
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Henrique Jorge Caldas Pacheco

A Library of User Interface Widgets
Prototypes for Car Dashboards

November 2017

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Henrique Jorge Caldas Pacheco

A Library of User Interface Widgets
Prototypes for Car Dashboards

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
José Creissac Campos
Paolo Masci

November 2017

A C K N O W L E D G E M E N T S

I would like to thank my supervisor, Dr. José Creissac Campos from Universidade do
Minho, for all the guidance and help provided. His contribution was invaluable and an
inspiration for the concretization of this dissertation.

I would also like to thank my co-supervisor, Dr. Paolo Masci from INESC TEC, for all
the technical support and ideas provided that contributed to the final result.

I would like to express my deepest gratitude to my girlfriend, Mariana Capelo. Words
cannot describe the importance of the role she played in this dissertation - she provided
intelligent feedback when I needed technical discussions, support when I needed help and
motivation when I felt down. Without her, this work would not haven been possible.

I would also like to thank my parents, Henrique and Maria da Conceição, for all the
encouragement, and Rui Cruz (CEO of Bsolus and Beevo) for all the comprehension.

i

A B S T R A C T

Ensuring the good usability and user experience of software systems is invaluable, and for
that, following a standardized usability engineering process is fundamental. Prototyping
plays a crucial role in this process, enabling the proper validation of the usability guidelines
before reaching the actual implementation phase. This dissertation focuses on the construc-
tion of a JavaScript widgets library to ease the process of prototyping user interfaces. This
library will later be incorporated in the prototyping software tool PVSio-Web.

keywords PVSio-Web, prototyping, user interfaces, usability.

ii

R E S U M O

Assegurar a boa usabilidade e experiência por parte dos utilizadores de um sistema de
software é algo de valor inestimável, e, para isso, seguir um processo estabilizado de en-
genharia de usabilidade é fundamental. A prototipagem desempenha um papel crucial
neste processo, ao dar a possibilidade de validar a usabilidade de um sistema antes de se
iniciar a fase de implementação. Esta dissertação foca-se na construção de uma biblioteca
JavaScript de widgets para facilitar o processo de desenvolvimento de prototipagem de in-
terfaces. Esta biblioteca será posteriormente incorporada na ferramenta de prototipagem
PVSio-Web.

palavras-chave PVSio-Web, prototipagem, interface, usabilidade.

iii

C O N T E N T S

1 introduction 1

1.1 Context 1

1.2 Goals 2

1.3 Structure of the document 2

2 state of the art 3

2.1 Human-Computer Interaction 3

2.2 Usability Engineering Process 4

2.3 Prototyping 5

2.4 UI Prototyping tools 6

2.5 Technologies 8

2.6 Conclusions 11

3 pvsio-web 13

3.1 Concepts and architecture 13

3.2 Building prototypes in PVSio-Web 14

3.3 Projects in PVSio-Web 16

3.4 PVSio-Web and the Open-source initiative 17

3.5 Getting started with PVSio-Web 18

3.6 Conclusions 22

4 car dashboards analysis 23

4.1 Car dashboards 23

4.2 Car dashboards validation 24

4.3 Selection and individual analysis of car dashboard models 24

4.4 Analysis results 29

4.5 Conclusions 30

5 pvsio-web d3-based widgets 31

5.1 Use of d3.js and d3-gauge-plus.js 31

5.2 Implemented widgets 32

5.2.1 Gauge widget 32

5.2.2 CentralPanel widget 35

5.3 Implementation analysis 37

5.4 Conclusions 38

6 pvsio-web svg-based widgets 39

6.1 Use of SVG 39

iv

Contents v

6.2 Implemented widgets 40

6.2.1 SVGWidget 40

6.2.2 Pointer widget 43

6.2.3 GaugeSport widget 45

6.2.4 Clock widget 51

6.2.5 Gearbox widget 54

6.3 Implementation analysis 56

6.4 Conclusions 57

7 car dashboard prototypes 58

7.1 PVS specification 58

7.2 Construction of Car Dashboard prototypes 60

7.2.1 First car dashboard prototype 62

7.2.2 Second car dashboard prototype 65

7.2.3 Third car dashboard prototype 67

7.2.4 Fourth car dashboard prototype 69

7.3 Conclusions 70

8 conclusions and future work 72

8.1 Comparison of the two adopted methodologies 72

8.1.1 Speed of development 72

8.1.2 Customisation 73

8.1.3 Performance 73

8.1.4 Comparison conclusions 73

8.2 Conclusions 74

8.3 Future work 75

L I S T O F F I G U R E S

Figure 1 The Usability Engineering Process, extracted from [BS EN 62366:2008]. 4

Figure 2 Pyramid chart built with d3.js. 10

Figure 3 An example of scaling a vectorial graphics. 11

Figure 4 An example of scaling a raster graphics. 11

Figure 5 Diagram of the client-server communication mechanism in PVSio-
Web, extracted from [Oladimeji et al. (2013)]. 14

Figure 6 Architecture of PVSio-Web GUI, extracted from [Masci et al. (2015)]. 14

Figure 7 Example of the construction of a simple prototype of a microwave,
with a time display and two buttons (”plus” button currently se-
lected). 16

Figure 8 AlarisGP prototype built using PVSio-Web. 17

Figure 9 GPCA prototype build using PVSio-Web. 17

Figure 10 BBraun Infusomat Space prototype built using PVSio-Web. 17

Figure 11 Visual representation of the IPhone unlock screen demonstration. 21

Figure 12 Different car dashboards over time 24

Figure 13 Adopted car dashboard models. 25

Figure 14 The first adopted car dashboard model. 25

Figure 15 The second adopted car dashboard model. 27

Figure 16 The third adopted car dashboard model. 28

Figure 17 The fourth adopted car dashboard model. 29

Figure 18 Gauge generated using the d3-gauge-plus library. 32

Figure 19 Documentation of the Gauge widget constructor. 33

Figure 20 Instantiation and rendering of Gauge with default configuration val-
ues. 34

Figure 21 Set of provided default style configurations for the Gauge widget. 35

Figure 22 Documentation of the CentralPanel widget constructor. 36

Figure 23 Instantiating and rendering of CentralPanel with default configura-
tion values. 36

Figure 24 Example of the implementation of overlapped arc-shaped gauges us-
ing d3-based widgets. 38

Figure 25 Class diagram for the developed widgets 41

Figure 26 Documentation for the changeColor method from SVGWidget pro-
totype. 42

vi

List of Figures vii

Figure 27 b 42

Figure 28 Example of calling the changeColor method with the ”yellow” colour. 43

Figure 29 Documentation of the Pointer widget constructor. 44

Figure 30 b 44

Figure 31 Example of two pointers with different centres of rotation. 45

Figure 32 Documentation of the GaugeSport widget constructor. 46

Figure 33 Discovery of min and max parameters for the rotation of the referred
tachometer. 47

Figure 34 GaugeSport instance with example configuration values and ren-
dered value of 2. 48

Figure 35 The set of default variations for the tachometer type. 48

Figure 36 The set of default variations for the speedometer type. 49

Figure 37 The set of default variations for the remaining fuel, thermometer and
pressure types. 49

Figure 38 The set of default variations for the compass type. 49

Figure 39 Documentation of the GaugeSport render method. 50

Figure 40 Documentation of the Clock widget constructor. 51

Figure 41 Instantiation and rendering of the Clock widget with example con-
figuration values. 52

Figure 42 The set of default variations for the Clock widget. 53

Figure 43 Documentation of the Gearbox widget constructor. 55

Figure 44 Instantiation and rendering of the Gearbox widget with example
configuration values. 56

Figure 45 The possible variations for the Gearbox widget - the first semi-automatic
and the other three manuals. 56

Figure 46 The first car dashboard model. 63

Figure 47 First car dashboard prototype in its initial state (top) and after acce-
larating the car (bottom). 65

Figure 48 The second car dashboard model. 65

Figure 49 Second car dashboard prototype in its initial state (top) and after
accelarating the car (bottom). 67

Figure 50 The third car dashboard model. 68

Figure 51 The third car dashboard prototype. 69

Figure 52 The fourth car dashboard model. 69

Figure 53 The fourth car dashboard prototype. 70

1

I N T R O D U C T I O N

1.1 context

The user interface (UI) is a fundamental factor in the success of a software piece. It is like
the facade of a building — it conveys the identity and personality of the system, and plays a
crucial role in the first impression it causes to its end users. Other than conveying the correct
idea about the system, a good UI is also simple and intuitive, helping users achieving their
goals without problems. A badly designed UI may make the system unusable by its end
users, possibly causing it to be abandoned — hence, it is vital that UI and user experience
(UX) are planned, tested and validated, so that its final result does not become a burden for
the system’s users.

In this context, prototyping rises as one of the most important steps in software develop-
ment. It involves planning, testing and validating the UI and UX with the end users before
its implementation. This will not only allow a smoother implementation, with less costs
both in its development and maintenance, but also a final result that meets the intents of
the end users.

There are several tools that provide assistance when it comes to prototyping, for both
high and low degrees of fidelity. However, most of the existing tools only take into account
the design and navigation of the final system, providing no support for the verification of
the UI behaviour. This is even more important in safety critical systems (such as medical
devices), where the misuse of the UI can have harmful consequences. These systems require
more rigorous forms of verification, and thus the need for prototyping tools that are also
able to validate some of the logic represented by the UI.

PVSio-Web [Masci et al. (2015)] is a client side Web application built with JavaScript
[Flanagan (2011)] that combines prototype development with the application of formal UI
verification. It provides a set of widgets and a drag and drop editor to help creating state-
ful prototypes. The widgets’ interactions are controlled by connecting to a server running
PVSio models, which represent the system logic. This tool is currently under development
at Universidade do Minho, and constitutes the scenario for the development of this disser-
tation.

1

1.2. Goals 2

1.2 goals

Prototypes built on PVSio-Web have made possible to uncover usability flaws in safety
critical systems such as medical devices [Oladimeji et al. (2013)]. It is the author’s belief
that this is one of the most valuable aspects of UI prototyping and demonstrates one of the
main strengths of PVSio-Web, being a solid tool which allows the verification and validation
of interactions.

The main goal of this dissertation is to build a widgets library for simulating components
found in car dashboards, as tachometers, speedometers and odometers. The widgets built
should be aligned with the tool’s vision and developed in order to easily be reused in
different prototypes. The library will be incorporated in PVSio-Web so that the set of
default widgets provided by the tool is extended. This will improve the overall efficiency
when building more complex and realistic prototypes.

Additionally, the creation of car dashboard prototypes using PVSio-Web and the im-
plemented library will also be object of study, demonstrating its application in practical
examples.

1.3 structure of the document

The first chapter of the present document exposes the context around the dissertation, and
the goals that are meant to be achieved.

The second chapter approaches the current state of the art on the usability engineering
field, describing the process followed when developing interactive software applications
and devices, and the tools available to create prototypes. A short description of the tech-
nologies used in context of this dissertation is also provided.

The third chapter describes PVSio-Web, the prototyping tool that will be used in this
dissertation. It provides an overview on prototype construction, the projects developed
with PVSio-Web, and an initial demonstration to exemplify the architecture of the tool.

The fourth chapter provides an overview on car dashboards’ evolution, its usual compo-
nents, and the components that should be available in order to create realistic prototypes.

The fifth and sixth chapters describe the contribution of the author to PVSio-Web, firstly
with the implementation of widgets using the d3.js-based d3-gauge-plus.js library, and
secondly with the complementary set of widgets based on SVG files.

The seventh chapter analyses the construction of car dashboards using the developed
widgets and the PVS model that was used to simulate the car engine, and the last chapter
assesses the dissertation as a whole, and provides pointers for further improvement.

2

S TAT E O F T H E A RT

This chapter discusses HCI as an important research field in software engineering, the rele-
vance of prototyping in the usability engineering process, and some of the tools available to
create UI prototypes. A short description of the technologies used later in this dissertation
is also provided.

2.1 human-computer interaction

Human-Computer Interaction (HCI) is a research field that studies the way users interact
with computers. The term was firstly used by Carlisle (1975), but different definitions have
been provided since. Baecker and Buxton (1987) defined HCI as “a set of processes, dia-
logues and actions through which a human user employs and interacts with a computer”.
Later, Hewett et al. (1992) defined it as “a discipline concerned with the design, evaluation
and implementation of interactive computing systems for human use and with the study of
major phenomena surrounding them”. HCI as a subject arose from the need to understand
the way users relate with machines and how software could evolve in order to improve this
relationship.

Additionally, with the adoption of new technologies such as the mouse or graphical user
interface (GUI) operative systems, usability started to play a more and more important role
in the quality of a software piece. As Jordan (1998) stated, “users begin to see ease of use
as central to product quality”.

The rise of HCI as a research field and the growing importance of usability as a product
quality lead to the need for an organized and structured Usability Engineering Process
(UEP). This process would have as its main goal helping software engineers attain excellent
usability and ease of use in the software products or devices they manufacture.

UEP is targeted to “making the devices (or software products) safer, more effective and
easier to use” [BS EN 62366:2008]. This process is even more important in safety critical sys-
tems, where an error may result in harmful consequences. According to [BS EN 62366:2008],
devices themselves often contribute to usability errors, most commonly due to UI design
flaws. The systematic application of usability design principles, reinforced by validation

3

2.2. Usability Engineering Process 4

and tests involving end users, is an effective means to discover and resolve such design
flaws.

2.2 usability engineering process

Usability was defined in [ISO 9241-11:1998] as “the extent to which a product can be used
by specified users to achieve specified goals with effectiveness, efficiency and satisfaction
in a specified context of use”. The term effectiveness refers to the accuracy and completeness
with which users achieve specified goals. Efficiency is the amount of resources expended in
relation to the accuracy and completeness with which users achieve goals, and satisfaction
is the freedom from discomfort and the positive attitudes towards the use of the product.
In order to achieve these qualities on the development of a device or software piece, it
is important to follow a sustainable and verified Usability Engineering Process [BS EN
62366:2008].

Figure 1: The Usability Engineering Process, extracted from [BS EN 62366:2008].

2.3. Prototyping 5

Description of the Usability Engineering Process (UEP)

As many other processes in systems engineering, the cornerstone of UEP is its iterative na-
ture (Figure 1). It is assumed that the product (or prototype) being developed evolves with
every iteration of the development cycle, and each iteration provides valuable information
and knowledge that can be put to practice in the next one.

UEP starts with a stage of User Research. The main goal at this point is trying to under-
stand how users will interact with the product, and involving the end users in the process
from the early stages.

The process follows with Conceptual Design, where the system’s architecture is defined
and user needs are validated. It is usual, at this stage, to evaluate how users interacted
with precursor systems.

At this point, the development team should have a better understanding of the needs
and goals of the end user, and a Requirements and Design Specifications step can start. This
involves not only specifying the system that will be developed, but also trying to predict
potential UI/UX flaws and consequently taking measures to prevent them.

After the requirements have been defined, the actual implementation phase can be started
— first, as a prototype, and ultimately, as the final product. The Evaluation stage ensures
that the prototype (or final product) meets the end user’s needs, which can lead to the
discovery of new problems and/or misconceptions that bring the team to the beginning of
the process, thus the iterative nature [BS EN 62366:2008].

It goes without saying that the faster these cycles are, the more information can be gath-
ered and used to improve the overall results of the process. And this is why prototyping
plays such a crucial role — because it allows for these cycles to go faster than they would
if the teams would actually be developing the final system. Additionally, prototyping also
enables the possibility of getting valuable feedback from the users before the start of the
implementation phase, allowing the software team to understand if the proposed system
will achieve the end user’s expectations and needs. It also reduces time and costs of the
project, since it will help improve the quality of the project specification, and prevent further
changes to the requirements.

2.3 prototyping

Prototyping is the activity of creating a prototype of a product. A prototype of a software
application is an incomplete version of the system being developed, and typically tries to
simulate some aspects of the final product.

2.4. UI Prototyping tools 6

Prototyping encourages improved and increased user involvement from the start of the
process, which may lead to preventing misconceptions and miscommunications between
the intervening parts and increase the end user’s satisfaction [Bäumer et al. (1996)].

Types of prototyping

Prototypes are usually grouped in throwaway or evolutionary according to type, and low
or high fidelity according to dimension [Nielsen (1993)].

• Throwaway prototyping refers to the creation of a model that will eventually be
discarded rather than becoming a part of the final delivered product. It involves
building a simple working model of the system to visually show the users what their
requirements will look like once implemented.

• Evolutionary prototyping differs greatly from throwaway prototyping, as the main
goal is to build a very robust prototype in a structured manner and constantly refine
it. Once built, it becomes the heart of the new system, in which improvements and
further requirements will be built.

• Low fidelity prototypes try to convey an approximate idea of the final system using
drawings or screen shots. These are typically associated with throwaway prototyping.

• High fidelity prototypes use more advanced technology (e.g. HTML) to build a more
complex, but also more approximate, concept of the final system. Its cost is higher
when compared to low fidelity ones, and often high fidelity prototypes evolve to be
included in the final system (evolutionary prototyping).

2.4 ui prototyping tools

There are several tools for the purpose of UI prototyping. Almost every existing tool offers
ready-to-use sets of widgets that accelerate the prototype development, as well as multiple
export formats.

Of the tools presented, Pencil, Balsamiq and PVSio-Web have as its main goal UI prototyp-
ing. In the specific case of PVSio-Web, its widgets allow the addition of behaviour to the
prototype, while Pencil and Balsamiq’s prototypes are more static. Simulink does not have as
its main purpose UI prototyping, but it provides modules or components that enable the
user to do so.

2.4. UI Prototyping tools 7

Pencil Project

Pencil1 is an open-source graphical user interface (GUI) tool widely used for the purpose
of prototyping. It provides a very extensive set of built-in shapes (or widgets), including
basic drawing shapes, flowchart elements and shapes specific for prototyping desktop or
mobile applications. Developer users can develop their own shapes and share them with
the community of Pencil users.

This tool also supports the concept of prototypes as having different pages, and the possi-
bility of creating links between them to simulate navigation. This enables the possibility of
creating more complex prototypes by composing smaller ones.

Pencil supports the creation of throwaway prototypes, but it provides no support for
building evolutionary prototypes, since, despite having multiple export formats, none of
them can be reused as a resource for building a software system. Additionally, the naviga-
tion model is quite basic, providing only static routes for the built prototype (i.e. no control
logic for navigating in the prototype).

Balsamiq

Balsamiq2 is a tool for the construction of prototypes (or mockups). Similarly to Pencil
Project, it also provides built-in usable components, and it is useful to build throwaway
prototypes. As well as Pencil, it supports the possibility of linking different mockups, but
the most relevant difference when compared to Pencil is the pricing – Pencil being open-
source and free to use, and Balsamiq not so.

PVSio-Web

PVSio-Web3 is a modelling and prototyping tool, currently being developed at Universi-
dade do Minho. It was built using JavaScript and the d3.js framework, and enables the
application of formal validation when building prototypes of a given system [Masci et al.
(2015)]. It provides a set of widget that ease the process of creating prototypes, but it does
not support the possibility of linking different prototypes. PVSio-Web is the tool the will
be used in the present project, and will be described in more detail on Chapter 3.

1 Evolus Pencil Web page: http://pencil.evolus.vn/
2 Balsamiq — https://balsamiq.com/
3 PVSio-Web — http://www.pvsioweb.org/

2.5. Technologies 8

Pencil Project Balsamiq PVSio-Web Simulink
Reusable components Yes Yes Yes Yes

Linking prototypes Yes Yes No Yes
Open-source / free Yes No Yes No
Formal verification No No Yes Yes

Table 1: A comparison between the features of the analysed prototyping tools.

Simulink

Simulink4 is a block diagram environment for multidomain simulation and model-based
design developed by MathWorks5. Simulink is often used for modelling complex systems
from their internal logic to the UI. It supports UI prototyping, despite not being its focus.

As well as the systems discussed above, Simulink also offers a wide set of predefined
blocks (or widgets) to help the development process, and enables C/C++ code generation
from its models, which makes it very useful for building evolutionary prototypes that can
afterwards be incorporated into the actual system being developed.

Comparative analysis

The tools presented above can be grouped in two categories. Pencil and Balsamiq are low-
cost and easy-to-use tools, focused on rapid prototyping. They provide no support for
formal validation of UI rules, and their final results are throwaway prototypes.

Simulink and PVSio-Web are tools that require a greater level of investment when used
— both in cost and in the time required to learn how to work with them. Despite this,
more complex forms of validation can be applied to the models, and the final results are
frequently used as part of the final system, which represents evolutionary prototyping.

Table 1 displays a tabular analysis of the different features of the described tools.

2.5 technologies

This dissertation describes the implementation of a widget library to be included in the
PVSio-Web prototyping Web application. In this section, the technologies in the base of
PVSio-Web — the scripting language JavaScript and the JavaScript framework d3.js — and
technologies used to complement it — such as d3-gauge-plus and SVG — will be discussed.

4 Simulink - https://www.mathworks.com/products/simulink.html
5 MathWorks - https://www.mathworks.com/

2.5. Technologies 9

JavaScript

JavaScript (JS) [Flanagan (2011)] is a high-level, dynamically typed, cross-platform, object-
oriented scripting language. It is normally used inside a host environment (e.g., a Web
browser), and connected to the objects of its environment to provide programmatic control
over them.

JavaScript per se is a set of libraries not much different from most programming languages
— provides syntactic support, structures to control the flow of execution, array and object
handling, libraries for math operations, event handling, etc.

This language can be extended with objects and libraries that serve different purposes.
One example is client-side JavaScript, which extends core functionality by supplying objects
to control a browser and its Document Object Model (DOM)6, enabling the usage of the
language in Web applications. Another example is server-side JavaScript, that extends it so
that it can be used as a fully-functional Web server.

JavaScript has become a dominant language, especially in Web development. In a client
side environment, it can be used in small or large scale - from small scripts loaded in a Web
page to add interactivity to its UI, to fully structured client side applications including data
models, routing and controllers. For the latter, several frameworks have been developed in
the language and used in major projects (for instance, Youtube and Gmail use AngularJS
framework, Facebook and Instagram are based on ReactJS). Additionally, multiple libraries
are available for different purposes, with the goal of providing specific and easy to use
features for DOM manipulation (like JQuery, Chart.js and d3.js).

d3.js and d3-gauge-plus.js

d3.js7 — d3 stands for Data-Driven Documents — is a JavaScript library for manipulating
documents based on data and producing dynamic, interactive data visualizations in Web
browsers. It makes use of existing standard technologies (such as HTML, SVG and CSS),
allowing great control over the final results.

The Document Object Model (DOM) is a programming interface for HTML and XML
documents. It represents a Web page so that programs can change the document structure,
style and content. The d3.js library allows the binding of arbitrary data to a DOM object,
and the application of data-driven transformations to it. An example of the d3.js usage is
the generation of an HTML table or an interactive SVG bar chart from an array of numbers
(Figure 2).

6 Mozilla Developer Network Web page on DOM: https://developer.mozilla.org/en-US/docs/Web/API/

Document_Object_Model

7 d3.js framework Website: https://d3js.org/

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://d3js.org/

2.5. Technologies 10

Figure 2: Pyramid chart built with d3.js.

d3-gauge-plus.js8 is an extension of d3.js originaly developed by Andy Gimblett, focused
on the generation of gauges. This library handles the implementation details of a gauge
presentation and behaviour, allowing a set of configurations to control both.

SVG

Scalable Vector Graphics9 (SVG) is an XML-based markup language, with the purpose of
describing two-dimensional vector graphics. It is a text-based open Web standard, explicitly
designed to work with other Web standards such as CSS or DOM.

Vector graphics (such as SVG files) differ from raster graphics (such as PNG or JPEG
files) in the way they store the graphics data. Raster graphics use colored pixels arranged
in a way to display an image, and vector graphics use paths to tell how each part of the
image should be shaped and what color it is bordered with or filled by.

One of the advantages of vector graphics in comparison to raster grpahics is that they
do not suffer loss of quality when resized (Figure 3), contrary to raster graphics, which
suffer a clear loss of quality on scaling (Figure 4). Another important advantage in the
context of this dissertation is that, due to its XML-based nature, vector graphics are treated
as DOM elements by browsers. This allows the handling of the SVG element (its creation,
positioning, animation or deletion) and changing its properties on runtime.

8 d3-gauge-plus.js Github repository: https://github.com/gimbo/d3-gauge-plus
9 Mozilla Developer Network page for SVG: https://developer.mozilla.org/en-US/docs/Web/SVG

https://github.com/gimbo/d3-gauge-plus
https://developer.mozilla.org/en-US/docs/Web/SVG

2.6. Conclusions 11

Figure 3: An example of scaling a vectorial graphics.

Figure 4: An example of scaling a raster graphics.

2.6 conclusions

In this chapter, the relevance of Human-Computer Interaction was briefly discussed. Study-
ing how humans relate with machines has made possible to draw a set of processes that
should be followed to optimize the usability and user experience in product development
— the Usability Engineering Process.

UEP depends on prototyping as one of its main accelerators. It allows to get feedback
from the end users in early stages and also helps preventing miscommunications and UI
design flaws in future stages of the development process. This is even more important in
the case of safety critical systems, where UI flaws can lead to harmful consequences.

There are multiple tools in the market that are suitable for prototyping, but, with the
exception of PVSio-Web, none of them support the application of formal verification into

2.6. Conclusions 12

prototypes. The technologies that are on the base of PVSio-Web were described in sec-
tion 2.5, and the tool itself will be described in detail in the next chapter.

3

P V S I O - W E B

3.1 concepts and architecture

PVSio-Web1 is a formal methods tookit for model-based development of human-machine
interfaces. Its initial developments date back to August 2012, and it has maintained a
sustainable activity in its GitHub repository since then2.

PVSio-Web extends the PVSio component [Muñoz (2003)] of PVS [Owre et al. (1996)]
with a graphical environment that allows rapid prototyping of device user interfaces based
on formal PVS specifications [Oladimeji et al. (2013)]. Prototype Verification System (PVS)
is a specification language integrated with support tools and a theorem prover, intended to
make mechanized formal methods usable for significant applications3.

In the context of PVSio-Web, a prototype consists of a background image of the UI to be
prototyped, widgets (interactive areas over the prototype that can react to clicks or display
visual information), and a PVS specification; it defines and controls the behaviour of the
widgets, by storing the current state and the set of possible state transitions of the prototype.

The interaction between the widgets and the PVS specification happens under a logic of
client-server communication (Figure 5). The client-side displays the GUI of PVSio-Web as a
Web application, and the Web-server encapsulates the tool’s back-end. Actions on the client-
side can trigger on-demand executions of the PVS specification on the backend, which in
turn responds with the new state of the prototype, and every widget in the client-side is
re-rendered, according to the provided state [Oladimeji et al. (2013)].

The client-side GUI of PVSio-Web provides multiple development environments, with
different features according to the target user of the tool:

• Simulator View: designed for domain specialists and end users, allows the explo-
ration of prototypes generated with PVSio-Web.

1 PVSio-Web Webiste: http://www.pvsioweb.org/
2 GitHub repository for PVSio-Web: https://github.com/thehogfather/pvsio-web
3 PVS Web page: http://pvs.csl.sri.com/

13

http://www.pvsioweb.org/
https://github.com/thehogfather/pvsio-web
http://pvs.csl.sri.com/

3.2. Building prototypes in PVSio-Web 14

Figure 5: Diagram of the client-server communication mechanism in PVSio-Web, extracted from
[Oladimeji et al. (2013)].

• Prototype Builder: provides tools for creating the visual appearance of the proto-
type and editing the PVS model, being targeted for developers and formal methods
especialists.

• Model Editor: can be used by advanced PVS users for editing and type-checking PVS
models.

• Emucharts Editor: can be used by developers who are novice PVS users for develop-
ing formal models using a graphical notation.

These different environments allow users with different background and expertise to
work together with the same underlying formal models (Figure 6) [Masci et al. (2015)].

Figure 6: Architecture of PVSio-Web GUI, extracted from [Masci et al. (2015)].

3.2 building prototypes in pvsio-web

Building a prototype in PVSio-Web using the Prototype Builder involves, firstly, uploading
an image to be used as background. Once uploaded the image, the user has the possi-
bility of defining areas of the image over which widgets will be placed, in order to add
interactivity to the prototype. PVSio-Web provides 6 widgets by default:

• Button: a clickable widget, which triggers an action that can then be used to provoke
changes in the underlying PVS model, and thus in the interface.

3.2. Building prototypes in PVSio-Web 15

• Basic Display: displays basic text in the prototype interface.

• Numeric Display: displays floating point values in the prototype interface.

• Touchscreen Display: a touch enabled display for textual values.

• Touchscreen Button: similar to the Button widget, but oriented towards touch en-
abled devices, adds a clickable widget to the prototype that can be used for clicking
and provoking changes in the underlying PVS model.

• LED: displays a LED light that can be turned on or off, according to some variable in
the underlying PVS model.

While placing the widgets over the background image, the user can associate textual
displays to variables provided by the PVS model, or button clicks to actions provided by
the API of the PVS model.

If the user wants to display a variable provided by the PVS model (for instance, time),
he/she can use the Basic Display widget, associating the ”Display Name” property to the
variable he/she wants to show (time).

If the user wants to trigger an action provided by the PVS model API (for instance,
incTime), he/she can use the Button widget, associating the ”Button Name” property to the
action he/she wants to trigger (incTime).

The PVS model associated with the prototype can either be built in-browser using the
Model Editor or uploaded from a file in the user’s computer.

After adding all the widgets to the prototype, the user can then use the Simulator View to
interact with the prototype. Figure 7 displays, as an example, the prototype of a microwave
built using the Prototype Builder. The left panel displays the list of added widgets: a
Basic Display widget to display the time (”time”), which was previously positioned on
the microwave display area, and two Button widgets - one to increase the time (”plus”),
previously positioned over the ”1” key of the microwave keyboard, and one to decrease it
(”minus”), previously positioned over the ”2” key of the microwave keyboard.

3.3. Projects in PVSio-Web 16

Figure 7: Example of the construction of a simple prototype of a microwave, with a time display and
two buttons (”plus” button currently selected).

3.3 projects in pvsio-web

PVSio-Web has been successfully used for the implementation of several prototypes, mostly
related with the analysis of safety-critical medical devices, such as infusion pumps. Infu-
sion pumps are devices that deliver drugs and nutrients into the patient’s body at controlled
rates and volumes.

These projects have enabled the development of training material and device construction
guidelines, in an attempt to raise the awareness about general user interface issues that may
put at risk the safety of patients [Masci et al. (2015)].

AlarisGP4 is a volumetric pump used in infusion therapy. A picture of the online demon-
stration of its UI modelled in PVSio-Web can be seen in Figure 8. The prototype allows the
simulation of several actions, like increasing or decreasing the quantity of substance being
pumped by clicking the arrowed buttons.

Generic Patient Controlled Analgesia (GPCA)5 is a pump that allows the patient to self-
control its pain level, by means of increasing or decreasing the amount of analgesia that is
injected in his body. Its user interface was also modelled using PVSio-Web, which can be
seen in Figure 9.

BBraun Infusomat Space6 is also an infusion pump modelled in PVSio-Web. Figure 10

shows a snapshot of the live demonstration.
The projects explained are mainly based in textual visualiations as output, allowing sim-

ple interactions such as clicking on buttons or textual inputs. This reflects the lack of
graphical widgets for prototyping more complex systems in PVSio-Web, which is the moti-

4 AlarisGP online demonstration: http://www.pvsioweb.org/demos/AlarisGP/
5 GPCA online demonstration: http://www.pvsioweb.org/demos/GPCA/
6 BBraun online demonstration: http://www.pvsioweb.org/demos/BBraun/

http://www.pvsioweb.org/demos/AlarisGP/
http://www.pvsioweb.org/demos/GPCA/
http://www.pvsioweb.org/demos/BBraun/

3.4. PVSio-Web and the Open-source initiative 17

Figure 8: AlarisGP prototype built using PVSio-Web.

Figure 9: GPCA prototype build using PVSio-Web.

vation behind this dissertation, reflected in its goals — to extend the set of default widgets
in PVSio-Web.

Figure 10: BBraun Infusomat Space prototype built using PVSio-Web.

3.4 pvsio-web and the open-source initiative

Open-source software7 (OSS) is computer software where its source code is made available
for study, change and distribution for anyone and for any purpose. This software is usually

7 Wikipedia page on open-source software: https://en.wikipedia.org/wiki/Open-source_software

https://en.wikipedia.org/wiki/Open-source_software

3.5. Getting started with PVSio-Web 18

associated with public collaborative development, where large Internet communities of
developers contribute to the development process.

OSS was greatly boosted by the Open-Source Initiative (OSI), formed on February 1998

by Eric Raymond and Bruce Perens. This initiative proposed the usage of a label (“open-
source”) that would be able to eliminate ambiguity and remove the perception of free soft-
ware as anti-commercial.

OSS empowers developers with the ability of freely contributing for the growth of projects
based on what they really want the software to be. Despite this, this software development
methodology has inherent advantages and disadvantages.

Pros and cons of open-source software development

Open-source software, being free to obtain and use, tends to easily have more users and
increased adoption of standard implementations. The implementation costs are usually
much lower when compared with closed source software, due to lower costs of marketing
and logistical services.

Additionally, open-source software tends to be more flexible to technological innovation,
due to the lack of commercial pressure to satisfy customer requirements, and more reliable,
since typically has hundreds or thousands of developers testing and fixing bugs.

However, since the code of an open-source software is open to everyone, it might be
more prone to security weaknesses or loopholes than closed source software. Also, it is
more difficult to design a sound business model around open-source software, and thus
many projects fall in misuse due to the tendency to satisfy mostly technical requirements,
and not users or market ones.

PVSio-Web as an open-source software

PVSio-Web has been following the open-source software principles, and counted on 11 main
contributors along its development. Its Github repository has also been forked multiple
times by users who intend to develop and improve over the software on their own. The
present dissertation constitues a contribution to the PVSio-Web project as an open-source
project.

3.5 getting started with pvsio-web

For the purposes of development, PVSio-Web’s architecture is best understood with the
analysis of a demonstration. In the context, a demonstration is a prototype where all the
steps required for the prototype creation (including the background image, instantiation of

3.5. Getting started with PVSio-Web 19

widgets and the communication with the PVS back-end) are done programatically, and not
recurring to the Prototype Builder.

This should represent the unlock process of an IPhone, and is based on two existing
PVSio-Web widgets: BasicDisplay and TouchscreenButton (both described in section 3.2).
The goal is to add a draggable behaviour to the latter (i.e. make it reactive to drag and drop
events), which will allow to simulate the dragging of a button, and, thus, the unlock of the
IPhone.

The PVS specification

Listing 3.1 shows the source code of the PVS model used for this demonstrative example.
PVS specifications will be described in more detail on section 7.1, so for the purpose of the
present demonstration, the simple model shown is enough.

The PVS specification for this demonstrative example is based on two state variables,
current state and previous state (lines 8 to 11), which can take one of two values: locked or
unlocked. These variables represent if the IPhone is (or was, respectively) locked, and are
described in line 5.

The PVS specification defines that the initial value for both of its variables is locked (mean-
ing that the IPhone should initially be locked) – lines 13 to 17, and provides as API the unlock
method (lines 31-40), which sets the value of previous state to current state, and current state
to locked.

Listing 3.1: A simple PVS for the IPhone unlock demonstrative example.

1 main: THEORY

2 BEGIN

3

4 %-- Machine states

5 MachineState: TYPE = { locked , unlocked }

6

7 %-- Prototype state

8 State: TYPE = [#

9 current_state: MachineState ,

10 previous_state: MachineState

11 #]

12

13 %-- Initial state

14 init(x: real): State = (#

15 current_state := locked ,

16 previous_state := locked

17 #)

18

19 %-- utility functions

3.5. Getting started with PVSio-Web 20

20 enter_into(ms: MachineState)(st: State): State =

21 st WITH [current_state := ms]

22 leave_state(ms: MachineState)(st: State): State =

23 st WITH [previous_state := ms]

24

25 %-- transition functions

26 per_unlock(st: State): bool =

27 ((current_state(st) = locked))

28 OR

29 ((current_state(st) = unlocked))

30

31 unlock(st: (per_unlock)): State =

32 COND

33 (current_state(st) = locked)

34 -> LET new_st = leave_state(locked)(st)

35 IN enter_into(unlocked)(new_st),

36 (current_state(st) = unlocked)

37 -> LET new_st = leave_state(unlocked)(st)

38 IN enter_into(locked)(new_st),

39 ELSE -> st

40 ENDCOND

41

42 %-- alternative names

43 click_unlock_button_red(st: State): State = unlock(st)

44 click_unlock_button_green(st: State): State = unlock(st)

45 click_unlock_button_silver(st: State): State = unlock(st)

46 slide_unlock_button(st: State): State = unlock(st)

47 END main

Description

The initial screen of this project can be seen on Figure 11a. BasicDisplay and Touchscreen-
Button correspond to the grey and red buttons, respectively. The first is responsible for
displaying the state of the current state variable of the PVS model associated to this demon-
stration, and the second will be responsible for calling the unlock method from the PVS
model’s API.

If the TouchscreenButton widget (the red button) is dragged to the right, as one does to
unlock an IPhone, a green square signaling the drop zone should appear (Figure 11b). Once
the red button is dropped inside the drop zone, the PVS model’s method unlock is called,
and the Iphone should be unlocked. This can be confirmed by inspecting the BasicDisplay
widget once more, which should display unlocked as the value of the current state variable
(Figure 11c).

3.5. Getting started with PVSio-Web 21

(a) Initial state. (b) Slidding the red button. (c) Final state.

Figure 11: Visual representation of the IPhone unlock screen demonstration.

Implementation

The implementation of this demonstration involved interacting with d3.js drag behaviour
API8. This behaviour (as most of d3.js APIs) works in an asynchronous fashion, allowing to
set functions that will be called once a certain event is triggered (these functions are usually
referred to as callbacks).

Once the dragging of the red button starts, a ‘drag‘ event is triggered by the browser
for every movement that the cursor does. Using the referred d3.js behaviour, a method
was set so that the position of the TouchscreenButton widget is changed according to the
movement of the cursor. This method is also responsible for limiting the movement of the
red button along the “slide to unlock” horizontal bar (i.e. the button should not be dragged
around the whole page), and for showing the drop zone once the red button is dragged
over it.

Once the TouchscreenButton widget is dropped, a ‘dragend‘ event is triggered by the
browser. The callback set on this DOM event is responsible for communicating with the
PVS model to trigger the IPhone unlock action, if the button was dropped inside the drop
zone.

This demonstrative example illustrates the architecture of PVSio-Web. A display widget
is used to display the value of one of the variables of the state of the prototype, and a
button widget is used to trigger actions on the prototype PVS model.

8 d3.js drag behaviour API: https://github.com/d3/d3-3.x-api-reference/blob/master/Drag-Behavior.md

https://github.com/d3/d3-3.x-api-reference/blob/master/Drag-Behavior.md

3.6. Conclusions 22

3.6 conclusions

The present chapter approached PVSio-Web, its concepts and architecture, and why it is as
a solid toolkit for the development of prototypes of human-machine interface prototypes
with formal verification. The method for construction of prototypes using PVSio-Web’s
Prototype Builder was described, and an overview on projects of safety critical devices that
were implemented recurring to the tool was also provided.

This chapter also walked through the process of development of a demonstration of a
PVSio-Web prototype, using the unlock mechanism of an IPhone as a case of study. This
example was intended to put to practice the concepts of the underlying architecture of
PVSio-Web, and thus exemplify how they can be applied in real application scenarios.

The following chapters will base themselves on the concepts exposed in this chapter to
describe the author’s contribution to PVSio-Web as an open-source project.

4

C A R D A S H B O A R D S A N A LY S I S

One of the goals of this dissertation is the construction of car dashboard prototypes. In
order to achieve it, car dashboards were studied and a set of models were selected and
analyzed in detail.

4.1 car dashboards

A car dashboard1 - also called instrument panel or fascia - is a control panel usually located
directly ahead of a vehicle’s driver, which displays instrumentation and controls for the
vehicle’s operation.

Car dashboards have been evolving over time (Figure 12), along with the added features
to the car system and with the new display possibilities - as the use of LEDs lights or
even touchscreens. The initial car dashboards focused only in basic information as the
water temperature, fuel level and speed, while advanced car dashboards may accomodate
a broad set of gauges, information about the current shift, fuel consumption, total car
mileage, climate control and entertainment systems.

1 Wikipedia page on car dashboards: https://en.wikipedia.org/wiki/Dashboard

23

https://en.wikipedia.org/wiki/Dashboard

4.2. Car dashboards validation 24

(a) Ford Model A, 1920’s (b) Ford Crown Victoria, 1990’s

(c) BMW i8 Spyder Concep, 2010’s

Figure 12: Different car dashboards over time

4.2 car dashboards validation

As car dashboards become more complex, additional care has to be invested in the interac-
tion between the driver and the car. Car dashboards should be informative, easy to read,
and, mainly, attractive but not distracting2. Hence, studying the optimal dashboard design
and interface, and validating driver’s interactions with is a key factor to achieving a more
friendly, reliable and, most of all, safer car dashboard.

Prototyping car dashboards using a software tool comes as a less expensive action to
gather the necessary data about the dashboard interface and its user interaction. With
the right software tool, it is possible to bring into the dashboard prototypes the formal
verification used in prototypes of other critical systems.

4.3 selection and individual analysis of car dashboard models

A total of four car dashboard models were adopted in the context of this dissertation. The
selected models represent the majority of current car dashboards and are presented in

2 https://medium.com/@dnevozhai/car-dashboard-ui-collection-123ce3ab5303

https://medium.com/@dnevozhai/car-dashboard-ui-collection-123ce3ab5303

4.3. Selection and individual analysis of car dashboard models 25

Figure 13. Each selected car dashboard model is analyzed in its appearence in order to
study the involved visual components.

Figure 13: Adopted car dashboard models.

First car dashboard model

The first car dashboard model (Figure 14) is divided into three different areas - left, middle
and right.

Figure 14: The first adopted car dashboard model.

The left area of the dashboard consists of two overlapped elements:

• Speedometer gauge: this gauge graphically shows the speed of the car, in a given mo-
ment of time. The configuration includes a maximum value of 360 and a minimum

4.3. Selection and individual analysis of car dashboard models 26

value of 0. The gauge includes 13 major ticks, with an interval of 30 units between
each, and two minor ticks evenly separated between each. The gauge pointer ro-
tates clockwise and the metric of the speedometer (kilometres per hour - km/h) is
displayed below its maximum value.

• Remaining fuel gauge: this gauge graphically shows the remaining fuel of the car.
It has a minimum value of 0 and a maximum value of 1, displaying thr remaining
fuel as a percentage of the total volume of the tank. The gauge displays 3 major
ticks, with 3 minor ones evenly separated between each. The gauge pointer rotates
counter-clockwise.

The right area of the dashboard also consists of two elements:

• Tachometer gauge: this gauge graphically shows the current speed of the rotation of
the car engine. The gauge pointer rotates clockwise between the minimum value of 0

and the maximum value of 9. The range between 7 and 9 is distinguished by being
differently colored from the remaining gauge. The metric being used is thousands
of rotations per minute (x1000 rpm) and it is displayed below the gauge maximum
value.

• Thermometer gauge: this gauge displays the current temperature of the car engine.
Its values range from 60 to 140, displaying the maximum value in a different color.
The gauge contains only 3 major ticks, with 3 minor ones evenly separated between
each. The pointer rotates counter-clockwise.

The central area of the dashboard consists of a panel element, which contains several
smaller ones:

• Odometer: an absolute display of the total distance travelled by the car measured in
kilometres.

• Current shift: display of the current shift of the car.

• Speedometer: a textual display of the speed of the car in a given moment of time,
followed by the used metric of kilometres per hour (km/h).

• Three temperature indicators: three thermometers that display car element temper-
atures (engine, oil, etc.) in Celsius degrees. Each element shows a symbol to which
the value is referred, followed by the textual display of the value and the used metric
(oC).

• Digital clock: display of the clock symbol followed by the time in hours and minutes
in the format HH:MM.

4.3. Selection and individual analysis of car dashboard models 27

• Environment temperature indicator: thermoter which displays the current environ-
ment temperature in Celsius degrees. The textual value is followed by the used metric
(oC).

The presented dashboard is mainly composed of gauges and textual elements. There
are several gauge variations reported, with different rotation directions, range values and
number of major and minor ticks. The unit used in gauges also varied and it was usually
displayed inside them. It can also be report the case of multiple gauges being displayed
inside a circular area (overlapping one another). This happens because gauges can have
different arcs and so it is possible to display multiple gauges in the same circle without
losing information.

Second car dashboard model

Figure 15: The second adopted car dashboard model.

The second car dashboard model (Figure 15) is divided into two areas - left and right.
Similarly to the first analyzed dashboard, the left area of the second model consists of two
overlapped elements:

• Speedometer gauge: this gauge graphically shows the speed of the car, in a given
moment of time. The configuration includes a maximum value of 140 and a minimum
value of 0. The gauge includes 8 major ticks, with an interval of 20 units between each,
and a single minor tick evenly separated between each. The gauge pointer rotates
clockwise and the metric of the speedometer (miles per hour - mph) is displayed
below its medium value.

4.3. Selection and individual analysis of car dashboard models 28

• Analog clock: analog clock displays the current time, showing four major ticks la-
belled with 12, 3, 6 and 9 (intervals of 3 hours) and two minor ticks between each.

The right area of the second dashboard also consists of two overlapped elements:

• Tachometer gauge: as seen in the analysis of the first dashboard model, this gauge
graphically shows the current speed of the rotation of the car engine. The gauge
pointer rotates clockwise between the 0 and 70, distinguishing the range from 60 to
70 by being differently colored from the remaining gauge. The metric being used is
hundreds of rotations per minute and it is displayed below the gauge medium value
(x100 1/min) .

• Remaining fuel gauge: this gauge graphically shows the remaining fuel of the car.
It is very similar to the remaining fuel gauge previously analyzed, displaying the
remaining fuel as a percentage of the total volume of the tank and using the same
number of major and minor ticks. This gauge pointer, however, rotates clockwise.

The selected car dashboard model uses gauge elements and introduces the analog clock
element. This element is similar to the gauge, however it has more than one pointer and
uses a complete arc, which means that the range of values each pointer takes is circular.

Third car dashboard model

The analysis of the third car dashboard model (Figure 16), reveals that gauge is the main
component used. The gauges in the dashboard mainly vary in the range values, number
of major and minor ticks and in the labels included (with the gauge metric and additional
data - ex: Speed, Turbo). The pointers in the used gauges all rotate clockwise.

Figure 16: The third adopted car dashboard model.

4.4. Analysis results 29

Fourth car dashboard model

Similarly to the previous model, the fourth selected car dashboard (Figure 17) only uses
the gauge component. The dashboard consists on two large gauges in the central area with
speed and rotation data, and two smaller ones - one on each side - with remaining fuel and
motor temperature data.

Figure 17: The fourth adopted car dashboard model.

4.4 analysis results

After the visual analysis of the selected car dashboard models, it is possible to identify ele-
ments with a dominant presence: speedometers, tachometers, odometers, remaining fuel elements,
and thermometers, aside from some less common ones like clocks, dashboard icons and current
gear elements.

The identified elements are displayed by a limited set of components: gauges (the most
used component), textual and icon display components and clock components. After the
realization of the set of components used in car dashboards, it is important to specify which
configurations these components should be prepared to handle.

• Gauge component The gauge component is used in a variety of contexts. The most
important data to which it must adapt includes: the minimum and maximum values,
the pointer rotation and the number of major and minor ticks. Additional desired con-
trol over the gauge component may involve the ability to distinguish a specific range
of values (usually in a different color), identifying the metric in use and displaying it
in a certain position (usually below the medium or maximum value), and to define
the segment of the arc by which the gauge is drawn, as well as its start and ending
points. A usage requirement also involve being able to create nested or overlapped
gauges.

4.5. Conclusions 30

• Textual display component and Icon display component The textual display compo-
nent should be prepared for the setting of the text to be displayed, the font size, font
color and background color. The icon display component should allow the configura-
tion of the icon to be displayed and its size and color.

• Clock component The clock component is used in two scenarios: analog or digital.
The choice between analog and digital is the first and most important configuration
of the clock component. A digital clock should be configurable in its display format
(example: 01:00 or 1:00) and the time convention used (12-hour clock or 24-hour clock).
An analog clock should be configurable in the number of major and minor ticks, and
support labelling all or specific hours.

At the moment, it is not possible to prototype the selected car dashboards using PVSio-
Web since its default widgets library does not provide two of the identified required com-
ponents - gauges and clocks.

4.5 conclusions

Chapter 4 covered car dashboards and the importance of its correct design and user interac-
tion. The use of a software tool to prototype car dashboards was revealed as an unexpensive
mean to achieve the validation of car dashboards and the consequent optimal interface.

A collection of car dashboard models were presented and analyzed in order to identify
and specify the components that constitute them. Currently, PVSio-Web does not provide
the necessary widgets to represent the identified dashboard elements, making it impossible
to prototype the selected dashboards. The implementation of new PVSio-Web widgets to
represent the identified dashboard components in the PVSio-Web tool will be described in
the following chapters.

5

P V S I O - W E B D 3 - B A S E D W I D G E T S

The first approach to develop PSVio-Web widgets was based on the d3-gauge-plus library,
generating a set of d3-based widgets. These widget’s presentation and behaviour is con-
trolled by a set of configurations provided on the instantiation of the widget.

5.1 use of d3 .js and d3-gauge-plus .js

The d3.js JavaScript library is part of the basis of the PVSio-Web toolkit, and the widgets can
take advantage of its features. A common example of usage of the library is the attachment
of specific behaviour to events on the widget’s HTML elements (for instance, clicking a
button, or dragging events as it was demonstrated in section 3.5), or the handling of DOM
elements and properties (e.g. changing an element’s class).

Aside from d3.js, other JavaScript libraries can be included to help on the widget’s inter-
actions and/or rendering. This is the case of the d3-gauge-plus1, a library specialized in
drawing gauges. It is based on a module to generate disk-shaped SVG elements (as circles
and arcs), adding the gauge features on top of it (ticks around the drawn circle, text labels,
coloured zones and the pointer).

In order to draw a gauge using d3-gauge-plus.js, one must instantiate the Gauge module
(providing the id of the HTML element where the gauge will be placed and an object of
configurations). The constrcutor of the Gauge module returns a Gauge object, on which the
render() can be called.

This library offers configurations for changing the values that are displayed around the
gauge panel, the number of major and minor ticks, the minimum and maximum gauge
values, the gap (in degrees) between the end and the beginning of the gauge or the location
of minimum value (also in degrees). It also provides the possibility of changing the style of
several of the generated elements (background fill colour, strokes, pointers, coloured zones,
text colour and size, etc.).

In Figure 18, an example of a gauge created using the d3-gauge-plus module is displayed.

1 GitHub repository of the d3-gauge-plus library: https://github.com/gimbo/d3-gauge-plus

31

https://github.com/gimbo/d3-gauge-plus

5.2. Implemented widgets 32

Figure 18: Gauge generated using the d3-gauge-plus library.

5.2 implemented widgets

The implemented widgets include a Gauge widget and a CentralPanel widget. Both were
developed as JavaScript modules, based on the pattern defined by RequireJS2. The module
defines a JavaScript prototype for the specific widget that is later exported. The implemen-
tation using JavaSscript prototype allows the clean definition of the widget constructor, its
methods and properties. The packaging of the defined prototype into a module enables
that it can easily be required by third parties.

Below follows a description of the implemented d3-based widgets.

5.2.1 Gauge widget

The Gauge widget allows the easy setup of gauges, a common car dashboard component.
It offers a set of configurations to change both the layout as well as the logic of the gauge.
Most of these configurations are provided to the d3-gauge-plus library.

Gauge instantiation and usage

Once the Gauge widget is incorporated into the PVSio-Web official widgets library, it will
be possible to use it in the PSVio-Web Prototype Builder, defining its configurations on
a widget instance basis. At the moment, the instantiation of the Gauge widget can only
be done programatically in the context of PVSio-Web demonstrations, after requiring the
Gauge module.

The Gauge constructor can be called providing a set of arguments. These include the
id for the generated HTML element, a coordinates object for positioning the widget on
the prototype, and an extensive set of configurations in order to control the gauge and
its pointer appearance and logic (for example, the minimum and maximum gauge values).

2 RequireJS online documentation: http://requirejs.org/

http://requirejs.org/

5.2. Implemented widgets 33

The full list of the possible configurations can be viewed in Figure 19. The instance obtained
from the widget constructor can be rendered by calling the render() method with a specific
absolute value to be displayed.

Figure 19: Documentation of the Gauge widget constructor.

Figure 20 shows the individual instantiating and rendering of a Gauge instance without
any specifc configurations and its rendered result.

5.2. Implemented widgets 34

1 define(function (require , exports , module) {

2 "use strict";

3

4 // Require the Gauge module

5 require("widgets/car/Gauge");

6

7 function main() {

8 // After Gauge module was loaded , initialize it

9 var gauge = new Gauge(

10 // id of the gauge element that will be

created

11 ’speedometer-gauge ’,

12);

13

14 // Render the Gauge instance

15 gauge.render ();

16 }

17 });

Figure 20: Instantiation and rendering of Gauge with default configuration values.

Widget style variations

The Gauge widget provides a set of default styles to speed the bootstrapping of a demon-
stration. Examples of the provided variations can be seen in Figure 21.

The collection of style variations created target configuring the background colour of
the gauge, as well as the pointer appearance. The remaining configurations of the gauge
behaviour (e.g. the min and max values, number of ticks, starting and ending angle, etc.)
should be provided on the Gauge widget constructor call. To use a specific style, the instance
should set the ”style” parameter on the configurations provided to the constructor with a
specific style identifier (”classic”, ”sport”, ”grey” or ”blue”).

Implementation details

The development of the Gauge widget followed the decorator design pattern [Gamma et al.
(1995)]. This pattern was used in this case to decorate the existing d3-gauge-plus library
with the PVSio-Web communication behaviour, without affecting the existing library. The
responsability of generating the SVG element that visually represents the gauge is delegated
to the d3-gauge-plus, and the Gauge widget itself controls when the method for setting a
new value on the gauge pointer should be called, by re-rendering the d3-gauge-plus gauge
object with that value.

5.2. Implemented widgets 35

Figure 21: Set of provided default style configurations for the Gauge widget.

5.2.2 CentralPanel widget

The CentralPanel widget allows the direct display of a predefined set of components usually
found in car dashboards, such as the car absolute speed, odometer, engine and environment
temperatures, and the current clock time. It uses the BasicDisplay widget provided by
PVSio-Web to render the necessary data.

CentralPanel instantiation and usage

As in the case of the Gauge widget, once the CentralPanel widget is incorporated into the
PVSio-Web official widgets library, it will be possible to use it in the PSVio-Web Prototype
Builder, defining its configurations on a widget instance basis. At the moment, the instan-
tiation of the CentralPanel widget is done programatically after requiring the CentralPanel
module.

An instance of CentralPanel is created using its constructor, and rendered with the render()
method. The constructor call can receive the id of the generated HTML element, a coordi-

5.2. Implemented widgets 36

nates object for positioning the widget and an object of configurations, which can set the
background color for its inner elements (Figure 22).

Figure 22: Documentation of the CentralPanel widget constructor.

The instantiation and rendering of a CentralPanel instance, as well as the obtained result
is shown on Figure 23.

Widget style variations

Since the CentralPanel widget is a specific car widget, no predefined style variations were
implemented.

Implementation details

The development of the CentralPanel widget followed the structural composite pattern
[Gamma et al. (1995)], where several BasicDisplay instances are held inside the Central-
Panel widget. The use of the existing widget to display textual data, complemented by the
use of a predefined set of variables to be displayed allowed the fast development of the
CentralPanel widget.

1 define(function (require , exports , module) {

2 "use strict";

3

4 // Require the CentralPanel module

5 require("widgets/car/Gauge");

6

7 function main() {

8 // After CentralPanel module was loaded , initialize it

9 var centralPanel = new CentralPanel("cp");

10

11 // Render the CentralPanel instance

12 centralPanel.render ();

13 }

14 });

Figure 23: Instantiating and rendering of CentralPanel with default configuration values.

5.3. Implementation analysis 37

For the purpose of this dissertation, there was no need for further configurations to be
added to this widget. However, the concept of aggregating several widgets and creating a
single composite one can be of interest in the context of rapid prototyping in the PVSio-Web
tool.

5.3 implementation analysis

The previous sections describe the implementation of a library of d3-based widgets. The
use of existing libraries such as d3-gauge-plus.js and d3.js was key for the implementation
of the Gauge widget presented.

The CentralPanel widget also emphasizes the possibility of reusing existing PVSio-Web
widgets — as it was the case with BasicDisplay. This reusage was important in order
to maintain the single responsibility principle3, preventing code duplication and repeti-
tion. Additionally, it reveals that building widgets without complex control logic based on
JavaScript libraries is fast and lucrative.

The result is a library ready for the development of gauge-like components (such as
tachometers and speedometers) and textual displays, which enables achieving functional
implementations of some of the components specified in Chapter 4.

However, each dashboard (or even each gauge) has its own peculiatiries, and each differ-
ence from the standard would imply a new possible configuration on the Gauge widget (or
a new widget such as CentralPanel to be able to represent it). It is not feasible to represent
every component that can be found in a dashboard based only on configurations.

A high number of configurations by itself is not a problem for someone using the widgets
to build prototypes. Default values can be set, so that the users only need to change the
configurations that they may need. Nonetheless, adding more configurations is an attempt
to make the widgets’ code more flexible. In the long run, it will be much more difficult
to maintain the library, since every non-standard dashboard would imply changing the
widgets’ source code in order to support new configurations or features.

An example of the lack of flexibility that could not be overcome using configurations is
the instantiation of the Gauge widget to display two overlapped gauges. The Gauge widget
could not support two gauges with different rotation directions (clockwise and counter-
clockwise) and different pointer positions (Figure 24). In order to be able to support this, it
would be necessary to change the source code of the used library (d3-gauge-plus).

An alternative path can be searched to overcome the shortcomings of this approach. This
alternative should lower the need for extensive layout configurations and focus on the most
relevant ones. However, any path taken must take into account the requirements for the
components found in car dashboards described in section 4.4.

3 Wikipedia page on SRP: https://en.wikipedia.org/wiki/Single_responsibility_principle

https://en.wikipedia.org/wiki/Single_responsibility_principle

5.4. Conclusions 38

Figure 24: Example of the implementation of overlapped arc-shaped gauges using d3-based widgets.

An approach based on graphics would allow to achieve this kind of behaviour, bringing
a higher degree of flexibility to the library. Aside from the increment of flexibility, the
development effort could also be significantly decreased, as there are libraries of SVG vector
graphics available to jumpstart the development process.

5.4 conclusions

This chapter covered the implementation of PVSio-Web d3-based widgets. These widgets
are based on existing JavaScript libraries — d3.js and d3-gauge-plus.js. The description of
the two widgets implemented (Gauge and CentralPanel) was provided, as well as examples
of instatiation and possible configurations for these widgets.

The widgets developed follow the requirements specified in Chapter 4 for the compo-
nents that need to be developed for the prototyping of car dashboards. However, section 5.3
indicates some of the disadvantages of this approach, such as the lack of flexibility and the
excessive configurations. The alternative path suggested (an approach based on SVG files)
will be described in more detail in the next chapter.

6

P V S I O - W E B S V G - B A S E D W I D G E T S

The second approach to develop PSVio-Web widgets was based on the composition of SVG
files chosen to mime the components being developed. This approach generated SVG-based
widgets, where the widgets’ layout is no longer configureable, but supported by a SVG file.
A configuration object should still be provided, to control the behaviour of the widgets
(such as positioning of the elements on the screen and values that control the logic of the
widget). However, the principle behind this approach is that most of the customization
should be done on the SVG file.

This chapter focuses on providing a set of usable widgets with several default styles
(based on different SVG files), as well as a method for easily creating new styles without
having to change the widgets’ source code.

6.1 use of svg

As referred in section 2.5, SVG files describe vector graphics following a XML-based struc-
ture. Vector graphics are treated as DOM elements by browsers, making them especially
useful in Web development since they can be created, positioned, animated, changed or
deleted on runtime.

Using SVG in the development of PVSio-Web widgets implies the existence of a set of
usable SVG files for the widgets elements, on which animations can be applied in order to
simulate the dashboard interactivity. In this sense, the widget behaviour is built upon the
SVG file.

One of the advantages of using SVG is that it is fairly easy to buy, download, or, for those
with graphic design experience, build SVG files. The files used in this dissertation were
obtained from free sources on the Internet1.

1 The online SVG library used: http://all-free-download.com/

39

http://all-free-download.com/

6.2. Implemented widgets 40

6.2 implemented widgets

The collection of SVG-based widgets implemented includes GaugeSport widget (for the dis-
play gauge components), Clock widget (for the display of analog clocks), Pointer widget (for
the display of a rotating pointer, used by GaugeSport and Clock) and Gearbox widget (for the
representation of gear boxes).

It should be pointed that since these widgets have not yet been incorporated into the
PVSio-Web official widgets library, they can not be used in prototypes using the PSVio-Web
Prototype Builder.

Each listed widget is defined as a JavaScript module which exports a specific widget
prototype defined inside the module. The usage of JavaScript prototypes enables the exis-
tence of the widget constructor, methods and properties values, besides allowing to take
advantage of inheritage in JavaScript.

All implemented widgets share common features, and so a conceptually abstract SVG-
Widget prototype was implemented. This prototype is extended by every SVG-based wid-
get prototype.

The class diagram on Figure 25 illustrates the conceptual inheritance relationships of the
developed widgets.

6.2.1 SVGWidget

The SVGWidget is a JavaScript prototype that aggregates common features and behaviours
shared by the SVG-based widgets. Besides providing the implementation of common meth-
ods such as getId(), getValue(), isReady(), show() and hide(), this prototype aims to establish a
set of standard behaviours for all the SVG-based widgets.

A clear example where SVGWidget does not provide an actual implementation but en-
courages a standard behaviour is the getDefaultStyleConfigs() method, which receives a style
identifier as argument.

Standard behaviour of default styles

All SVG-based widget instances receive a style identifier on the configuration object para-
menter of the widget constructor (which should be set with a default value if not provided).
This identifier points to a set of configuration values that aggregate common aspects of the
behaviour and/or appearance of the widget (these values and its meaning may vary from
widget to widget).

However, there are two main behaviours underlying this structure:

• The first is that the style identifier’s configurations are merged with the configuration
received in the widget constructor call, in a way that only missing values are obtained

6.2. Implemented widgets 41

Figure 25: Class diagram for the developed widgets

from the style configurations. This means the style identifier provides the default
configurations for the widget instance, but these can be overriden at any time.

• The second is that any set of configurations that may be repeated in multiple widget
instances and form a pattern or a type of packaged example of the widget should be
included in the getDefaultStyleConfigs() method.

The addition of a new default style can be done by adding a new style identifier and
its set of configurations to the result of the getDefaultStyleConfigs() method. This can be
done directly by changing the widget’s method implementation, or creating a new widget
module, whose internal prototype extends the desired one and implements the getDefault-
StyleConfigs() method with its own case added. This allows the creation of a new default
style variations for the widget, which can then be used by any instance which set its style
identifier to the identifier of the newly created style.

Changing colour of SVG elements feature

One of the features that is introduced by the SVGWidget is dynamically changing the colour
of a widget’s elements. This is achieved by defining the implementation of the changeColor()

6.2. Implemented widgets 42

method on the SVGWidget prototype, which means that the feature is inherited by all SVG-
based widgets extending it (see Figure 26 for documentation).

Figure 26: Documentation for the changeColor method from SVGWidget prototype.

The changeColor() method allows to dynamically change the colours of a widget’s gener-
ated DOM elements by filtering the ones with the “color-change-aware” class and setting
their style fill property to a specific value received as argument — SVG elements do not
respond to the usual CSS color and background-color properties, but use specific style prop-
erties instead (Figure 27).

In order to take advantage of this feature, the used SVG files must be edited by adding
the class to the elements that should be able to change color.

In the example shown in Figure 28, obtained from a SVGWidget widget dedicated to
drawing gauges, the used SVG file contains the elements corresponding to the four icons in
the image (temperature, fuel, battery and engine) identified with the referred class. Unless
the changeColor() method is directly called over the gauge instance, no colour transformation
is applied to the elements and they will be rendered exactly as the original. The image on
the left shows the gauge immediately after being initially rendered, and the one on the
right shows the same gauge after being called the changeColor() method with the parameter
“yellow”.

<svg height="130" width="500">

<defs>

<linearGradient id="grad1" x1="0%" y1="0%" x2="100%" y2="0%">

<stop offset="0%" style="stop-color:rgb (255 ,255 ,0);

stop-opacity:1" />

<stop offset="100%" style="stop-color:rgb (255 ,0 ,0);

stop-opacity:1" />

</linearGradient>

</defs>

<ellipse cx="100" cy="70" rx="85" ry="55" fill="url(#grad1)" />

<text fill="#ffffff" font-size="45" font-family="Verdana" x="50" y=

"86">SVG </text>

</svg>

Figure 27: Example of SVG file using specific style and its end result.

6.2. Implemented widgets 43

Figure 28: Example of calling the changeColor method with the ”yellow” colour.

6.2.2 Pointer widget

The Pointer widget displays a rotating pointer. This widget is usually instanciated inside a
GaugeSport or Clock widget.

The Pointer widget depends solely of a single SVG file with the pointer that will be
displayed, which can be specified in the configurations of the widget (if no configuration
value is provided, an example pointer will be rendered). The pointer will be rotated through
the call of the render() method, receiving the degree of the new angle of rotation. The
rotation of the pointer is applied using the CSS property transform2.

Pointer instantiation and usage

The instantiation of the Pointer widget can done programatically in a demonstration, after
requiring the Pointer module. The Pointer constructor is called with the desired set of argu-
ments - including an unique id, set of coordinates to position the widget and an optional
configurations object. These configurations include the name of the SVG file containing
the pointer to use, the initial value of the pointer rotation, a set of CSS properties values
and the parent object identifier. Additionally, following the standard among the SVGWidget
widgets, one of the possible configurations is the style identifier. The default style identi-
fier configures the origin of the rotation animation to applied on the pointer - setting it at
(0,0) coordinates. This can be overridden by specifying a different value for ”transform-
origin” configuration (e.g. {"transform-origin" : "20% 20%"}). The documentation for
the constructor can be seen in Figure 29.

The Pointer widget instance obtained by the widget constructor call is rendered by calling
its render() method. If an argument is provided to the render method, its value will be used
as the degree of rotation of the pointer - initially all pointer are pointing down, with an
angle of 0

o.

2 Mozilla Developer Network guide on the CSS transform property: https://developer.mozilla.org/en-US/
docs/Web/CSS/transform

https://developer.mozilla.org/en-US/docs/Web/CSS/transform
https://developer.mozilla.org/en-US/docs/Web/CSS/transform

6.2. Implemented widgets 44

Figure 29: Documentation of the Pointer widget constructor.

1 define(function (require , exports , module) {

2 "use strict";

3

4 // Require the Pointer module

5 require("widgets/car/Pointer");

6

7 function main() {

8 // After Pointer module was loaded , initialize it

9 var pointer = new Pointer(

10 // id of the gauge element that will be created

11 ’pointer ’,

12);

13

14 // Render Pointer instance

15 pointer.render ();

16 }

17 });

Figure 30: Instantiation and rendering of Pointer with default values.

The individual instantiating and rendering a Pointer instance without additional configu-
rations and the obtained result is displayed in Figure 30.

Widget style variations

Since the Pointer widget allows the use of different SVG files as pointers, and given the
simple nature of its behaviour, it was not found necessary to expand on the widget style
variations.

Implementation details

The implementation of the Pointer widget is a perfect example of taking advantage of the
surrounding technologies to build a simple and reusable widget.

6.2. Implemented widgets 45

An implementation step to which was given special attention was enabling the correct
behaviour of the Pointer widget using different SVG files. It is not guaranteed that all
pointers will have the same rotation origin, as it is can be seen on Figure 31. In the figure,
the left pointer has 50% 20% as value for the transform-origin property (the first value is
relative to the X axis, and the second to the Y axis), while the right one has 50% 0%.

Figure 31: Example of two pointers with different centres of rotation.

As previously stated, the rotation of the pointer is applied using the CSS property trans-
form. Taking further advantage of the CSS properties, the widget also allows the control
of the transform-origin3 property to adjust the origin of the animation. This is achieved
by setting the rotation origin of the pointer in the configurations provided to the widget
constructor call.

Additionally, in order to achieve a more realistic behaviour, the CSS transition property
is also (optionally) configurable. The need to control the duration of the animation is more
obvious when applying the Pointer widget in GaugeSport instances representing compasses
or remaining fuel gauges.

6.2.3 GaugeSport widget

The GaugeSport widget displays gauge elements in a flexible way. The widget is composed
by a main SVG file (used as the gauge panel element) and a set of Pointer widget instances.
This widget is mainly used with a single pointer to represent elements as speedometers,
tachometers and compasses.

3 Mozilla Developer Network guide on the CSS transform-origin property: https://developer.mozilla.org/

en-US/docs/Web/CSS/transform-origin

https://developer.mozilla.org/en-US/docs/Web/CSS/transform-origin
https://developer.mozilla.org/en-US/docs/Web/CSS/transform-origin

6.2. Implemented widgets 46

The widget constructor allows the configuration of the SVG used as panel as well as
some visual properties, and the configuration of the Pointer instances to be used as well as
additional control for the movement of each pointer.

Figure 32: Documentation of the GaugeSport widget constructor.

GaugeSport instantiation and usage

In order to programatically instantiate the GaugeSport widget, its module should be re-
quired and its constructor called.

The call to the GaugeSport constructor includes an expressive set of configurations. The
first level of configurations involves the style of the widget to be applied, the SVG file of
the panel to be used, as well as some optional visual properties (like z-index and position

CSS properties) and an array of pointer configurations (see Figure 32 for complete docu-
mentation of the constructor method).

The pointer configurations are handled by the GaugeSport widget and indicate some ba-
sic information about each pointer to be rendered (its filename, style identifier and visual
properties values), and the range of its rotations - using min degree and max degree pa-
rameters. The specification of the rotation range will allow the GaugeSport widget to handle
the calculations needed in order to render a pointer, simply by providing its new angle of

6.2. Implemented widgets 47

rotation. It also enables the use of a clockwise or counter-clockwise rotation of the pointer
(for counter-clockwise rotation, min degree and max degree parameters should swap their
values).

Once obtained a GaugeSport widget instance, it can be rendered by calling its render
method. This method receives an object with the pointer(s) identifier(s) and its(their) new
absolute values value(s).

As an example, consider the use of the GaugeSport instance to display a car’s tachometer,
with its pointer rotating clockwise and the car’s engine speed rotation ranging from 0 to 10

(x1000/min. rotations). In order to instantiate the widget, the range of the rotation angles
of the pointer should be discovered - see Figure 33.

Figure 33: Discovery of min and max parameters for the rotation of the referred tachometer.

The instantiation of the GaugeSport widget should configure a set of one pointer, with
maximum and minimum values of 0 and 10 and maximum degree and minimum degree
of 58

o and 306
o. This means that the render of the 0 value will match the minimum degree

rotation of 58
o and the render of the 10 value will match the maximum degree rotation of

306
o, hence rotating the pointer clockwise. The render method of the GaugeSport instance

can then be called with an argument specifying the new pointer value (a number between
its min (0) and max (10)) — see ?? for an instantiation example and its rendered result.

Widget style variations

As the standard among the SVGWidget, a set of predefined style variations were imple-
mented in order to allow the reuse of configurations as well as providing a collection of
out-of-the-box GaugeSport variations. These were chosen based on the most common com-
ponents usually found on car dashboards (Chapter 4).

The styles variations shipped with the GaugeSport are separated into five gauge groups:
tachometers, speedometers, remaining fuel, engine temperature displays and compasses.
The default style identifier used in GaugeSport instances is ”tachometer” (first gauge dis-

6.2. Implemented widgets 48

1 define(function (require , exports , module) {

2 "use strict";

3

4 // Require the GaugeSport module

5 require("widgets/car/GaugeSport");

6

7 function main() {

8 // After GaugeSport module was loaded , initialize it

9 var tachometer = new Pointer(

10 // id of the gauge element that will be created

11 ’tach’,

12 // coordinates object

13 { top: 100, left: 100, width: 300, height: 300},

14 // configuration object

15 {

16 panel_file: ’gauge-tachometer-panel-1.svg ’,

17 pointers: [

18 {

19 id: ’tachometer-pointer ’,

20 min: 0,

21 max: 10,

22 min_degree: 58,

23 max_degree: 306,

24 width:38 ,

25 top: 133,

26 left: 133

27 }

28]

29 }

30);

31

32 // Render GaugeSport instance with specific value

33 pointer.render (2);

34 }

35 });

Figure 34: GaugeSport instance with example configuration values and rendered value of 2.

played in Figure 35). The full catalog of the variations is presented in Figure 35, Figure 36,
Figure 37 and Figure 38.

Figure 35: The set of default variations for the tachometer type.

The styles variations were created by specifying a set of style identifiers and a configu-
rations object for each one. The mapping between the two was included in the getDefault-
StyleConfigs() method of the GaugeSport widget. This method is used in the constructor of
the widget, using the returned object of configurations to complement any missing config-
urations of the instance being created.

In order to use a specific style variation of the GaugeSport, the configurations provided to
the widget constructor when creating a new instance must include the ”style” parameter
with the desired style identifier as its value. Additional configurations can also be provided
in order to override some of the style values.

6.2. Implemented widgets 49

Figure 36: The set of default variations for the speedometer type.

Figure 37: The set of default variations for the remaining fuel, thermometer and pressure types.

Figure 38: The set of default variations for the compass type.

6.2. Implemented widgets 50

Implementation details

The GaugeSport widget uses the composition design pattern. Each GaugeSport instance
includes one or more Pointer instances in order to achieve the widget’s purpose. The use
of a separate widget to render the gauge’s pointers allowed a cleaner design and a more
obvious separation of concerns between the two widgets. The GaugeSport holds the control
of the gauge rendering as well as its inner logic, conveniently using the Pointer widget to
handle the pointers configurations and rendering.

One aspect given special attention when implementing the GaugeSport widget was the
ease of its usage. Beside allowing the extension of style configurations for a faster (”out-of-
the-box”) usage, the way the gauge was rendered was also taken into account.

The render method of GaugeSport includes the rendering of the gauge pointers, by calling
the Pointer render method which receives a specific angle of rotation to be applied over
the pointer element. In order to avoid sending the rotation angle of each pointer when
rendering a GaugeSport instance, additional pointer configurations were supported in its
constructor method so that the the instance could interpolate the correct angle of rotation
of its pointers using the formula:

rotationAngle(x) = minDegree +
x−min

max−min
× (maxDegree−minDegree)

, where x is the absolute value to be displayed, min and max are the pointer maximum and
minimum values (received in the pointer configurations passed to the widget constructor
- under min and max), and maxDegree and minDegree are the pointer maximum and
minimum degree values (also received in the pointer configurations passed to the widget
constructor - under max degree and min degree).

Interpolating the pointers angles of rotation allowed the render method of the GaugeSport
to be cleaner (Figure 39) and its use more comfortable. This is especially relevant when the
gauge is being rendered using values provided by the PVS model.

Figure 39: Documentation of the GaugeSport render method.

6.2. Implemented widgets 51

6.2.4 Clock widget

The Clock widget is a more specific GaugeSport, dedicated to the display of analog clocks.
Similarly to the GaugeSport, this widget is composed by a main SVG file used as the clock
background and a set of Pointer widget instances. This widget is usually used with two or
three pointers (hours, minutes and seconds pointers).

Clock instantiation and usage

The Clock widget can be programatically instantiated, using its constructor after its module
is required.

The instatiation of a Clock widget is very similar to the instantiation of a GaugeSport
widget, since the constructor also receives configurations involving the style of the widget
to be applied, the SVG file to be used, some optional visual properties (like z-index and
position CSS properties) and an array of pointer configurations (Figure 40 displays the
documentation of the widget constructor).

Figure 40: Documentation of the Clock widget constructor.

The pointers of the Clock widget should be identified with ”hours”, ”minutes” and ”sec-
onds”. These can be freely configured in its appearance but should have a specific config-

6.2. Implemented widgets 52

1 define(function (require , exports , module) {

2 "use strict";

3

4 // Require the Clock module

5 require("widgets/car/Clock");

6

7 function main() {

8 // After Clock module was loaded , initialize it

9 var clock = new Clock(

10 // id of the element that will be created

11 ’clock’,

12 // coordinates object

13 { top: 100, left: 100},

14 {

15 panel_file: ’gauge-clock-panel-2.svg ’,

16 pointers: [

17 {

18 id: ’seconds ’,

19 top: 68,

20 left: 119,

21 width: 12,

22 style: ’gauge-pointer-19 ’,

23 min: 0,

24 max: 59,

25 min_degree: 180,

26 max_degree: 540

27 },

28 {

29 id: ’minutes ’,

30 top: 109,

31 left: 120,

32 width: 11,

33 style: ’gauge-pointer-18 ’,

34 min: 0,

35 max: 59,

36 min_degree: 180,

37 max_degree: 540

38 },

39 {

40 id: ’hours ’,

41 top: 106,

42 left: 118,

43 width: 14,

44 height: 60,

45 style: ’gauge-pointer-17 ’,

46 min: 0,

47 max: 23,

48 min_degree: 180,

49 max_degree: 900

50 }

51]

52 }

53);

54

55 // Render Clock instance

56 pointer.render ();

57 }

58 });

Figure 41: Instantiation and rendering of the Clock widget with example configuration values.

uration for its rotation range. The pointers displaying seconds and minutes should hold
a minimum degree of 180

o and a maximum degree of 540
o (180

o+360
o). Hours pointers

should hold a minimum degree of 180
o and a maximum degree of 900

o (180
o+2*360

o).
After the call of the Clock constructor and once obtained a widget instance, its render()

method can be called. This method uses the current time to find the number of hours,
minutes and seconds that should be displayed. The Clock widget will then interpolate —
similarly to the GaugeSport widget — the correct rotation angle of each pointer and the
resulting value will be used as argument in the call of the render() method on each Pointer
instance.

An example of a complete Clock widget instantiation and rendering can be seen in ??.

6.2. Implemented widgets 53

Widget style variations

In order to provide a collection of out-of-the-box Clock variations, a set of different styles
were implemented following the standard among the SVGWidget widgets. The set of style
variations shipped with the Clock widget is shown in Figure 42.

Figure 42: The set of default variations for the Clock widget.

The styles variations were created by selecting a set of Clock configuration values - in-
cluding the name of the SVG file used to display the clock background and the involved
pointers. These configurations and the mapping between them and their style identifier are
included in the getDefaultStyleConfigs() method of the Clock widget. The widget constructor
will use this method to get default configuration values to be assigned to the instance being
created.

Using a specific style variation of the Clock widget requires specifying the ”style” pa-
rameter of the configurations with the desired style identifier. A style variation can be
used completly by a instance (without no further specific configuration), partially (provid-
ing overridding configuration values in the constructor call) or complemented (providing
additional configuration values in the constructor call).

Implementation details

The Clock widget was implemented as an extension of the GaugeSport widget, simplifying
the render() method with the implicit logic of a clock behaviour. Besides this difference, a
difference among the configurations can also be detected.

A Clock widget should only contain three pointers, and their configured rotation angles
range and values range take specific values (assumed in Clock widget as their default val-
ues). The minutes and seconds pointers should rotate between 180

o and 540
o. This happens

because the pointer is originally pointing down, with a rotation angle of 0. The minutes
and seconds pointers should consider the starting point of the rotation movement at the top
of the clock (at the 12 hours tick), hence the use of the 180

o as minimum angle. Both pointer
should display 0 to 59 units of time (seconds or minutes), completing a full rotation around
the clock (from the starting angle), hence 540

o (180
o+360

o). The same logic is applied to
the hours pointer, with the difference that this pointer should display 0 to 23 units (hours).

6.2. Implemented widgets 54

This pointer should complete two full rotations around the clock (from the 180
o starting

point), hence the configuration of 900
o as maximum rotation angle (180

o+2*360
o).

6.2.5 Gearbox widget

The Gearbox widget represents a gearbox car handler. This widget uses two main SVG files
- one to be used as the gearbox panel and the other to be used as the stick.

The widget allows the configuration of the SVG files used, understanding the movement
of the stick and its meaning using a set coordinates offsets provided as configuration. Since
it is possible to define the gears in the gearbox and the movement of the stick, the Gearbox
widget allows the representation of every type of gearbox — manual, semi-automatic and
automatic.

Gearbox instantiation and usage

The constructor of the Gearbox receives the identifier of the generated HTML element, a
coordinates object to position the element and a configuration objects. The configurations
include the name of the SVG file to be used as the gearbox panel, the name of the SVG file
to be used as shift representation, two objects with shift coordinates and additional styling
configurations (complete documentation of the Gearbox constructor in Figure 43. The shift
coordinates objects (one with left offset and another with top offset) have the possible shift
as properties (and its left or top offset as value), allowing the Gearbox instance to know
which gear is currently used.

Once a Gearbox instance is obtained, the render() method can be called receiving the shift
value to be displayed (can either be a character for the automatic instances, or an integer
for the manual models). The new stick position is obtained from the style configurations
and the shift is correctly positioned in the gearbox.

An example of instantiating and rendering of the Gearbox and its result is shown in ??.

Widget style variations

Following the standard of the SVGWidget, a set of predefined style variations were imple-
mented in order to examplify the different aspects and behaviours of the Gearbox widget.

The collection of styles variations for the Gearbox widget display semi-automatic and
manual gearboxes and is shown in Figure 45.

The configuration of each style variation was added to the getDefaultStyleConfigs method
of the Gearbox widget, so that it is returned by the method when the corresponding style
identifier is received as argument. This method is used in the constructor of the widget to
assign to the Gearbox instance being created the style configuration as its default.

6.2. Implemented widgets 55

Figure 43: Documentation of the Gearbox widget constructor.

Similarly to other SVGWidget widgets, to use a specific style variation of the Gearbox,
the configurations provided to the widget constructor when creating a new instance must
include the ”style” parameter with the desired style identifier as its value. The style config-
uration will be used a set of default values, so any configuration specified in the constructor
call of the instance will be respected and will override the style configuration value.

6.3. Implementation analysis 56

1 define(function (require , exports , module) {

2 "use strict";

3

4 // Require the Gearbox module

5 require("widgets/car/Gearbox");

6

7 function main() {

8 // After Gearbox module was loaded , initialize it

9 var gearbox = new Gearbox(

10 // id of the element that will be created

11 ’gear’,

12 // coordinates object

13 { top: 100, left: 100},

14 {

15 panel_file: ’gear-box-auto.svg ’,

16 stick: ’gear-stick.svg ’,

17 leftOffsets: {

18 ’D’: 0.345,

19 ’N’: 0.345,

20 ’R’: 0.345,

21 ’P’: 0.345

22 },

23 topOffsets: {

24 ’D’: 0.55,

25 ’N’: 0.4,

26 ’R’: 0.25,

27 ’P’: 0

28 }

29 }

30);

31

32 // Render Gearbox instance - providing a shift value

33 pointer.render(’P’);

34 }

35 });

Figure 44: Instantiation and rendering of the Gearbox widget with example configuration values.

Figure 45: The possible variations for the Gearbox widget - the first semi-automatic and the other
three manuals.

6.3 implementation analysis

The SVG-based widgets library fully covers the gauge and clock components described in
Chapter 4. GaugeSport enables the construction of speedometers, tachometers, remaning
fuel gauges, thermometers and compasses and Clock allows the rendering of analog clocks.
A Gearbox widget was also implemented, which aims to simulate the behaviour of a car
gear box.

Taking an approach based on SVG files has enabled the construction of a flexible widgets
library. The implemented widgets take advantage of configurations for the control logic of
their behaviour. However, these are not extensive and the possibilities of customisation are

6.4. Conclusions 57

endless, due to the delegation of layout concerns to SVG files. The need for changing the
source code in order to support every non standard gauge component was eliminated.

Nonetheless, this approach has an inherent disadvantage when compared with the d3-
based apporach, which is its dependency on external resources for the correct performance
of the widgets. While the widgets described in Chapter 5 were self-suficient (meaning
that its correct behaviour depended only on the correctness of the JavaScript libraries and
user-input configurations), the SVG-based library depends also on the correctness of SVG
files. This dependency can also be problematic if the files have inconsistencies or have an
excessive size, which can cause errors on the execution of the widgets or even performance
problems in the execution of PVSio-Web as a whole.

However, the additional dependency is to SVG files, which are relatively easy to manage
and easy to obtain. These files are broadly used in Web development, and there are a lot of
tools and support in the community to handle them. Additionally, the main advantage of
this approach is that actually using an external file onto which some of the responsability
can be delegated to allows the development of more clean, modular and easy to maintain
widgets.

6.4 conclusions

This chapter covered the implementation a library of SVG-based widgets for PVSio-Web.
These widgets require SVG files for their presentation, providing a higher level of flexibility
when compared to the d3-based widgets described on Chapter 5. The description of the
four widgets implemented (Pointer, GaugeSport, Clock and Gearbox) was provided, as well
as examples of instatiation and configurations of these widgets.

The results of the present implementation were analysed, and the next chapter will pro-
vide an overview of the construction of car dashboard prototypes using the widgets devel-
oped on this dissertation.

7

C A R D A S H B O A R D P R O T O T Y P E S

With the implementation of a widgets library (which includes the Gauge, CentralPanel,
Pointer, GaugeSport, Clock and Gearbox widgets), the construction of car dashboard proto-
types in PVSio-Web became possible.

As mentioned in Chapter 3, building PVSio-Web prototypes requires a PVS Model rep-
resenting the system state and interactions, a background image and widgets to build the
interface and to connect with the system model.

The car dashboard models that will be prototyped were presented and analyzed in sec-
tion 4.3. This chapter describes the PVS model used, as well as the construction of each
prototype.

7.1 pvs specification

As it was described in Chapter 3, every prototype developed in PVSio-Web requires a
formal theory that controls the logic of the prototype, providing variables that can be used
by the widgets. Since all car dashboard prototypes are based on the same system (car), a
single PVS specification was built and shared among all built prototypes.

A PVS specification consists of a collection of theories. Each theory consists of a sig-
nature for the model data type names, constants and the operations associated with the
signature. It is also possible to place constraints (assumptions) on the parameters of the
defined theories [Owre et al. (2001)].

The PVS model used consists of one single theory, which defines the following data types:

• Gear - the current gear of the car, and the list of its possible values.

• Speed - an object containing the current car speed and its unit. Its definition can be
seen on listing 7.1

• Rpm - a non-negative real value for the number of engine rotations (in thousands per
minute).

• Odo - the mileage of the car (in kilometers).

58

7.1. PVS specification 59

• Temp - an object containing the current environment temperature and its measure
units.

• Time - an object containing the current hours and minutes.

• Action - the set of possible actions on the model (idle, acc and brk).

Listing 7.1: Definition in PVS of the Speed data type.

1 MAX_SPEED: real = 220

2 Speed_Unit: TYPE = { kph , mph }

3 Speed_Val: TYPE = { x: real | x <= MAX_SPEED }

4 Speed: TYPE = [#

5 val: Speed_Val ,

6 units: Speed_Unit

7 #]

The state of the car at every instant is also a data type defined on the model, as an object
containing concrete values for each of the types previously defined. The initial state for the
car model was also specified.

Listing 7.2: The definition of the State type.

1 state: TYPE = [#

2 speed: Speed , % Km/h

3 gear: Gear ,

4 rpm: Rpm , % x1000/min

5 odo: Odo , % Km

6 temp: Temp ,

7 time: Time ,

8 action: Action

9 #]

10

11 %-- initial state

12 init(x: real): state = (#

13 speed := (# val:= IF x < MAX_SPEED THEN x ELSE MAX_SPEED ENDIF , units := kph #),

14 gear := N,

15 rpm := 0,

16 odo := 0,

17 temp := (# val := ENV_TEMP , units := C #),

18 time := get_current_time ,

19 action := idle

20 #)

The prototype is responsible for interacting with the PVS model. This interaction can
happen based on one of five actions exposed by the model:

7.2. Construction of Car Dashboard prototypes 60

• press accelerate: Called at the beginning of a continuous acceleration (as pressing the
key that simulates the acceleration of the prototype). It changes the current state of
the PVS model to acc.

• release accelerate: This action should be called once the acceleration process is ter-
minated (as releasing of the key that simulates the acceleration of the prototype). It
changes the current state of the PVS model to idle.

• press brake: Similarly to the press accelerate action, it changes the current state of
the PVS model to brk at the start of the braking process (pressing the brake key).

• release brake: Similarly to the release accelerate action, it changes the current state
of the PVS model to idle at the end of the braking process (releasing the brake key).

• tick: This action should be called once every second by the prototype. It intends
to simulate the continuous action of the model. This action takes into account the
current state of the prototype (one of idle, acc or brk) to change the current state:

– If the current state is idle, the friction process is simulated by slowly changing
variables of the model - such as slowly decreasing the speed variable.

– If the current state is acc, the acceleration process is simulated by changing
variables of the model - such as incrementing the speed variable.

– If the current state is brk, the braking process is simulated by changing variables
of the model - such as rapidly decrementing the speed variable.

The communication of the prototype to the PVS model is done via WebSockets1; the new
state is returned as a JSON (JavaScript Object Notation)2 object, and should be handled by
the prototype.

7.2 construction of car dashboard prototypes

Behaviour of the prototypes

The car dashboard prototypes should connect to the PVS model that represents the car
system, and support two main interactions:

• Pressing the up arrow key: to accelerate the movement of the car.

• Pressing the down arrow key: to brake the movement of the car.

1 MDN Webpage for WebSockets: https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
2 JSON Webpage: http://www.json.org/

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
http://www.json.org/

7.2. Construction of Car Dashboard prototypes 61

Usage of demonstrations

In order to prototype car dashboards with gauges, textual and icon display components
and clock components, both the official PVSio-Web widgets and the implemented widgets
library were used. Since the latter have not yet been incorporated into the PVSio-Web
toolkit, they can not be used in the PVSio-Web Prototype Builder environment. Instead,
in order to build a prototype using all available widgets, PVSio-Web demonstrations were
created.

Structure of the demonstrations

A PVSio-Web demonstration reproduces a behaviour of a prototype by programmatically
taking the steps for its creation. The main resources involved are a JavaScript file and an
HTML file (which includes the first).

The image to be used as background of the prototype should be included in the HTML
file. The JavaScript file is responsible for requiring the widgets, instantiating and rendering
them over the image. It is also responsible for enabling the comunication with the PVS
model by connecting to the backend server using WebSockets. For the purposes of this
dissertation, the communication logic with the PVS model is ommited.

The JavaScript involved in a demonstration starts by requiring all necessary modules (in-
cluding the PVSio-Web widget modules). Once all the modules are required, a set of sim-
ulation bootstrap definitions are made, including the definition of the onMessageReceived()
method. This method is invoked by PVSio-Web when the back-end sends state updates,
and it internally calls the render() method, sending the new state as argument. This causes
the re-rending of the prototype every time the state is updated.

The actual construction of the prototype interface is done by instantiating the required
widgets. The dashboard interaction is also defined, setting the press of the up key to
trigger the ”accelerate” function of the PVS model, and the down key to trigger the ”brake”
function of the PVS model. The render() method should be defined with the consequential
rendering of the widget instances inside the prototype with the appropriate arguments
(read from the received system state).

A representative example of the code structure of a prototype demonstration is shown in
Listing 7.3.

Listing 7.3: Structure of thedemonstration code used.
1 require(

2 [

3 // PVSio-web official widget modules

4 "widgets/Button",

5 "widgets/TouchscreenButton",

6 "widgets/TouchscreenDisplay",

7 "widgets/BasicDisplay",

8 "widgets/NumericDisplay",

9 "widgets/LED",

10

7.2. Construction of Car Dashboard prototypes 62

11 // Require the implemented PVSio-Web widget modules

12 // ex: "widgets/car/Gauge",

13

14 "widgets/ButtonActionsQueue",

15 "stateParser",

16 "PVSioWebClient"

17], function (

18 // PVSio-web official widgets

19 Button ,

20 TouchscreenButton ,

21 TouchscreenDisplay ,

22 BasicDisplay ,

23 NumericDisplay ,

24 LED ,

25

26 // Enable the implemented PVSio-Web widgets for use

27 // ex: Gauge ,

28

29 ButtonActionsQueue ,

30 stateParser ,

31 PVSioWebClient

32) {

33 "use strict";

34 var client = PVSioWebClient.getInstance ();

35

36 // -- SIMULATION BOOTSTRAP PROCESS --

37 // (...)

38

39 // -- DASHBOARD COMPONENTS --

40 // Instantiate the desired widgets

41 // ex: var dashboard = { speedometergauge: new Gauge((...)) };

42

43 // -- DASHBOARD INTERACTION --

44 // (...)

45

46 // -- DASHBOARD RENDERING --

47 function render(res) {

48 // Render the instantiated widgets

49 // ex: dashboard.speedometergauge.render(evaluate(res.speed.val));

50 }

51

52 // -- LISTENING TO MODEL CHANGES --

53 // (...)

54

55 client.connectToServer ();

56 }

57);

The built prototypes are described in the following sections. These adhere to the pre-
sented structure, using the same PVS file and behaviour (reacting to the press of up and
down keys to simulate accelarating and braking the car). Additionally, the demonstrations
created use the image of the model as the background of the prototype in order to achieve
more realistic results.

7.2.1 First car dashboard prototype

The first car dashboard prototyped is inspired in the model shown in Figure 46. The
analysis of the model revealed that the left area consists of speedometer and remaining fuel
gauges, and the right area consists of tachometer and thermometer gauges. The central

7.2. Construction of Car Dashboard prototypes 63

Figure 46: The first car dashboard model.

area is a variated set of textual and icons displays with the current speed and gear, a set of
temperature indicators, a digital clock and the mileage of the car.

This model was prototyped using the model image as background and using two wid-
gets - Gauge and CentralPanel. The CentralPanel is an obvious fit to the prototyping of the
dashboard central area, since the widget is dedicated to rendering a composition of textual
displays in a defined format. The Gauge widget was used to represent the gauge compo-
nents. However, due to its limitations, it was not possible to prototype the two overlapped
gauges. Overlapping two gauges would be possible with use of the SVG-based GaugeSport
widget, but it would require having the necessary SVG files to represent the model. As no
such files existed, the SVG-based widget was not used in this prototype.

The created prototype was implemented using the structure presented in the previous
section. The dashboard prototype instantiates two Gauge instances - a ”speedometer” and
a ”tachometer”, using the same ”classic” style but with different configurations (see List-
ing 7.4 for the instantiation of the Gauge widget), and a single CentralPanel instance.

Listing 7.4: Two instantiations of Gauge widget in first prototype.
1 var dashboard = {

2 speedometerGauge: new Gauge(

3 ’speedometer-gauge ’,

4 {

5 top: 251,

6 left: 53,

7 width: 360,

8 height: 360

9 },

10 {

11 style: ’classic ’,

12 max: 360,

13 majorTicks: 13,

14 min: 0,

15 size: 360,

16 redZones: [],

17 rotation: -45 ,

18 gap:90 ,

19 roundValueBeforeRender: true ,

20 parent: ’dashboard-container ’

21 }

22),

23

24 tachometerGauge: new Gauge(

25 ’tachometer-gauge ’,

26 {

7.2. Construction of Car Dashboard prototypes 64

27 top: 251,

28 left: 633,

29 width: 360,

30 height: 360

31 },

32 {

33 style: ’classic ’,

34 max: 9,

35 min: 0,

36 size: 360,

37 majorTicks: 10,

38 minorTicks: 4,

39 greenZones: [],

40 yellowZones: [],

41 redZones: [{ from: 7.01, to: 9 }],

42 rotation: -45 ,

43 parent: ’dashboard-container ’

44 }

45),

46 // (...)

47 };

The render() method of the prototype receives a new system state and renders the instan-
ciated widgets with the appropriate value (the ”speedometer” instance is rendered with
the car’s ”speed” value, the tachometer instance is rendered with the ”rpm” (rotations per
minute) value and the CentralPanel instance is rendered with the new car state). This guar-
antees that the dashboard elements correctly react to system updates, displaying the current
car state.

The final result is shown in Figure 47, where we can see the prototype in its initial state
and the prototype after accelarating the car.

7.2. Construction of Car Dashboard prototypes 65

Figure 47: First car dashboard prototype in its initial state (top) and after accelarating the car (bot-
tom).

7.2.2 Second car dashboard prototype

Figure 48: The second car dashboard model.

The second car dashboard prototypes the model shown in Figure 48. The analysis of the
model revealed that the left area consists of a speedometer gauge and an overlapped clock,
and the right area consists of a tachometer and a remaining fuel overlapped gauges.

7.2. Construction of Car Dashboard prototypes 66

To prototype this model a black image was set as background, and two widgets — Gauge-
Sport and Clock — were used. The use of the GaugeSport widget enabled the easy represen-
tation of the three gauges in the dashboard, and allowed the overlapping of two of them.

The second prototype was also implemented using a demonstration following the struc-
ture presented in the previous section. This prototype instantiates one Clock instance and
three GaugeSport instances.

The Clock instance of the prototype uses the ”clock2” style shipped with the widget,
which eliminates the need to provide a specific SVG file for the clock panel and additional
configurations for the clock layout, as well as the set of pointers configurations. The only
additional configuration provided for this Clock instance was the size of the pointers, which
were specified in order to adjust them to the case.

The GaugeSport instances also take advantages of the style variations shipped with the
widget. The remaining fuel gauge uses ”fuel2” style, the speedometer uses ”speedometer7”
and the tachometer uses ”tachometer4” style. Since the style variations used satified all
the visual requirements of the dashboard gauges, only the positioning of the pointers was
specified in the instances’ configurations.

To guarantee that the prototype correctly displays the current state of the car, the render()
method defined in the demonstration - called every time the system state is updated - in-
vokes the render() method of all widget instances. The Clock rendering updates the time be-
ing display using the current time, hence not needed any provided argument. The tachome-
ter and speedmeter GaugeSport instances are rendered receiving the new state ”rpm” and
”speed” values, correspondingly. The remaining fuel gauge, also a GaugeSport instance, re-
ceives a specific value of 100, since the data can not be retrieved from the PVS model in
use.

The final result of the prototype is displayed in Figure 49 – first in its initial state, and
then after accelarating the car.

7.2. Construction of Car Dashboard prototypes 67

Figure 49: Second car dashboard prototype in its initial state (top) and after accelarating the car
(bottom).

7.2.3 Third car dashboard prototype

Figure 50 displays the dashboard model used for the third car dashboard prototype. The
analysis of the model revealed the existence of two main elements — speedometer and
tachometer gauges —, positioned side by side, and a set of smaller gauges surrounding
them. These gauges represent the air, water and exhaust gas temperatures (EGT) and the
air pressure on the turbo charger (turbo).

In order to prototype the presented model, its image was applied as background and the
Gauge d3-based widget was used to represent all its elements.

The prototype was implemented using the established demonstration structure. This
prototype instantiates six Gauge instances - all using the ”grey” style but with different
configurations and positionings (Listing 7.5 shows an instantiation example).

7.2. Construction of Car Dashboard prototypes 68

Figure 50: The third car dashboard model.

Listing 7.5: Instantiation of one of the Gauge instance in third prototype.
1 var dashboard = {

2 waterTempGauge: new Gauge(

3 ’water-temp-gauge ’,

4 {

5 top: 1369,

6 left: 7,

7 width: 170,

8 height: 170

9 },

10 {

11 style: ’grey’,

12 size: 170,

13 minorTicks: 4,

14 max: 220,

15 min: 100,

16 initial: 100,

17 label: ’H20’,

18 majorTicks: 7,

19 greenZones: [],

20 yellowZones: [],

21 redZones: [{ from: 200.1, to: 219.9 }],

22 rotation: -45 ,

23 parent: ’dashboard-container ’

24 }

25),

26 // (...)

27 };

The dynamic representation of the car state in the prototype is achieved by making the
render() method of the demonstration re-render the widget instances with the new state val-
ues. However, since some of the displayed information is not included in the PVS model —
specifically the water temperature, EGT, turbo and air temperature — only the speedometer
and tachometer react to the system update. These Gauge instances receive as argument on
its render() method the car’s ”speed” and ”rpm” values, correspondingly.

The obtained prototype in its initial state is shown in Figure 51.

7.2. Construction of Car Dashboard prototypes 69

Figure 51: The third car dashboard prototype.

7.2.4 Fourth car dashboard prototype

Figure 52: The fourth car dashboard model.

The fourth car dashboard model used is shown in Figure 52. This model consists of four
gauge elements - a speedometer and tachometer gauges (larger and positioned at the center
of the dashboard) and a remaining fuel and thermometer gauges.

This model was prototyped using the presented model image as background and using
the Gauge d3-based widget. Similarly to the third dashboard prototype, it was possible to
represent all its dashboard elements with a single widget.

The demonstration implemented to create the prototype defines four Gauge instances,
all using the ”blue” style configuration (the instantiation of the ”remainingFuelGauge” in-
stance can be seen in Listing 7.6).

Listing 7.6: Instantiation of one of the Gauge instance in fourth prototype.
1 var dashboard = {

2 remainingFuelGauge: new Gauge(

3 ’remaining-fuel-gauge ’,

4 {

5 top: 2180,

6 left: 87,

7 width: 160,

8 height: 160

9 },

7.3. Conclusions 70

10 {

11 style: ’blue’,

12 size: 160,

13 gap: 270,

14 minorTicks: 4,

15 label: "Fuel",

16 max: 1,

17 min: 0,

18 initial: 0,

19 majorTicks: 3,

20 greenZones: [],

21 yellowZones: [],

22 redZones: [{ from: 0, to: 0.125 }],

23 rotation: 0,

24 parent: ’dashboard-container ’

25 }

26),

27 // (...)

28 };

Similarly to the other prototypes created, the fourth car dashboard prototype renders its
widget instances with the appropriate values to represent the system state. The rendering of
the prototype is executed every time the system is updated, and calls the render() method
of its Gauge instances. However, since the PVS model does not hold the car fuel and oil
temperature information (represented in the remaining fuel gauge and thermometer gauge),
only the Gauge instances representing the speedometer and tachometer actually receive the
new state values (using the state’s ”speed” and ”rpm” values).

The prototype created is displayed in its initial state in Figure 53.

Figure 53: The fourth car dashboard prototype.

7.3 conclusions

This chapter elaborated on how the dashboard models analysed in Chapter 4 were imple-
mented by taking advantage of both developed widgets library (d3-based and SVG-based).
The PVS model that controls the logic of the car engine was described, followed by the
architecture of demonstrations used along the prototype construction. The examples ap-
proached help future developers to understand how the widgets built can be put to practice,
by providing some visual examples of its instatiation.

7.3. Conclusions 71

The following chapter will discuss both approaches taken, providing an analysis of the
lessons learnt from the process of building car dashboard prototypes.

8

C O N C L U S I O N S A N D F U T U R E W O R K

The present chapter provides a comparative analysis on the adopted methodologies: d3-
based and SVG-based. This enables to draw some conclusions on the recommended usage
of each type of widget. Section 8.2 provides an assessment of the work done on this dis-
sertation, and the last section provides some pointers for futher improvement on the work
done.

8.1 comparison of the two adopted methodologies

The d3-based and SVG-based adopted methodologies for building widgets in PVSio-Web
share some similarities and differences. This section focuses on describing the differences
between the d3-based approach (which uses the d3-gauge-plus library) and the approach
based on SVG files when it comes to actually using the widgets for building gauges and
simulating car dashboards. This analysis will follow three criteria: the speed of development,
the capacity of customisation of the newly created variations, and the performance of the final
solution.

8.1.1 Speed of development

The first criteria of analysis adopted is the velocity of development of new widgets (and/or
new widget variations), and how quickly can one simulate a given car dashboard using the
widgets that were built.

The d3-based widgets allow users to quickly create different variations of widgets, pro-
vided that the every feature of the dashboard to be implemented is supported by the wid-
gets. However, if the widgets need to be adapted in order to support every feature in
the dashboard to be developed, then the development process using this type of widgets
becomes slower.

The SVG-based approach requires the existence of SVG files that are at least similar to
the provided dashboard layout. These files can either be bought from commercial sources,

72

8.1. Comparison of the two adopted methodologies 73

obtained from free sources, or developed using tools such as Inkscape1 or Adobe Illustra-
tor2.

8.1.2 Customisation

The second criteria adopted takes into account how easy it is to create widgets that have
differences from previous created variations.

The d3-based approach offers configurations for changing the final layout of the created
dashboard elements. However, features that have not yet been supported will imply a
change in the widget code. The impact on the code maintainability of these widgets has
been discussed in section 5.3.

The SVG-based approach takes this configuration weight from the widget code to the
SVG file itself – meaning that every difference from the norm will just imply a new SVG
file, and no change to the widget code.

8.1.3 Performance

The last criteria adopted takes into account the performance of the final solution.
The SVG-based approach implies more intensive CPU usage when compared to the d3-

based approach. This is even more increased if the used SVG files’ size is high (due to great
detail of customisation in the vectorial graphics). Since they are included in the DOM tree,
each DOM manipulation that is performed takes more time, due to the greater size of the
DOM tree.

This detected performance problem can be minimized with some simplifications to the
SVG files, mainly focused on the reduction of the files’ sizes – for example, replacing panels
which do not require interactivity with compressed raster graphics. However, a deeper
performance analysis would be advised, to get further comprehension of the reasons for
the performance deterioration, and what other measures should be applied.

d3-based widgets are less prone to performance issues. Since the gauge representation
is controlled by the d3-gauge-plus library, the impact of the generated gauges in the DOM
tree is minimal.

8.1.4 Comparison conclusions

All in all, each approach has its advantages and disadvantages. And since both methods
can be used together without any problem, the general recommendation of which approach

1 Inkscape Webpage: https://inkscape.org/en/
2 Adobe Illustrator Webpage: http://www.adobe.com/products/illustrator.html

https://inkscape.org/en/
http://www.adobe.com/products/illustrator.html

8.2. Conclusions 74

should be taken depends mostly on the complexity of the widgets that needs to be devel-
oped.

The d3-based approach is recommended for more standard variations which do not re-
quire special customisations, and the SVG-based approach is advised for widgets which
present substantial differences in the layout from the configurations that the first referred
method allows.

8.2 conclusions

The present dissertation approached the importance of prototyping as a way of accelerat-
ing the process of development of applications with excellent user interfaces. PVSio-Web
enables the application of formal methods when prototyping, providing a set of default
widgets for easing that purpose.

The main goal of this dissertation was to provide a valuable contribution to the widget
base of PVSio-Web, with a focus on the development of car dashboard prototypes. The end
result is a reusable widget library, with a reasonable set of variations ready to be used. It
should be mentioned that the widgets developed are not exclusive for the prototyping of
car dashboards, with its usage being encouraged on other projects where they might be
useful.

The demonstrations presented in Chapter 7 allow to take some insight into prototype con-
struction. The most relevant conclusion is that the implemented library is fully integrated
with the architecture of PVSio-Web, which encourages the possibility of being integrated in
the tool.

The developed widgets also extend the set of possibilities when prototyping using PVSio-
Web. The tool’s set of default widgets is very useful for the visualisation and representation
of textual information, but there was a lack of components that enabled the construction of
prototypes with a greater level of complexity. By giving the possibility of prototyping more
complex environments such as car dashboards, the possibility of prototyping different and
even more complex systems is also opened.

On the other side, although gauges constitute the majority of elements found in usual car
dashboards, there is a set of singular elements that were not considered in this dissertation.
Elements such as steering wheels/joysticks, navigation maps, or even board interactive
computers were not considered due to their complexity level. The composition of different
widgets, as it was shown with the CentralPanel widget might play an important role when
creating structures that simulate the referred components.

8.3. Future work 75

8.3 future work

As any other project, the present dissertation has several points of improvement for some-
one looking to continue the work done so far.

As it has been referred in section 8.1, the first major point of improvement is the per-
formance of the widgets that use SVG files – Clock, GaugeSport, Gearbox and Pointer. It is
very important to analyse what is the reason for the impact, and understand what can be
done to prevent this situation from happening. This analysis can be done recurring to the
Chrome Developer Tools, which provides several tools for auditing the performance of the
solution.

Another possible point for improvement would be extending the Pointer widget. This
widget is responsible for loading a SVG file and allowing to rotate it, but this behaviour
could be useful in other situations, and it would allow to keep the inclusion of SVG files
contained to only one widget.

Another possible improvement has to do with the testability of the widgets’ source code.
Currently, SVG files are required asynchronously – which means that a call-back function
is provided and called after the file has been successfully required. However, rendering the
widget is only possible once the SVG file is required, which makes testing the rendering of
the widget after the constructor is called impossible unless a timeout is set, which is not
a viable solution. The usage of promises3 would make it possible to test the rendering of
the widget without having to set timeouts – the constructor of the widgets would return a
Promise object on which methods could be chained synchronously.

Lastly, it is also relevant to refer that the inclusion of the libraries in the set of PVSio-
Web’s default widgets would enable the possibility of using them in the Prototype Builder
environment. This would allow the easier construction of prototypes through the usage of
a GUI, without the need of a programmed demonstration to use the widgets developed.

These are suggestions of points that could be improve the widgets library, aside from
actually complementing the library with components that could serve other purposes.

3 Promise/A+ standard: https://promisesaplus.com/

https://promisesaplus.com/

B I B L I O G R A P H Y

R. M. Baecker and W. A. . San Buxton. Readings in human-computer interaction: A multidisci-
plinary approach. Morgan Kaufmann Publishers, Mateo, CA, USA, 1987.

BS EN 62366:2008. Medical devices — Application of usability engineering to medical
devices. Standard, BSI - British Standards, London, UK, 2008.

D. Bäumer, W. Bischofberger, H. Lichter, and H. Züllighoven. User interface prototyp-
ing—concepts, tools, and experience. IEEE Computer Society, Washington, DC, USA, 1996.

James H. Carlisle. Why human-computer interaction doesn’t work like human dialogue.
October 1975.

D. Flanagan. JavaScript: The Definitive Guide, Sixth Edition. O’Reilly Media, Inc., 1005 Graven-
stein Highway North, Sebastopol, CA 95472, 2011.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, 1995.

T. T. Hewett, R. Baecker, Carey Card, S., J. T., Gasen, M. Mantei, and W. Verplank. ACM
SIGCHI Curricula for Human-Computer Interaction. ACM, New York, NY, USA, 1992.

ISO 9241-11:1998. Ergonomic requirements for office work with visual display terminals
(VDTs). Standard, International Organization for Standardization, 1998.

P. W. Jordan. Human factors for pleasure in product use (Vol. 29). Applied Ergonomics, 1998.

P. Masci, P. Oladimeji, Y. Zhang, P. Jones, P. Curzon, and H. Thimblebly. PVSio-web 2.0:
Joining PVS to HCI. Proceedings of 27th International Conference on Computer Aided
Verification (CAV2015), California, USA, 2015.

César A. Muñoz. Rapid prototyping in pvs. Technical report, National Aeronautics and
Space Administration, Langley Research Center Hampton, Virginia 23681-2199, Novem-
ber 2003.

J. Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc, San Francisco, CA, USA,
1993.

P. Oladimeji, P. Masci, P. Curzon, and H. Thimblebly. PVSio-web: a tool for rapid prototyping
device user interfaces in PVS. Proceedings of the 5th International Workshop on Formal
Methods for Interactive Systems (FMIS 2013), London, UK, 2013.

76

Bibliography 77

S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert. PVS Language Reference. SRI
International, 2001.

Sam Owre, S. Rajan, John M. Rushby, Natarajan Shankar, and Mandayam K. Srivas. Pvs:
Combining specification, proof checking, and model checking. In Proceedings of the 8th
International Conference on Computer Aided Verification, CAV ’96, pages 411–414, London,
UK, UK, 1996. Springer-Verlag. ISBN 3-540-61474-5. URL http://dl.acm.org/citation.

cfm?id=647765.735995.

http://dl.acm.org/citation.cfm?id=647765.735995
http://dl.acm.org/citation.cfm?id=647765.735995

	1 Introduction
	1.1 Context
	1.2 Goals
	1.3 Structure of the document

	2 State of the art
	2.1 Human-Computer Interaction
	2.2 Usability Engineering Process
	2.3 Prototyping
	2.4 UI Prototyping tools
	2.5 Technologies
	2.6 Conclusions

	3 PVSio-Web
	3.1 Concepts and architecture
	3.2 Building prototypes in PVSio-Web
	3.3 Projects in PVSio-Web
	3.4 PVSio-Web and the Open-source initiative
	3.5 Getting started with PVSio-Web
	3.6 Conclusions

	4 Car dashboards analysis
	4.1 Car dashboards
	4.2 Car dashboards validation
	4.3 Selection and individual analysis of car dashboard models
	4.4 Analysis results
	4.5 Conclusions

	5 PVSio-Web d3-based Widgets
	5.1 Use of d3.js and d3-gauge-plus.js
	5.2 Implemented widgets
	5.2.1 Gauge widget
	5.2.2 CentralPanel widget

	5.3 Implementation analysis
	5.4 Conclusions

	6 PVSio-Web SVG-based Widgets
	6.1 Use of SVG
	6.2 Implemented widgets
	6.2.1 SVGWidget
	6.2.2 Pointer widget
	6.2.3 GaugeSport widget
	6.2.4 Clock widget
	6.2.5 Gearbox widget

	6.3 Implementation analysis
	6.4 Conclusions

	7 Car dashboard prototypes
	7.1 PVS specification
	7.2 Construction of Car Dashboard prototypes
	7.2.1 First car dashboard prototype
	7.2.2 Second car dashboard prototype
	7.2.3 Third car dashboard prototype
	7.2.4 Fourth car dashboard prototype

	7.3 Conclusions

	8 Conclusions and future work
	8.1 Comparison of the two adopted methodologies
	8.1.1 Speed of development
	8.1.2 Customisation
	8.1.3 Performance
	8.1.4 Comparison conclusions

	8.2 Conclusions
	8.3 Future work

