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Introduction 

Corrosion in drinking water distribution system is a costly phenomenon, mainly due to the 

replacement of altered pipes. Bio..corrosion is also a problem in term of public health because of the 

suspected protection brought by the corroded surface to potentially harmful microorganisms, 

especially bacteria. The protection effect of corrosion is particularly relevant in the presence of 

disinfectant. In drinking water are present the conditions leading to microbialy induced corrosion: 

. ~ bacteria and metal-containing substrata joined closely together as biofilm attached to distribution 

• system pipe walls. Despite the economical interest of this subject and the need of understanding of 

the phenomenon, the relationships between biofilm and corrosion in drinking water distribution 

systems are largely unknown. Most of the published studies on bio-corrosion and disinfection are 

empirical from observations made on parts of pipe of distribution networks. This situation is 

.. 
· probably due to the difficulty to distingilish and control the different parameters of this phenomenon: 

the surface area, the fixed and suspended cortosion products, the bacterial populations fixed and 

suspended, and the relationships existing between these parameters and between each of them and 

the added oxidant. Our research project therefore focuses on the corrosion ·of steel in conditions 

relevant to drinking water distribution system. Using a laboratory reactor allowing us to form and to 

sample biofilms on different surfaces with actual tap water bacterial populations under turbulent flow 

• regime, we studied the biofilm-corrosion relationships and the disinfection of biofilm grown in 

corroded environment. This paper presents results obtained on these two aspects following a 

presentation of the corrosion phenomenon in drinking water distribution systems and the reactor we 

used to study it. 

~ . 

Biofilm. and Biocorrosion 

Microbialy influenced corrosion (MIC) is recognised as an important aggravating factor in 

the corrosion of metallic pipes. Biofilms are of central importance in this phenomenon by modifying 

electrochemical processes, notably through tifir heterogeneity both in the horizontal dimension 

(patchiness) and in the vertical one (existence pf aerobic and anaerobic zones) and their metabolic 

activities. Horizontal and vertical heterogeneity is one of the features of biofilms on drinking water 

distribution pipe walls. In actual distribution rtems as they could have been observed, biofilms 
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appeared indeed constituted of microcolonies sparsely distributed on pipe wall surfaces (Ridgway 

and Olson, 1981; Sly et al., 1988). The thickness of such a biofilm equals the height of the bacterial 

colonies, in the order of a few tens of micrometers. However, a gradient of oxygen can form between 

the bulk-colony interface and the base of the colony, i.e. the substratum surface (Patel and Bott, 

1991; Xu et al, 1998). This organisation leads to the formation of differential aeration cells between 

the base of the bacterial colonies where anodes develop and the surrounding oxygenated non­

colonised surface becom~s cathodic (Little et al~ 1990). The anodic and cathodic reactions are as 

follows: 

Anodic 

Cathodic 

- Fe-+ Fe2+ + 2e· (1) 

(2) 

Then, hydrolysis of the ferrous ions takes place (eq. 3) coupled with a cathodic reaction producing 

H2 (eq. 4). The acidification of the anodic zone enhances the corrosion. 

Hydrolysis Fe2+ + 2H20 -+ Fe(OH)2 + 2W (3) 

Cathodic 2W + 2e·-+ 2H-+ H2 (4) 

In presence of free chlorine, ferrous iron can also ~e oxidised into ferric ions: 

2Fe2+ + HOCl + W-+ 2Fe3+ +Cr+ H20 (5) 

Ferrous and ferric hydroxides are bound to the extracellular polymeric substances (EPS) constitutive 

of the biofilm matrix and lead to the formation of others concentration cells that participate in the 

corrosion process. Since the water bulk concentration of oxygen is an essential parameter in the 

corrosion process and particularly its diffusion rate to the surface, it may be useful to note that in 

distribution systems the flow regime is not" constant. Variations of flow occur along the day with 

peaks of consumption in the early morning and in the evening, and also depending on the location 

and diameter of the pipes in which the water is transported. The diffusion of oxygen towards the pipe· 

wall is radically different in turbulent flow regime and in laminar flow regime or stagnant flow (de 

Beer et al, 1996), and then is the availability of oxygen for cathodic depolarization. On a 

bacteriological point of view, it has been demonstrated that water stagnation in segments of the 

distribution system (dead-ends) has profound and adverse impacts on the quality of potable water 

(LeChevallier et al, 1987). 

The formation of anaerobic zones underneath the colonies is due to the oxygen consumption 

v • 

v • 

v • 

by the active aerobic bacteria forming the biofilm of this oxygenated medium. The presence of 

anaerobic zones in the biofilm procures the right conditions for the proliferation of anaerobic bacteria 

(Hamilton, 1995; Lee et aL, 1995). Aerobic and facultative anaerobic bacteria can produce metabolic 

compounds suitable as nutrients for the strict anaerobic bacteria and create physiochemical 

conditions necessary to their growth (Hamilton, 1995). They also can produce organic acids that u 
promote corrosion. The bacteria of choice in the field of biocorrosion are strict anaerobic bacteria • • 
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capable of reducing sulphate and producing sulphides which greatly stimulate corrosion, such as 
v 

• Desulfovibrio spp (Hamilton, 1995). The SRB have been shown to have an imi)ortant effect on the 

.._j •• 
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corrosion phenomenon, particularly in process water (Weber and Knopf, 1996). However, if the 

development of microbially influenced corrosion by sulphate reducing bacteria is not in opposition 

with an aerobic environment such as driD.king watert as explained above, we do not know any 

example of sulphate reducing bacteria isolated from this environment. Percival et al (1998) failed to . 
. . 

identify SRBs on stainless steel ·coupons placed for 12 months in mains water. That does not mean 

however that there are not present. It is very difficult to sample actual distribution system biofilm in 

the conditions allowing for the isolation of SRB, . already delicate to cultivate at the laboratory. 

Perhaps the low concentration of sulphate in potable water does not create a particularly suitable 

medium for the growth of SRBs either. Whatsoever, sulphate reducing bacteria and other anaerobic 

are not necessary for biocorrosion to happen and all types of bacteria able to grow biofilm can affect 

electrochemical processes . 

It is not known what is the impact of corrosion of drinking water distribution system pipes on 

the bacterial populations present there and the precise influence of this specific type of biofilm on 

corrosion. Microbially influenced corrosion is not a one-way process; bacterial films affect 

corrosion, as seen above, and protection of metal from corrosion under certain conditions have been 

reported (Pedersen and Hermansson, 1991). Corrosion affects disinfection efficacy and may generate 

physical shelter to bacteria (LeChevallier et al., 1987; LeChevallier et al., 1993). A simple survey of 

the tap water quality of an old district of the city of Braga, Portugal, showed the presence of total 

iron in the bulk water phase at concentrations between 0 and 6 mg L"1
• The concentration of residual 

chlorine was negatively related to this of iron (figure 1). Gauthier et al (1997) showed that the iron 

v content of the particulate matter of a distribution system was increasing during the transport in 

• pipeworks probably as a consequence of corrosion inside the system. 
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Figure 1: Total iron and free chlorine concentrations versus residence time in bulk water of an old 

district of the city of Braga, Portugal. 

Laboratory system to study biocorrosion in DWDS conditions 

The biofilm found on the drinking water distribution system pipe walls is formed with the 

bacteria released from the treatment plant and from the erosion and sloughing of bio~tlm developing 

in other locations on the pipes (Block et al., 1993a; Laurent et al., 1993; LeChevallier ei al., 1987; 

Levi et Joret, 1990; Servais et al., 1992b; Dunkelberger et Carey, 1991; Mathieu et al., 1993). These 

bacteria were able to survive the disinfection applied at the treatment plant and eventually in the 

distribution system itself, and to grow in an oligotrophic medium. It has been shown that biofilms are 

developing even in so-called biological stable water, i.e. in the presence of very low load of 

biodegradable organic matter (Sibille et al., 1997). The pressure brought by the harsh conditions of 

the medium selects for particularly resistant bacteria compared to laboratory kept bacteria. In order 

to work in conditions relevant to drinking water distribution systems, it was thus important to grow 

biofilms with tap water bacteria. We therefore designed a laboratory reactor plugged on tap and 

allowing us to study biofilm-corrosion relationships while controlling important parameters such as 

hydrodynamic, nutrient load, presence/absence of disinfectant, temperature, pH, etc .... The 

laboratory reactor presented in Figure 2 is described elsewhere (Morin and Camper, 1997; Morin et 

al, 1996) for its first part upstream the biofilm apparatus. It allows for the distribution of drinking 

water without chlorine residual and with a minimum concentration of utilisable organic carbon and 

other nutrients. The apparatus to grow biofilms is made of two flow cells in serie in a recirculation 

loop. This is a perfectly mixed continuously fed reactor with a residence time of two hours. Ten 

removable coupons disposed on the flow cells are used to develop biofilms on diverse material 

without emptying the reactor. The temperature is maintained at 23°C. 

... . 

v • 

v • 

v • 

v 

•• 



.. 

~ .. 
. . . 

v • 

v • 

-· ·• 

col 

Nutrients 

Recirculation 
reservoir 

Flow cells 

Coupon · 

Figure 2: Laboratory system used to grow biofilm under conditions relevant to drinking water 

distribution systems. 

We used the laboratory scale biofilm reactor to study the crossed influences existing between 

biofilm and corrosion, and between these two components . and a strong and widely used oxidant in 

drinking water, chlorine. Two reactors were run in parallel with coupons of different nature in each: 

mild steel and metacrylate. Because biofilm reaches pseudo-steady state after six days of run 

(continuous feeding of nutrients and tap water, recirculation at 0:3 m s·1, turbulent flow), each 

experiment started after seven days. Biofilm was treated by scraping the coupons and 

homogenisation, and analysed for heterotrophic plate count (HPC) bacteria numerated as unit 

forming colony (UFC), total bacteria through DAPI staining and epifluorescence microscopy and 

total iron (standard methods) and weight loss. 

Bioftlm-corrosion relationships 

When mild steel coupons were placed in the biofilm reactor and this one run for a week 

minimum, important corrosion appeared at their surface under the form of nodules. It covered the 

major part of the surface area, leaving apparently untouched locations, and presented the specific 

orange colour of ferric hydroxide. However, dark corrosion layer(s), supposedly of magnetite and 

v ferrous hydroxide, appeared when scraped. The biofilm scraped from the metacrylate and mild steel 

• coupon surface was composed of a mix of HPC bacteria from the tap water. No statistical differences 
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were found between the densities of the biofilms grown on the two surfaces, despite the presence of 

larger surface area developed in the case of mild steel coupon due to the corrosion. The size of the 

bacteria measured from microscope photographs after DAPI staining was greater for the bacteria 

composing the biofilm grown on metacrylate than for those from the mild steel coupons. This 

difference in size for bacterial populations that are coming from the same source is an indication on 

the physiological state of the microorganisms and consequently on the environmental conditions they 
. . 

are living in. Under stress, bacterial cells undergo physical and physiological changes such as 

alteration of the membrane composition and size decrease, among many others. This participates to a 

survival strategy allowing-the bacteria to grow and multiply in stressing environments such as ... 

drinking water (Morin et al, 1997). In the conditions of our experiments, these results means that the 

bacteria growing in biofilm on a corroded surface were more stressed than if developing on 

metacrylate. Another indicator, the viability of the bacteria (UFC cm·2 * 100 I total bacteria cm-2), for 

the biofilm populations grown on the two surface areas showed also that the bacteria associated with 

the metallic corrosion were not as healthy as those developing on metacrylate. That may be due to 

negative chemical interactions of the corrosion products with the attached bacteria or/and ~o the 

presence of these bacteria under the corrosion layers that would act like a diffusion barrier for the 

oxygen, the nutrients and the bacterial metabolites. Under the microscope the surface of the 

corrosion appeared to support bacteria, singly or in microcolonies (Figure 4) as already described for 

an actual drinking water distribution system (Ridgway and Olson, 1981; Siy et al, 1988). Percival et 

al (1998) showed that the bacteria growing on stainless steel coupons in mains water were associated 

with crevices and embedded in EPS. Disinfecting the coupon with sodium hypochlorite (30 mg free 

chlorine per litre for 10 minutes) showed very little detachment effect on the bacterial population 

attached on a corroded coupon. After one hour contact time almost all the bacteria were gone. 

Almost all the bacteria, but not all. This illustrates the difficulty to control biofilm on such a surface 

(Chen et al., 1993). After application of the disinfectant and scraping of the coupon we numerated 

· 7x 106 bacterial cells per cm2 within the corroded layers. These results show that a large number of 

the bacteria are located in or under the corrosion layers that may be in that case a diffusion barrier as 

explained above. On the other hand, the corrosion provides bacteria with physical protection, 

particularly against chemical disinfection. This could lead to public health related problems if the 

results of LeChevallier et al. ( 1987), who found that coliform bacteria where preferentially situated 

in the ferrous tubercles of the studied drinking water distribution network, were to be generalised. 

Percival et al ( 1998) pointed out the potential public health threat represented by the opportunistic 

pathogens isolated form mains water biofilm. The protection brought to the bacteria by the corrosion 

layers obviously plays an important role in the biofilm resistance to disinfection (LeChevallicr et al, 

1987). 
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Biocorrosion and chlorine disinfection 

The problem of disinfection experiments of bacterial population often resides in the 

disinfectant demand of the system that consumes the chemical before it can reach and act against its 

target, the bacteria. This problem is particularly true for chlorine due to its very high reactivity that 

makes it oxidis~ more or less everything it is 1 contact with. C~nsumption of the oxidant is the fact 

of the bulk water organic and inorganic particplate and dissolved matter, including bacteria, and ·of 

the pipe wall surface elements, such as the substratum material, the biofilm and associated 

particulate, the corrosion products (Chen et af, 1993). It was therefore important to keep that- into 

account while studying the disinfection of our corroded system. We performed disinfection with 

sodium hypochlorite at residual concentrations up to 0.8 mg L.1 (free chlorine) in continuous for 48 

hours. The residual chlorine concentrations used in these experiments are comparable to those 

encountered in actual distribution systems (Do~ et al, 1994). The chlorine demand of the corroded 

reactor was important and represented approximately 90% of the inlet chlorine dose, to compare with 

the 15-30% of the inlet 

chlorine dose consumed in the non-corroded reactor. No effect of the added free chlorine was 

measured on the rate of corrosion as monitored by weight loss and total iron concentration in the 

bulk phase. Frateur et al (1999) showed also no involvement of free chlorine in the cathodic process 

coupled with iron dissolution on cast iron pipe, but only in the oxidant demand. After the first few 

hours of chlorination the initial chlorine demand of the system was satisfied and did not represent a 

negative parameter of the disinfection efficacy. It is worth noticing that the chlorine demand of the 

system implied the oxidation of some part of the biofilm and thus participated in the overall 

41t disinfection process. 

.. 
. . 

The results of the analysis of biofilm for total bacteria and UFC counts presented in Figure 6 

for two free chlorine concentrations illustrate the protection brought to the bacteria by the presence 

of corrosion compared to the non-corroded reactor . 
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Figure 6: Results of the analysis of biofilm for total bacteria and CFU counts for 0.25 and 0.40 mgL· 
1 free chlorine concentrations applied for two days. Plain lines represent the results for the 

biofilm grown on mild steel coupons and dashed lines for the biofilm grown on metacrylate 

coupons. 

The first point to stress from the results presented on Figure 6 is that, whatever the surface 

characteristics, it is hardly possible to remove biofilm from the drinking water distribution system 

pipe walls by chemical means at the concentrations allowed by the legislation. Numerous works 

demonstrated that difficulty (LeChevallier et al, 1987; Mathieu et al, 1992 & 1993; Neden et al, 

1992). The efficacy of the disinfection decreases when the bacteria have the possibility to be 

physically protected on the surface through the production of extra cellular polymer and the presence 

of roughness, cavities, etc . .. and when the chlorine demand of the environment is important. We can 

clearly notice the different impact of sodium hypochlorite treatment on the viability (Fig. 6A & 6B) 

and on the detachment (Fig. 6C & 60) of the biofilms developed on the metal coupons or on the inert 

coupons. The effect of residual free chlorine is minimal in the case of corroded surface and 

pronounced for bacterial populations grown on metacrylate. Decay and detachment rates as 

calculated from UFC and total bacteria results, respectively, are presented in Table 1. 
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Mild Steel Mild Steel Control Control 

[chlor.]r = 0.25 [chlor.]r = 0.40 [chlor.]r = o.is [chlor.]r = 0.40 

Decay(%) 89.8 73.8 99.3 99.5 

Decay rate (day.1) 1.83 0.58 2.20 1.14 

· Detachment(%) 23.3 41.8 96.8 98.3 

Detachment rate (day91
) 0.057 0.21 0.5 2.21 

Table 1: Decay and detachment rates calculated from UFC and total bacteria results for the reactor 

biofilms grown on mild steel and on metacrylate (control) coupons. [chlor.]r = residual 

chlorine concentration in the reactor effluent in mg L-1• 

The bactericide effect of the disinfectant is more important (99% versus less than 90%) and 

slightly faster on metacrylate attached bacteria than on corroded coupon associated bacteria. 

However, the biofilm on the steel coupons did not seem to be as protected when we look at its 

viability rather than at its detachment, i.e. the effect of the disinfectant o_n the viability of the bacteria 

is more pronounced. That does not mean, however, that the bacteria are dead. They can be only 

slightly injured, enough to forbid them to multiply on agar medium but not to grow in their original 

medium (Camper and McFeters, 1979; Walsh and Bissonnette, 1989). The detachment rate due to 

the application of chlorine in the reactors was ten times larger for the biofilm on the metacrylate 

surface than for the attached bacterial population on the metal coupon. As it appears, any detachment 

of bacteria from the metal coupons is not even evident. The apparent decrease of bacterial numbers 

on the surface may be an artefact due to the chlorination. Saby et al ( 1997) showed that the presence 

9 of free chlorine was sensibly decreasing the staining of bacteria with DAPI compared to a non-

chlorinated suspension. The blue colour of the stained bacteria was fading and the cells increasingly 

more difficult to see (Saby et al, 1 m). In our experiments, the bacteria associated with the corrosion 

layers on the metal ocupons were already particularly small even before disinfection. It is therefore 

likely that a certain percentage of the total bacteria were not numerated. Chen et al (1993) 

experienced a larger detachment of biofilm from mild steel slides in an annular reactor treated with 4 

mg L-1 monochloramine for one hour. This may be due to the growth conditions of the bacteria and 

the structure of the developed mono-specie bioftlm. Another reason could be the supposed better 

detachment effect of monochloramine on biqfilm compared to chlorine (Griebe et al, 1993; 

LeChevallier et al, 1998). In the contrary, Morin and Camper (1997) found that chlorine was more 

.J efficient in killing and detaching biofilm bacteria in simulated drinking water distribution systems. 

9 From these results and the experiment related above (Biofilm - corrosion relationships) that showed 

---- ·-- --- - -- ·---- -.. 
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the important resistance of biofilm bacteria attached to the external corroded layer surface, we can 

hypothesise that only these bacteria are reached by the disinfectant. The difference between the two V • types of biofilms in their response to the chlorination is more important in term of detachment (total 

bacteria results) than in term of death (UFC results). For that reason, one can imagine that when the 

chlorine CxT (concentration by time) is high enough it can affect the viability of the bacteria 

sheltered in the corroded layers without detaching the biofilm grown there. It is known that the 
. . 

disinfec.tion (decrease of viable bacteria numbC~) of biofilm bacteria is possible without detaching 

them from the surface (Srinivasan et al, 1995). 

Conclusions 

Drinking water distribution networks are complex systems in which numerous parameters are 

involved, most of them hardly controllable. Among those parameters, disinfectant, biofilm and 

corrosion are directly linked to the quality and the quantity of the water being distributed to the tap . 

The interactions between them are little known. This paper presented some results related to this 

problem. Conclusions are as follows: 

• Biofilm grown under conditions relevant to drinking water distribution systems in presence of 

solid corrosion products at the surface of mild steel coupons appear to develop mainly under 

or within the layers of corrosion. 

• Evidences of a detrimental effect of corrosion products on the bacterial populations have 

been found. Bacteria grown in these conditions are smaller and not growing as well on solid 

agar medium as those developed on metacrylate coupons. 

• The presence of corrosion products leads to a high chlorine demand that participates in the 

noted little efficiency of sodium hypochlorite against the biofilm. 

v • 

v e 

v 
e. 

:-

. ' 



.. 

: 

• ·•. • 

References 

1. J-C. Block, K. Haudidier, J. L. Paquin, J. Miazga, and Y. Levi. 1993. Biofouling 6: 333-343. 
2: A.K. Camper and G.A. McFeters. Appl. Environ. Microbiol. 1919, 37, 3: 633-641. 
3. C-1 Chen, T. Griebe, R. Srinivasan, and P. Stewart. Biofouling, 1993, 7: 241-251. 
4. D. De Beer, P. Stoodley, and Z. Lewandowski. Wat. Res., 1996, 30, 11: 2761-2765. 
5. R. M. Donlan, and W. 0. Pipes. J. Am. Wat. Works Assoc., 1988, 80, 11: 70-76. 
6. G. W. Dunkelberger, and E. Carey. '3acterial inoculation of w_ater distribution systems. In 

Proceedings of the Am. Wat. Works A$oc. Water Quality Technology Conference, Orlando, Fl. 
p. 811-821, 1991. 

7. Frateur, C. Deslouis, L. Kiene, Y. Levi, and B. Tribollet. Wat. Res.~ 1999, 33, 8: 1781-1790. 
8. V. Gauthier, J-M. Portal, C. Rosin, J-C. Block, J. Cavard, and D. Gate!. How good are water 

distribution systems for transport of particulate matter? Proceed. Water Qual. Technol. Conf. Of 
Am. Water Works Assoc., Denver, Co, USA, 1997. 

9. T. Griebe, C_l Chen, R. Srinivasan, and P. Stewart. Analysis of biofilm disinfection by 
monochloramine and free chlorine. In G.G. Geesey, Z. Lewandowski, and H-C. Flemming (eds.), 
Biofouling and biocorrosion in industrial water systems, Lewis Publishers, Boca Raton, Fl., 
USA, p. 151-161. 

10. W. A. Hamilton. Biofilms and microbially influenced corrosion. In H. M. Lappin-Scott and J. W. 
Costerton (eds.) Microbial Biofilms, 1995, Cambridge University press. 

11. P. Laurent, P. Servais, and G. Randon. Wat. Supply, 1993, 11, 3/4: 387-398. 
12. M. W. LeChevallier, C.D. Lowry, R. G. Lee, and D.L. Gibbon. J. Am. Wat. Works. Assoc., 1993, 

85, 7:111-123. 
13. M. W. LeChevallier, C. D. Cawthon, and R. G. Lee. Appl. EnviroTJ. Microbiol., 1988, 54, 10: 

2492-2499. 
14. M. W. LeChevallier, T. M. Babcock, and R. G. Lee. Appl. Environ. Microbiol., 1987, .53, 12: 

2714-2724. 
15. W. Lee, Z. Lewandowski, P.H. Nielsen, and W. A. Hamilton. Biofouling, 1995, 8: 165-194. 
16. Y. Levi, and J. C. Joret. Importance of bioeliminable dissolved organic carbon (BDOC) control 

in strategies for maintaining the quality of drinking water during distribution. In Proceedings of 
the Am. Wat. Works Assoc. Water Quality Technology Conference, San Diego, Ca. p. 1267-
1279, 1990. 

17. B. J. Little, P.A. Wagner, W.G. Characklis, and W. Lee. Microbial corrosion. In Biofilms, W. G. 
Characklis and K. C. Marshall (ed.), Wiley-interscience Publication, 1990, 16: 635-670. 

18. L. Mathieu, J.C. Block, M. Outang, J. Maillard, and D. J. Reasoner. Water Supply, 1993, 11, 3/4: 
365-376. 

19. L. Mathieu, J.L. Paquin, J.C. Block, G. Randon, J. Maillard, and D. J. Reasoner. Revue des 
Sciences de l'Eau. 1992,5 (N° special): 91-112. 

20. P. Morin, and A. K. Camper. Wat. Res., 1997, 31, 3: 399-410. 
21. P. Morin, A. Camper, W. Jones, D. Gatel, and I. C. Goldman. Appl. Environ. Microbiol., 1996, 

62,12:4428-4432. . 
22. P. Morin, V. Gauthier, S. Saby, and J-C. Block. Bacterial resistance to chlorine through 

attachment to particles and pipe surfaces in drinking water distribution systems, In Proc. Bio.films 
in aquatic systems, Int. Conf. of the Royal Soc. of Chem., UK, 14-16 April 1997. 

23. D. G. Neden, R.J. Jones, I. R. Smith, G. I. K.irmeyer, and G. W. Foust. J. Am. Wat. Works Assoc. 
1992, 84, 7: 80-88. 

24. T. D. Patel, and T. R. Bott. J. Chem. Tech. Biotechnol., 1991, 52: 187-199. 
25. S. L. Percival, J. S. Knapp, R. Edyvean, and D.S. Wales. Wat. Res., 1998, 32, 1: 243-253. 
26. Pedersen, and M. Hermassonn. Biofouling, 1991, 3: 1-11. 
27. H.F. Ridgway, and B. H. Olson.Appl. Environ. Microbiol.,1981, 41, 1: 274-287. 
28. S. Saby, I. Sibille, L. Mathieu, J-L. Paquin, and J-C. Block Appl. Environ. Microbiol. 1995, 63, 

4: 1564-1569 . 

·------- ---- -


