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A B S T R A C T

Efficient or green computing is becoming a key issue in current programming techniques,
going beyond high performance computing, by simultaneously considering issues such as
energy or power consumption. In heterogeneous environments, where different processors
and accelerators co-processors may coexist, there is a real opportunity to reduce the overall
energy consumption of the system by using scheduling decisions in run-time that can have
a good and quick response to changes in the different components.

Current tools to aid the development of efficient applications lack yet these run-time facil-
ities. This motivated the development of a new framework with a power-aware scheduler
for heterogeneous environments, PASH-Frame, whose prototype is the key object of this
dissertation. This work extended previous performance-based scheduling work to include
run-time power-aware features, adding tools to measure power consumption at each device
and using different scheduling decisions to get the best outcome according to pre-defined
targets by the end user.

To evaluate the overall behaviour of PASH-Frame, several tests were performed: 1000

SAXPY tasks with vector sizes varying from 16 thousand elements to 256 thousand; 200

SGEMM tasks with matrices varying from 64 thousand elements to 16 million and finally
a test that combines the two previous ones. Results show that the scheduling algorithm
implemented in the framework can achieve good results in some cases, in spite of not being
able to make some critical decisions when it comes to energy consumption reduction like
forcing a component to idle to save energy.
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R E S U M O

Computação eficiente (ou green computing) está a tornar-se um dos maiores desafios nas
técnicas de programação actuais, considerando simultâneamente os problemas de computação
de alta performance bem como a energia e o consumo total. Em ambientes heterogéneos,
onde diferentes processadores e aceleradores como co-processadores podem coexistir, ex-
iste uma grande oportunidade para reduzir o consumo energético global do sistema ao
utilizar decisões de escalonamento em tempo real que conseguem ter uma boa resposta
rápida a mudanças nos diferentes componentes.

As ferramentas actuais para ajudar na programação de aplicações eficientes ainda não
têm estas ferramentas de leitura de energia em tempo real. Isto serviu de motivação para
criar uma nova framework com um escalonador para sistemas heterogéneos consiente do
gasto de energia, a PASH-Frame, em que o seu protótipo vai ser explicado nesta dissertação.
Este trabalho é uma continuação de trabalho prévio em escalonamento baseado em alta
performance ao incluir ferramentas de medição de energia em tempo real e ao fornecer de-
cisões de escalonamento baseadas nesses valores para ter o melhor desempenho de acordo
com as escolhas do seu utilizador.

Para avaliar o comportamento da PASH-Frame, varios testes foram feitos: o primeiro
teste foi de 1000 tarefas do algoritmo SAXPY com o tamanho dos vetores a variar entre 16

mil elementos e 256 mil; o segundo teste foi de 200 tarefas do algoritmo SGEMM com os
tamanhos das matrizes a variar entre 64 mil elementos e 16 milhões de elementos e por fim
o terceiro teste é uma combinação dos dois primeiros. Os resultados obtidos mostram que o
algoritmo de escalonamento implementado na framework consegue obter bons resultados
em alguns casos, apesar de não conseguir fazer algumas decisões crı́ticas para o escalon-
amento com vista a reduzir o consumo global do sistema, como forçar um componente a
ficar inativo para poupar energia.
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1

I N T R O D U C T I O N

1.1 context

The usage of heterogeneous architectures is increasing in High Performance Computing (HPC).
These heterogeneous architectures have coprocessors such as Graphical Processing Unit (GPU)s
and the many core Intel Xeon Phi in addition to the multi-core processor to increase the
computational power of the system and to specially increase the system performance when
running particular tasks. Algorithms with a lot of parallelism such as Single Instruction, Mul-
tiple Data (SIMD) instructions are specially faster on coprocessors due to the high amount
of parallelism in their architecture. Despite having a lot of advantages there are extra chal-
lenges that arise when using an heterogeneous architecture. When using coprocessors the
memory has to be transferred from the processor’s memory to the coprocessor’s which
takes time and costs extra energy since the bus between the two needs to transfer the data.
Since the coprocessors are better or worse than the processor depending on the tasks being
ran, the work distribution among the processing components can also influence the perfor-
mance of an application. For simplicity, all the various processing components (processors,
coprocessors and GPUs) will be called devices in this report.

An emerging concern in computer science is green computing. Green computing stands
for the study and practice of environmentally friendly techniques to lessen the impacts of
the information technology, including the decrease in the usage of hazardous materials in
manufacturing, the maximisation of energy efficiency and the reusability and recyclabil-
ity of dying products and waste. Green computing is particularly critical and effective in
two different areas: mobile devices and large systems (data centres, supercomputers, large
companies with lots of servers or terminals, ...). On mobile devices, the main issue is the
limited energy availability since batteries can not store infinite energy. Large systems are
the main energy consumers in the information technology and, due to the huge amount
of components, a small improvement on several components can make a huge difference
in the energy bill. This concern in energy efficiency is specially noticeable in HPC where
two types of challenges exist: who can create the fastest supercomputer and who can create
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1.2. Goals, Motivation, Contribution 2

the most efficient / green supercomputer (the efficiency is measured in Mega Floating-Point
Operations Per Watt (MFLOP/W)). As of November 2016, three of the ten fastest supercom-
puters in the world are also in the top ten of the most efficient ones with the fastest su-
percomputer being in the fourth place in the top ten green supercomputer list. Because of
this emerging concern in energy efficiency component manufacturers are trying to ease the
measurement of energy consumption by creating measurements based on software instead
of needing external devices, which allows the measurements to be made without the need
for external devices that would make the energy measurement costly (both in time to read
the data and in the amount of measuring devices needed to measure different components).

Since the majority of programmers are neither familiar with code optimisation (paral-
lelization, vectorization, ...) nor the challenges that come with heterogeneous environments
(programming for GPUs, workload distribution, ...) the usage of schedulers that help the
user solving these problems is increasing. These schedulers overlay the Operating System
(OS) scheduling to handle the workload distribution and are usually found as part of a
framework that eases the user’s work by managing the memory of all the work automati-
cally and even being able to optimise the code.

1.2 goals , motivation, contribution

With some experience with schedulers (creating a simulator that can test scheduling func-
tions and a scheduling function for balancing different task types in an heterogeneous
environment), there is a great motivation for me to be a part of this project.
The goals of this project are the following:

• create samplers to measure the energy consumption of the different devices connected
to the system without the need for external equipment;

• explore ways to use the energy measurements obtained from the samplers to schedule
the work among the devices connected to the system;

• create a framework that enables the use of the samplers as well as the scheduler.

The main contribution of this work was the development of a framework prototype to
aid the development of energy efficient applications on heterogeneous environments, by
providing samplers to measure the energy consumption of each device in a compute server
and containing alternative scheduler techniques that consider both the performance and
energy consumption of each device in the overall solution)
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1.3 overview

Section 2 explains the different problems of performance and power-centered schedulers
on heterogeneous environments. Some of the schedulers currently used are revised, and
compared between each other. Section 3 presents the PASH-Frame framework. Section 4

presents the tests done to the PASH-Frame framework and the results. Section 5 concludes
this document and present suggestions for future work.
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S C H E D U L I N G

A scheduler is a method to assign work to computational resources based on the character-
istics of the work itself and on its behaviour when being ran in each of the computational
resources. Schedulers are used in a variety of ways: some can be used try to balance the
workload given to each resource so as to minimise the idle time of the resources while
other are used to allow multiple users to share access to system resources keeping the best
Quality of Service (QoS) possible.

Schedulers can be placed in two extreme positions of the software: as a part of the op-
erating system or embedded in the application. There is also a solution in between: as an
Application Programming Interface (API) that schedules independent tasks across the avail-
able resources, usually available within a development framework. This work follows this
mid approach proposing and developing a prototype of a power-aware scheduler for het-
erogeneous environments framework, the PASH-Frame. This framework is mainly a library
of functions to aid the adequate scheduling of task-based programs on heterogeneous envi-
ronments, aiming the following key goals: maximum performance with minimum energy
consumption.

Scheduling of independent tasks favours task-based programming, which uses logical
tasks instead of threads to formulate the program with some advantages, such as an easier
load balancing among the computational devices and allowing opportunities to apply run-
time parallelisation techniques. When using task-based programming with expressions,
constructs and a set of conditional statements, a program can be represented as a Directed
Acyclic Graph (DAG), where each code block is represented as a task and each dependency
between code blocks is represented as a link between tasks.

Figure 1 shows a possible DAG for a simple program where the first tasks ran are A and
B with D starting only after B ends and C only able to start after A and B finish. While
continuous links represent the data transfer needs of the tasks, the dotted lines represent
logical conditions that can not be true at the same time. In Figure 1 tasks E and F are
connected to C through a logical condition so either task E or task F is executed, never both.

4



2.1. Challenges of scheduling on an heterogeneous environment 5

Since tasks E and F are mutually exclusive they can be assigned to the same time slot on a
computational resource.

DAGs like the one presented in Figure 1 can be used not only to represent the work of a
big independent task divided into small, and usually dependent, tasks but also to express
the relations between a large number of dependent tasks.

Figure 1.: DAG example

The next section presents some challenges of heterogeneous environments and the follow-
ing sections cover the main issues related to a scheduling framework: performance-based
and power-aware.

2.1 challenges of scheduling on an heterogeneous environment

When scheduling for heterogeneous environments extra challenges arise. An heteroge-
neous environment means that coprocessors (like GPUs or the Intel Xeon Phi) are used in
combination with the, usually multi-core, Central Processing Unit (CPU). These coprocessors
are specially useful in particular tasks, depending on the architecture. In the case of most
GPUs and also the Intel Xeon Phi, the parallel oriented architecture makes these devices
specially effective in algorithms with a great number of SIMD instructions, which are ap-
plied to a range of data and can be ran at the same time. Vectorization can greatly improve
the performance of a code by applying the same instructions to a range of different data
within a vector instead of just doing a simple scalar operation. In the case of the Stream-
ing SIMD Extensions (SSE) instruction set, it is possible to do four operations with single
precision floating point values at the same time and with the Advanced Vector Extensions
(AVX) extensions it is possible to do eight operations with single precision floating point
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values at the same time, with a multiplication and addition able to be fused into a new
operation called Fused Mutiply-Add (FMA). Vectorization is applied within a single core so
a multi-core CPU with eight cores equipped with the AVX extension can be able to do 64 (8
cores * the 8 floating point operations done by each one) operations of the same type at the
same time, as long as the memory is able to be loaded at the same time which obligates the
programmer to think about the spatial locality (the data needed to be accessed is aligned
continuously in memory, as a one-dimensional array for example) of the data. With the use
of vectorization and coprocessors with a lot of processing elements the speedup of a code
with a lot of SIMD instructions can be huge.

Despite the advantages of using heterogeneous environments there are challenges that
appear which would not be a problem in an homogeneous environment. Since the co-
processors are separated from the processor, their memory is also different from the main
memory in the processor. To be able to transfer memory from the processor to the copro-
cessor (or the other way around) a BUS between the two has to be used. Since coprocessors
have a huge performance on some types of tasks the BUS connecting the coprocessor to the
processor may not be able to handle the transfer of all the data needed to keep the copro-
cessor running at maximum performance which causes a bottleneck. The memory transfer
overhead can be masked by doing asynchronous communication, i.e. by decoupling the
execution with the data transfer and transferring the data from the next task while running
the current one.

Since the performance and the general behaviour of the coprocessors is different from
the processor and depends on the type of task being computed, the workload balancing
between various devices within the same system is critical to the overall performance. The
problem of load balancing can not be easily resolved since it depends on the properties of
both the tasks being ran and the devices running them.

2.2 scheduling oriented to performance

When trying to obtain the best performance possible on heterogeneous systems, there are
two types of scheduling that are equally important to the overall throughput of the system:
inter and intra-device scheduling where the first refers to the scheduling of tasks between
the devices available in the system and the latter refers to the scheduling of tasks within
the same device.
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Traditionally, the intra-device scheduling was done by the task programmer which needed
to handle the load balancing between computational resources within the same device (for
example handling the code each core runs within the same multi-core CPU) as well as guar-
antee that the data could be accessed in a way that vectorization was possible (by using one
dimensional arrays with sequential accesses for example) and that the cache of the compu-
tational resources was coherent throughout the device. APIs like OpenMP (OpenMP (2016))
can help the programmer parallelise the code by automatically distributing the work among
the computational resources available within the device. Libraries like the Intel Math Ker-
net Library (MKL) and the NVidia cuBLAS have highly optimised implementations of some
standard tasks like GEMM or AXPY for various types of data like single or double precision
floating point numbers for each of the device types (cuBLAS for CUDA capable GPUs and
the MKL library for the multi and many core Intel processors and coprocessors).

This dissertation is an extension of the work of Ribeiro et al. (2015), who developed a
performance-oriented framework to handle both regular and irregular applications on het-
erogeneous systems. The framework presented in Ribeiro et al. (2015) has an inter-device
scheduler based on a demand driven approach where each device is able to request work
from the global task queue (the same for every task ready to be computed).

The framework proposed in Ribeiro et al. (2015) uses the Heterogeneous Earliest Finish Time
(HEFT) technique, similar to the one used on StarPU. The data management system of the
framework uses a MSI cache coherence protocol, also similar to the one used in StarPU,
enabling data replication and ensuring consistency among replicas which is combined with
a lazy data transfer policy to reduce the data movement overhead. It also supports data
pre-fetching and the overlapping of asynchronous data transfers with computation. The
main difference between the framework presented in Ribeiro et al. (2015) and the StarPU
framework is that the one presented in Ribeiro et al. (2015) has a different performance
model and a mechanism to partition the work in run-time.

The framework developed by Ribeiro et al. (2015) can handle two types of kernels (tasks):
consumer and consumer-producer tasks. The first type represents a full task and is as-
signed as a whole to a device. The parallelisation and optimisations made to the task itself
are the responsibility of the task’s programmer. The second type of task represents the Basic
Work Unit (BWU) of a task, i.e the operation that is done to a single piece of data during
the task’s execution. This task is independent from all the BWU tasks (this independence
must be assured by the task’s programmer) so it can also be assigned independently from
the other BWU tasks of the same task so they can be ran together as a bundle on a device
that supports vectorization. These tasks spawn new ones that perform the same BWU on
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a different set of data. These new tasks are enqueued into the local outbox queue of the
device and then enqueued into it’s local inbox queue if there is still room or into the global
inbox queue if there is not enough space in the local inbox queue.

2.2.1 A simple simulator for load balancing

To test the scheduling model and the scheduling decisions a simple simulator was devel-
oped in in a previous team work internship at University of Texas at Austin (co-author:
John Maia), based on the work of Ribeiro et al. (2015). This tool is based on the consumer
tasks explained in section 2.2 and can simulate a set of pre-defined synthetic tasks (with
a sleep timer which is bigger or smaller depending on the attributes chosen by the user)
running in a set of pre-defined computing devices, the workers.

The attributes for the two main entities (the tasks and the workers) of the simulation are
introduced by the user in the source code. Attributes that pre-define each task behaviour
include its weight, number of loads/stores, cost of branching and cache misses. Attributes
that pre-define each worker behaviour include its latency, throughput, capacity, time to
transfer tasks and costs of load/store/instruction executions. The outcomes of each simula-
tion run include information about the workload balancing between workers, the behaviour
of each worker during the run and the total time taken to complete all of the work.

This simulator works in iterations. An iteration starts when the scheduler assigns work
to the workers and ends when all the workers complete the tasks assigned to them. In
each iteration the scheduler assigns a task type to each worker based on what task type
best fits the objective function of the scheduler, which in this case is the maximum perfor-
mance possible. The load balancing step is different from the task type decision step in this
simulator. Since the behaviour of each task type is different from worker to worker, the
load balancing has to take into account which worker is running which type of task, this is
called a combination (explained in section 3.1).

The simulator starts with a small block of tasks and distributes them between the work-
ers. When the combination is ran again, the information about how much time each worker
waited for the others to finish their work on the last iteration is used to redistribute the
block of tasks between the workers. When the distribution of the block of tasks between
the workers is so stable that no worker waits more than a defined percentage of time and
that stability endures through a number of iterations, the size of the block of tasks is dou-
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bled maintaining the workload percentages of each worker.

This simulator can be modified to support accurate simulation of the behaviour of differ-
ent tasks and workers in terms of both time and power consumption. This would require
the addition of a technique to measure the power consumption of each type of instruction
on each type of worker, similar to the ones presented in Hao et al. (2013) and Brabrand et al.
(2012).

To measure the power consumption of the tasks in each worker, the simulator would
need (i) to estimate the power consumption of each instruction type on each worker, (ii) to
compute the number of instructions of each type on a given task and (iii) to estimate the
idle consumption of the workers. Only then can the simulator be used to simulate tasks on
that specific system.

Since these required power-aware modifications outweigh the simulator usefulness, it
was decided not to use the simulator, opting by developing a framework that can use the
power samplers created (see section 2.3).

2.3 measuring power consumption in devices

Before the introduction of software power counter by device manufacturers, the energy
measurement of a single devices or an entire systems would require external measuring
equipment connected to the device or to the power supply. In cases where there is the need
to measure N devices inside the same system, there would be the need to have at least N
external measuring devices which is not only expensive but completely impossible when
there are hundreds or maybe thousands of systems to be measured at the same time.

Before these power counters were introduced, design-time techniques for evaluation of
time and power consumption were used, specially on Software Product Lines (SPL) appli-
cations since most of the code is the same for two different applications within the same
SPL. Hao et al. (2013) and Brabrand et al. (2012) use these kind of techniques to estimate
the power consumption of a code by measuring the power consumption of each basic in-
struction and data transfer and estimating the total power consumption of a given code
accordingly to the number of instructions of each type and the data of those instructions.
SPLs are specially good test cases for this type of estimations since, by testing code for
a given application, the probability of another application within the same SPL having a
large amount of equal code is very high. Accordingly to tests made in Hao et al. (2013), the
estimation of the energy can be within 10% of the actual measured energy consumption,
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tests made on a set of mobile applications of the Google Play store.

With the increase of concern regarding power consumption device manufacturers started
to add software energy measuring tools. These tools can be found in most devices created
now-a-days and vary depending on the manufacturer, the device type and even in the prod-
uct’s family.

Intel multicore devices

In case of Intel processors, from the Sandy Bridge generation on, there is an interface that
can calculate the energy consumption, by providing a software power model that uses hard-
ware performance counters and I/O models, called Running Average Power Limit (RAPL).
RAPL provides three different interfaces to access the accumulated consumption of the pro-
cessor, in Joules. The RAPL interface used for the power readers was the Machine-Specific
Registry (MSR) counters (available on Linux under /dev/cpu/*/msr) since is the one with the
least overhead. This counter can overflow, which is a problem that the reader has to handle.
Because of the differences in the architecture, different generation processors have different
overflow values. In spite of the low overhead the MSR counters must be accessed with root
privileges.

Intel many-core devices

In case of the Intel Xeon Phi power counters there are two different ways they can be
accessed: using the CPU or the coprocessor itself. The information about the Xeon Phi
consumption is measured using in the CPU by using the command ”micsmc -f ” which
returns the current power consumption of the device, in Watts. Measurements through the
device itself were not done but the values are available under ”/sys/class/micras/power”.

NVidia GPU devices

In NVIDIA GPUs there are two interfaces that can be used to measure the power consump-
tion of the card. One of them is CUDA Profiling Tools Interface (CUPTI) that works based
on events chosen by the user to return system counters which can sound great but has a
terrible measurement rate (in tests made every measurement needed at least one second
difference from another). The other interface is Nvidia Management Library (NVML) which
is part of the NVIDIA Software Development Kit (SDK) and does not have a minimum time
between measurements. Since the NVML’s interface level is lower level than CUPTI’s, mea-
surements made using NVML have a much lower overhead.
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With the use of these power readers, a library was developed to enable easy access to the
time and energy cost of each piece of code. Using the developed library, the user only has
to start the device’s power reader before running the code and stop it after finishing the
code. The reader returns information like average power consumption, minimum and max-
imum readings, and total power consumed and can also be reset with a simple function. It
is possible to save the readings into a file, which is useful for analysing both performance
and power consumption hotspots.

It is possible to use the power readers to help schedulers make decisions that decrease
the overall consumption of the computation. Power readers can only measure the energy
consumption of the device so, since the computational resources within the device can not
be measured separately, the power readers are only useful for inter-device scheduling and
are not fine-grained enough to be used on in intra-device scheduling yet.

2.4 power-aware scheduling

Power-centered scheduling focuses on minimising the energy consumption of the system
when running the tasks. In addition to the scheduling goals of performance oriented sched-
ulers, the power-centered schedulers also have to take into account the energy consumption
of each task when running on each device and the energy consumption of transferring data
from one computational resource to another. Some techniques that would rarely be used
on a performance-centered scheduling become the go-to tools for the power-centered sched-
ulers. The Dynamic Voltage and Frequency Scaling (DVFS) technique, explained in Le Sueur
and Heiser (2010), consists of the frequency of a given component, changing the supply
voltage. On one hand when increasing the frequency of a given component the tasks being
ran there will complete faster but more energy will be used. On the other hand reducing the
frequency reduces the energy consumption but increases the time needed to complete the
tasks. This technique is particularly useful when dealing with memory-bound algorithms.

Scheduling tasks onto computational resources when obeying a set of constraints defined
by the user can be modelled as a Integral Linear Programming (ILP) problem, usually NP-hard
as mentioned in Gruian and Kuchcinski (1999) and Garey and Johnson (1990). Since solv-
ing an NP-hard problem in run-time to decide the next set of tasks to be executed is not
feasible, most schedulers use the design-time to obtain information about the behaviour of
the tasks on each computational resource and, in cases where the DVFS technique is being
used, the behaviour of the tasks on each of the various frequencies available on each device.
Schedulers that do most of the computations and predictions during the design-time usu-
ally create a Pareto set of possible solutions (the set of solutions that have the best usage of
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the resources available and that can not improve on a given criteria without deteriorating
the others) and the run-time part selects the solution within the Pareto set that best fits the
scheduler’s objective function accordingly to the existent real-time constraints (maximum
energy consumption allowed or maximum time until the task has to finish).

By surveying the schedulers present in Wang et al. (2012) and Singh et al. (2013) a set of
50 scheduling techniques were analysed. After analysing the 50 scheduling techniques, 5

techniques were chosen to illustrate the current state of the art in power-aware scheduling
techniques. The full list of techniques and their respective papers can be consulted in
annex A. The 5 chosen techniques (and their respective published papers) are the following:

• Xie and Wolf (2001) use DAGs to separate the tasks’ computations from the communi-
cations. First, mutual exclusions between computations or between communications
are identified and assigned to the same time slot. After the tasks are analysed a value
called ”static urgency” is assigned to each task and corresponds to the distance be-
tween the task and the final task of the DAG, i.e. tasks that are the closest to the first
task in the DAG are the most urgent and need to be ran first, and is computed in
design-time. This algorithm considers the transfer cost between two tasks within the
same device is 0 so it tries to assign blocks of tasks to a single device when possible
to save time and energy in communication. In run-time a new value called ”dynamic
urgency” is given to each task and device pair based on the ”static urgency” value
of the task as well as the earliest start possible of the task on the device and the
Worst-Case Execution Time (WCET) of the task on the device. During this scheduling,
the task-device pairs with the highest ”dynamic urgency” are scheduled first. Since
this algorithm is designed for repeating tasks, there is a time deadline restriction that
must be obeyed and that restriction is the period of the application (the time until the
next iteration of the application starts).

• Gruian and Kuchcinski (1999) uses the design-time to measure the time consumption
of each task in each processor and also the average power consumption of each pro-
cessor and bus. Using DAGs, the communications and computations are separated
into different tasks. Using only the branch-and-bound algorithm the optimal solution
could be found but it would take a very long time so a credit search algorithm ex-
plained in Beldiceanu et al. (1997) is used to find a good solution within a limited
time. By using the processor’s average consumption and the time a given task needs
to run on that processor the consumption of that task on the processor is calculated.
Similarly the consumption of the bus while transferring data between tasks is calcu-
lated by multiplying on the average consumption of the bus and the time needed for
the transfer. Three scheduling algorithms are presented in this paper: the first algo-
rithm only focuses on minimising the consumption of the processors, the second one
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focuses on minimising the communications consumption by trying to assign tasks
with communication to the same processor and, finally, the third algorithm merges
the two previous algorithms and tries to minimise the overall consumption. Results
show that the third algorithm was the one with the best results and that the second
algorithm was the worst overall and only performed better than the first one in test
cases with a lot of communication.

• Chiesi et al. (2015) focus on managing the energy consumption of computationally in-
tense tasks on heterogeneous environments. Each new task type added is analysed to
find the power consumption of the task type on the devices in design-time. By using
16 current sensors they were able to measure the power consumption of the entire sys-
tem (motherboard, Random Access Memory (RAM), CPU, Hard Disk (HD) and the two
GPUs connected) which is great to measure the consumption of each of the system’s
components but would be unfeasible in large HPC systems since 16 sensors per node
can easily be very expensive. When the task types are analysed, the consumption
per second is calculated (in Watts). The scheduling algorithm proposed in this paper
uses a peak power performance in watts (defined by the user or calculated by the
scheduler) to limit the energy consumption of each node. While there are still tasks
in the queue to be ran, the scheduler tries to find a node that can run the task without
exceeding the peak consumption. In the case where two or mode nodes can run the
task without exceeding the peak consumption the task is assigned to the node closest
to its power peak, which leaves the other nodes available to run tasks that require
more power consumption. In this paper two ways of organising the task scheduling
order are presented. The first is a simple First In First Out (FIFO) algorithm, i.e. if
the task cannot be executed without violating the peak consumption constraints, the
algorithm waits until a node is available. The second algorithm is a Back fill (BFF)
algorithm that tries to assign tasks that are later in the queue when the first task vi-
olates the peak consumption constraints as long as the scheduling of the first task
in the queue is not changed by assigning the latter tasks. The scheduling technique
presented in the paper can be very useful in HPC systems since the algorithm can
both be applied to the nodes and the racks.

• Ykman-Couvreur et al. (2011) implements a two phase algorithm. First, each task is
analysed with a tool called HLSim, a fast single-Design Space Exploration (DSE) tool
capable of deriving a large set of application (task) configurations (which device to
run on, level of paralellization, frequency of the processor, ...), each with its own
time and energy consumption prediction. Next, and still in the design-time, a second
tool called TLMsim (which is a SystemC-based cycle-accurate Transaction-Level Model
(TLM)) is used only on the Pareto set of configurations outputted by HLSim. TLM-
sim is used after HLSim and only applied to a specific set of solutions (the Pareto
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set) because, in spite of being able to have much more accurate power and time es-
timations, it takes a lot longer to complete compared to HLMsim. In run-time, and
after all the tasks’ configurations are tested and evaluated accordingly to their time
and energy consumption, a Multi-dimension Multiple-choice Knapsack Problem (MMKP)
solver is used to rapidly find the best possible scheduling solution accordingly to the
deadlines of each task and of the complete system. When no solution is feasible with
the current deadlines, the deadline of the task with the lowest priority is relaxed and
the MMKP solver is used again.

• Yang et al. (2002) use both design-time and run-time to evaluate and schedule the
tasks. In design-time the first step is to transform the various tasks into a single DAG.
After the DAG representing the tasks is complete, concurrency improvement transfor-
mations (identification and organisation of tasks accordingly to the mutual exclusion
of computation and communication) are done. After the concurrency improving trans-
formations, the several scheduling possibilities are evaluated accordingly to the time
and energy used by the resources. Since there is a huge number of possibilities for
scheduling, only the Pareto set of possibilities is outputted. In run-time the sched-
uler only has to analyse the different environment and user constraints and choose a
scheduling solution that best fits the desired solution (less time, less consumption, ...).
This separation of computation in design-time and run-time is really useful because
the run-time part of the scheduler can find near-optimal solutions without requiring
too much computation time.

The StarPU framework has also a power-aware scheduler, also based on the HEFT method,
that takes into account the energy consumption estimation for the task on each device which
is defined by the user along with the consumption of the device while idle. The optimisa-
tion function of the scheduler now takes into account the task consumption as well as the
execution time and the memory transfers.

2.5 performance vs . power-aware : a swot analysis

The Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis is a method that allows
the identification of internal and external factors that are favourable and unfavourable to
the project being analysed. In this analysis there are four different ways that the properties
of a project can be identified: (i) the strengths are the characteristics of the project that
give it advantages over others, (ii) the weaknesses are the disadvantages that the project
has compared to others, (iii) the opportunities are elements of the environment that can
be exploited to the advantage of the project and finally (iv) the threats that could cause
trouble for the project. This analysis method is going to be used to evaluate the schedulers
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presented above.

The performance framework presented in Ribeiro et al. (2015) has a clear weakness
against the others since it does not take into account the energy consumption of the tasks
when making inter-device scheduling. The strengths of this algorithm is that it handles
irregular tasks well and can perform intra-device scheduling efficiently. There is a clear op-
portunity to improve the inter-device scheduling by adding the power readers and altering
it to also be aware of the energy consumption of each task.

The StarPU framework has the strengths of being able to take energy consumption into
account when scheduling the tasks and it has also a good inter-device scheduling technique
that is able to handle regular tasks well. The weaknesses of this framework are the need for
the user to manually define the consumption of the tasks on each device and the worse per-
formance when scheduling irregular tasks compared to the framework created by Ribeiro
et al. (2015). There is also a clear opportunity for this framework to implement the power
readers so that the information about the task consumption would be obtained automati-
cally.

The scheduling technique presented in Xie and Wolf (2001) has the overlapping of mutu-
ally exclusive communication and computation as a clear strength. It can also schedule the
tasks based on the consumption but has a weakness since the measurements of the energy
consumption on readings done in design-time.

The scheduling techniques created in Gruian and Kuchcinski (1999) have the strength of
allowing the user to choose the scheduling function (minimise consumption of processors,
communication or both) based on the characteristics of the tasks. The energy consumption
of the tasks is calculated based on the consumption while running the task multiplied by
the time it takes for the task to complete, which is obvious less precise than measuring the
power consumption in real time making it a weakness to this techniques.

Chiesi et al. (2015) present a scheduling technique that can measure the power consump-
tion in real time and can make scheduling decisions based on the power consumption read-
ings obtained, which is a clear strength against all the others scheduling techniques. The
scheduling technique can be applied to both a single node or an entire rack when running
on a HPC system. The weakness of this approach is need for hardware power measuring
equipment which makes the implementation of the measuring tools on a big number of
systems unfeasible.
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The schedulers proposed by Ykman-Couvreur et al. (2011) and Yang et al. (2002) have a
clear advantage of being able to find a very good solution in real time, without requiring
too much computation. The disadvantages of these approaches are the design-time evalua-
tion and computation required to calculate the Pareto set of solutions that are used by the
run-time scheduler and the power consumption measurements that are only done in the
beginning, also in design-time.

There is a clear advantage for these schedulers to use the power consumption readers
created in this dissertation to obtain the real power consumption of the tasks in real time.



3

PA S H - F R A M E , A N E F F I C I E N T S C H E D U L I N G T O O L

Since most schedulers currently available do not take into account the energy consumption
of the devices connected to the system there is a clear opportunity to create a new scheduler
that takes into account the power readers implemented (explained in section 2.3) to make
task scheduling decisions.

To test the scheduling technique created, a prototype framework was created. This frame-
work is capable of assigning work to the devices as well as obtain information about the
task behaviour on each device (being able to measure time, energy consumption, number of
bytes transferred and number of Floating-Point Operations (FLOP) operations). This frame-
work does not have any kind memory control, so all the data transfers between devices
have to be specified by the task programmer. Since the heterogeneous system where the
scheduler will be tested (see section 4.1) does not have DVFS control, the scheduling tech-
nique does not take the various frequencies at which the devices can operate into account
when scheduling the tasks.

3.1 the scheduler model

In this scheduling model there are two basic entities: the workers and the tasks. Workers
are the devices capable of doing computation and tasks represent the work that needs to
be done. Tasks are defined as a set of instructions performed over a range of data. For
example a task can be a matrix multiplication of two matrices with 10242 elements. Tasks
are viewed as black boxes, where the code being run is not accessible by the scheduler so
improvements of the code inside a single task need to be done by the task programmer
and the scheduler can not divide the work its work. The scheduler works in iterations.
An iteration starts when a set of tasks are assigned to each worker and ends when all the
workers finish the tasks that were assigned to them. In each iteration the scheduler chooses
how much tasks of what type are assigned to each worker (a worker only works on tasks of
the same type in an iteration). The group of tasks that are assigned to each worker on each

17
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iteration is called the workload. The goal of the scheduler is to assign the best task type to
each worker and find the best workload balance between the workers so that each worker
is idle the least time possible.

Initially, the only information that the scheduler has about the tasks that need to be run
is the type of task, which needs to be provided by the user. By dividing tasks into different
types the scheduler can make assumptions about the behaviour of the next tasks based
on the behaviour of previous tasks of the same type. Since the environment where the
scheduler works is heterogeneous, the behaviour of the tasks depends not only on the tasks
themselves but also on the worker that runs them so the scheduler needs information about
the behaviour of tasks on each worker. For that the scheduler has a table called relations
table that stores the information about the behaviour of each task type when being ran
on each worker. Each cell from the relations table has information about the behaviour
of a task type on a given worker. This information contains the time spent running, the
consumption, the number of FLOP and the size of the task measured in amount of data
handled, all on average per task. The scheduler does not have a memory model, so cur-
rently the user has to provide the amount of data that is handled in each task. Each cell of
the relations table is updated based on equation( 1) where newValue refers to any variable
in the relation, the oldValue is the previous value of the same variable in the relation, the
readValue is the value obtained by the readers and the update percentage (updatePer) is
chosen by the user. Equation( 1) is used instead of a general average of all the tasks to give
the user the ability to define how much the scheduler takes into account the last run in
comparison to the previous ones.

newValue = oldValue ∗ (1 − updatePer) + readValue ∗ updatePer (1)

With a low update percentage the values read by the reader on each new iteration will
not have much influence on the values of the relations’ cells so the scheduler will not be
able to adapt to sudden changes in the devices. With a high update percentage the sched-
uler changes its behaviour accordingly to sudden device changes but sometimes this is not
desired (for example when scheduling highly irregular tasks the average of all the tasks
can be more accurate to future iterations than the information of the last ones). An update
percentage of 0 only takes into account the first measurement made, in the tuning stage
(see section 3.2), while an update percentage of 100 only takes into account the last mea-
surement made.

The work type assigned to each device in each iteration is decided based on the schedul-
ing decision chosen by the user (see 3.1.1). A sort is done to all the cells of the relations
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table that correspond to the same worker, where the task types are ordered according to the
best fitness of the decision chosen by the user. After the scheduler chooses which task type
each worker will work on each iteration, it chooses a balanced workload for each worker so
that all workers finish doing their work at the same time, avoiding the idling of the workers.
To be able to have a balanced workload for the workers, the scheduler has to store the infor-
mation about the previous iterations. To do that a history list was created where each item
of the list corresponds to one combination of workers and task types. Each item contains
information about the iteration time, the time each worker took to complete their work, the
energy consumption (total and per worker), the number of FLOP and the total number of
bytes handled. Figure 2 shows a simple example of possible combinations with 2 different
workers and 3 task types. Since workers A and B are different workers, combination 1 and
combination 2 are not the same, and each one has a different history. When a combination
is chosen, the scheduler searches for the information about the last iteration ran with the
same combination. If a combination is ran for the first time, a base workload is given to
each worker and the load balance is made when the combination runs again.

By using the information about the last iteration that ran with the same combination, the
scheduler tries to assign the best workload to each worker so that all the workers finish
at the same time. Equation( 2) shows how the new workloads are decided based on the
results obtained in the previous iteration that had the same combination.

newWorkload = oldWorkload + oldWorkload ∗ waitingPercentage (2)

The way of balancing the workload between devices was taken from the simulator explained
in section 2.2.1.

The scheduler simply assigns more work to each worker proportionally to the time each
worker waited in the previous iteration with the same combination. Equation 2 should
be specially effective when handling regular tasks since their time and consumption can
be easier to estimate. Since sometimes a worker can have very bad performance on all the
types of tasks, there was a need to add a way to decrease the workload assigned to a worker
from one iteration to another. A condition was added to reduce the workload of a worker
by half in the next iteration if the other workers waited more than half the total time of the
current iteration. With this condition the scheduler does not have to increase so much the
workload of the workers that waited, since the worst worker will have much less tasks to
work on.
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Figure 2.: Explanation of what combinations are on this scheduler

Measuring consumption with instant consumption readings

The information about the consumption of the Intel Xeon Phi and the NVIDIA GPUs is ob-
tained in Watts instead of Joules, i.e. instead of receiving the accumulated energy like in the
Intel processors the value received is the current power. To calculate the energy consump-
tion of these coprocessors, a minimum of two different power readings have to be collected.
A simple example can be viewed in Figure 3 where 3 measurements are taken within 2

milliseconds. To calculate the total energy consumption of the device the consumption be-
tween every reading is computed. In the example of Figure 3 the consumption between
measurements M1 and M2 and M2 and M3 correspond to the total energy consumption.
Each of these consumptions can be easily calculated as the sum of the area of a right trian-
gle with the area of a rectangle, which is used as an approximation to the integral of the
energy consumption. Equation 3 describes how the total energy consumption between two
measurements is calculated.

ConsumptionMi Mj = min(Miconsum, Mjconsum) ∗ (Mjtime − Mitime)

+ ((max(Miconsum, Mjconsum)

− min(Miconsum, Mjconsum))

∗ (Mjtime − Mitime)/2)

(3)

The total consumption between the first measurement and measurement N is calculated
as shown in Equation 4.

totalConsumptioM1 Mn =
n−1

∑
i=1

ConsumptionMi Mi+1 (4)



3.1. The scheduler model 21

For this example the total energy consumption between M1 and M2 would be:

consumptionM1 M2 = min(10, 20) ∗ (2 − 1) + ((max(10, 20)− min(10, 20)) ∗ (2 − 1)/2)

= 10 ∗ 1 + ((20 − 10) ∗ 1/2)

= 10 + 5

= 15mJ

Similarly, between M2 and M3 the consumption would be:

consumptionM2 M3 = min(20, 15) ∗ (3 − 2) + ((max(20, 15)− min(20, 15)) ∗ (3 − 2)/2)

= 15 ∗ 1 + ((20 − 15) ∗ 1/2)

= 15 + 5

= 20mJ

So the total consumption in this example would be 35 mJ (15 + 20).

Figure 3.: Consumption calculation with instant consumption readings

3.1.1 Scheduling decisions

Since the scheduler can not apply any scheduling technique directed at an individual task,
it can only choose which task type is better for each worker, accordingly to the scheduling
decision selected by the user. To choose the best task type for each worker, a sort is made to
each of the lines in the relations table (that corresponds to each worker) where the compare
function is chosen by the user. Currently there are 6 different compare function available:

• Energy consumption per FLOP - focuses on reducing the energy consumption per
FLOP operation
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• Energy consumption per byte - focuses on reducing the energy consumption per byte
handled

• Energy consumption - focuses on reducing the energy consumption of the tasks over-
all

• Performance per FLOP - focuses on maximising the throughput per FLOP operation

• Performance per byte - focuses on maximising the throughput per byte of memory
handled

• Performance - focuses on maximising the throughput per task

Task type A Task type B
Worker 1 - time 0.5s 1s

Worker 1 - energy 250J 100J
Worker 2 - time 2s 3s

Worker 2 - energy 50J 100J

Table 1.: Relation table values for the scheduling decision combination example

There was an attempt to combine two or more different scheduling decisions by calculat-
ing the fitness percentage of each task type for each worker on both scheduling decisions
and then combining the percentages accordingly to weights defined by the user. The fitness
for each scheduling decision is calculated by the value in the relations table divided by
the sum of all the values on the same line of the relations table (corresponding to all the
values of the same type (energy, time, energy/FLOP, ...) for a given worker). For example,
with two task types A and B and two workers 1 and 2, and with the values of the relations
table presented in table 1 the computations of the task type’s fitness on worker 1 would be
calculated the following way:

• Case 1 - the scheduling decisions selected were energy consumption and performance
and the weight of both is 50%:

FitnessPer f ormanceTypeA = 0.5/1.5

= 33.33%

FitnessConsumptionTypeA = 250/350

= 71.43%
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FitnessPer f ormanceTypeB = 1/1.5

= 66.67%

FitnessConsumptionTypeB = 100/350

= 28.57%

Since both time per task and consumption need to be minimised, the task type with
the smaller percentage value will be selected:

OverallFitnessTypeA = (33.33 ∗ 0.5 + 71.43 ∗ 0.5)

= 52.38%

OverallFitnessTypeB = (66.67 ∗ 0.5 + 28.57 ∗ 0.5)

= 47.62%

In this case the scheduler would assign tasks of type B to worker 1 on the current
iteration.

• Case 2 - the scheduling decisions selected this time were still energy consumption
and performance by this time the weight is of 70% to performance and 30% to energy
consumption. The fitness of the task types for a single scheduling decision are the
same as the example above, with only the combination between them changing. The
task type selected will still be the one with the smallest percentage:

OverallFitnessTypeA = (33.33 ∗ 0.7 + 71.43 ∗ 0.3)

= 44.76%

OverallFitnessTypeB = (66.67 ∗ 0.7 + 28.57 ∗ 0.3)

= 55.24%

This time the worker 1 will be assigned tasks of type A, since it has the smallest
percentage.
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Unfortunately there was no time to properly test the combination between different
scheduling so it is not presented on section 4.2. The proper testing of this algorithm is
suggested as future work.

3.2 scheduling tuning

When the scheduler starts, it collects information about the workers present in the sys-
tem. The information about the CPU is collected by accessing the /proc/cpuinfo file on Linux
which can tell the number of sockets and the number of cores per socket. The GCC compiler
command ”gcc -march=native -Q –help=target—grep march” is also used to obtain information
about the family of the CPU. For information about the Xeon Phi devices, the micinfo com-
mand is used. Finally for detecting graphic cards the nvmlUnitGetCount function, which is
part of the NVML library, is called.

Since there is no more information in the beginning and the relations table is empty. A
tuning stage is used to populate the information of the relations table and in some entries
of the history list. Three different ways of tuning the scheduler were created. All tuners
have the same behaviour where a block of tasks of the same type is analysed in each worker
on each tuning iteration.

The tuning technique currently available are the following:

• By block - in this tuning technique the user defines how many tasks (in constant
number) are used by each worker in each iteration

• By percentage - in this tuning technique the user defines a percentage of tasks that
are assigned in each training iteration. The difference between this training and the
training by block is that task types with different number of tasks will have different
block sizes

• By time - in this tuning technique the user defines a time (in seconds) in which each
worker tests as much tasks as it can of the same type. The scheduler assigns tasks to
the workers and wait for the workers to finish to assign them more tasks. If the time
defined by the user has already passed, the scheduler stops assigning tasks.

3.3 the support framework

Since the simulator presented in Section 2.2.1 is not able to accurately simulate the energy
consumption of heterogeneous tasks and workers, a framework was created to test the be-
haviour of the scheduler when altering the scheduling parameters and to test the potential
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of using time and power consumption measurements to schedule the following iterations.
This framework was created to be able to fully monitor the time and the consumption of
the tasks on each device while having least impact possible on the overall computational
time.

Since the framework was created with the goal of testing different tuners and scheduling
techniques each of the tuners and scheduling decisions can be easily replaced. Even the
scheduling algorithm itself can be easily changed if needed.

The algorithm used for assigning tasks, starting the workers and doing all the measure-
ments is presented in Algorithm 1. The algorithm in the case of the tuners is very similar to
Algorithm 1 but there is no need to choose the best task type since all the task types have
to be sampled and there is also no need to choose the workload for each worker because it
is chosen by the user, unless the user chooses the timed trainer. When the scheduler needs
to calculate the base workload for a history combination that was not used before, the algo-
rithm 2 is used. Algorithm 2 does not provide any guarantees about the load balancing, it
only calculates the total base workload (the workload for all the workers combined) based
on the number of tasks in the queue. As can be seen in Algorithm 1, the only difference
in the behaviour of the different scheduling decisions currently available is the ordering of
the best task types for each worker at the end of each iteration.

Data: workers; queue of tasks; relations; history; scheduling decision
Result: all the tasks for the iteration are assigned and run and the measurements

about time and energy consumption are made
while there are still tasks in the queue do

compute the best task type for each worker based on the relations;
compute the best workload for the workers based on the history;
assign tasks to the workers;
start the iteration timer;
forall workers with work do

start a thread running each worker’s work function;
end
wait for all the workers to finish;
stop the iteration timer;
forall workers do

store the information about the last iteration in the relations and history
structures;

end
sort each relation table line accordingly to the scheduling decision selected;

end
Algorithm 1: Work assignment and measurement algorithm
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Data: the total number of tasks on a single task type queue
Result: the base workload for that task type based on the size of the queue
initiate the variables (i and n, both int);
for n = 0; i ≤ queueSize; ++n do

i = 10n;
end
return queueSize / 2n;

Algorithm 2: Calculation of the base workload for a single task type queue

The function that handles the work of each worker is presented in Algorithm 3. It simply
starts the power reader associated with the device and a time counter before the worker
starts working. The power reader and time counter are stopped after all the work assigned
to the worker this iteration is complete. Similarly when measuring the number of FLOP
inside the tasks, a FLOP counter using Process API (PAPI) is started and stopped only when
all the work is complete.

Data: worker
Result: the worker finishes it’s work and stores information about the iteration so it

can be handled by the scheduler
start a thread with the power sampler of the worker;
start a timer;
while there is still work in the worker’s queue do

do the task’s work;
end
stop the power sampler’s thread and the timer;
store the information about time, power consumption and work done;

Algorithm 3: Work function of the worker

Since there are three different tuning techniques, six different scheduling decisions and
other variables an additional structure was created to serve as a control structure for the
framework, decreasing the amount of work the user needs to do before being able to run the
code on the framework. This control structure detects the devices available in the system
(number of CPUs, GPUs and coprocessors, the number of cores available on each device
and also the family of the processor used in the system, which is needed for the power
reader (the default value for the processor family is Sandy Bridge)) and receives and han-
dles the choices of the user relative to the tuner and scheduling decision selected.

To use this framework, the user must create a new project and link the scheduling or the
power sampler libraries. Each of the task types created must be extensions of the task base
class available on the scheduler libraries in order to use the scheduler. Since there is no
memory control, the user has to define how the data is transferred to the devices. Each task
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returns the number of bytes handled to and from the devices which is used to simulate part
of a memory control and allows the scheduler to make decisions based on the number of
bytes handled. The value of number of bytes handled is provided by the user as the return
of the task (this was only done to be able to test the scheduling decisions that need the
number of bytes handled as an argument).



4

T E S T A N D E VA L U AT I O N

The key motivation to develop a new framework was the lack of a real-time tools that can
take in-time scheduling decisions considering not only the measured devices performance
but their energy consumption as well. To evaluate the quality of the framework outcomes
several tests were devised and applied, and their results are here presented and discussed.

All tests used two different task types: squared matrix multiplication and the Single Preci-
sion A.X Plus Y (SAXPY) algorithm. These tasks are both regular, where the amount of data
transfers and computations can be found by knowing the size of the matrices and vectors.
With regular tasks the workload balancing between devices should be very effective. Both
tasks are implemented using MKL for both multicore and many-core Xeon devices and
using cuBLAS for the implementation on the NVidia GPUs.

The first set of tests aimed to find out the performance and energy consumption of each
device (and all the combinations between them) when running SAXPY tasks. To test the
behaviour of the devices when handling SAXPY tasks 5 different array sizes were tested
(16k, 32k, 64k, 128k and 256k). For each of the tests, 1000 SAXPY tasks were ran. Two
different comparisons were made with the results: in the first one different device combi-
nations (CPU only, CPU and GPU, all workers, ...) were tested for arrays with the same
size; in the second the different task sizes were compared for the same worker combination.

The second set of tests, similar to the first, was done to test the behaviour of each device
when running matrix multiplication tasks. Once again 5 different sizes were tested with
the number of elements varying between 64k, 256k, 1M, 4M and 16M. Since the matrix mul-
tiplication tasks have much more operations than the SAXPY tasks, the number of tasks
on each test was set to 200. With a small number of tasks, the scheduler does not have
many iterations to find the best tasks for each worker and the balance between them so the
scheduler needs to be able to quickly find a good balance.

28
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The third set of tests combined the previous two and was done to evaluate the behaviour
of the scheduler when having two different task types to choose from when assigning work
to each of the devices.

For these tests the scheduling decision used was the power consumption, the tuner se-
lected was the tuner by block with a block of 10 tasks. The update rate chosen was 80 per
cent. The rate of readings for each power sampler is 1 millisecond, the lowest possible for
all of the device power samplers.

4.1 testbed

The testbed where the framework will be tested is one of the nodes available on the Stam-
pede supercomputer which is one of the supercomputers available at Texas Advanced Com-
puting Center (TACC). The Stampede supercomputer is comprised of 6404 nodes of which
4 are login nodes and the other 6400 are computation nodes. Table 2 shows the config-
uration of each of he 6400 nodes and Table 3 shows the overall system configuration and
performance (these tables were obtained from the Stampede User Guide, available in TACC
(2017)). As can be seen in Table 2 each compute node has two Intel Xeon E5-2680 on a single
board, as a Symmetric multiprocessing (SMP) unit with a performance of 346 GFLOPS/node.
Additionally each node has a special production Intel Xeon Phi SE10P with a peak perfor-
mance of 1.0 DP TFLOPS/Phi. Each node contains 32GB of memory, with 4 channels from
each processor’s memory controller to 4 DDR3 ECC DIMMS, obtaining 51.2GB/s for all
four channels in a socket. The memory for each coprocessor is 8GB GDDR5 with 8 dual-
channel controllers and a peak performance of 320GB/s.

Component Technology
Sockets per Node/Cores per Socket 2/8 Xeon E5-2680 2.7GHz (turbo, 3.5)
Coprocessors/Cores 1/61 Xeon Phi SE10P 1.1GHz
Motherboard Dell C8220, Intel PQI, C610 Chipset
Memory Per Host 32GB 8x4G 4 channels DDR3-1600MHz
Memory Per Coprocessor 8GB GDDR5

Interconnect
Processor-Processor QPI 8.0 GT/s
Processor-Coprocessor PCI-e
PCI Express Processor x40 lanes, Gen 3

PCI Express Coprocessor x16 lanes, Gen 2 (extended)
250GB Disk 7.5K RPM SATA

Table 2.: Compute node configuration
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Component Technology Performance/Size
Nodes(sled) 2 8-core Xeon E5 processors, 1 61-core Xeon Phi coprocessor 6400 Nodes
Memory Distributed, 32GB/node 205TB (Aggregate)
Shared Disk Lustre 2.1.3, parallel File System 14 PB
Local Disk SATA (250GB) 1.6PB (Aggregate)
Interconnect InfiniBand Mellanox Switches/HCAs FDR 56 GB/s

Table 3.: Configuration of the Stampede system

The framework testing will be done on special computation nodes within the Stam-
pede supercomputer dedicated to visualisation and General Purpose Graphics Processing Unit
(GPGPU) processing. There are a total of 128 visualisation nodes in the Stampede super-
computer. These nodes are equipped with an NVIDIA K20 GPU with 5GB of on-board
GDDR5 memory in addition to the two Xeon E5-2680 and the Xeon Phi SE10P coprocessor.
Since the power consumption is one of the main concerns, the Thermal Design Power (TDP)
of each device as well as the maximum total consumption of the system can be seen in
Table 4. The values presented in Table 4 were taken from Intel (2017) for the Intel Xeon
E5-2680 processor, CPU-World (2017) for the Intel Xeon Phi SE10P and CNET (2017) for the
NVIDIA K20 GPU.

Device TDP
2x Intel Xeon E5-2680 260W
Intel Xeon Phi SE10P 300W
NVIDIA K20 GPU 225W
Maximum combined energy consumption 785W

Table 4.: Power consumption of each device and combined

Since no power-aware schedulers that work with both the CPU, GPU and Intel Xeon Phi
and do not receive any kind of information before runtime were not found, all the tests
were made comparing different scheduling decisions, trainers and other variables like the
update rate of the values on the relations table.

4.2 discussion of results

In this section the results of the tests made to the framework are analysed and both the
performance of each device when running each task type (with different sizes) and the be-
haviour of the scheduler are evaluated.

To be able to estimate the energy consumption for the entire system when not all of the
devices are being used, the idle power consumption of each device was measured ten times
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Device Idle consumption per second
2x Intel Xeon E5-2680 196,99 J
Intel Xeon Phi SE10P 103,87 J
NVIDIA K20 GPU 39,13 J

Table 5.: Power consumption of each device and combined

and the average was set as the idle consumption of each device. Table 5 shows the results
obtained for the idle consumption of each one of the devices.

The first test done was meant to test the performance of all the combination of workers
when running SAXPY tasks of different sizes. 7 different worker combinations were tested:
CPU, GPU, Xeon Phi, CPU and GPU, CPU and Xeon Phi, Xeon Phi and GPU and finally all
the workers combined. The different sizes for the vectors used in the SAXPY task test were
the following: 16k, 32k, 64k, 128k and 256k elements.

Figure 4.: Total time spent running 1000 SAXPY tasks with different worker combinations and task
sizes

Images 4 and 5 show the results for the test in time spent running the tasks and energy
consumed, respectively. Clearly the GPU is the worst worker when running SAXPY tasks,
which is predictable since the SAXPY tasks do not have enough computations to compen-
sate for the cost of the memory transfers. The CPU is the best worker when running SAXPY
tasks alone, except for the case where the vectors have 256k elements and the Xeon Phi has
the best performance. In terms of workers combined, the CPU and GPU combination is the
best one for task sizes of 16k, 32k and 64k elements while the Xeon Phi and GPU combina-



4.2. Discussion of results 32

Figure 5.: Energy consumption while running 1000 SAXPY tasks with different worker combinations
and task sizes

tion becomes the best one for sizes of 128k and 256k elements.

Figure 6.: Wait percentage of CPU-GPU combination for SAXPY tasks with 16k element vectors

Figures 6 and 7 show the wait percentage and the workload distribution (in number
of tasks) for the CPU and GPU combination. Each marker in the graph represents a new
iteration. The scheduler manages to find the best worker for running the tasks (in this case
the CPU) within 3 iterations, by assigning more than 30 tasks to the CPU while giving just
2 tasks to the GPU. In this case the combination between the CPU and the GPU devices
is always worse than the combination where only the CPU runs the tasks. This happens
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Figure 7.: Workload distribution of CPU-GPU combination for SAXPY tasks with 16k element vec-
tors

because the performance of the GPU decreases the performance of the combination overall.
The workload distribution function is not good enough to identify the terrible performance
of the GPU when running SAXPY tasks so it keeps giving it new tasks, in spite of being
just 2 each iteration.

Figure 8.: Wait percentage of PHI-GPU combination for SAXPY tasks with 256k element vectors

Figures 8 and 9 show the wait percentage and workload distribution for the Xeon Phi
and GPU combination for SAXPY tasks with 256k element vectors. This combination is the
best one for the test of SAXPY tasks with 256k element vectors. Figure 9 shows that the
scheduler finds the best number of tasks for the GPU in the second iteration, which is very
good. In 4 iterations the scheduler manages to find a stable workload for the Xeon Phi with
22 tasks that take about as much time as the GPU takes to run 5 tasks. Figure 8 shows
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Figure 9.: Workload distribution of PHI-GPU combination for SAXPY tasks with 256k element vec-
tors

that, starting from iteration 4, the wait percentage of the workers is always less than 10%
and even in cases where the GPU waits about 10% of the time it is not enough to increase
the workload since it only runs 5 tasks per iteration and a wait of 20% would be needed to
increase the number of tasks to 6. This combination is faster than when only one worker
is running the tasks (in this case the best single worker is the Xeon Phi) because the GPU
can run some of the tasks, in spite of just being 5 tasks per iteration, increasing the overall
performance.

Figure 10.: Wait percentage of CPU-PHI combination for SAXPY tasks with 256k element vectors

The strangest case is the combination of CPU and Xeon Phi where it would expected
to be the best since they are clearly the best single workers when running SAXPY tasks.
Figures 10 and 11 show the wait percentage and the workload for the CPU and Xeon Phi
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Figure 11.: Workload distribution of CPU-PHI combination for SAXPY tasks with 256k element vec-
tors

Figure 12.: Wait percentage of All worker combination for SAXPY tasks with 256k element vectors

combination for SAXPY tasks with 256k element vectors. The wait percentage of the work-
ers is extremely low (reaching 1.2% maximum) so the workload never changes. Figures
12 and 13 show the wait percentage and workload for the combination with all workers,
respectively. The lines for the CPU are barely visible since it behaves exactly the same way
as the Xeon Phi. This low performance when combining the CPU and Xeon Phi device can
be explained by the synchronous communication that is made between the Xeon Phi and
the CPU, which forces the CPU to wait until the vectors are transferred to the Xeon Phi
to continue the computation. Similarly the Xeon Phi has to wait for the CPU to finish the
computation to be able to receive the new vectors for the next task.

The second test made was similar to the first one but, instead of running 1000 SAXPY
tasks, 200 SGEMM tasks are run. The total number of elements per matrix is 64k, 256k,
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Figure 13.: Workload distribution of All worker combination for SAXPY tasks with 256k element
vectors

1M, 4M and 16M. The different combinations used were the same as the ones used in the
SAXPY task test.

In this test the GPU is the worst single worker for the task size with 64k element matrices
but quickly becomes the best one for bigger sizes. The improvement in the performance
of the GPU device is explained by the relation between the computation required for the
task and the memory transfer, which is way more than the case of the SAXPY tasks. The
biggest difference can be seen on the test with 16M element matrices, where both the time
spent and the energy consumed are both really low (do not forget these graphs have a loga-
rithmic Y axis) compared to the other combinations. The next best combination is the Xeon
Phi and GPU combination, which is actually the best combination when running SGEMM
tasks with 64k and 256k element matrices.

Figures 16 and 17 show the wait percentage and workload for the SGEMM task test with
64k element matrices. In this case the Xeon Phi is much better than the GPU so the sched-
uler reduces the workload of the GPU to 5 tasks and increases the workload of the Xeon
Phi to 16 tasks in iteration 2. In iteration 3 the scheduler increases the number of tasks per
iteration to 6 because the GPU waits more than 20% of the total iteration time. After that
the work is stable until the end. In figures 18 and 19 the wait percentages and workload
for the SGEMM task test with 16M element matrices. In this case the GPU is much better
at computing the tasks than the Xeon Phi, unlike the case with 64k matrices. Once again
the scheduler only takes 3 iterations to find the best balance between the workload of the
devices.
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Figure 14.: Total time spent running 200 SGEMM tasks with different worker combinations and task
sizes

The final test made combined the two previous tests by running 1000 SAXPY tasks and
200 SGEMM tasks. The worker combinations and the size of the tasks are the same as the
ones used on the previous tests.

Figures 20 and 21 show the time elapsed and the energy consumption when running
1000 SAXPY tasks and 200 SGEMM tasks. The results are quite similar to the ones de-
scribed above, in the second test made, since the time and energy required for running the
SGEMM tasks are much higher than the required to run the SAXPY tasks. In all the tests
made the CPU and Xeon Phi combination was the worst overall for the reasons explained
when analysing the first test made (the fact that the data transfer between the CPU and
Xeon Phi is done synchronously).
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Figure 15.: Energy consumption while running 200 SGEMM tasks with different worker combina-
tions and task sizes

Figure 16.: Wait percentage of PHI-GPU combination for SGEMM tasks with 64k element matrices
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Figure 17.: Workload distribution of PHI-GPU combination for SGEMM tasks with 64k element
matrices

Figure 18.: Wait percentage of PHI-GPU combination for SGEMM tasks with 16M element matrices

Figure 19.: Workload distribution of PHI-GPU combination for SGEMM tasks with 16M element
matrices
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Figure 20.: Total time spent running 1000 SAXPY tasks and 200 SGEMM tasks with different worker
combinations and task sizes

Figure 21.: Energy consumption while running 1000 SAXPY tasks and 200 SGEMM tasks with dif-
ferent worker combinations and task sizes
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C O N C L U S I O N S

The power readers provided in this dissertation can be used as a standalone library to help
the programmer identify time and power consumption hotspots within the code. These
power readers can also be used by existing schedulers and frameworks to make decisions
about the power consumption based on real-time readings instead of generalising the con-
sumption based on design-time readings.

The framework created can easily evaluate the performance of different devices when
running tasks of different types. Through tests made to the framework and the scheduler
it is clear that the scheduling algorithm does not reduce the energy consumption of the
system when running the tasks because it tries to find the best task type for each worker,
instead of considering the total energy consumption of the system. Because of this, the
scheduler always tries to assign tasks to the workers in spite of sometimes the idling of
the workers is actually better. The workload distribution part of the scheduler works as
expected by finding a balanced workload within 3 or 4 iteration. Since the framework has
all of it’s components built as blocks it is easy to remove the current scheduler and replace
it with a better one. With no memory control it is still not possible to implement dependent
tasks in this framework.

5.1 suggestions for future work

The framework was created as a proof of concept to test the feasibility both of using the
power sampler measurements to evaluate the behaviour of tasks when running on each of
the devices connected to the system as well as a simple scheduling technique that tries to
find the best type of work for each device based on decisions made by the user before the
scheduler starts.
To keep improving the framework, here are some suggestions for future work:
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• Create a memory control for the framework - with memory control, it is possible
to add dependent tasks to the scheduler. These tasks can only run after the data
they have to handle becomes available, after being used by another task. Having
dependent tasks allows for much more scheduling possibilities like taking advantage
of mutual exclusivity of tasks. With memory control the number of bytes transferred
from and to the devices can be automatically obtained.

• Assign a weight to the tasks - by assigning a weight to the tasks that corresponds
to the total number of operations done, it is much easier to balance the workload
between different devices. The simplest task of each type would have a weight of 1

while a task that has twice the operations of the simplest one would have a weight
of 2. Currently the tasks do not have a weight associated to them so each task is
viewed as equal by the scheduler, so there is a great room for improvement on the
load balancing here.

• Create different schedulers and decisions - create different scheduling decisions like
decide based on the number of tasks on each task type queue. Create an entirely
different scheduler like, for example, one that uses the sorting done on the currently
available scheduler to order the best workers for each task type instead of ordering
the best task types for each worker, as it is currently being done.

• Make the scheduler capable of adding tasks in real time - alter the scheduler so tasks
can be added in runtime and not only at the beginning as it is currently implemented.

• Test the scheduling decision combinations presented on section 3.1.1 - since there
was not enough time to properly test the scheduling decision combinations, it is sug-
gested they are done.

• Compare the results obtained using this scheduler against ILP based techniques -
compare the effectiveness of the solutions found by the scheduler with the solutions
obtained when scheduling based on an ILP technique.

• Create a way to save and load the information about the devices and task types -
with a way of saving a loading the current state of the relations and history table it is
possible to avoid the tuning phase and start the scheduling where the previous one
ended.
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A
L I S T O F S C H E D U L I N G D E C I S I O N S A N A LY S E D A N D R E S P E C T I V E
PA P E R S

When searching for the state of the art scheduling algorithms, several papers were analysed.
Starting from several surveys about the current state of the art in power aware scheduling,
a table containing 49 different scheduling techniques and their properties was created. 7

different properties were defined for the scheduling techniques:

• Task reorder - if the scheduler changes the order of the tasks being ran to decrease
the energy consumption. In spite of not being used on the scheduler presented on
this dissertation, being able to reorder the tasks is an advantage.

• Data locality - if the scheduler takes into account the locality of the data being han-
dled when assigning tasks. Taking advantage of data locality is a great way to de-
crease the energy consumption by minimising the memory transfers, decreasing the
energy consumption of the busses. In the scheduler presented in this dissertation, the
tasks are independent from all others so there is no use for data locality.

• Voltage control - if the scheduler can increase or decrease the frequency of the de-
vices when scheduling the tasks. By decreasing the frequency of a device, the power
consumption of that device can be minimised. Since the Stampede supercomputer
does not allow programs to change the frequency of the devices, schedulers with this
technique are not wanted.

• Cores on/off - if the scheduler can turn individual cores from the CPU on or off.
Since it is not possible to do this on the Stampede supercomputer, it is an undesirable
property.

• Communication improvement - If there are scheduling improvements done based on
reducing communications.

• Scheduling - When the scheduling is done. The scheduling can be done in static
time, run time or both. Since the scheduler presented on this dissertation does the
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scheduling in run time, schedulers that run in run time (even if they also have part of
the scheduling done in static time) are preferred over static ones.

• Heterogeneous - If the scheduler can handle devices of different types. Since the
scheduler created needs to be able to handle workers of different types at the same
time, schedulers able to handle heterogeneous devices are preferred.
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