C to be used as control. The
pellets were washed with cold Phosphate-buffered saline (PBS). Samples for the cell dry weight
determination were used immediately and the remaining were kept at −20 ◦C until further
use.

b) Cell Dry Weight

The cell dry weight (CDW) of L. helevteicus CNRZ32 was determined in triplicate
using 10-mL aliquots of cell suspension, harvested at mid-log phase. For that, 0.22 µM
membrane filters were pre-dried in a microwave oven at 350 W for 4 min. The filters were
cooled down in a desiccator before being weighed on an analytical balance. Then, by using
the vacuum filtration assembly, the cell suspensions were filtered and washed three times with
equal volumes of MiliQ water. The filters were then dried in the microwave oven at 350 W
for 8 min, cooled down in the desiccator and weighed again. Later, the difference between
the initial and final weight was calculated. The cell dry weight was achieved by dividing the
obtained result by the filtered volume.

c) Protein

The total protein content of the cells was determined by the Biuret method, as described
by Herbert et al. [158]. The previously frozen pellets were resuspended in MiliQ water and
subsequently washed from any trace of growth medium. The volume of 0.6 mL washed cell
suspension was transfered to a 1.5mL tube. Simultaneously, standard protein solutions were
prepared using 2 milligram (mg)/mL Bovine serum albumin (BSA) and demineralized water
with different concentrations: 0.25 mg/mL; 0.5 mg/mL; 1 mg/mL; 2 mg/mL. Also a blank
of demineralized water was prepared. The standards and blank were treated henceforth as
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with the cell suspensions. After the addition of sodium hydroxide, the samples were placed
in boiling water bath and then cooled down in ice. Posteriorly, copper sulfate was added
to the suspension, mixed and incubated at room temperature. Finally, the suspension was
centrifuged and the supernatant collected to measure the absorbance in the spectrophotometer
at 555 nanometer (nm). The standards were used to plot the absorbance values against the
known concentrations and determine the regression line. This allowed to estimate the sample
concentration.

d) Carbohydrates

Total carbohydrate content (capsular polysaccharide and free sugars inside the cell in
addition to sugar residues in peptidoglycan and lipoteicoic and teichoic acids) of Lb. helveticus
cells was determined according to the phenol-sulfuric acid method [158]. A sample of 1 mL
frozen cells formerly suspend in MiliQ water in a thick glass tube. At the same time, glucose
standards were prepared in parallel for the following concentrations: 0.25 mg/mL; 0.5 mg/mL;
1 mg/mL; 2 mg/mL. A blank was prepared with demineralized water. The standards and
blank were treated henceforth as with the cell suspensions. It was subsequently added to the
suspension 5 % phenol and sulfuric acid, and mixed immediately. Thereafter the samples
were incubated at room temperature and afterwards placed in a water bath at 25 ◦C. Then,
1 mL out of the suspension was measured in the spectrophotometer at 488 nm. Finally, the
carbohydrates content was estimated as with the protein content.

e) DNA

To determine the DNA content, it was used the Invitrogen Easy-DNA™kit for genomic
DNA extraction (Support Material). The protocol started with the suspension of the samples
in PBS. Mutanolysin was added and the samples incubated at 37 ◦C. It was added the kit
solution A and the resulting suspension suffered a vortex before another incubation, this time
at 65 ◦C. The solution B was added next and immediately suffered another vortex until the
resulting precipitate was dissolved. Chloroform was added to the suspension. Subsequently,
the suspension suffered vortex and centrifugation. The upper phase was collected into a tube
followed by the addition of 100% ethanol. To the mixture it was applied other centrifuga-
tion. Prior to that, the samples were incubated on ice. The 100% ethanol was removed as
ethanol at 80% concentration was added. Posteriorly, the samples were inverted five times
and centrifuged. Lastly, the ethanol was removed and if necessary other centrifugation is
performed to remove residual ethanol. The pellet was dried at 37 ◦C and resuspended on
Tris-Ethylenediaminetetraacetic acid (TE) buffer plus RNase. The samples were incubated
at 37 ◦C before measuring the DNA concentration using the Qubit.
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f) RNA

The total cellular RNA content was quantified by the KOH/UV method [159]. The cells
were washed three times with perchloric acid and afterwards digested by potassium hydroxide
at 37 ◦C with mixing intervals every 10 minutes. Posterior to that the suspension was cooled
down and neutralized with perchloric acid. The suspension was centrifuged whereupon the
supernatant was collected. As so, the pellet was washed twice with perchloric acid and once
again the supernatant were collected. To reach a final volume of 15 mL, the supernatant
were pooled. Then, the remaining potassium perchlorate was removed by centrifugation.
The resulting samples were measured at the absorbance of 260 nm was measured using the
spectrophotometer. Later, the Beer-Lambert law was firstly used to calculate the final con-
centration of the samples while the 340 grams (g)/mol molecular weight was used hereafter
to calculate the RNA content.

3.2.4 Validation and Simulation

After Biomass structure being built a validation of the model is necessary. In order to
do it, two distinct softwares were used: COBRAPY and OptFlux. The first is orientated to
find errors in the model and the latter to perform FBA simulations.

3.2.4.1 COnstraint-Based Reconstruction and Analysis for Python (COBRApy)

COBRA for Python (COBRAPY) is a Python package that provides support for basic
COBRA methods. The openCOBRA Project is a community effort to promote constraints-
based research through the distribution of freely available software (available in http://
opencobra.github.io/COBRAPY/). COBRApy implies three fundamental concepts: the pres-
ence of physicochemical constraints, mathematical description of evolutionary selective pres-
sures genome-scale perspective of cell metabolism accounting all gene products in a cell [160].
COBRA methods can be used in metabolic networks of prokaryotes and eukaryotes with an
integration framework for the multiomics data used in systems biology. It provides access to
commonly used COBRA methods, such as flux balance analysis, flux variability analysis, and
gene deletion analyses. COBRApy serves as an enabling framework for which the community
can develop and contribute application specific modules [161]. A SBML file (merlin output
can be loaded and methods powered by the COBRA package can be extended in python
scripts to analyze the model. The developed script goes reaction by reaction following the
workflow:

1. The reactants metabolites are retrieved from the reaction under analysis;

2. A single sink reaction is iteratively created to each metabolite;

3. The new sink reaction is settled as objective function;
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4. The model is simulated to the objective function ’maximize’;

5. The output flux is recorded;

6. If the metabolite tested is biomass precursor entitled as macromolecular entity, the
process is repeated regarding to the synthesis reaction of the macromolecular entity.

The running code generates an excel file with the fluxes for each of the precursors. When
the flux was zero or close to zero it meant that the metabolite was not being produced in the
model.

3.2.4.2 OptFlux

OptFlux is an open-source software platform for in silico metabolic engineering (avail-
able from http://www.optflux.org). It appears as a response for the needs of the scientific
community. A bunch of methods have been already proposed before for the phenotype simula-
tion of microorganisms under different environmental and genetic conditions. Although they
were restricted to expert researchers and bioinformaticians. OptFlux brings a powerful tool
for metabolic engineering working with genome-scale models in a user-friendly environment.

OptFlux is able to perform strain optimization, being the first metabolic engineering
computational tool to provide algorithms and simulated annealing metaheuristics to reach tar-
gets given a user-defined objective function. It also allows the use of stoichiometric metabolic
models for phenotype simulation of both wild-type and mutant organisms, using the methods
of Flux Balance Analysis, minimization of metabolic adjustment or regulatory on/off mini-
mization of metabolic flux changes, metabolic flux analysis, computing the admissible flux
space given a set of measured fluxes, and pathway analysis through the calculation of Ele-
mentary Flux Modes. The software supports importing/exporting to several flat file formats
and it is compatible with the SBML standard. [162].

OptFlux has already been used in published in testing metabolic engineering predic-
tions testing different carbon sources uptake experiments [163, 164]. A SBML file (export
format of models in merlin output can be loaded and then tested in the different modules of
OptFlux. Predictions of cell behavior for different environmental conditions, carbon sources
and reactions and genes Knock-out can be performed, looking for the best possible outputs
to validate later on the wet-lab.
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4

RESULTS AND DISCUSS ION

4.1 functional annotation

4.1.1 EECG Annotation Results

After uploading the file with the coding sequences for Lactobacillus helveticus CNRZ32
and run the BLAST tool, the α-values and thresholds were evaluated. The values obtained
were 0.8 for α-value, and 0.2 and 0.5 for the LB and UB respectively.

The curation process had an impact on the number of total genes, as there are less 145
genes when compared to before the evaluation. This is explained by the defined threshold
levels. Before the curation the threshold was defined at 0, for it would be possible to make
an evaluation of all metabolic genes. After the metrics evaluation it was established of the
alpha-value of 0.8 and the threshold of 0.2 as LB. It was also defined 0.5 as the UB, which all
the genes with confidence score above it are considered as high-confidence genes and accepted
as correctly annotated. The genes with confidence score between the LB and the UB were
manually evaluated and curated giving resulting in differences their groups distribution and
in 30 new complete EC numbers annotated s and add extra information to three more, despite
not completely fulfill them (Tables 4 and 5).

4.1.2 Transporters Annotation Results

A total of 2137 TCDB homologies were found for the organism genome (Fig. 16). From
those, 385 were still not annotated in merlin database and needed to be manually curated.
All this data was integrated in merlin and 232 transport reactions were created and integrated
to the model.
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Table 4.
Differences of distribution of EC numbers before and after the manual curation.

after before dif
EC numbers 575 720 -145
EC incomplete 19% 28% -10%
EC complete 81% 72% 9%
Gene name 19% 17% 2
Oxidoreductases 10% 10% 0%
Transferases 33% 33% 0%
Hydrolases 34% 38% -4%
Lyases 5% 4% 1%
Isomerases 7% 6% 1%
Ligases 12% 9% 2%

4.2 draft model reconstruction

4.2.1 Pathways and Reactions Curation

4.2.1.1 Directionality and Reversibility of Reactions

Followed the automatic correction in merlin, the script developed revealed that a total
of 131 did not reveal agreement between all the databases. From those, 49 were switched
from reversible to irreversible and 36 the reverse process. The remaining were kept unaltered
as they resulted from parsing errors on the script or from the differences in the approach
of mass and charge balance between modelSEED and KEGG. The changes performed were
confirmed with literature support when available.

4.2.1.2 Unbalanced Reactions

The balance of the reactions was evaluated. From a total of 939 reactions 217 were
unbalanced. Although not all those reactions had to be corrected. Seventy-three of those
reactions were exchange reactions. In this reactions only the reactants side of equation has
metabolites. Another 20 of those unbalanced reactions belonged to the ’Amynoacyl-tRNA
biosynthesis’ pathway. In this pathway each reaction is unbalanced, but the sum of all of them
results in a balanced matrix, simulating the protein building and elongation. Nine reactions
belonged to the biomass pathway. Each of this reactions were unbalanced as the artificial ’e-
components’ do not have chemical formula or structure. Still, the final ’e-biomass’ equation
balanced. This lead to a total of 115 unbalanced reactions that needed to be manually updated.
From those 87 were non-associated to pathways and therefore were left to later evaluation.
These reactions would be later reviewed when assured that they would be necessary or not
in the model. A final number of potential 28 reactions to balance remained. The reactions
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Table 5.
Completed EC numbers.

Gene Incomplete
EC

New annotation Protein Name

AGQ22686.1 1.1.1.- 1.1.1.274 2,5-didehydrogluconate reductase
AGQ22711.1 2.7.3.- 2.7.13.3 Histidine kinase
AGQ22837.1 3.1.3.- 3.1.3.48 Protein-tyrosine phosphatase
AGQ22860.1 1.-.-.- 1.16.1.1 Mercury II reductase
AGQ22862.1 2.3.1.- 2.3.1.183 Phosphinothricin N-acetyltransferase
AGQ22878.1 4.2.1.- 4.2.1.59 (3R)-hydroxymyristoyl-[acyl carrier

protein] dehydratase
AGQ22898.1 2.7.7.- 2.7.7.80 Molybdopterin-synthase adenylyl-

transferase
AGQ22931.1 1.7.-.- 1.6.5.2 Possible NAD(P)H dehydrogenase

(Quinone)
AGQ22932.1 1.7.-.- 1.7.1.6 Possible NAD(P)H dehydrogenase

(Quinone)
AGQ22946.1 2.7.3.- 2.7.13.3 Histidine kinase
AGQ22987.1 2.4.1.- 2.7.8.6 Undecaprenyl-phosphate galac-

tosephosphotransferase
AGQ23025.1 5.4.2.- 5.4.2.1 Phosphoglycerate mutase
AGQ23087.1 5.4.2.- 5.4.2.1 Phosphoglycerate mutase
AGQ23095.1 2.4.1.- 2.4.1.187 UDP-N-acetyl-D-mannosamine trans-

ferase
AGQ23096.1 2.4.-.- 2.4.1.- Glycosyltransferase
AGQ23099.1 2.7.8.- 2.7.8.12 Putative CDP-

glycerol:glycerophosphate glyc-
erophosphotransferase

AGQ23110.1 2.7.1.- 2.7.1.107 Diacylglycerol kinase
AGQ23147.1 3.2.-.- 3.2.2.1 Nucleoside hydrolase
AGQ23167.1 3.4.11.- 3.4.11.7 Glutamyl aminopeptidase
AGQ23179.1 2.6.1.- 2.6.1.83 LL-diaminopimelate aminotrans-

ferase
AGQ23208.1 3.6.3.- 3.6.3.10 H+-K+-exchanging ATPase
AGQ23282.1 2.7.3.- 2.7.13.3 Histidine kinase
AGQ23300.1 2.1.1.- 1.3.3.4 Protoporphyrinogen oxidase
AGQ23335.1 2.4.-.- 2.4.1.- Bactoprenol glucosyl transferase
AGQ23367.1 5.4.2.- 5.4.2.1 Phosphoglycerate mutase
AGQ23376.1 2.1.1.- 2.1.1.171 Methyltransferase
AGQ23596.1 3.6.3.- 3.6.3.21 Polar amino acid transport system

ATP-binding protein
AGQ23846.1 3.6.3.- 3.6.3.21 Polar-amino-acid-transporting AT-

Pase
AGQ23914.1 1.1.1.- 1.1.1.27 L-2-hydroxyisocaproate dehydroge-

nase
AGQ23923.1 2.7.3.- 2.7.13.3 Histidine kinase
AGQ24041.1 2.-.-.- 2.4.-.- Glycosyltransferase
AGQ24137.1 5.4.2.- 5.4.2.1 Phosphoglycerate mutase
AGQ24254.1 3.4.22.- 3.4.22.40 Aminopeptidase C
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Table 6.
Removed pathways.

Metabolic pathways Limonene and pinene degradation
Microbial metabolism in diverse environments Lysine Degradation
Acarbose and validamycin biosynthesis Metabolism of xenobiotics by cytochrome P450
Aflatoxin biosynthesis Methane metabolism
Arginine and proline metabolism Monobactam Biosynthesis
Arginine biosynthesis Monoterpenoid biosynthesis
Ascorbate and aldarate metabolism Nitrogen metabolism
Aminobenzoate degradation Nitrotoluene degradation
Benzoate degradation Penicillin and cephalosporin biosynthesis
Betalyn Biosynthesis (not able to draw on
KEGG)

Pentose and glucoronate interconversions

Biosynthesis of type II polyketide products Phenylalanine metabolism
Biosynthesis of unsaturated fatty acids Phenylalanine, tyrosine and tryptophan

biosynthesis
Biosynthesis of vancomycin group antibiotics Porphyrin and chlorophyll metabolism
Biotine Metabolism Propanoate metabolism
Bisphenol degradation Retinol metabolism
Butanoate metabolism Selenocompound metabolism
Caprolactam degradation Sphingolipid metabolism
Carbon fixation in photosynthetic organisms Steroid degradation
Carbon fixation pathways in prokaryotes Streptomycin biosynthesis
Chloroalkane and chloroalkene degradation Styrene degradation
Chlorocyclohexane and chlorobenzene degrada-
tion

Synthesis and degradation of ketone bodies

Cyanoamino acid metabolism Taurine and hypotaurine metabolism
Drug metabolism - other enzymes Tetracycline biosynthesis
Drug metabolism - cytochrome P450 Tropane, piperidine and pyridine alkaloid

biosynthesis
Fatty acid elongation Tryptophan metabolism
Glyoxylate and dicarboxylate metabolism Tyrosine metabolism
Glycosaminoglycan degradation Valine, leucine and isoleucine biosynthesis
Glycosphingolipid biosynthesis - ganglio series Valine, leucine and isoleucine degradation
Glycosphingolipid biosynthesis - globo and
isoglobo series

Various types of N-glycan biosynthesis

Histidine Metabolism Xylene degradation
Indole alkaloid biosynthesis Zeatin biosynthesis
Inositol phosphate metabolism α-Linolenic acid metabolism
Isoquinoline alkaloid biosynthesis
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containing polymers such as starch and dextrin were removed and the remained corrected
after confirming the agreement with BiGG and modelSEED databases. Mostly proton balance
corrections were performed.

The next step was the ’Unconnected reactions’ tool in merlin. It was not performed
the reaction removal in order to keep the model closest to the reality, i.e., isolated reactions
or reactions leading to partial pathways with no evident connection or interoperability with
other pathways were kept for further studies. The tool was mainly used for identify dead
ends. One reaction follows the rule ’A + B = C + D’ This ’C’ and ’D’ metabolites cannot
be ’lost’. They had to either be used as reactants for further reactions or excreted by the
metabolism. When none of this conditions is respected it is created a dead end that has to
be analyzed and corrected.

4.2.1.3 Redundant and active pathways curation

A total of 65 pathways were considered redundant and therefore removed from a total
of the initially 106 generated in merlin (Table 6). Removed the redundant pathways, a total
of 36 pathways were maintained and analyzed one-by-one. The main pathways which are
responsible for the carbon sources uptake and metabolism and building blocks from main
precursor metabolites constituting the cell components are briefly described later on section
4.4.
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4.2.2 Biomass Equation

To fill the different components content in merlin’s ”e-Biomass equation” tool it was
followed experimentally validated values by Santos [165]. These were 0.53 in protein, 0.02
in DNA, 0.08 in RNA, 0.125 in lipids and 0.2 in carbohydrates. Beside these components,
it also adds a residual value for the called ’e-cofactors’. The information for these fields had
to be uploaded with different FASTA files for each one of components: genome nucleotide
sequence, genome amino acid sequence, genome transfer RNA (tRNA) sequence, genome
mRNA sequence and genome ribosomal Ribonucleic acid (rRNA) sequence. These files were
obtained from the NCBI Assembly database lastly accessed in March, 7h 2017 in :https://
www.ncbi.nlm.nih.gov/assembly/GCF_000422165.1. Although another adjustments were
still necessary. For having the most accurate and specific structure and components amounts
as possible, other published models were taken in consideration. The models were available for
L.lactis [166] and B.subtillis [167]. In these models, the cellular composition of the organism
is distributed differently from merlin. In the L.lactis model it is taken in consideration the
LTA, peptidoglycan and polysacharides. In the B.subtillis is described the structure and
weight of each component of the LTA and the cell wall (peptidoglycan and TA. So, from
the first e-biomass equation it was removed the ’e-carbohydrates’ entity and created the ’e-
peptidoglycan’, ’e-EPS’, ’e-teichoic acids’ and ’e-lipoteichoic-acids’ The weight of each one of
these biomass precursors was distributed and adapted from merlin starting point as described
below.

For the nucleic acids equations, ’e-DNA’ and ’e-RNA’ no changes were performed and
their precursors and content percentage were kept as generated in the semi-automatic tool.
For the ’e-Protein’ equation, the precursors were kept as generated by merlin which estimates
the codon usage from the amino acids sequence. The amino acids were considered in their
activated form already associated with tRNA. The weight of protein would be later updated
as new entities for the biomass equation were created. So, from the original 0.53 of protein
content it was removed the amount corresponding to the proteic components in peptidoglycan,
teichoic acids and lipoteichoic acids.

For the lipids components , it was necessary to create a de novo equation as merlin
does not create it automatically. Literature review revealed that the lipid content for Lb.
helveticus was based in cardiolipin, phosphatidylglycerol and phosphatic acid. The sum of
their contents in the study was normalized to 1 after 7% of unidentified phospholipids were
suppressed [168]. Plus, it was necessary to estimate the fatty acid composition as they are
part of lipids constitution. Due to absence of specific information for the CNRZ32 strain, the
average fatty acid composition was calculated with data obtained from different studies in
other Lb. helveticus strains (Table 15 in Support Material). From this fatty acid profile it
was still removed the odd number chain fatty acids as in the Lb. helveticus CNRZ32 was not
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possible to observe the synthesis of 2-Methylbutanoyl-CoA or Propanoyl-CoA, precursors for
this kind of fatty acids. This fatty acid component was virtually created inside merlin with
the reaction ’R-fatty-acid:

0.16 tetradecanoic acid + 0.20 hexadecanoic acid + 0.03 (9Z)-Hexadecenoic acid + 0.03
octadecanoic acid + 0.58 cis-9-Ocatadecanoic acid = 1.0 Fatty acid’
For the ’e-carbohydrate’ equation it was used a different approach. As a gram-positive bacte-
ria, Lb. helveticus cell wall contains peptidoglycan, TA and LTA as main components. Plus,
produces EPS. Being all important constituents of the organism, independent entities were
created for each one of them. The content initially corresponding to the total ’e-carbohydrate’
was distributed with the corresponding weight of the sugar constituents for the new entities:
’e-peptidoglycan’, ’e-TA’, ’e-LTA’ and ’e-EPS’.

For ’e-Peptidoglycan’ equation the precursors are UDP-N-acetylmuramate, UDP-N-
acetyl-alpha-D-glucosamine, L-Alanine, L-Lysine, D-Glutamate, D-Alanine and L-Asparagine.

For the ’e-teichoic acids’ equation the precursors are UDP-N-acetyl-D-mannosamine,
UDP-glucose, UDP-N-acetyl-alpha-D-glucosamine, sn-Glycerol 3-phosphate and D-Alanine.

For the ’e-Lipoteichoic acid’ equation the selected precursors were UDP-glucose, UDP-
N-acetyl-alpha-D-glucosamine, Acyl-CoA, sn-Glycerol 3-phosphate and D-Alanine. Acyl-CoA
is important as it is a necessary component for the reactions leading to the lipids synthesis.
The presence of Acyl-CoA implied the creation of this entity in s well. This reaction uses the
fatty acid entity created before:

’R acyl-CoA: Fatty acid + CoA + ATP = Acyl-CoA + Adenosine monophosphate
(AMP) + Diphosphate’

The ’e-EPS’ equation was built after creating a profile for the EPS. This profile was
constructed with averages of 11 different strands of Lactobacilli strains as for our knowledge
there is no profile defined yet for CNRZ32 strain [169]- [122]. UDP-Glucose, UDP-alpha-D-
Galactose and dTDP-L-Rhamnose were defined as the precursors for the EPS production.

For the precursors of the ’e-cofactors’ reaction, a literature review was performed and it
was removed heme, as it is related to aerobic organisms, ubiquinone, associated to respiration
processes [172] and glutathione, present in cyanobacteria and proteobacteria, and in all mito-
chondria or chloroplast-bearing eukaryotes [173]. Nicotinamide adenine dinucleotide (NAD),
CoA, folate, thiamine and pyridoxal originally generated by merlin were kept. Pantothenate,
4-Aminobenzoate, Nicotinamide adenine dinucleotide phosphate (NADP)+, S-Adenosyl-L-
methionine, nicotinamide and Biotin were latter added as they shown to be essential to the
metabolism of the bacteria. The e-cofactor content amount was estimated as the remaining
from all the other components to complete a ratio of 1. For instance, it was just necessary to
virtually give a trace amount of NAD+ or folate as a boost to start-up since they are later
renewed by the cell metabolism.
Summing up, the final e-Biomass equation included the upward described nine precursors for
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Table 7.
Experimental macromolecules content.
CDW-cell dry weight in g/L, STD-Standard Deviation. The macromolecules contents are
present in % (g/g). The presented values represent the average from triplicate results in each
specie and experiment

CDW STD DNA RNA Protein Carbohydrates
Lb. helveticus 0.35 0.02 0.76 7.25 44.95 2.00
L. bulgaricus 0.60 0.10 0.49 6.48 19.11 1.22
St. termophilus 0.30 0.02 0.66 5.62 52.66 4.50

the bacteria main components plus water and energy. For the growth associated energy it
was used a value of 10. It is important to refer that the amino acids are considered already in
their activated form and therefore there is already ATP associated to their synthesis. It was
also added and equation for the maintenance energy requirements which was fixed in 5 ATP.

The final e-biomass equation simulating the production of 1 mol of biomass was estab-
lished as follows (note that e-biomass component is just used as a representation):

0.02 e-DNA + 0.08 e-RNA + 0.0617 e-cofactor + 0.034 e-lipids + 0.4863 e-
protein + 0.12 e-exopolysaccharides + 0.0531 e-peptidoglycan + 0.08 e-lipoteichoic
acids + 0.0649 e-teichoic acids + 10.0 H2O + 10.0 ATP = 10.0 Adenosine diphos-
phate (ADP) + 10.0 Orthophosphate + 1.0 e-biomass

4.2.3 Experimental Determination of the Macromolecular Composition of the biomass

Calculated the values of the different macromolecules after extract, weight and measure
them, values were not completely satisfactory. Experiments were performed in 3 different
species and in triplicates. Values on Lb. helveticus, L. Bulgaricus and S. thermophilus were
far away from the expected in Carbohydrates and DNA. For Lb. helveticus only the RNA
values were close to expected (0.72 vs 0.8) as the protein content came up short as well. Even
between species the obtained values vary, as for instance in protein content which varied from
19 to 52 %. To this inconsistencies added the non consideration of EPS production (medium is
removed in the experiments wiping the EPS from the content). These factors turned inviable
to use the measured wet-lab values for the model construction. So, it was decided to keep the
combination of values obtained previous studies as described before.
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4.3 model validation and simulation

4.3.1 Model troubleshooting and validation

The biomass equation and model curation processes were followed by the file exporting
and validation with COBRApy tool. Briefly, the troubleshooting was carried out through
the evaluation of the model’s ability to produce each of the biomass precursors. A script was
developed to identify the biomass precursors not being produced by the model, i.e., with a flux
of zero. Then, a trace back was performed on the reactions leading to precursors formation.
For the reactants, it was created sink reactions and set up the objective function. The process
was then iteratively repeated until a reactant with flux zero being identified. Furthermore, it
was evaluated the reactions balance, the directionality and the reversibility. When necessary,
the curation process would go back and forward until validation process was finalized. The
model was recognized as operative and functional when all the biomass precursors have fluxes.
Finally, the corrections were updated in merlin and then exported as an .xml file in the SBML
Level 2 version 4 format.

4.3.2 Simulations

Obtained an expected functional model, simulations could now be performed. OptFlux
(v3.3.5) was used for this task. The first test was performed without any restrictions, working
as a control. Growth rate as expected was extremely high (above 1000), consistent with the
biomass value obtained with COBRApy. The metabolites production gave already good
indications (H2O, Ammonia, CO2, (R)-Lactate and (S)-Lactate).

Then, the model was tested with the conditions of growth used in the wet-lab. So, the
only carbohydrate made available was glucose with a maximum flux of 10. The obtained
growth rate was around the expected (0.26 vs 0.3h-1) as were the products: H2O, Ammonia,
CO2 and (R)-Lactate. Although is expected to obtain lactate in its both isoforms, the in silico
simulation may not contemplate it as it was used a pFBA method, which will try to reduce the
number of used enzymes. Therefore, limiting the amount of sugar available it is most likely
that it will result in only one of the isoforms to be represented. The bacteria consumed the
glucose almost entirely. It was also taken up Uracil and Adenine All the twenty amino acids
were taken up in small rates (<0.1h-1) such as Hydrogen and cofactors (Riboflavin, Pyridoxal,
Biotin, S-Adenosyl-L-methionine, 4-Aminobenzoate and Folate).

Tests with other sugar sources were made. Providing only galactose result in the same
output as for glucose, only with the other lactate isoform. Tests with lactose, sucrose and
maltose as sugar source failed with no growth obtained for any of them.
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Environmental Conditions Biomass
value

Production

no constraints 1106 (H2O, Ammonia, CO2, (R)-Lactate and (S)-Lactate)
glucose LB -10 0.26 (H2O, Ammonia, CO2 and (R)-Lactate
galactose LB -10 0.26 (H2O, Ammonia, CO2 and (S)-Lactate
glycerol LB -10 NaN None
lactose LB -5 NaN None
maltose LB -5 NaN None
sucrose LB -5 NaN None
adenine omission 0.0 (R)-Lactate
alanine omission 0.0 (R)-Lactate
aspartate omission 0.26 (H2O, Ammonia, CO2 and (R)-Lactate
cysteine omission 0.0 (R)-Lactate
glutamine omission 0.26 (H2O, Ammonia, CO2 and (R)-Lactate
glycine omission 0.0 (R)-Lactate
isoleucine omission 0.0 (R)-Lactate
lysine omission 0.0 (R)-Lactate
methionine omission 0.0 (R)-Lactate
proline omission 0.0 (R)-Lactate
xantosine omission 0.26 (H2O, Ammonia, CO2 and (R)-Lactate

Testing the prototrophic amino acids (alanine, cysteine, lysine and serine) resulted in a
change of behavior in the cell. Only the main path from glucose to lactate (represented in the
figure 18) had fluxes, with glucose being consumed and lactate produced, but no growth was
registered. For glutamine and glycine it was expected that their constraint would not have
big impact in the cell performance. This was what happened when glutamine was taken from
the medium, but with glycine the output was the same as for the auxotrophic amino acids.
All the tests with amino acids and bases restrictions realized were conducted with glucose as
sugar source. In table ?? it resumed the performed simulations results.
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4.4 metabolic network summary

Finalized the model, a brief review of main pathways, precursors and respective building
blocks was performed. In figure 18 the central carbon metabolism is represented. The process
starts with the uptake of glucose and goes through multiple conversions until the lactate
production. The schema comprises glycolysis, pentose phosphate and pyruvate metabolism
pathways. Each pathway is described below and their respective KEGG maps screenshots
are available in the Support Material.

• Amino acids metabolism and Proteins The amino acids were considered in the
model in their activated form associated with tRNA and represented by the Aminoacyl-
tRNA biosynthesis pathway. Most of amino acids pathways are not active and the
cell depends of the uptake from the exterior (described in section 2.4.1.4). Even the
synthesized amino acids have most of their pathways only partially complete.

• Aminosugar and Nucleotide Sugar Metabolism The pathway allows to create
metabolites that will be precursors mainly for the peptidoglycan and TA biosynthesizes.
The path started Glucose-6-phosphate until the conversions in N-acetyl glucosamine ,
N-acetylmuramate and UDP-Glucose appears to be complete, containing enzymes to all
reactions leading to the formation of the before mentioned metabolites.

• Citrate Cycle (Tricarboxylic acid cycle (TCA) cycle) As a homofermentative
lactic acid bacteria, Lb. helveticus it was expected that the pathway representing the
citric acid cycle to be limited. It was observed the presence of only two enzymes metab-
olizing reactions (EC 4.2.1.2 and 1.3.5.4) converting Malate into Fumarate and the last
one into Succinate. The reactions apparently were not functional and their presence
in the genome can be explained by the genome decay from other related LAB ancestor
species which were able to synthesize these components.

• Cofactors metabolism The cofactors necessary for the model to work were dis-
tributed in different pathways. The Riboflavin metabolism only had as active enzymes
the conversion of Riboflavin in Flavin mononucleotide (FMN) and Flavin adenine din-
ucleotide (FAD).

The Nicotinate and Nicotinamide Metabolism pathway was active in a cycle. If Nicoti-
namide is considered as a starting point, the cycle goes to the below section converting
it into Nicotinate and continuing until the formation of NAD. From here the cycle goes
back no Nicotinamide. It is also important to refer the presence of the NAD+ kinase
enzyme which allows the phosphorylation of NAD into NADP.

The folate biosynthesis was also well described containing the enzymes and respective
reactions since the precursor Guanosine triphosphate until the cycle of regeneration of
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Folate. This cycle is better represented in the ’One carbon pool by folate’ pathway.
The cycle with back-to-back conversions of Dihydrofolate, Tetrahydrofolate and Folate
allows also the renewal of NAD and NADP.

• Fatty Acid Biosynthesis This pathway contemplates the formation of the multiple
fatty acids potentially produced by the organism. It has Acetyl-CoA as precursor for
all the reactions forming Malonyl-CoA. Gathered with Acyl-Carrier-Protein (ACP) it
will form the starting block for the extension in the different chain sizes of fatty acids.

• Glycerolipid and Glycerophospholipid Metabolism These two pathways share
the reactions potentially able to convert glycerone phosphate in sn-3-phosphate-glycerol
and latter into phosphatidic acid (also known as phosphatidate or 1,2-DiAcyl-sn-glycerol
3-phosphate). The Glycerophospholipid pathway will also construct Cardiolipin and
Phosphatidylglycerol. All this components gathered with the Acyl-group gave away by
Acyl-CoA form the main structure for the lipids and LTA produced by the organism.

• Glycolysis The Glycolysis pathway contains the main backbone of Lb. helveticus
metabolic network. Again, as a LAB and homofermentative, the metabolism of the
organism works basically in being able to produce ATP to grow and maintain main cell
functions and recycle the NAD. The pathway compiles the reactions since the sugar
uptake (glucose) until its degradation in Pyruvate later converted in Lactate. It is a
connection point with the Pentose Phosphate Pathway and the Pyruvate Metabolism.

• Pentose phosphate pathway Intimately connected to glycolysis in this pathway im-
portant metabolites are synthesized starting from Glucose-6-Phosphate. D-Gluconate-6-
phosphate, D-Ribulose-5-phosphate, D-Xylulose-5-Phosphate, Phosphoribosyl pyrophos-
phate (PRPP) and D-Glyceraldehyde-3-Phosphate. These components are essential to
Purine and Pyrimidine Metabolism and Glycolysis pathways. In this model the only
source of acetyl-phosphate is also in this pathway.

• Polyketide Sugar Unit Biosynthesis It has a small portion active which contains a
chain of reactions allowing conversion of Glucose-D-phosphate into dTDP-L-rhamnose,
component of the EPS.

• Purine Metabolism The ’natural’ course expected for the pathway would be to use
the PRPP since the cell is capable of synthesize in Pentose phosphate pathway. Al-
though, there is a missing link in the path in the phosphoribosylglycinamide formyl-
transferase. With no evidence for this enzyme to work, the alternatives would be to
purines metabolism initiated by the histidine metabolism, but itis also inactive for this
strain. Therefore, the necessary components for producing the purines need to be uptake
from the medium. These are the bases Adenine, Guanine, Hypoxanthine and Xanthine.
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• Pyrimidine Metabolism The Pyrimidine metabolism contrary to Purine Metabolism
seems likely to be able to use PRPP for the pyrimidine synthesis. It has also enzymes
to synthesize it from bases like Uracil and Cystine. In this context the importance of
the proteolytic capacity of the bacteria to obtain all the necessary nutrients from the
extracellular medium.

• Pyruvate Metabolism The homofermentative nature of Lactobacillus helveticus leads
to an ’incomplete’ pathway as Pyruvate is forwarded to the production of lactic acid
and consequent NAD+ regeneration. The citric acid cycle is not active and the acetyl-
phosphate is obtained in the reaction R01621 from D-Xylulose 5-phosphate and Or-
thophosphate. Other byproducts such as acetate are not produced.

• Transporters pathway and Drains The transporters pathway is a special pathway
which represents the uptake and export of metabolites by the organism. The trans-
port reactions were automatically generated by the TRIAGE tool before explained. It
tries to emulate the different processes by which the components pass through the cell
membrane. In this reactions the metabolites change between compartments (inside and
outside). A total of 73 transport reactions were included in the model, being only 8 of
them created manually.

The Drains pathway is different from all the other as its reactions possess one individual
metabolite in their equations present uniquely in the reactants side. It tries to simulate
the exchange of components from the external environment to the medium (outside
compartment). It is with this drains that the environmental conditions can be simulated.
’Opening’ or ’closing’ each one of the exchange reactions emulates the possibility of a
component to be uptaked or exported by the cell. The model was construct with two
different compartments: inside and outside. These compartments represent respectively
the interior area of the cell and the exterior environment, separated by the plasma
membrane (Fig. 17).
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Figure 17.
Schema representing the different compartments and difference between drains (exchange reactions)
and transporters.

The drains represent the exchanges between the medium (outside) with the external
environment. The transporters represent exchanges between the medium (outside) and the

cell (inside)
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Figure 18.
Central Carbon Metabolism schema
The metabolic map represents the reactions in the model central carbon metabolism from the
glucose uptake until the lactate export. Metabolites and reactions id’s follow BiGG database
nomenclature.
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5

SUMMARY AND PROSPECTS FOR FURTHER WORK

Automated genome sequence analysis and annotation has the advantage that the anal-
ysis strategy is uniformly applied to all genome sequences against the same database, ren-
dering comparable results. With the speed-up progress in the field of Bioinformatics the
(re)construction of the metabolic network on a genome-wide scale has a major role as a sup-
port tool for scientific research and developments. It is important to fill the gaps, optimize
and standardize the manual stages, trying to create new automated tools and pipelines, and
therefore quicken the processes.

Finally, there are several developments that will speed up the reconstruction process
and improve its accuracy considerably. This includes efforts to unify nomenclature and to de-
vise physiologically relevant functional classification schemes that enable effective coupling of
stored information. This large experimentation stages will allow responding to the bottleneck
of rapid data integration, with special attention to GSMM.

In silico approaches proved to be time-saving methods with the multitude of tools pro-
vided by merlin, COBRApy and OptFlux. Although, when is intended to create a specific and
high-quality genome-scale model the manual curation processes are still mandatory. Along
the development of the model a manual review of each step revealed that was always space
for improvements and corrections, sacrificing the time for a better quality model. During
the model reconstruction process innovations were performed such as the alpha-value and
threshold choice method. TRIAGE internal database was also extended. An effort of cre-
ating cross-references between different knowledge databases was also performed, trying to
reduce the hurdle this variations usually bring in science. It was maintained a constant work
in synergy with merlin developers for future add-ons and bug-fixing. It was also put up to
test different softwares which complemented to each other in the attempt of creating the best
possible output. All the steps were described as detailed as possible for allowing the work to
be reproduced.

As the model was left open, it leaves possibilities of further work in strain improving
and optimization. For this particular model, more validation in wet-lab should be performed.
A repetition of macromolecule content measuring should be also performed. It is also in
perspective the possibility to include an extra compartment, the periplasm to create an even
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more accurate and reality approximate model. For the time (and consequently money) saving
it will be important to try to look for even more solutions automate the tasks with the
minimum sacrifice of accuracy.

Summing up, the intended model reconstruction was accomplished with results believed
to be close to reality. All the performed work allowed to create a support model for further
studies in Lb. helveticus with educational, health, industrial and scientific interest. With
hundreds of strains for this specie the existence of a high quality, curated GSMM will ease
the task in build future models for those strains and related species.
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SUPPORT MATERIAL

Figure 19.
Screenshot of alanine aspartate and glutamate metabolism
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Figure 20.
Screenshot of Amino Sugar and Nucleotide Metabolism
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Figure 21.
Screenshot of Aminoacyl-tRNA biosynthesis.

Figure 22.
Screenshot of TCA cycle
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Figure 23.
Screenshot of Cysteine and methionine Metabolism

Figure 24.
Screenshot of Glutamine and Glutamate metabolism
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Figure 25.
Screenshot of Fatty acid biosynthesizes

Figure 26.
Screenshot of Folate biosynthesizes
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Figure 27.
Screenshot of Galactose metabolism

Figure 28.
Screenshot of Glycerolipid metabolism
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Figure 29.
Screenshot of Glycerophospholipid metabolism

Figure 30.
Screenshot of Glycine, Serine and Threonine metabolism
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Figure 31.
Screenshot of Glycolysis

Figure 32.
Screenshot of Lysine biosynthesis
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Figure 33.
Screenshot of Nicotinamide and nicotinate metabolism

Figure 34.
Screenshot of One carbon pool by folate metabolism
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Figure 35.
Screenshot of Pantothenate and CoA biosynthesis pathway

Figure 36.
Screenshot of Pentose phosphate pathway
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Figure 37.
Screenshot of Peptidoglycan biosynthesis
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Figure 38.
Screenshot of Polyketide Sugar unit biosynthesis

Figure 39.
Screenshot of Purine metabolism

Figure 40.
Screenshot of Pyrimidine metabolism

a
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Figure 41.
Screenshot of Pyruvate metabolism

Figure 42.
Screenshot of Riboflavin metabolism
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Figure 43.
Screenshot of Starch and sucrose metabolism

Figure 44.
Screenshot of sulfur metabolism
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Figure 45.
Screenshot of Terpenoid backbone biosynthesis
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Figure 46.
Screenshot of Thiamine metabolism

Figure 47.
Screenshot of Vitamin B6 metabolism
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Table 8.
Software tools used in metabolic engineering applications [7]

.

Names Taks License Accesibility

13CFLUX2 MFA Free non-commercial UNIX/Linux
A Plasmid Editor (ApE) DNA visualization, Nucleic acid design Free Cross-Platform
Arcadia Reaction network visualization GPL Cross-Platform
BiGG Metabolic network reconstruction Free non-commercial Online
BioMet Toolbox Constraints-based modeling Free Online, Windows
BioModelsDB Metabolic network reconstruction Free Online
BioPax Annotation Free N/A
BioTapestry Genetic network construction and analysis Free Cross-Platform
BLAST Comparative sequence analysis Free Online, Cross-Platform
Cell Illustrator Reaction network visualization and design Free, Closed source Online
CellDesigner Reaction network visualization and design Free, Closed source Cross-Platform
CellNetAnalyzer Constraint-based modeling, MFA, Network analysis Free academic, Requires Matlab Cross-Platform
COBRA 2.0 Constraint-based Modeling, MFA, Network analysis GNU GPLv3 Cross-Platform
COPASI Mathematical analysis Artistic License 2.0 Cross-Platform
Cytoscape Interaction network visualization GNU LGPL Cross-Platform
DNA 2.0 Gene Designer Codon optimization Free, Closed source Cross-Platform
DNAStar DNA visualization, Nucleic acid design Academic, Commercial Cross-Platform
Lasergene Constraint-based modeling, MFA GNU GPL Cross-Platform
FASIMU MFA Free academic, Requires Matlab Cross-Platform
FiatFlux DNA visualization, Nucleic acid design Free limited, Academic, Commercial Cross-Platform
Geneious DNA visualization, Nucleic acid design Apache 2.0 Online
GenoCAD Reaction network visualization BSD 2 Online
GLAMM Annotation Free N/A
GO Interaction network visualization Eclipse Public License Cross-Platform
GraphViz Optimize culture conditions Source code available to academic users Cross-Platform
GrowMatch Gene synthesis Free, Closed source Online, Windows
HelixWeb DNA Works Comparative sequence analysis, Annotation Free, Closed source Online
IMG Reaction network visualization and design BSD 2 Windows
Jdesigner Metabolic network reconstruction Free Online
KAAS Metabolic network reconstruction Free web, Licensed download Online
KEGG Pathway Metabolic network reconstruction Free agreement Online
MetaCyc Metabolic network reconstruction Free Online
MetRxn Metabolic network reconstruction Free Online
ModelSEED Nucleic acid structure analysis Free, Open source Online
NuPack Reaction network visualization Free non-commercial, Closed source Cross-Platform
Omix MFA GNU GPL, Requires Matlab Cross-Platform
OpenFLUX Constraint-based modeling, MFA, Network analysis GNU GPLv3 Cross-Platform
OptFlux Constraints-based modeling Free, Requires Matlab Cobra-toobox 2.0
OptKnock Pathway prospecting Free Available by request
OptStrain Metabolic network model analysis Free non-commercial Cross-Platform
PathwayTools Primer design Free Online
PHUSER Dynamic simulation BSD 2 Cross-Platform
PySCeS Nucleic acid design, Expression optimization Free non-commercial Online
RBS Calculator Metabolic network reconstruction Free Online
Reactome Network visualization Free N/A
SBGN Network reconstruction and visualization Free N/A
SBML Annotation Free N/A
SBO Dynamic simulation BSD 2 Cross-Platform
SBW Optimize culture conditions Source code available to academic users Cross-Platform
SL Finder Constraint-based modeling, MFA, Network analysis GNU GPLv2 Cross-Platform
Systems Biology Research
Tool Systrip

Interaction network visualization GNU LGPL Cross-Platform

TinkerCell Model visualization and analysis BSD 2 Cross-Platform
Vanted Reaction network visualization GNU GPLv2 Cross-Platform
VectorNTI DNA visualization, Nucleic acid design Academic, Commercial Cross-Platform
Vienna RNA Websuite Nucleic acid structure analysis Free, Open source Online
yEd Interaction network visualization Free, Closed source Cross-Platform

Easy-DNA™Kit For genomic DNA isolation Samples

• Suspension or trypsinized cells (103–107 cells)

• E. coli cells (0.5–1.0 mL of an overnight culture, 1 × 109 cells/mL)

• Mammalian tissues (3.5 mg to 100 mg)
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• Fresh plant leaves (50 mg)

Preparation Cells must be pelleted and the medium decanted. Resuspend cell pellet
in 200 µŁ1X PBS (Cat. no. 10010-023). This will eliminate the formation of a salt pellet
when precipitating DNA. Freeze tissue and plant leaves in liquid nitrogen and pulverize with
a mortar and pestle. Place samples in microcentrifuge tubes for processing. Note: Fresh,
minced leaves will yield DNA, but not as much and not as high quality as when the fresh
leaves are frozen in liquid nitrogen and pulverized.

Before Starting

• Chill 100% and 80% ethanol in a −20 ◦C freezer.

• Thaw RNase (if stored at −20 ◦C) and keep on ice.

• Equilibrate two heat blocks or water baths, one to 37 ◦C and the other to 65 ◦C.

Isolation of DNA

1. Add 350 µŁSolution A to cell suspension, tissue, or plant parts and vortex in 1 second
intervals until evenly dispersed.

2. Incubate at 65°C for 10 minutes.

3. Add 150 µŁSolution B and vortex vigorously until the precipitate moves freely in the
tube, and the sample is uniformly viscous (10 seconds–1 minute).

4. Add 500 µŁchloroform and vortex until viscosity decreases and the mixture is homoge-
neous (10 seconds–1 minute).

5. Centrifuge at maximum speed for 10–20 minutes at4 ◦C to separate phases. Transfer
the upper phase into a fresh microcentrifuge tube. Proceed to DNA Precipitation.

DNA Precipitation

1. To the DNA solution, add 1 mL of 100% ethanol (−20 ◦C) and vortex briefly.

2. Incubate tube on ice for 30 minutes.

3. Centrifuge at maximum speed for 10–15 minutes at 4 ◦C. Remove ethanol from the
pellet with a drawn-out Pasteur pipette.

4. Add 500 microL of 80% ethanol (−20 ◦C) and mix by inverting the tube 3–5 times.

5. Centrifuge at maximum speed for 3–5 minutes at 4 ◦C. Save the pellet and remove the
80% ethanol with drawn-out Pasteur pipette.

6. Centrifuge at maximum speed for 2–3 minutes at 4 ◦C. Remove residual ethanol with a
pipettor. Let air dry 5 minutes.
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7. Resuspend the pellet in 100 microL TE buffer. Add 2 microL of a 2 mg/mL RNase to
bring the concentration to 40 micrograms/mL.

8. Incubate at 37 ◦C for 30 minutes. DNA is ready for further experiments. Store at 4 ◦C.

Growth Medium
The used CDM was constituted of:

Table 9.
Basal Solution
Reference Compound Quantity
Merck 1.05941.0250 MnSO4·H2O 0.028g
Merck 1.06268.1000 Sodium acetate 1g
VWR 271534H Ammonium citrate 0.6g
Merck 1.05101.1000 K2HPO4 2.5g
Merck 1.04873.1000 KH2PO4 3g
Sigma 6297-250G NaHCO3 0.42g
Aldrich 380024-5G Trace elements 1mL

Table 10.
Trace Elements
Reference Compound Quantity/L

HCl (25% 7.7 M) 10mL
Sigma 220299-5G FeCl2.4H2O 1.5g
Sigma 746355-100G ZnCl2 70 mg
Sigma M3634-500G MnCl2. 4H2O 100mg
Sigma C8661-25G CoCl2.6H2O 190mg

Distilled water 990mL

Sugar The sugar used for Lb. helevetivus CNRZ32 cultures was -(+)-Glucose (Merck
1.09342.1000). It were added 10 g of sugar for 50 mL of anoxic water. The final concentration
in the medium was 10 g/L.
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Table 11.
Amino acid Stock Solutions (4%)
Reference Compound Quantity/L
Sigma – A7627-100G L-Alanine 1g/25ml H2O
Sigma - A8094-25G L-Arginine 1g/25ml H2O
Sigma - A8381-100G L-Asparagine(1H2O) 1.13g/22,5ml H2O + 2,5ml 2M NaOH
Sigma – 11189-100G L-Aspartate 1g/20ml H2O + 5ml 2M NaOH
Sigma – G8415-100G L-Glutamate 1g/20ml H2O + 5ml 2M NaOH
Sigma – G3126-100G L-Glutamine 1g/20ml H2O + 5ml 2M NaOH
Sigma – 50046-50G Glycine 1g/25ml H2O
Sigma – H8125-100G L-Histidine (1HCl.1H2O) 1.35g/25ml H2O
Sigma – I 2752-25G L-Isoleucine 1g/20ml H2O + 5ml 2M NaOH
Sigma – 61819-25G L-Leucine 1g/20ml H2O + 5ml 2M NaOH
Sigma – 62840-25G-F L -Lysine 1g/25ml H2O
Merck – 1.05707.0025 L-Methionine 1g/25ml H2O + 5ml 2M NaOH
Sigma – 7819-25G L-Phenylalanine 1g/20ml H2O + 5ml 2M NaOH
Sigma – 81709-10G L-Proline 1g/25ml H2O
Sigma – 84959-25Gb L-Serine 1g/25ml H2O
Sigma – T8625-10G L-Threonine 1g/25ml H2O + 5ml 2M NaOH
Sigma – T8941-25G L-Tryptophane 1g/20ml H2O + 5ml 2M NaOH
Sigma – T8566-25G L-Tyrosine 1g/20ml H2O + 5ml 2M NaOH
Sigma – V0513-25G L-Valine 1g/25ml H2O + 5ml 2M NaOH

Table 12.
Vitamin solution, 100x
Reference Compound Quantity (g)
Sigma B4501-10G Biotin 0.010
Sigma F8798-5G Folic acid 0.010
Sigma 271748 Pyridoxal.HCl 0.050
VWR chemicals 27414.137 Riboflavin 0,025
Sigma T4625-10G Thiamine-HCl 0.025
Sigma N0636-100G Nicotinamide 0.025
Sigma C3607-500mg Vit B12 Cyanocobalamin 0.025
Sigma A9878-5G p-Aminobenzoic acid 0.025
Sigma C8731-25G dl-Ca-pantothenate 0.200
Sigma 62320-5G-F dl-6,8-Thioctic acid (Lipoic acid) 0.025
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Table 13.
Bases Solution (100x)
Reference Compound Quantity (g/250mL)
Sigma A8626 Adenine 0.250
Sigma G11950 Guanine 0.250
Sigma U0750 Uracil 0.250
Sigma X0626 Xanthine 0.250

Other Components

MgCl2.6H2O, 2% (100 x)
- 1 g of MgCl2.6H2O for 50 mL of anoxic water. Final concentration in the medium 0.2 g/L
(Ref: Merck, 1.05833.0250) Flush the headspace with N2 > 10min as described in EXP-15-
AF7901. Autoclave at 121°C for 10-15 minutes. Note: final concentration in the medium is
half of that used in CDM BB12

CaCl2.2H2O, 0.5% (100 x)
- 0.25 g of CaCl2.2H2O for 50 mL of anoxic water. Final concentration in the medium 0.05
g/L (Ref: Merck, 1.02382.0500) Flush the headspace with N2 > 10min as described in EXP-
15-AF7901. Autoclave at 121°C for 10-15 minutes.

Cysteine-HCl.H2O, 5% (100 x)
- 2,5 g of Cysteine-HCl for 50 mL of anoxic water. Final concentration in the medium 0.5 g/L
(Ref: Merck, 1.02839.0100) Flush the headspace with N2 > 10min as described in EXP-15-
AF7901. Autoclave at 121°C for 10-15 minutes.

Urea, 1.2% (100 x)
- 0.6 g of Urea for 50 mL. Final concentration in the medium 0.12 g/L (Ref: Sigma, 51456)
Filter sterilization (0.22µm) to a serum bottle previous flushed with N2 Keep at 4C.
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Table 14.
Final volumes amounts
Values presented for a final solution with 100mL

Component Volume
Basal solution 80,2 mL
Sugar (20X) – 2% 10 mL
MgCl2.6H2O (100x) – 0,2g/L 1 mL
CaCl2.2H2O (100x) – 0,05g/L 1 mL
Urea (100x) -0,12g/L 1 mL
Vitamin sol. (100x) 1 mL
Amino acids mix (52,6x) – 0,08 g/L 3,8 mL
Bases solution (100x) – 10 mg/L 1 mL
Cysteine.HCl (100x) – 0,05% 1 mL

Table 15.
Fatty acid profile
Fatty acid Ratio Chemical Formula g/mol
tetradecanoic acid (myristic acid) 14:0 0.16 C14H28O2 228.37
hexadecanoic acid (palmitic acid) 16:0 0.20 C16H32O2 256.43
cis-9-Hexadecenoic acid (palmitoleic acid) 16:1 2.51 C16H30O2 254.41
Octadecanoic acid (stearic acid) 18:0 2.51 C18H36O2 284.84
(9Z)-Octadecenoic acid (oleic acid) 18:1 0.58 C18H34O2 282.47
Average fatty acid 1 C17H33O2 269.50
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