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ABSTRACT

Coding theory is concerned with digital communications. In every single communication is impor-

tant that the correct message reaches the receiver, specially in a scenario where the communication

channel is noisy. Thus, it is necessary to encode the message so possible errors can be detected

and/or corrected by the receiver. So creating codes with a good e�ciency and correctability is

crucial. The existence of an algebraic structure proves the quality of these codes.

In this thesis convolutional codes over the �eld F2 are studied. Di�erent types of generator matrices

are presented, and thus providing an algebraic approach to it, such as basic, reduced, minimal-basic

and canonical matrices. The canonical generator matrices have nice properties, for example the

predictable degree property, and an approach by valuation theory is given. Furthermore, quantum

error-correcting codes are studied in order to give foundations to a future work on quantum convo-

lutional codes. The description uses stabilizer codes. Also a criteria to determine if a set of errors

is correctable is provided.
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RESUMO

A teoria de códigos está ligada à comunicação digital. Em todas as comunicações é importante que

a mensagem correta chegue ao recetor, especialmente num cenário onde o canal de comunicação

apresenta ruído. Por isso, é necessário codi�car a mensagem para que possíveis erros possam ser

detetados e/ou corrigidos pelo recetor. É, pois, crucial criar códigos com uma boa e�ciência e

capacidade de correção. A existência de uma estrutura algébrica atesta a qualidade destes códigos.

Nesta tese, códigos convolucionais sobre o corpo F2 são estudados. Diferentes tipos de matrizes são

apresentadas, fornecendo assim uma abordagem algébrica, tais como básicas, reduzidas, básicas-

minimais e matrizes canónicas. As matrizes canónicas têm propriedades interessantes, por exemplo,

a previsibilidade do grau, e uma caracterização através da �valuation theory� é feita. Além disso,

uma descrição sobre códigos correctores de erros quânticos é feita a �m de fornecer alicerces para

um futuro trabalho sobre códigos convolucionais quânticos. O estudo é feito pelos códigos estabi-

lizadores. Também se fornece um critério para determinar se um conjunto de erros é corrigível.
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1 | Introduction

Goals

The main goals of this work are the following:

(i) Provide a framework of convolutional codes over �elds by the means of an algebraic approach

- generator matrices.

(ii) Provide a simple introduction to quantum error-correcting codes by means of the stabilizer

formalism.

Outline of Thesis

This thesis is divided into four chapters. A brief outline of the chapters two to four is given.

(i) Chapter 2

Brief results from block and linear codes are presented.

(ii) Chapter 3

The encoders of convolutional codes are analysed, such as the catastrophic and canonical en-

coders. Such encoders can be considered as antagonist since one must be avoided - catastrophic

encoders, while the others are very desirable for implementation purposes. Also, a point of

view to the canonical encoders by valuation theory is given. This chapter is mainly based in

[23] where di�erent examples are considered and some other proofs are given.

(iii) Chapter 4
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Given the classical aproach to convolutional codes one gives a step further and introduces the

quantum error-correcting code. First a brief introduction to quantum theory is provided and

from here a quantum error-correction scheme is given. Further, stabilizer codes are aborded.

Finally, a criteria for a quantum code correct errors is provided. This chapter will be mainly

based in [3].
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2 | Contextualization

2.1 Brief history

Since the nineteen century (1842) one of the greastest invention of mankind was made by Samuel

Morse - the telegraph. From this point on communications over great distances became of the

most remarkable features of the human nature; and as the years go by, more complex and e�cient

systems of communication were made such as sattelites communication, microwave communication

and so forth. Despite this new era of digital computing, noisy communication channels endures and

so coding theory - in particular, error-correcting codes - became an indispensable tool to ensure a

trustworthy communication. Hence, being able to send reliable information over a communication

channel became a major topic in digital communication.

Channel coding was initiated in the 1940‘s more speci�c with the published paper of Shannon in

1948 [32]. In that landmark paper, when giving a communication channel one can send information

and guarantee a reliable transmission at any rate below the capacity of the channel - this quantity

can be derived by the characteristics of the channel such as the noise level and signal power [6].

When dealing with error-correcting codes one can have two approaches - block codes or convolutional

codes. Althought there are rivals in the strict sense of the word there are situations where block codes

perform better then convolutional codes and vice-versa. Among the applications of error-correcting

codes one includes the use in the Mariner 9 space probe in 1972.

Convolutional codes were invented by Elias in 1955 [7] and since then they have accomplished

notorious interest. It was due to Forney [9, 10, 11] that convolutional codes achieved a new high by

showing that the algebra of k× n matrices over the �eld of rational functions in the delay operator

D over F, played the same role for convolutional codes, as the algebra of k×n matrices over F plays

for linear block codes [27]. A convolutional code can be seen as a block code when one considers
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certain in�nite �elds. Since the channel from where the information is sent can have noise, the

received symbols may be di�erent from the transmitted ones. To minimize this situation to a extent

where the receiver can recover at least partially the transmitted information one can use an encoding

scheme to add redundancy to the information [31]. Consider an in�nite sequence of information

digits, produced by the source, u = u0u1 . . . shifted into a register, where ui ∈ {0, 1}. Whenever the

encoder receives an information sequence u, it produces an encoded sequence v = v0v1 . . . , where

vi ∈ {0, 1}. This encoded sequence is then transmitted over the channel. The encoder has a number

of linear output functions which depend of the memory of the encoder - if it is a memoryless one

it is called block encoder. From here the number of output sequences are interleaved by a serializer

to form a single-output sequence - the encoded sequence v. This sequence satis�es the following

equation

v = uG, (2.1)

where G is the encoder. One can express equation (2.1) more concisely by using D−transforms.

Let D be the delay operator. Multiplying both sides of (2.1) by Di, and sum for i ≥ 0 gives

∑
i≥0

viD
i =

∑
i≥0

(uiD
i)G (2.2)

By de�ning the vector generating functions as V (D) =
∑

i≥0 viD
i and U(D) =

∑
i≥0 uiD

i then

(2.2) becomes

V (D) = U(D)G (2.3)

To better ilustrate this procedure an example is given.

u(i) s1(i) s2(i)

v1(i)

v2(i)

Figure 2.1: Convolutional encoder

The information sequence u(i) is shifted in from left to right and two output sequences v1(i) and

v2(i) are obtained by addition modulo−2 for each information digit that enter the encoder; the
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sequence si denotes the memory of the encoder. By a direct observation of the diagram above a

matrix G is given by

G =
[
1 +D2 1 +D

]
(2.4)

This encoder has memory 2. It is conventional to draw the state-transmition diagram for convolu-

tional encoders which is nothing more than a de Bruijn graph [16] if one ignores the labeling. For

example, let the matrix G be now

G =
[
1 +D2 +D3 1 +D +D3

]
(2.5)

then its encoder is represented as

u(i) s1(i) s2(i) s3(i)

v1(i)

v2(i)

Figure 2.2: Convolutional encoder of matrix G(D)

The state-transition diagram for the convolutional encoder is then

000

100

010

001

101

110 111

011
00

11 01

10

01

10

00

11

10

01

00

11

11

00

10

01

Figure 2.3: State-transmition diagram

The output is given from each state. If the message to be sent is 1 +D +D3 which corresponds to

110100 . . . it is codi�ed into the stream 1110111010101100 . . .
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2.2 Basic results

A description of convolutional codes can not be completely accomplished without introducing block

codes �rst. Thus a few basic concepts and results on block and linear codes are presented.

De�nition 2.2.1. A block code of parameters (n, k) over an alphabet with q symbols is a set of qk

vectors of lenght n called codewords.

Since one is considering binary codes q = 2, i.e., codes over the binary �eld F2.

De�nition 2.2.2. An encoder for an (n, k) block code C is a one-to-one mapping from the set of

2k messages to the set of codewords C.

Suppose that a codeword v is sent over a channel. The decoder transforms the received sequence

r = r0 . . . rn−1 into the k−tuple û. If the noise presented in the channel did not corrupted the

sequence û then it is just a replica of the message u - this is the ideal situation. Unfornately, the

noise may cause some decoding errors. In fact, a decoding error occurs if and only if v̂ 6= v - since

there is a one-to-one correspondence between u and v one can consider the decoder output to be v̂.

De�nition 2.2.3. The Hamming distance, denoted by dH , between two n−tuples r and v is the

number of positions in which their components di�er.

This distance is a metric.

De�nition 2.2.4. The Hamming weight of an n−tuple r is

wH(r) = dH(r, 0) = #{ri 6= 0}

Lemma 2.2.5. Let x, y ∈ Fn2 . Then dH(x, y) = wH(x+ y).

Proof. dH(x, y) = dH(x+ y, 0) = wH(x+ y)

De�nition 2.2.6. The minimum distance of a block code C is

d(C) = min{dH(x, y) : x, y ∈ C and x 6= y}

Theorem 2.2.7. The code C detects at most s errors if d(C) ≥ s+ 1 and corrects at most t errors

if d(C) ≥ 2t+ 1.

6



From the previous result one can conclude if C is a error-correcting code of t errors then t is given

by bd(C)− 1

2
c.

A linear structure on the codes is imposed to make the codes easier to analyze.

De�nition 2.2.8. A linear block code C of parameters [n, k] is a vectorial subspace of Fn with

dimension k.

Therefore, each codeword can be written as a linear combination of linearly independent vectors

g1, . . . , gk, with gi ∈ Fn.

De�nition 2.2.9. A k × n matrix G having gi as rows is called a generator matrix of C, where

i = 1, . . . , k.

The generator matrix G has full rank and the row space of G is C, i.e., RS(G) = C. This matrix

determines an encoding rule for the code C by v = uG. Let C be a linear code [n, k] over Fq, G a

generator matrix such that rank(G) = k and u = (u1, . . . , un). The solutions of the system

GuT = 0 (2.6)

forms an n− k dimensional subspace of Fn. Thus, exists an (n− k)× n matrix H such that

GHT = 0 (2.7)

De�nition 2.2.10. A (n− k)×n matrix H having h1, . . . hn−k as rows such that hi ∈ Kern(G) is

called the parity-check matrix of C.

7





3 | Classical Convolutional Codes

3.1 Convolutional encoders

Various concepts are given such as convolutional encoder, convolutional encoding operation and con-

volutional code. Further, two di�erent approaches of convolutional code and encoder are presented;

being one of them given by [27] and the other by [23].

In this chapter the Smith Normal Form will be used often and so the theorem applied to F2[D] is

stated - the general result as long as the proof is given in the appendix.

Theorem 3.1.1. Let G(D) ∈ Mk,n(F2[D]) with rank r. Then there exist unimodular matrices

X(D) ∈Mk,k(F2[D]) and Y (D) ∈Mn,n(F2[D]) such that

G(D) = X(D)Γ(D)Y (D) (3.1)

where Γ(D) ∈Mk,n(F2[D]) is of the form

Γ(D) = diagk,n(δ1, . . . , δr) =



δ1(D)

. . .

δr(D)

0

. . .

0 . . . 0


(3.2)

The δi(D) are called invariant-factors of G(D) which satis�es

δi(D)|δi+1(D), i = 1, . . . , r − 1 (3.3)

and

δi(D) =
4i(D)

4i−1(D)
, (3.4)

9



where 4i(D) is the greatest common divisor of the i× i minors of G(D), i = 1, . . . , r. By convention

40(D) = 1.

When considereing matrices over F2(D), the Smith Normal Form decomposition will be applied by

considering the least common multiple (lcm) of all denominators in G(D). If f(D) ∈ F2[D] is the

lcm of all denominators in G(D) then f(D)G(D) is a polynomial matrix with Smith Normal Form

decomposition given by

X(D)Γf (D)Y (D) (3.5)

Dividing both sides by f(D) yields

G(D) = X(D)Γ(D)Y (D) (3.6)

where Γ(D) ∈ F2(D) since

Γ(D) = Γf (D)/f(D) (3.7)

Thus,

Γ(D) =


δ1(D)/f(D) 0 . . . 0

. . .
...

...

δr(D)/f(D) 0 . . . 0

 (3.8)

Letting
δi(D)

f(D)
=
αi(D)

βi(D)
, i = 1, . . . , r (3.9)

where gcd(αi(D), βi(D)) = 1 one has

αi(D)βi+1(D)|αi+1(D)βi(D) (3.10)

Furthermore, from (3.10) and the fact αi(D) and βi(D) are relatively prime follows that

βi+1(D)|βi(D)

and

αi(D)|αi+1(D) (3.11)

where i = 1, . . . , r − 1.

10



The source produces a sequence of k−tuple symbols ui, i ∈ Z, which are used as sucessive inputs to

a machine called the encoder. Whenever the encoder receives a k−tuple ui it will produce a n−tuple

vi, i ∈ Z. The objects that are encoded are called information sequences and the corresponding

outputs are called encoded sequences and the structure of these sets of information and encoded

sequences provides the level of generalization one must have to de�ne convolutional codes and

encoders.

The structure in which the sets of information and encoded sequences are based are the following

in�nite �elds and rings: F((D)) of the formal Laurent series, the �eld F(D) of rational functions

which is a sub�eld of F((D)) , the ring F[[D]] of formal power series, or the ring F[D] of polynomials

which is a subset of the F[[D]]; all of these in D over F. In practice and over this thesis the �eld F is

the binary �eld GF (2) also denoted as F2. A special case of F(D) is when every rational function is of

the form P (D)/Q(D), where P (D) and Q(D) are polynomials, and Q(0) 6= 0. If this is the case the

Laurent series is called realisable. For the binary case one must haveQ(0) = 1. A polynomial is said

to be delayfree if P (0) = 1. One can also consider n−tuples of elements from F[D],F[[D]],F(D), or

F((D)) and so one can de�ne the set of n−tuples elements to be Fn[D],Fn[[D]],Fn(D) and Fn((D)),

respectively. For example, a k−tuple information sequence at time i, ui = (u
(1)
i . . . u

(k)
i ), can be

expressed in terms of the delay operatorD as u(D) =
∑∞

i=r u
(j)
i Di, 1 ≤ j ≤ k where the input is zero

for i < r. Similarly, an encoded n−tuple at time i can be represented as v(D) =
∑∞

i=r v
(j)
i Di, 1 ≤

j ≤ n.

De�nition 3.1.2. A matrix G(D) ∈Mk,n(F2(D)) is called realisable if every entrie is of the form

P (D)/Q(D) and Q(0) = 1.

De�nition 3.1.3. A realisable matrix is delayfree if at least one of its entries P (D)/Q(D) has

P (0) 6= 0.

A convolutional code is thus de�ned as follows:

De�nition 3.1.4. (McEliece) An (n, k) convolutional code C over a �nite �eld F is an k-dimensional

subspace of a n-dimensional vector space Fn((D)).

A rational subcode of an (n, k) convolutional code is obtained if the n−dimensional vector space

is Fn(D), since the basis vectors of a convolutional code lie in the Fn(D) nothing is lost if one
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considers codewords whose components all lie in F(D). The code rate of a (n, k) convolutional code

is denoted as R = k/n.

De�nition 3.1.5. A convolutional encoder of a convolutional code with rate k/n is a linear

mapping

γ : Fk((D))→ Fn((D))

which can be represented as v(D) = u(D)G(D), where G(D) is a k × n matrix of full rank and is

realisable with entries over F(D).

It is usual to designate the matrix G(D) as the encoder. Also, G(D) is called the generator matrix

of the code C since its rows form a basis for C. De�nition 3.1.5 was given by Piret [31] although he

considers G(D) over the ring of polynomials F[D].

In constrast, Johannesson introduces a series of concepts such as convolutional transducer with its

transfer function matrix. In [23] a transducer is a linear mapping speci�ed by its transfer function

matrix and a convolutional code is de�ned as:

De�nition 3.1.6. An (n, k) convolutional code C over F2 is the image set of a rate k/n convolu-

tional transducer with G(D) of rank k over F2(D) as its transfer function matrix.

Further, a convolutional encoder of a convolutional code with generator matrix G(D) is a realization

by a linear sequential circuit of a convolutional transducer whith transfer function matrix G(D).

A linear sequencial circuit is a network with �nite inputs and outputs and is constructed by using

sequential logic [15]. In [23] a transfer function matrix is called generator matrix if it is realisable

and has full rank. The necessity of such concepts is to allow a distinction between abstract objects

and those who can be physically implemented by linear sequential circuits as stated by [6].

3.2 Dual of a Convolutional Code

Every subspace, E, of a vector space V has a dual space E⊥ associated with it. Furthermore,

dim(V ) = dim(E) + dim(E⊥). Then, there is a dual code associated to C denoted by C⊥ and

de�ned as

De�nition 3.2.1. Let C be a (n, k) convolutional code. Then, its dual code, C⊥, is an (n − k)−

dimensional subspace of F2((D))n consisting in all n−tuples sequences v⊥ orthogonal to all encoded

sequences v ∈ C.

12



The dual code is itself a convolutional code generated by any encoder,H(D), such thatG(D)HT (D) =

0, where H(D) is a (n− k)× n matrix designated as the parity check matrix of the code C. An

algorithm to determine H(D) given G(D) is presented:

Due to the invariant factor theorem one may write G(D) as

G(D) = X(D)Γ(D)Y (D), (3.12)

where X(D) and Y (D) are unimodular matrices. Then, the inverse of G(D) is

G−1(D) = Y −1(D)Γ−1(D)X−1(D) (3.13)

Let Y1(D) be a n× (n− k) matrix consisting of the last (n− k) columns of Y −1(D). Then the last

(n−k) rows of Y (D) is a (n−k)×n left inverse matrix of Y1(D). Thus,the transpose of the matrix

formed by the last (n − k) rows of Y (D) is a right inverse of Y T
1 (D), where T denotes transpose.

Therefore, a generator matrix for the dual code C⊥ can be de�ned as

H(D) = Y T
1 (D) (3.14)

The parity check matrix H(D) has rank (n− k).

3.3 Syndrome Formers

In his paper [10], Forney denominated the transpose of the parity check matrix H(D) as the syn-

drome former. A formal de�nition is given:

De�nition 3.3.1. Any n× (n− k) transfer function matrix HT (D) is called syndrome former.

Theorem 3.3.2. The HT (D) from 3.3.1 has the property that v(D)HT (D) = 0 i� v(D) ∈ C.

Proof. Let G(D) be a generator matrix associated with C. If v(D) ∈ C then v(D) = u(D)G(D).

Multiplying by HT (D) on the right side yields v(D)HT (D) = 0. Reciprocally, if vT (D) ∈ ker(H),

since G(D)HT (D) = 0 then the columns of GT (D) are a basis of ker(H). Hence, vT (D) ∈

CS(GT (D)). Therefore, v(D) ∈ RS(G(D)).

The syndrome former allows one to �nd the number of errors introduced by the channel. Let r(D)

be the received sequenced after the codeword v(D) is transmitted. The sequence r(D) could be
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di�erent from v(D) since passing the message through a channel errors may occur. Let e(D) be the

error sequence.

Then,

r(D) = v(D) + e(D) (3.15)

Thus,

r(D)HT (D) = [v(D) + e(D)]HT (D) = e(D)HT (D) (3.16)

This shows that the syndrome only depends of the errors that the channel may introduce.

3.4 Inverse Encoders

De�nition 3.4.1. A generator matrix G(D) ∈ Mk,n(F2(D)) is called encoding if G(0) has full

rank.

From this de�nition one has the following result.

Theorem 3.4.2. An encoding matrix G(D) is realisable and delayfree .

Example: Let

G(D) =

1 D 1 +D2

1 D3 1 +D

 .
Since G(D) is a polynomial matrix Q(D) = 1 and so G(D) is realisable. Also, G(D) is delayfree

but G(0) has rank 1 and thus G(D) is not an encoding matrix.

Theorem 3.4.3. Let G(D) ∈ Mk,n(F2(D)) be a generator matrix. If G(D) has a realisable right

inverse, then G(D) is an encoding matrix.

Proof. SinceG(D) has a realizable right inverse, G−1(D), thenG(D)G−1(D) = Ib. Thus, G(0)G−1(0) =

Ib. Which means that G(0) has full rank.

Searching for polynomial right inverse of matrices is a topic of great interest. Hence, the following

two results.

Theorem 3.4.4. Let G(D) ∈Mk,n(F2(D)) be a generator matrix with Smith Normal Form decom-

position as in (3.6). G(D) has a polynomial and delayfree right inverse i� αk(D) = 1.
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Proof. Suppose that αk(D) = 1. Then, from (3.11), αi(D) = 1 for all i = 1, . . . , k, and so by the

Smith Normal Form, G(D) has a polynomial right inverse G−(D) given by

G−(D) = Y −1(D)



β1(D)

. . .

βk(D)

0
...

0


X−1(D),

since βi(D) are polynomials. Thus, by 3.4.3 G(D) is an encoding matrix and so G−(D) is delayfree.

The converse can be seen in [23, Theorem 2.8]

Corollary 3.4.5. Let G(D) ∈ Mk,n(F2[D]) be a generator matrix. G(D) has a polynomial and

delayfree right inverse i� δk(D) = 1

Proof. Direct application of the theorem to the polynomial case.

3.5 Catastrophic Encoders

The existence of polynomial right inverse prevents the encoder to have a catastrophic property.

Hence, the choice of the generator matrix is of great importance.

De�nition 3.5.1. A generator matrix is catastrophic if there exists an information sequence u(D)

with in�nite nonzero entries which result in �nite codewords v(D) with nonzero entries, i.e., has

input wH(u(D)) =∞ but has output wH(v(D)) <∞.

Theorem 3.5.2. Let G(D) ∈ Mk,n(F2(D)) be a generator matrix. G(D) is non-catastrophic i�

αk(D) = Ds for some s ∈ N0.

Proof. If αk(D) is not a power of D then it has a factorization decomposition of elements where

one of them is delayfree. Thus, wH(βk(D)/αk(D)) =∞.

By constructing an input to allow G(D) being catastrophic one implication is proved.

Let u(D) = (0 · · · 0 βk(D)/αk(D))X−1(D) and so wH(u(D)) =∞.
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But,

v(D) = u(D)G(D)

= u(D)X(D)Γ(D)Y (D)

= (0 · · · 0 βk(D)/αk(D))X−1(D)X(D)Γ(D)Y (D)

= (0 · · · 01)Y (D)

is polynomial and so wH(v(D)) <∞. Therefore, G(D) is catastrophic.

Conversely, suppose that αk(D) = Ds for s ∈ N0. Then, from (3.11), αi(D)|Ds for all 0 ≤ i ≤ k

and the right inverse matrix

DsG−1(D) = DsY −1(D)



β1(D)/α1(D)

. . .

βk(D)/αk(D)

0
...

0


X−1(D)

is polynomial and

v(D)DsG−1(D) = u(D)Ds

Thus, if v(D) contains �nitely many nonzero digits, then u(D)Ds also contains �nitely many

nonzero digits since DsG−1(D) is polynomial. Hence, G(D) is non-catastrophic.

When G(D) is polynomial one has

Corollary 3.5.3. Let G(D) ∈ Mk,n(F2[D]) be a generator matrix. G(D) is non-catastrophic i�

δk(D) = Ds for some s ∈ N0.

Corollary 3.5.4. (Massey) Let G(D) ∈Mk,n(F2[D]) be a generator matrix. G(D) is non-catastrophic

i� 4k(D) = Ds for some s ∈ N0.

Example: Let

G(D) =

 D D +D3 D2

D3 +D4 1 +D3 1 +D4


16



Since

42(D) =
gcd(D +D5 +D6 +D7, D +D6, D +D2 +D3 +D7)

41(D)
=
D

1
= D,

then G(D) is non-catastrophic.

3.6 Basic and Minimal-Basic Encoding Encoders

De�nition 3.6.1. Two generator matrices A and B are equivalent if they encode the same code,

i.e., RS(A) = RS(B).

The following theorem establishes a criterion for the equivalence of two generator matrices:

Theorem 3.6.2. Let G(D) ∈ Mk,n(F2(D)) and B(D) ∈ Mk,n(F2(D)) be two generator matrices.

G(D) and B(D) are equivalent i� there is a non-singular matrix T (D) ∈ Mk,k(F2(D)) such that

G(D) = T (D)B(D).

Proof. Let T (D), S(D) ∈ Mk,k(F2(D)) be matrices such that G(D) = T (D)B(D) and B(D) =

S(D)G(D). Then, G(D) = T (D)S(D)G(D) and so G(D)− T (D)S(D)G(D) = 0. One can rewrite

the last equation as

(I − T (D)S(D))G(D) = 0

By transposing both sides yields

G(D)T (I − T (D)S(D))T = 0 (3.17)

From rank(G(D)T ) = rank(G(D)) + dim(ker(G(D)T )) = k gives that ker(G(D)T ) = {0}. Hence,

(I − T (D)S(D))T = 0,

and so

T (D)S(D) = I (3.18)

Thus, T (D) is invertible.

Conversely if G(D) = T (D)B(D), then RS(G(D)) = RS(B(D)).

A serie of concepts such as basic matrix, reduced matrix, internal degree are given. The goal is to

provide conditions to �nd these speci�c generator matrices. Some parameters of convolutional codes

are provided in order to discuss a speci�c type of generator matrices - the minimal-basic encoding

matrices. Let G(D) = (gij(D)) be a k × n polynomial generator matrix for the code C.
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De�nition 3.6.3. The constraint length for the i-th input of the polynomial convolutional gen-

erator matrix is given by

zi = max
1≤j≤n

{deg(gij(D))}.

De�nition 3.6.4. The memory, m, of the polynomial generator matrix is the maximum value of

its constraint lengths, i.e.,

m = max
1≤j≤k

{zi}.

De�nition 3.6.5. The overall constraint length is simply the sum of the constraint lengths, i.e.,

z =

k∑
i=1

zi.

Example: Let

G(D) =

 1 D 1 +D

1 +D D 1 +D2


Then, z1 = 1 and z2 = 2. Therefore z = 3 and m = 2.

De�nition 3.6.6. The internal degree of a polynomial matrix is the maximum degree of its k×k

minors and will be denoted by intdeg(G(D)).

In [27] de�nes the external degree, extdeg(G(D)), of a polynomial matrix as the sum of its

constraint lengths. Clearly, z = extdeg(G(D)).

A result concerning the internal and external degree is presented.

Theorem 3.6.7. Let G(D) ∈Mk,n(F2[D]) be a generator matrix. Then,

intdeg(G(D)) ≤ extdeg(G(D)).

Besides, if T (D) ∈Mk,k(F2[D]) such that det(T (D)) 6= 0, then

intdeg(T (D)G(D)) = intdeg(G(D)) + deg(det(T (D))).

In the case where T (D) is unimodular deg(det(T (D)) = 0.

Proof. Let zi be the i-th constraint length of G(D). Clearly, each entry in the i-th row of G(D)

has degree ≤ zi and every k × k minor results from the product of k entries of G(D) (one for each

row/column). Then, the degree of any k × k minor is at most z1 + . . .+ zk = extdeg(G(D)).
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Suppose now that T (D) is a k×k polynomial matrix. Since the k×k submatrices of T (D)G(D) are

simply the k×k submatrices of G(D) each multiplied by T (D) then, the k×k minors of T (D)G(D)

are the k × k minors of G(D) each multiplied by the determinant of T (D). The result follows

naturally.

De�nition 3.6.8. Let G(D) ∈ Mk,n(F2[D]) be a generator matrix. G(D) has the predictable

degree property- for short notation it will be denoted by pdp- if for all inputs u(D) ∈ F2[D]k the

following equality is veri�ed:

deg(v(D)) = max
1≤i≤k

{deg(ui(D)) + zi},

where zi is the constraint length of the i−th row of G(D).

In general,

deg(v(D)) = deg(u(D)G(D))

= deg

k∑
i=1

ui(D)gi(D) ≤ max
1≤i≤k

{deg(ui(D)) + zi}

The pdp assures an economic improvement when sending the information since small codewords

will be associated with small sequences of data.

In [27] McEliece states the de�nition of a basic matrix.

De�nition 3.6.9. Let G(D) ∈ Mk,n(F2[D]). G(D) is called basic if, among all polynomials ma-

trices of the form T (D)G(D), where T (D) is a k × k non-singular matrix over F2(D), it has the

minimum possible internal degree.

Basic matrices have some enjoyable properties. Some of them are stated here. From [27, Theorem

A.1] one has

Theorem 3.6.10. Let G(D) ∈ Mk,n(F2[D]) be a generator matrix. G(D) is basic i� any of the

following conditions is satis�ed:

(i) The invariant factors of G(D) are all 1;

(ii) The gcd of the k × k minors of G(D) is 1;

(iii) G(D) has a polynomial right inverse;
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(iv) G(α) has rank k for any α in the algebraic closure of F;

(v) If v(D) = u(D)G(D), and if v(D) ∈ F2[D]n, then u(D) ∈ F2[D]k;

(vi) G(D) is a submatrix of an unimodular matrix.

Example: Let

G(D) =

 1 +D D +D2 D

1 +D +D2 1 +D2 1

 .
Clearly, G(D) is polynomial and besides that

42(D) = gcd(1 +D2 +D3 +D4, 1 +D2 +D3, D2 +D3) = 1.

Hence, G(D) is basic.

Theorem 3.6.11. A basic matrix is a basic encoding matrix.

Proof. Follows from 3.4.3.

Theorem 3.6.12. Every rational generator matrix is equivalent to a basic encoding matrix.

Proof. Every rational matrix has an equivalent polynomial matrix if one multiplies each row for the

lcm of the denominators of the entries in that row. Let the latter polynomial matrix G(D) have

the Smith Normal Form decomposition G(D) = X(D)Γ(D)Y (D), where X(D) ∈Mk,k(F2[D]) and

Y (D) ∈Mn,n(F2[D]) both have determinant 1, and G′(D) a generator matrix consisting of the �rst

k rows of Y (D). Then,

G(D) = X(D)


δ1(D)

. . .

δk(D)

G′(D).

Since both X(D) and


δ1(D)

. . .

δk(D)

 are non-singular over F2[D] then, G(D) and G′(D) are

equivalent. But G′(D) is polynomial and since Y (D) has a polynomial inverse, then G′(D) has a

polynomial right inverse - which consist of the �rst k columns of Y −1(D). Therefore, G′(D) is a

basic generator and from 3.6.11 follows that G′(D) is a basic encoding matrix.
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From 3.4.5 follows:

Theorem 3.6.13. A matrix is basic i� it is polynomial and δk(D) = 1.

From this result one can conclude that a basic encoding matrix is non-catastrophic.

De�nition 3.6.14. Let [G(D)]h be a (0, 1) (boolean) matrix de�ned as:

[G(D)]h =


1 in position (i, j) , if deg(gij) = zi

0 , otherwise

De�nition 3.6.15. (McEliece) Let G(D) ∈ Mk,n(F2[D]) be a generator matrix. G(D) is called

reduced if, for all matrices of the form T (D)G(D), where T (D) ∈ Mk,k(F2[D]) is unimodular,

G(D) has the smallest external degree.

As for the basic matrices some results which establishes a criterion for reduced matrices are stated.

From [27, Theorem A.2] one has

Theorem 3.6.16. Let G(D) ∈ Mk,n(F2[D]) be a generator matrix. G(D) is a reduced matrix i�

one of the following three conditions is satis�ed:

(i) [G(D)]h has full rank;

(ii) extdeg(G(D)) = intdeg(G(D));

(iii) G(D) has the pdp.

Example: Let G(D) =

1 +D D 1

0 1 +D 1 +D2

 .
Clearly, G(D) is reduced since

extdegG(D) = 3 = intdegG(D).

De�nition 3.6.17. A minimal-basic encoding matrix is a basic encoding matrix whose overall

constraint length z is minimal over all equivalent basic encoding matrices.

Theorem 3.6.18. Let G(D) ∈ Mk,n(F2[D]) be a basic encoding matrix with overall constraint

length z. Then the following conditions are equivalent:
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(i) G(D) is a minimal-basic encoding matrix;

(ii) intdeg(G(D)) = z;

(iii) [G(D)]h has full rank.

Proof. (ii)⇒ (i) Suppose that intdeg(G(D)) = z and let G′(D) be a basic encoding matrix equiv-

alent to G(D). Thus exists a k × k polynomial matrix T (D) with determinant 1 such that

G′(D) = T (D)G(D). Since det(T (D)) = 1, the greatest degree of the k × k minors of G′(D)

is equal to that of G(D). Therefore, intdeg(G(D)) is invariant among all equivalent basic

matrices. From 3.6.7 follows that G(D) is a minimal-basic encoding matrix.

(i)⇒ (ii) Assume that G(D) is an encoding minimal basic matrix. Suppose that rank([G(D)]h) <

k, i.e., intdeg(G(D)) < z. Let r1, . . . , rk be the rows of G(D) and [r1], . . . , [rk] the rows of

[G(D)]h. Since [G(D)]h has not full rank there is a linear relation between some (at least two)

rows of [G(D)]h given by

[ri1 ] + · · ·+ [rid ] = 0.

Assume, without loss of generality, that zid ≥ zij for j = 1, . . . , d− 1. Adding

Dzid ([ri1 ] + · · ·+ [rid−1
])

to the id−th row of diag(Dz1 , . . . , Dzk)[G(D)]h gives it to a full-zero row. Following this same

argument, adding

Dzid−zi1 ri1 + · · ·+Dzid−zid−1 rid−1

to the id−th row of G(D) will reduce the degree of that line - leaving the others unchanged.

Thus, an equivalent basic encoding matrix to G(D) is obtained with the particularity that

the overall constraint length is smaller then z. This is the contrapositive of the proof.

(ii)⇔ (iii) Let G(D) = G0(D) +G1(D), where G1(D) =


Dz1

. . .

Dzk

 [G(D)]h.

Thus, the i−th row of G0(D) has degree less then zi. Since intdeg(G(D)) = intdeg(G1(D))

then, from 3.6.7 follows intdeg(G(D)) =
∑k

i=1 zi+ intdeg([G(D)]h). But intdeg([G(D)]h) = 0

i� [G(D)]h has rank k.
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Example: Let G(D) be the basic matrix given by

G(D) =

 1 +D D +D2 D

1 +D +D2 1 +D2 1

 ,
with extdeg(G(D)) = 4. Since the maximum degree of the 2×2 minors is 4 then G(D) is an encoding

minimal basic matrix.

Example: Let

G1(D) =

1 +D2 D 1 +D2

D3 1 +D2 D +D2 +D3


Then,

[G1(D)]h =

1 0 1

1 0 1


Clearly [G1(D)]h has not full rank but proceeding with the technic of the proof an equivalent

encoding minimal basic matrix to G(D) is obtained. Well, z1 = 2 and z2 = 3, so multiplying the

�rst row by D and adding the product to the second one yields 1 0

D 1

1 +D2 D 1 +D2

D3 1 +D2 D +D2 +D3

 =

1 +D2 D 1 +D2

D 1 D2


Corollary 3.6.19. Let G(D) ∈Mk,n(F2[D] be a basic encoding matrix. Then G(D) has an equiv-

alent minimal-basic encoding matrix, G′(D), whose overall constraint length equalls intdeg(G(D)),

i.e., intdeg(G(D)) = zG′(D).

Corollary 3.6.20. Let G(D) ∈Mk,n(F2(D))) be a generator matrix. Then G(D) has an equivalent

minimal-basic encoding matrix.

Proof. Follows, by direct application, from 3.6.12 and 3.6.19.

Corollary 3.6.21. Two equivalent minimal-basic encoding matrices have the same memory.
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Example: Consider the minimal-basic matrix G(D) =

1 +D 0 D2

1 +D 1 1

 .
Taking

G′(D) =

 1 +D 1 1

1 +D +D2 +D3 D2 0


as the matrix formed by the �rst 2 rows of Y (D) from the Smith Normal Form Decomposition of

G(D) one has that G(D) and G′(D) are equivalent, since

G(D) =

D2 1

1 0

G′(D)

Furthermore, G′(D) is not minimal-basic; for G(D) the constraints lengths are z1 = 2 and z2 = 1

and for G′(D) are z1 = 1 and z2 = 3.

But, if one considers

G′′(D) =

 1 0

D2 1

G′(D) =

1 +D 1 1

1 +D 0 D2


then one has that the constraints lenghts of G(D) and G′′(D) are the same.

Theorem 3.6.22. Let G(D) ∈ Mk,n(F2[D]) be a generator matrix. Then G(D) has the pdp i�

[G(D)]h has full rank.

Proof. Let

G(D) = G′(D) + diag(Dz1 , . . . , Dzk)[G(D)]h,

where z1 ≥ . . . ≥ zk.

Due to the way G(D) is written all entries in the i−th row of G′(D) are of degree less than zi.

Suppose that [G(D)]h has full rank. For any u(D) ∈ F2[D]k one has

v(D) = u(D)(G′(D) + diag(Dz1 , . . . , Dzk)[G(D)]h)

=
k∑
i=1

ui(D)(g′i(D) +Dzi [ri]),

where g′i(D) and [ri] are the i−th rows of G′(D) and [G(D)]h, respectively.

By the hypothesis it follows that [ri] 6= 0 for all i = 1, . . . , k.

Then,

deg(ui(D)g′i(D) + ui(D)Dzi [ri]) = deg(ui(D)Dzi [ri])

= deg(ui(D)) + zi
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Hence obtaining

deg(v(D)) = max
1≤i≤k

{deg(ui(D)) + zi}.

Conversely, suppose that [G(D)]h has not full rank. Then, exists a vector u′(D) such that

u′(D)[G(D)]h = 0. Transforming this vector into a polynomial one u′(D) = (u′1u
′
2D

z1−z2 . . . u′kD
z1−zk),

the following is obtained

v′(D) = u′(D)G(D)

= u′(D)G′(D)

=
k∑
i=1

u′iD
z1−zig′i(D)

Since deg(g′i(D)) < zi, yields deg(u′iD
z1−zig′i(D)) < z1 for all 1 ≤ i ≤ k, and thus,

deg(v′(D)) < z1.

But max
1≤i≤k

{deg(ui(D)Dz1−zi) + zi} = z1 and so G(D) does not have the pdp.

Example: Let G(D) =

1 +D 1 D

1 D +D2 1 +D +D2

 . Since [G(D)]h has full rank, G(D) has

the pdp.

From 3.6.18 one has the following result

Theorem 3.6.23. Let G(D) ∈ Mk,n(F2[D]) be a basic encoding matrix. Then G(D) has the pdp

i� G(D) is minimal-basic.

Example: Let

G(D) =

1 +D 0 1 D

1 D 1 +D 0


G(D) is reduced since extdeg(G(D)) = intdeg(G(D)) = 2 and so G(D) has the pdp but G(D) is

not basic since the gcd of the 2× 2 minors of G(D) is D.

And so 3.6.18 can be rewritten as

Theorem 3.6.24. Let G(D) ∈ Mk,n(F2[D]) be a basic encoding matrix with overall constraint

length z. Then the following conditions are equivalent
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(i) G(D) is a minimal-basic encoding matrix;

(ii) G(D) has the pdp;

(iii) intdeg(G(D)) = z;

(iv) [G(D)]h has full rank

The preceding tools will allow the study of a speci�c type of polynomial matrices - canonical

matrices. This matrices have the particular property of having the minimum external degree.

3.7 Canonical Encoding Encoders

De�nition 3.7.1. Let g(D) ∈M1,n(F2(D)) be a generator matrix. The constraint lenght of g(D)

is given by

z = max{deg(P1(D)), . . . , deg(Pn(D)), deg(Q(D))}

since one may write gi(D) = Pi(D)/Q(D) with gcd(P1(D), . . . , Pn(D), Q(D)) = 1 for i = 1, . . . , n.

De�nition 3.7.2. A canonical generator matrix of the code C is a rational matrix in which

the external degree z is minimum over all equivalent rational generator matrices. This minimum

external degree is denoted as the degree of the code C and it is represented by deg(C).

From [27, Theorem 3.6] one has

Theorem 3.7.3. Let G(D) ∈Mk,n(F2[D]) be a generator matrix. G(D) is canonical i� it is basic

and reduced.

Proof. Let ζ be the common internal degree of all basic matrices of C and among those choose one

minimal-basic G′(D). Then, G′(D) must be reduced since if T (D) is an unimodular matrix then

intdeg(T (D)G′(D)) = intdeg(G′(D)) = ζ. For any canonical matrix G(D) one has

intdeg(G′(D)) ≤ intdeg(G(D)) ≤ extdeg(G(D)) ≤ extdeg(G′(D)) (3.19)

Since G′(D) is reduced intdeg(G′(D)) = extdeg(G′(D)). Thus, intdeg(G′(D)) = intdeg(G(D)) and

so G(D) is basic; intdeg(G(D)) = extdeg(G(D)) and so G(D) is reduced.

Suppose now that G(D) is basic and reduced. Let G′(D) be another polynomial matrix. From

(3.19) extdeg(G′(D)) ≥ intdeg(G′(D)). Due to G(D) being basic intdeg(G(D)) ≤ intdeg(G′(D)).
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Also G(D) is reduced and so extdeg(G(D)) = intdeg(G(D)). Combining the previous inequalities

gives

extdeg(G′(D)) ≥ extdeg(G(D)).

Therefore G(D) is canonical.

From this theorem two very useful corollaries are presented

Corollary 3.7.4. For a code C its degree is equal to the minimum intdeg(G(D)), where G(D) ∈

Mk,n(F2[D]).

Corollary 3.7.5. If G(D) is basic then intdeg(G(D)) = deg(C).

Clearly, a convolutional code can have several canonical matrices. Nevertheless, they all share some

properties.

From [27, Theorem 3.9] one has the following result.

Theorem 3.7.6. If v1 ≤ . . . ≤ vk are the constraint lengths of a canonical matrix A and if f1 ≤

. . . ≤ fk are the constraint lengths of a polynomial matrix B for the same code C, then

vi ≤ fi for i = 1, . . . , k,

for the same code C.

Theorem 3.7.7. The set formed by the constraint lengths is invariant for any canonical matrix -

for a certain code C.

Proof. Follows immediately by the previous result.

De�nition 3.7.8. The constraint lengths of a canonical matrix are designated by Forney indices

of the code. They will be denoted by e1, . . . , ek. Besides, max
1≤i≤k

{ei} is the memory of the code (possibly

di�erent from the memory of the encoder).

Theorem 3.7.9. Let G(D) ∈ Mk,n(F2(D)) be a canonical matrix. Then G(D) is a canonical

encoding matrix.

Proof. Let G(D) be a canonical matrix. Since G(D) is basic, it has a realisable right inverse and

thus G(D) is encoding.
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Lemma 3.7.10. Let g(D) = (g1(D) . . . gn(D)) be a rational row matrix, where gi(D) = Pi(D)/Q(D)

for i = 1, . . . , n, and gcd(P1(D), . . . , Pn(D), Q(D)) = 1

Then g(D) is canonical i� the following two conditions are satis�ed:

(i) deg(Q(D)) ≤ max
1≤i≤n

{deg(Pi(D))};

(ii) gcd(P1(D), . . . , Pn(D)) = 1.

Proof. Let P (D) and l(D) be equivalent generator matrices such that

P (D) = (P1(D) . . . Pn(D)) = gcd(P1(D) . . . Pn(D))l(D)

Also P (D) is the result of the product between g(D) and Q(D) and so g(D) and P (D) are equiva-

lent. Suppose that g(D) is canonical. Then zg = max{deg(P1(D)), . . . , deg(Pn(D)), deg(Q(D))} ≤

max{deg(P1(D), . . . , deg(Pn(D))} = zP , where zg and zP are the overall constraint length of

g(D) and P (D), respectively. It then follows deg(Q(D)) ≤ max{deg(P1(D)), . . . , deg(Pn(D))}

and zg = zP is veri�ed. Furthermore,

zg = zP = deg(gcd(P1(D), . . . Pn(D))) + zl,

where zl is the constraint length of l(D).

From g(D) and l(D) being equivalent generator matrices and the assumption that g(D) is canon-

ical follows that deg(gcd(P1(D), . . . , Pn(D))) = 0, which means gcd(P1(D), . . . , Pn(D)) = 1.

Suppose that deg(Q(D)) > max{deg(P1(D)), . . . , deg(Pn(D))}. Then

zg = deg(Q(D)) > zP

Thus, since g(D) and P (D) are equivalent, g(D) is not canonical.

Finally, suppose that gcd(P1(D), . . . , Pn(D)) 6= 1. This means that zg > zl and, since g(D) and

l(D) are equivalent, g(D) is not canonical.

Example: Let

g(D) =
[
1 D2

1+D
1+D

1+D+D2
1

1+D2

]
.

By the lemma g(D) is canonical.
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Valuation Theory

A characterization of canonical encoding matrices by means of valuation theory is given.

Any nonzero g(D) ∈ F2(D) can be expressed as P (D)/Q(D), where P (D), Q(D) ∈ F2[D] but also

by an unique factorization

g(D) = pep(g(D))h(D)/d(D), (3.20)

where ep(g(D)) ∈ Z, h(D) and d(D) ∈ F2[D], gcd(h(D), d(D)) = 1 and p does not divide h(D)d(D).

The exponents from (3.20) are called p−valuations, since they are valuations of g(D) at the primes

p.

By convention ep(0) =∞.

De�nition 3.7.11. An exponential valuation vp on a �eld F is a mapping vp : F → Z ∪ {∞},

x 7→ vp(x) such that

(i) vp(x) =∞ i� x = 0;

(ii) vp(xy) = vp(x) + vp(y) for all x, y ∈ F;

(iii) vp(x+ y) ≥ min{vp(x), vp(y)} for all x, y ∈ F.

De�nition 3.7.12. Let P be the set of irreducible polynomials over F2[D].

For simplicity let p denote the irreducible polynomial p(D) ∈ P.

The map ep : F2(D) → Z ∪ {∞} given by g(D) 7→ ep(g(D)) is called an exponential valuation of

F2(D).

De�ning

eD−1(g(D)) = deg(Q(D))− deg(P (D)) and eD−1(0) =∞

one also has that eD−1 is an exponential valuation of F2(D).

Thus, for convenience, P∗ = P ∪ {D−1} and for any p ∈ P∗, one has the valuation ep(g(D)).

The product formula [28] - an important property from valuations - is given by

∑
p∈P ∗

ep(g(D))deg p = 0, (3.21)
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where the degree of D−1 is de�ned as 1. Obviously, the product formula of exponentials valuations

is a sum. This property is due to the unique factorization of g(D) and the valuation eD−1 [23].

De�nition 3.7.13. The delay of a rational function g(D) is given by

del(g(D)) = eD(g(D)) (3.22)

In the same manner one can de�ne the degree of a rational function g(D) as

deg(g(D)) = −eD−1(g(D)) (3.23)

Let g(D) ∈ F2(D). Then g(D) is:

(i) causal, if del(g(D)) ≥ 0;

(ii) polynomial, if ep(g(D)) ≥ 0 for all p ∈ P;

(iii) �nite, if ep(g(D)) ≥ 0 for all p ∈ P, except possibly D.

A rational function can be expanded in a formal Laurent series of power p with coe�cients in the

residual class �eld F2[D]p := F2[D]/pF2[D], for any p ∈ P∗.

Let g(D) = P (D)/Q(D), with Q(D) 6= 0. If P (D) = 0, then the Laurent series in powers of p of

g(D) is simply P (D) = 0. If P (D) 6= 0, then P (D) can be written in terms of residuals as

P (D) = [P (D)]pp
ep(P (D)) + P ′(D), (3.24)

where [P (D)]p is the residue of P (D)p−ep(P (D))mod p and P ′(D) is a polynomial with p−valuation

greater than ep(P (D)). So, even if P ′(D) = 0, equality (3.24) holds.

Continuing this process, a formal Laurent series in powers of p can be obtained, where the �rst

element is [P (D)]pp
ep(P (D)), where P (D) ∈ F2[D]((p)). In a similar way an expansion to Q(D) can

be obtained, and its �rst nonzero term will be [Q(D)]pp
ep(Q(D)). Combining these two expansions a

Laurent series of g(D) in powers of p is obtained whose �rst term is [g(D)]pp
ep(g(D)), where

ep(g(D)) = ep(P (D))− ep(Q(D)) (3.25)

and

[g(D)]p = [P (D)]p/[Q(D)]p (3.26)
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Letting [0]p = 0 for all p ∈ P∗, and taking [P (D)]D−1 and [Q(D)]D−1 as the coe�cients of the

greatest order terms of P (D) and Q(D), respectively, the above expansion method also works for

D−1.

Generalizing the valuations to vectors of rational functions one has the following results:

Let g(D) = (g1(D)g2(D) . . . gn(D)), where gi(D) ∈ F2(D), for all 1 ≤ i ≤ n. For any p ∈ P∗

Johannesson [23] de�nes

ep(g(D)) = min{ep(g1(D)), . . . , ep(gn(D))} (3.27)

Lemma 3.7.14. Let g(D) = (g1(D)g2(D) . . . gk(D)), where gi(D) ∈ F2(D), for all 1 ≤ i ≤ k.

Then g(D) is canonical i�

ep(g(D)) ≤ 0, for all p ∈ P∗ (3.28)

Proof. See [23, Lemma 2.51]

The properties, appropriately generalized, from 3.7.11 continue to hold for g(D) ∈ F2(D). However,

the product formula becomes into an inequality, since for any i

∑
p∈P∗

ep(g(D))deg p ≤
∑
p∈P∗

ep(gi(D))deg p = 0 (3.29)

De�nition 3.7.15. The defect of a 1× c vector g(D) is given by

defg(D) = −
∑
p∈P∗

ep(g(D))deg p

In the same manner a generalization of the delay and the degree of a vector occurs

del(g(D)) = eD(g(D)) = min
1≤i≤k

{delgi(D)} (3.30)

deg(g(D)) = −eD−1(g(D)) = max
1≤i≤k

{deg gi(D)} (3.31)

Thus, the defect can be rewritten as

def g(D) = deg g(D)−
∑
p∈P

ep(g(D))deg p.
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Observation: From 3.7.11 (ii), generalized for g(D), and the product formula the following holds

for all k(D) ∈ F2(D)

def k(D)g(D) = def g(D) (3.32)

Lemma 3.7.16. Let g(D) = (g1(D) . . . gn(D)) ∈ M1,n(F2(D)) be a non-zero generator matrix.

Writing gi(D) = Pi(D)/Q(D) for 1 ≤ i ≤ n, with

gcd(P1(D), . . . , Pn(D), Q(D)) = 1 (3.33)

and assuming g(D) is canonical. Then,

def g(D) = max{deg Pi(D)},

and def g(D) is the constraint length of g(D).

Proof. By de�nition

def g(D) = −
∑
p∈P∗

ep(g(D))deg p

From here it follows

−
∑
p∈P∗

ep(g(D))deg p = −[eD−1(g(D)) +
∑

p|Q(D)

ep(g(D))deg p+
∑

p-Q(D)

ep(g(D))deg p] (3.34)

Note:

(i) eD−1(g(D)) = deg Q(D)−max{deg Pi(D)}, for 1 ≤ i ≤ n

By de�nition,

eD−1(g(D)) = min{deg Q(D)− deg Pi(D)} = deg Q(D) +min{−deg Pi(D)}

Since min{−k} = −max{k}, for k positive the �rst point is proved.

(ii)
∑

p|Q(D) ep(g(D))deg p = −
∑

p|Q(D) ep(Q(D))deg p

Assume that gcd(P1(D), . . . , Pn(D), Q(D)) = 1 and p|Q(D). So p - Pi(D) for all i. Thus,

ep(g(D)) = mini{ep(Pi(D))− ep(Q(D))}, 1 ≤ i ≤ n

= −ep(Q(D)) +mini{ep(Pi(D))}, 1 ≤ i ≤ n

= −ep(Q(D))
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The last equality holds since p - Pi(D) - such valuation is zero - and the second point is then

proved.

(iii)
∑

p-Q(D) ep(g(D))deg p = 0

Assume that p - Q(D).

Thus,

ep(g(D)) = min{ep(Pi(D))− ep(Q(D))}, 1 ≤ i ≤ n

= −ep(Q(D)) +min{ep(Pi(D))}, 1 ≤ i ≤ n

= min{ep(Pi(D))}, 1 ≤ i ≤ n

And so ep(g(D)) ≥ 0 - since valuations of polynomials are non-negative. From 3.7.14, g(D)

is canonical i� ep(g(D)) ≤ 0, for all p ∈ P∗. Therefore the third point is proved, since for

p - Q(D), g(D) is not canonical.

Thus, by replacing in (3.34) with the observations (i), (ii) and (iii) described previously, the defect

is equal to

def g(D) = −deg Q(D) +max{deg Pi(D)}+
∑

p|Q(D)

ep(Q(D))deg p

for 1 ≤ i ≤ n.

The proof is completed from the following observation

∑
p|Q(D)

ep(Q(D))deg p = deg Q(D). (3.35)

Notice that

def Q(D) = −
∑
p∈P∗

ep(Q(D))deg p = deg Q(D)−
∑
p∈P

ep(Q(D))deg p.

By the product formula and the fact that for p - q the sum of valuations is zero gives (3.35).

A series of new de�nitions is given to, further ahead, provide a criterion for canonical encoding

matrices.
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Let G(D) = {gi(D), 1 ≤ i ≤ k} be a set of vectors gi(D) ∈ F2(D)n. For any vector v(D) =∑
i ui(D)gi(D) one has

ep(v(D)) ≥ min
1≤i≤k

{ep(ui(D)gi(D))} = min
1≤i≤k

{ep(ui(D)) + ep(gi(D))}, (3.36)

in view of properties (ii) and (iii) from 3.7.11, generalized for v(D).

De�nition 3.7.17. The set G(D) is called p−orthogonal if for all u(D) ∈ F2(D)k the equal-

ity (3.36) holds. If the set of vectors is p−orthogonal for all p ∈ P∗ then it is called globally

orthogonal.

It was showed that the pdp holds forG(D) i� the boolean matrix [G(D)]h has full rank. A generaliza-

tion occurs for the valuations. For this purpose a "new" concept is introduced - the matrix, [G(D)]p,

of the residue class �eld F2[D]p. The residues of the components of the vector g(D)p−ep(g(D))modp

in the ring of power series F2[D][[p]] forms the residue vector [g(D)]p. If ep(gi(D)) > ep(g(D)),

then [gi(D)]p = 0. Notice the following:

(i) if ep(g(D)) ≥ 0 then due to ep(gi(D)) be greater it means that gi(D) divides p and so its

residue is zero. Analogous for ep(g(D)) < 0.

This means that except where the valuations of the gi's coincide with the valuation of g(D) the

residues will be 0.

De�nition 3.7.18. Let G(D) ∈Mk,n(F2(D)). Then its p−residue matrix [G(D)]p is the matrix

with rows given by the residue vectors [gi(D)]p ∈ F2[D]p, 1 ≤ i ≤ k.

The next result [14, Theorem 1] allows one to conduct an easy test (just calculate the rank of a

matrix over F2[D]) to determine if a matrix is p−orthogonal.

Theorem 3.7.19. Let G(D) be a rational matrix. G(D) is p−orthogonal i� [G(D)]p has full rank

over F2[D]p.

Corollary 3.7.20. Let G(D) ∈Mk,n(F2(D)). G(D) is globally orthogonal i� [G(D)]p has full rank

over F2[D], for all p ∈ P∗.

Several equivalent conditions are provided for a rational generator matrix be globally orthogonal.

But before, some de�nitions that will allow one to construct some useful results.
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De�nition 3.7.21. Let G(D) ∈Mk,n(F2(D). The valuation of a matrix is given by

ep(G(D)) = min{ep(4b)(D)},

for all p ∈ P∗.

And the internal defect of a rational matrix as

intdefG(D) = −
∑
p∈P∗

ep(G(D))deg p

Theorem 3.7.22. The internal defect is invariant, i.e, if G(D) and G′(D) are equivalent matrices

then intdefG(D) = intdefG′(D).

Proof. Since G(D) and G′(D) are equivalent there is a k × k non-singular matrix, T (D), such that

G(D) = T (D)G′(D). Let Mk be the set of the k × k submatrices of G(D). Then

ep(det(T (D)Mk(D))) = ep(detT (D)) + ep(4k(D))

Thus,

ep(T (D)G′(D)) = ep(detT (D)) + ep(G
′(D)),

since T (D) is a k×k matrix by de�nition ep(detT (D)) = ep(T (D)). From (3.21) the defect of T (D)

will be zero and so it results that

intdefG(D) = −
∑
p∈P∗

(ep(detT (D)) + ep(G
′(D)))deg p = −

∑
p∈P∗

ep(G
′(D))deg p = intdefG′(D)

The previous theorem gives motivation to de�ne the defect of the code C as [11]

defC = intdefG(D)

De�nition 3.7.23. The external defect of a generator matrix G(D) ∈ Mk,n(F2(D)) is the sum

of the defects, i.e.,

extdefG(D) =
k∑
i=1

def(gi(D))

The next result will be helpful in the proof of the �rst main theorem. It states a necessary and

su�cient condition to calculate the valuation of a matrix in terms of the sum of its rows.
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Lemma 3.7.24. Let G(D) ∈Mk,n(F2(D)) and let p ∈ P∗. Then

(i) ep([G(D)]p) = 0 i� ep(G(D)) =
∑k

i=1 ep(gi(D))

(ii) ep([G(D)]p) 6= 0 i� ep(G(D)) >
∑k

i=1 ep(gi(D))

Proof. Writing the formal Laurent series the vector gi(D) as follows

gi(D) = [gi(D)]pp
ep(gi(D)) + gi(D)

′

Then,

G(D) = [G(D)]pB(D) +G′(D),

where B(D) = diag(pep(g1(D)), . . . , pep(gk(D))).

Thus, since the valuation of G′(D) is greater than the valuation of G(D), by de�nition of the

valuation of a matrix, ep(G(D)) = eP ([G(D)]pB(D)). Applying 3.7.11 the following is obtained

ep([G(D)]pB(D)) = ep([G(D)]p) + ep(p
∑k

i=1 ep(gi(D)))

From here (i) and (ii) follows.

The �rst main result is now presented [14, Theorem 5]

Theorem 3.7.25. Let G(D) be a rational matrix. Then the following conditions are equivalent:

(i) G(D) is globally orthogonal;

(ii) ∀p ∈ P∗, [G(D)]p has full rank over F2[D]p;

(iii) ∀p ∈ P∗, ep([G(D)]p) = 0;

(iv) ∀p ∈ P∗, ep(G(D)) =
∑k

i=1 ep(gi(D));

(v) extdefG(D) = intdefG(D).

Proof. (i)⇔ (ii) Follows by 3.7.20.

(ii) ⇔ (iii) If ep([G(D)]p) = ∞ then some row(s) of [A(D)]p is an all zero row(s) and so [G(D)]p

does not have full rank. Now, without loss of generality, assume ep([G(D)]p) = k, for k ∈ N. This

k is selected from a set of valuations such as {k, k+1, . . . , ki, . . .}. This means that every valuation
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is divisible by p which means p is a factor of the gcd between this valuations. This leads [G(D)]p

to be a linear combination of p for every element in each row. But so the rows are dependent and

thus [G(D)]p does not have full rank. This proves (ii)⇒ (iii).

Conversely, suppose that [G(D)]p has not full rank over F2[D]. So there is a linear relation between

the rows of [G(D)]p:

[gi1 ]p + . . .+ [gid ]p = 0, 1 < d < k. (3.37)

By reductio ad absurdum assume that ep([G(D)]p) = 0 for all p ∈ P∗ holds.

Then, ep([G(D)]p) =
∑k

j=1 ep([gj(D)]p). By 3.37 this means that

k∑
j=1

ep([gj(D)]p) =∞+
k∑

j−id

ep([gj−id(D)]p)

Absurd by the assumption ep([G(D)]p) = 0 for all p.

(iii)⇔ (iv) Follows from 3.7.24.

(iv)⇔ (v) Notice that

extdefG(D) = −
∑
p∈P∗

k∑
i=1

ep(gi(D))

If (iii) does not veri�es then extdefG(D) > −
∑

p∈P∗ ep(G(D)) = intdefG(D). The equality is

achieved i� ep(G(D)) =
∑k

i=1 ep(gi(D)).

The second main result [14, Theorem 13] gives a connection between globally orthogonal matrices

and canonical matrices.

Theorem 3.7.26. Let G(D) be a rational matrix. Then the following conditions are equivalent:

(i) G(D) is a canonical encoding matrix;

(ii) ep(gi(D)) ≤ 0, 1 ≤ i ≤ k, for all p ∈ P∗ and G(D) is globally orthogonal.

Proof. If ep(gi(D)) > 0 for some p ∈ P∗ then, by gi(D) is not canonical and therefore, since a

right inverse of gi(D) does not exist, G(D) can not be canonical.

Conversely, assume that ep(gi(D)) ≤ 0, for all p ∈ P∗, for 1 ≤ i ≤ k. This means that for 1 ≤ i ≤ k,

gi(D) is canonical. Thus, defgi(D) = zi, by 3.7.16, and since gi(D) is canonical, zi is minimal
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for 1 ≤ i ≤ k. Hence,
∑k

i=1 def(gi(D)) is minimal. But
∑k

i=1 def(gi(D)) is nothing more than

the extdegG(D). Therefore, G(D) is canonical.
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4 | Quantum Error-Correcting Codes

In analogy to the classical counterpart, a theory of quantum error-correcting codes was created and

allows an e�cient computation of quantum computers against noise. This theory is based on the

classical ideas of error-correcting codes. In 1996 Robert Calderbank, Peter Shor and Andrew Steane

discovered a class of quantum codes - the CSS codes. The basic structure in quantum theory is

a complex Hilbert space, H. The relevant Hilbert space will be the vector space Cn. The standard

notation used for a vector v is denoted as ket and it is given by

|v〉 =


v0
...

vn−1

 (4.1)

Since one has a vector space one can de�ne its dual vector space, H∗, and so elements of the dual

space of a Hilbert space H are called bras and are given by

〈w| =
[
w∗0 . . . w∗n−1

]
(4.2)

This notation is called the Dirac bra-ket notation. Using this notation, the inner product between

the vectors |v〉 and |w〉 is given by

〈w|v〉 =
[
w∗0 . . . w

∗
n−1

]
v0
...

vn−1

 =

n−1∑
i=0

w∗i vi (4.3)
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An importan basis for Cn is the computational basis labeled as {|0〉 , |1〉 , . . . , |n− 1〉} and when

translated over Cn correspond to column vectors with a single nonzero element:

|0〉 =


1

0
...

0

 , . . . , |n− 1〉 =


0
...

0

1

 (4.4)

Furthermore, the computational basis is an orthonormal basis, i.e., each basis element is orthogonal

and each has norm equal to 1. That is,

〈i|j〉 =


1, if i = j

0, otherwise
(4.5)

As an anology to the concept of bit in the classical information theory one has the notion of qubit.

A qubit is simply a two con�guration system given by the states |0〉 and |1〉 . The main di�erence,

between bit and qubit, is that the qubit can be in a state di�erent from the |0〉 and |1〉 . Namely, a

qubit is given by a linear combination of the states |0〉 and |1〉 as

|ψ〉 = α |0〉+ β |1〉 , (4.6)

where α, β ∈ C and |α|2 + |β|2 = 1, since |ψ〉 must be a normalized state. An interesting point of

view of qubits is the following geometric representation. Writing α = cos

(
θ

2

)
and β = eiφ sin

(
φ

2

)
,

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, one can map all the single qubits into a sphere - the Bloch sphere.

|ψ〉

x

y

|0〉

|1〉

φ

θ
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In particular, equation (4.6) can be rewritten as

|ψ〉 = eiγ [cos

(
θ

2

)
|0〉+ eiφ sin

(
φ

2

)
|1〉], (4.7)

where θ, φ and γ ∈ R.One can ignore the factor eiγ since it has no observable consequences. Although

the basis {|0〉 , |1〉} is orthogonal, when moving to the bloch sphere representation the vectors |0〉

and |1〉 are not orthogonal, as can be observed. Contrary to classical computers, which can, with

precision, determine if a bit is in the state 0 or 1, quantum mechanics restrict one's information

about the quantum state and so one can not examine a qubit to determine the values of α and β.

When measuring a qubit the result 0 is obtained with probability |α|2 or the result 1 is obtained

with probability |β|2. Furthermore, by measuring a qubit one changes the state of the qubit, making

a collapsation of the superpositions |0〉 and |1〉 to the speci�c state consistent with the measurement

result. For example, if the qubit is given by |v〉 =
[
1/2 1/2

]T
, then measuring it gives 0 with

probability 1/2 and the post-measurement state of the qubit will be |0〉− this behavior is due to

one of the fundamental postulates of quantum mechanics [29, Chapter 2]; one of the great aspects

of quantum mechanics is the versatility in the class of measurements that may be performed [29].

For example, a qubit can be expressed in the basis {|+〉 , |−〉}, where

|±〉 =
|0〉 ± |1〉√

2
(4.8)

as

|ψ〉 = α
|+〉+ |−〉√

2
+ β
|+〉 − |−〉√

2
=
α+ β√

2
|+〉+

α− β√
2
|−〉 (4.9)

Thus, measuring it with respect to this new basis gives `+' with probability |α+ β|2/2 and `-' with

probability |α− β|2/2. In fact, for any basis {|a〉 , |b〉} it is possible to write a qubit as a linear

combination of

α |a〉+ β |b〉 , (4.10)

with the requirement that the basis is orthonormal in order to perform a measurement. When the

system evolves, i.e., it is originaly a vector p with dimension n × 1 and by a multiplication of a

matrix n × n, A, it results in a new n × 1 vector q, the normalization condition must hold and so

the matrix A must be unitary. An unitary matrix is a matrix whose conjugate transpose is also its

inverse, i.e., U †U = UU † = I. One particular set of unitary matrices for single qubits is the Pauli
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matrices given by

X =

0 1

1 0

 , Z =

1 0

0 −1

 , Y =

0 −i

i 0

 , I =

1 0

0 1


These matrices are all Hermitian, A† = A, and so all their eigenvalues are real. Besides, all Pauli

matrices square to identity and thus their eigenvalues are ±1. Furthermore, the Pauli matrices

satisfy the following relations

[X,Y ] = iZ, [Y, Z] = iX, [Z,X] = iY, (4.11)

where [A,B] is the commutator between two matrices and is de�ned as [A,B] := AB −BA and

{X,Y } = {Y, Z} = {Z,X} = 0, (4.12)

where {A,B} is the anti-commutator between two matrices and is de�ned as {A,B} := AB +BA.

Another usefull matrix for single qubits is the Hadamard matrix represented as

H =
1√
2

1 1

1 −1


For example, applying a Hadamard matrix to a qubit |ψ〉 results into a new qubit |ψ′〉 = α |+〉 +

β |−〉 . This is interesting since one passes from the computational basis {|0〉 , |1〉} to the basis

{|+〉 , |−〉}. This trick of changing a basis will be later used in the bit �ip channel.

One can generalize the notion of a single qubit to multiple qubits. In particular, a two qubit system

has four computational basis states namely

|00〉 , |01〉 , |10〉 , |11〉 ,

where |ψψ〉 = |ψ〉⊗|ψ〉 = |ψ〉 |ψ〉 for simpli�cation purposes. Therefore, a general two qubit is given

by

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 , (4.13)

where αi,j ∈ C and
∑
|αi,j |2 = 1. Now instead of having 2×2 unitary matrices to perform operation

in the system one has 4×4 unitary matrices. One particular important matrix for two qubits is the

CNOT given as

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


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The CNOT has two input qubits known as the control qubit and the target qubit and performs the

following: if the control is set to 1 the target is �iped otherwise nothing happen. Applying a CNOT

to the four con�gurations of the system yields

|00〉 → |00〉 , |01〉 → |01〉 , |10〉 → |11〉 , |11〉 → |10〉

As a generalization of the CNOT there is the To�oli matrix given by

T =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



4.1 Introduction to Quantum Error Correction

It is useful when dealing with a problem inside the quantum world to look to the classical world and

try to �nd an equivalent problem. One of the greatest discoveries in the twentieth century was that

an equivalent to classical error-correction in the quantum world exist - quantum error-correction.

Suppose that a bit is sent through a channel such that, with probability p, the bit is �ipped and

with probability 1− p nothing happens to the bit ( the binary symmetric channel ). If one wants to

decrease the probability of p one just need to use redundancy, i.e., if the bit to be sent is w instead

it will be encoded as www and then send it through the channel. This redundancy gives motivation

to a serie of reasons why quantum error correction seems to be impossible:

(i) No-Cloning Theorem

This theorem [29, Chapter 12] states that no machine can perform the evolution |ψ〉 → |ψψ〉 ,

i.e., there is not an unitary matrix, U, which can take the unknown state |ψ〉 and create two

copies of this state |ψ〉 |ψ〉 . Thus, clone quantum information in the same way as classical

information is impossible.
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(ii) Measurement

In opposition to classical error-correction where by reading the classical information one can

correctly recover it; in the quantum world measurement disturbs the quantum system and

thus a�ecting the quantum information.

A description of how to perform classical error-correction is provided by using reversible circuits.

From here the quantum correction procedure is determined and examples will be presented such as

the Shor code.

As stated previously the �rst procedure is to encode the bit ψ. For pratical purposes the quantum

circuit notation is introduced as one goes through (see, for example, [29] for a more complete

description): three bits will be represented by three wires and the CNOT matrix is represented by

• (4.14)

Thus, an encoding procedure to ψ is given by

ψ • • ψ

0 ψ

0 ψ

(4.15)

Now each bit will be sent through a bit �ip channel (independent of each other) denoted by S. After

this, the recovery procedure for �xing the error is applied. The decoding can be performed by two

CNOTS. The �xing procedure is done by a To�oli matrix represented by

•
•

(4.16)

Thus, the full circuit is given as

ψ • • S • •

0 S •

0 S •

(4.17)
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In fact the CNOTS transforms the encoding information in

000 000

001 001

010 010

011 011

100 111

101 110

110 101

111 100

, (4.18)

where the right side corresponds to the bits after applying the CNOTS; there are 23 bits since the

S gate denotes the bit �ip channel. Except for the bit 111, all the others have the �rst bit restored.

Thus, applying To�oli to the bit 111 gives 111→ 011 and so, the recovery routine is accomplished

(for all the others bits the To�oli does nothing).

Let |ψ〉 = α |0〉+β |1〉 , where α, β ∈ C and |α|2+ |β|2 = 1, be an arbitrary quantum state. Applying

the same procedure as in the classical information, the circuit and the state |ψ〉 after the two CNOTS

is given by

|ψ〉 • • |ψ〉

|0〉

|0〉

(4.19)

and

α |000〉+ β |111〉 , (4.20)

respectively; something like redundancy is used to get around the no-cloning theorem (i). In fact,

the quantum information was encoded into a subspace spanned by

{|000〉 , |111〉} (4.21)

After the encoding process, the state (4.20) will pass by the channel; this channel can be interpreted

as a bit �ip error X happening with probability p and nothing happen to the qubit with probability
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1− p, just like in the classical world. The full circuit is given by

|ψ〉 • • S • •

|0〉 S •

|0〉 S •

(4.22)

If an error occur in the �rst qubit (XII = X⊗I⊗I), applying the two CNOTS to the the state yields

α |100〉+ β |011〉 → α |111〉+ β |011〉 . But this is nothing less then (α |1〉+ β |0〉) |11〉 and applying

To�oli the error is corrected. For all the remaining cases of just one error (IXI and IIX) the To�oli

does nothing and therefore, for one arbitrary error the quantum information is restored. One of the

upsides to encode the information into a subspace is that when errors occur the subspace is mapped

into a di�erent orthogonal subspace, for each of the errors. Furthermore, the basis elements of these

new subspaces are also orthogonal. The other problem brought up was measurement (ii). The

result of the measurement is called error syndrome since allows one to diagnose in which subspace

the error has taken the original subspace (4.21) to and so, by applying the appropriate X operator

to recover it [3]. For this particular case (the bit �ip channel) consider the operators S1 = ZZI

and S2 = ZIZ (in [29, Chapter 10] others operators are considered - projective operators - but the

analysis is similar). Both operators have eigenvalues ±1 and these eigenvalues can distinguish in

which of the four subspaces the state is. For example, if an error on the �rst qubit occurs then

Si |100〉 = − |100〉 and Si |011〉 = − |011〉 for i = 1, 2, i.e., |100〉 and |011〉 have eigenvalues −1 for

both S1 and S2. By calculating the eigenvalues for the others possibles errors one can clearly know

where which subspace the error has taken the original subspace to. These eigenvalues are presented

below along with the errors they enable

Error S1 S2

III +1 +1

XII −1 −1

IXI −1 +1

IIX +1 −1

(4.23)

Thus, one needs to perform a measurement which projects onto the ±1 eigenstates [3] of S1 and S2.
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Consider the circuit

• (4.24)

This is a destructive measurement since it does not leave the subspace intact after measuring it.

For example, if the input to this circuit is α |00〉 + β |11〉 then the outcome of the measure will

be |0〉 . Associating |0〉 with +1 and |1〉 with −1 then measuring the second and third qubits after

the CNOTS gives the eigenvalues of S1 and S2 and with this the error is diagnosed. Since this

also does decoding of the quantum information only when the error occured in the �rst qubit the

X gate is applied to correct that error - this is the case where both measurements outcomes are

|1〉 . Measurements commute through control gates turning them into classical control operations -

this is due to the Principle of deferred measurement [29, Chapter 4] and thus, a di�erent way to

implement the circuit to perform quantum error-correction is

|ψ〉 • • S • • X

|0〉 S •

|0〉 S •

(4.25)

Therefore, performing measures which project onto subspaces avoids the issue that measures disturbs

the system.

Consider the phase �ip model and that an arbitrary error occur. This model is very similar to the

bit �ip model except by a basis change, since HZH = X, i.e., one can see the phase �ip model as

the bit �ip model with a Hadamard operator acting before and after the bit �ip channel. Thus, the

circuit to this model is given by

|ψ〉 • • H S H • • X

|0〉 H S H •

|0〉 H S H •

(4.26)

The procedure will be identical to the bit �ip channel except that the encoding will be performed

into the subspace spanned by {|+ + +〉 , |− − −〉}.

Finally, a code which can correct an arbitrary error is presented - the Shor code.
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An arbitrary single error that can occur in a qubit is a hermitian 2× 2 matrix and every hermitian

matrix can be expressed in a linear combination of I, X, Z and Y [17]. By encoding into the

subspace spanned by {|000〉 , |111〉} a single X error can be corrected. If a Z error occurs the

encoded information will be distorted since for B = {ZII, IZI, IIZ} one has B |111〉 = − |111〉 and

B |000〉 = |000〉 , ∀B ∈ B. However, this phase �ip error behaves like a bit �ip error on the encoded

basis {|000〉 , |111〉}. From the previous analysis of the phase �ip model by de�ning the states

|u〉 =
|000〉+ |111〉√

2
(4.27)

|v〉 =
|000〉 − |111〉√

2
(4.28)

one can observe that a Z error sends |u〉 to |v〉 and vice versa. And thus a single phase �ip error is

corrected by using a bit �ip code.

In the Shor code the information is encoded into the subspace spanned by {|uuu〉 , |vvv〉}. Therefore,

single Z errors are corrected by knowing in which subspace |uuu〉 and |vvv〉 are sent to and X errors

can be amended within each |u〉 and |v〉 qubit. As so, the encoding circuit for the Shor code is

|ψ〉 • • H • • S • • X H • • X

|0〉 S •

|0〉 S •

|0〉 H • • S • • X H •

|0〉 S •

|0〉 S •

|0〉 H • • S • • X H •

|0〉 S •

|0〉 S •
(4.29)

In fact, the Shor code uses three bit �ip codes (one for each block) plus one phase �ip code. Thus,

if a Y error occurs then the bit �ip code will correct the X error althought the result will be that
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a Z error occured into the encoded information but then the phase �ip code will be able to correct

that error and so a XZ error is corrected by the Shor code. Indeed, the Shor code can correct a

single qubit error, E, even if it is a sum of errors such as

E = e0I + e1X + e2Z + e3XZ

Thus an continuum set of errors can be corrected by only a discrete set of errors {X,Y, Z} - this is

a crucial point of why quantum error correction works.

4.2 Stabilizer Codes

4.2.1 Stabilizer Formalism

The main point of the reason why stabilizer formalism has such a great power in quantum convo-

lutional codes lies precisely in group theory. To be more exact the Pauli group. In this thesis when

refering to the Pauli group a particular representation by unitary matrices will always be considered.

De�nition 4.2.1. The Pauli group, Pn, for n qubits is the multiplicative group consisting of

n−fold tensor products of the Pauli matrices I,X,Z, Y along with multiplicative factors ±1,±i.

With this representation one can remark that the Pauli group is a non-abelian group, since XZ 6=

ZX; in fact, XZ = −ZX. A series of new concepts such as stabilizer group, stabilizer subspace,

normalizer will be introduced to fully describe the stabilizer formalism. Not just any subgroup of

the Pauli group can be used as stabilizer. For instance, if one considers a subgroup P1 consisting of

{±I,±Z} the only solution for −I |ψ〉 = |ψ〉 is to |ψ〉 = 0. Thus, {±I,±Z} is the stabilizer for the

trivial vector space.

De�nition 4.2.2. The stabilizer, S, is a subgroup of Pn such that all elements commute with each

other, i.e., is abelian and does not contain the element −I.

A simple and yet important implication one can deduce from this observation is the following:

− I 6∈ S⇒ ±iI 6∈ S (4.30)

Usually one does not specify all elements of the stabilizer. Instead, since S is a �nite subgroup one

may only specify the generators. In fact, just specifying a minimal set of generators is enough since

50



multiplication of these elements leads to the full group. Obviously, there may be multiple minimal

set of generators. For the example below [29] provides a di�erent set.

It is possible to de�ne a subspace on the n qubits.

De�nition 4.2.3. Let S be a stabilizer group. The vector subspace, HS , is de�ned as

HS = {|ψ〉 | S |ψ〉 = |ψ〉 , ∀S ∈ S}

One observation from this de�nition is that HS can be seen as
⋂
kKer(I−Sk). Let S be a stabilizer

group formed by a minimal set of generators. It is usefull to know the dimension of the subspace

HS since this subspace will be use to encode k = n− r qubits. In fact, for a code to encode k qubits

in n, HS has dimension 2k and S has 2r elements.

The generators of the stabilizer square to identity, I; furthermore, the generators consist in tensor

products of Pauli matrices and so, they have eigenvalues ±1 (application of Stephanos theorem

[25]). Also, the elements of the stabilizer have trace 0 with exception of the identity. This can be

easily observed: all Pauli matrices have trace 0 except I which has trace 2 and since the stabilizer

elements are tensor products of Pauli matrices, then applying the well know property

Tr(A⊗B) = Tr(A)Tr(B) (4.31)

the statement above is proved. Taking the �rst stabilizer generator, S1, it has trace zero and it

squares to identity, so has ±1 eigenvalues. Since

Tr(S1) = 0 =
n∑
i=0

λi, (4.32)

where λi are the eigenvalues of S1 then, S1 must have 2n−1 eigenvalues for +1 and 2n−1 elements

for −1. Therefore, S1 |ψ〉 = |ψ〉 splits the Hilbert space Cn of n qubits in half. For the remaining

generators by applying the following rule:

Si =
1

2
(I + Si−1) for i = 2, . . . , r (4.33)

each Si |ψ〉 = |ψ〉 cuts the space of the previous S1 |ψ〉 , . . . , Si−1 |ψ〉 in half, since

Si |ψ〉 =
1

2
(I + Si−1) |ψ〉 =

1

2
|ψ〉+

1

2
Si−1 |ψ〉 =

1

2
|ψ〉+

1

2
|ψ〉 = |ψ〉 (4.34)

Thus, for a stabilizer subspace with r generators the dimension of the subspace is 2n−r. An example

is presented to resume all of this section. Consider a stabilizer group on three qubits.
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Example: Let S = {III, ZZI, ZIZ, IZZ}. A minimal set of generators is ZZI and ZIZ. There-

fore S can be written as < ZZI,ZIZ > . This implies that the stabilizer subspace has dimension

2 which is correct since HS = {|000〉 , |111〉}.

De�nition 4.2.4. The centralizer of S is de�ned as

CS = {P ∈ Pn| PS = SP, ∀S ∈ S}

De�nition 4.2.5. The normalizer of the S is de�ned as

NS = {P ∈ Pn| PSP † ∈ S,∀S ∈ S}

In fact, since the stabilizer does not contain −I , CS = NS . Taking an element P ′ such that

P ′S = SP ′ ∀S ∈ S then

P ′SP ′† = SP ′P ′† = SI = S (4.35)

and so CS ⊆ NS . For the other implication by taking an element of NS then for any S ∈ S one has

PS = ±SP, since elements of the Pauli group either commute or anticommute. Then,

PSP † = ±(SPP †) = ±S (4.36)

Since −I does not belong to S then PSP † = S and so NS ⊆ CS .

One important set of operators are those who are in the normalizer NS but do not belong in

the stabilizer, i.e., the operators who are in NS − S. These operators are usually denominated

encoded Pauli operators. This motivates to de�ne the quotient group NS/S. This is a group

under the normal operation on the group S and so multiplication for the group elements is de�ned

as PiSiPjSj = (PiPj)(SiSj). In fact, this group is equal to the Pauli group of size k = n−r. Picking

a basis |ψi〉 for HS consisting in eigenvectors of n commuting elements of NS then

NS/S→ Pn

is an automorphism. Thus NS/S is generated by 2k equivalence classes [17] which are denoted as

Xi and Zi, where i = 1, . . . , k. These operators satisfy the following properties:

[Xi, Xj ] = 0 (4.37)

[Zi, Zj ] = 0 (4.38)

[Xi, Zj ] = 0 (i 6= j) (4.39)

{Xi, Zi} = 0 (4.40)
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4.2.2 Alternate Languages for Stabilizers

The stabilizer of a quantum code can be described in various ways - untill now only a characterization

involving group theory was provided.

One characterization that is very usefull is to write the stabilizer as a binary vector space [17].

Writing the stabilizer as a pair of (n − k) × n binary matrices where the rows of this matrix

corresponds to di�erent generators of the stabilizer S and the columns to di�erent qubits. If the

left hand side of the matrix contains 1 then it indicates the presence of a X; if the right hand side

contains 1 then it indicates the presence of a Z; if in both sides appears 1 then it simply indicates the

presence of a Y. This matrix is often called check matrix and has a role which resembles the parity

check matrix in classical linear codes [29, Chapter 10]. To give an example to better illustrate this

consider the previous example where S =< ZZI, ZIZ > . Then the check matrix for this stabilizer

will be 0 0 0 1 1 0

0 0 0 1 0 1


Notice that addition of binary vectors simply corresponds to multiplication of group elements (pro-

vided that these commute) and so if one multiplies ZZI for ZIZ one obtain IZZ. This new element

can be seen as[
0 0 0 0 1 1

]
=
[
0 0 0 1 1 0

]
+
[
0 0 0 1 0 1

]
Let A,B ∈ Pn and so their representation in binary pairs is [AXAZ ] and [BXBZ ], respectively. The

condition that two operators commute with each other can be translated in the binary formalism

as
n∑
i=1

(AXiBZi +AZiBXi) = 0 (4.41)

where AXi , BZi , AZi , BXi are the i-th component of the corresponding vectors. In fact, the condition

that the stabilizer S must be abelian corresponds to the check matrix of the stabilizer satisfying the

equation (4.41). Furthermore, due to (4.41) one can discover the elements of NS simply by �nding

the generators of NS/S and then multiply these elements by the stabilizer elements.

Following the same example as before where S =< ZZI,ZIZ > then for the �rst and second
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generators, equation (4.41) is translated as

PX1 + PX2 = 0

PX1 + PX3 = 0,

respectively, and so one generator for NS/S is the logical Pauli operator XXX; for the second one

by using the same process but now with the new operator XXX the equation (4.41) gives

PZ1 + PZ2 + PZ3 = 0

and so one possible operator is ZII.

One other possible charaterization is the classical theory of codes over GF (4) [4].

4.2.3 Examples

A serie of stabilizer codes is presented where the main aspect is to give the stabilizer and logical

operators.

(i) Three qubit bit �ip code

This code served as example in the last two subsections. It has stabilizer generators ZZI, ZIZ

and logical operators XXX,ZII.

(ii) Three qubit phase �ip code

This code is related to the bit �ip code simply by a Hadamard operator (recall thatHZH = X)

and so, its stabilizers are XXI,XIX and logical operators XII, ZZZ.

(iii) Shor code

This code is a concatenation of the bit and phase �ip codes and so it is also a stabilizer code.

The Shor code uses three qubit �ip codes plus a single phase �ip code for encoding and so its
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stabilizers and logical operators are

S1 ZZIIIIIII

S2 ZIZIIIIII

S3 IIIZZIIII

S4 IIIZIZIII

S5 IIIIIIZZI

S6 IIIIIIZIZ

S7 XXXXXXIII

S8 XXXIIIXXX

X XXXXXXXXX

Z ZZZZZZZZZ

4.3 Quantum Error Correction Criteria

Encoding the information into a subspace and be able to correct the information for certain errors

is the motivation to formalize this criteria.

Consider a basis, {|ψi〉} for the code subspace HC . For a code to correct between two erros Ek and

El is essential that they act in an orthogonal basis in order to distinguish the errors. Therefore,

〈ψi|E†kEl |ψj〉 = 0 (4.42)

with i 6= j for corretable errors. By measuring 〈ψi|E†kEl |ψi〉 for all possible errors Ek and El one

discovers what kind of error occur and so this quantity must be equal for all basis codewords, i.e.,

〈ψi|E†kEl |ψi〉 = 〈ψj |E†kEl |ψj〉 (4.43)

Combining these equations yields

〈ψi|E†kEl |ψj〉 = Cklδij (4.44)

where Ckl is a hermitian matrix. By rescaling the errors Ek a new basis {Fm} is obtained.

〈ψi|F †mFn |ψj〉 = 0 (4.45)

Furthermore, due to Ckl being hermitian it can be diagonalized [17] and so

〈ψi|F †mFn |ψj〉 = dmδmnδij (4.46)
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where dm ∈ R.

Theorem 4.3.1. [29, Theorem 10.1] Let C be a code. {Ek} is a correctable set of errors i� the C

satis�es equation 4.44.

The equation (4.44) is called quantum error correction criteria.

An example of this criteria applied to the stabilizers codes is provided. Consider the subspace HS

de�ned in 4.2.3 and errors Ek such that the product E†kEl always anti-commutes with at least one

Si. Since Si |ψ〉 = |ψ〉 then 〈ψi|E†kEl |ψj〉 = 〈ψi|E†kElSi |ψj〉 and if E†kEl anticommutes with one of

the generators Si then

〈ψi|E†kEl |ψj〉 = −〈ψi|E†kElSi |ψj〉 = −〈ψi|SiE†kEl |ψj〉 (4.47)

But Si acts as +1 on the code space and so

〈ψi|E†kEl |ψj〉 = −〈ψi|E†kEl |ψj〉 (4.48)

which implies 〈ψi|E†kEl |ψj〉 = 0. Otherwise, if E†kEl are elements of the stabilizer then

〈ψi|E†kEl |ψj〉 = 〈ψi|S |ψj〉 = δij (4.49)

In either case Ek satis�es the error correction criteria.

Furthermore, using the normalizer NS de�ned in 4.2.5 one can give a characteriation of the error

correction criteria. Suppose that Ek is a set of Pauli errors on the qubits. If E†kEl /∈ NS − S is in

the stabilizer then as previous the criteria is satis�ed. Otherwise, if E†kEl /∈ NS − S is not in the

stabilizer it also can not be in the normalizer. By the de�nition of the NS this means that

E†kElS 6= SE†kEl (4.50)

and so E†kElS = −SE†kEl, since all elements of the Pauli group must commute or anticommute.

Thus, as before 〈ψi|E†kEl |ψj〉 = 0. Therefore, one have the error correction conditions for stabilizer

codes.

Theorem 4.3.2. [29, Theorem 10.8] Let S be the stabilizer for the stabilizer code C and assume

that {Ek} is a set of errors. If E†kEl /∈ NS − S for all k and l errors then Ek is a set of correctable

errors.
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Conclusion

This work was very rewarding and allowed me to devellop some skills in new topics and discover

the mathematical beauty behind convolutional codes. The study of codes has several applications

in vast domains of communications, which in itself is already an added value. This is an area with

great impact in the everyday life.

Of all the studied encoders one can conclude the following:

(i) to avoid the catastrophic ones;

(ii) searching for the canonical encoders, which besides having a polynomial right inverse have the

smallest internal and external degree allowing an easiest implementation.

Relating to quantum error-correcting codes, contrary what was though, it is possible the existence

of quantum error-correcting codes. The quantum correction is based by encoding the quantum

information into a subspace. This subspace will allow the detection of possible errors by using the

stabilizers. Furthermore, a criteria that allows to a set of errors being corrected was given - this is

a useful tool to determine what kind of errors could be correctable.

Have the possibility to study and strengthening the subject, gave me an academic enrichment and

allowed me to consolidate the knowledge in areas in which I already had some interest.

While I was becoming more and more focus in the study of convolutional codes some subjects related

to convolutional codes such as convolutional codes over rings [8, 22], distances [5, 20] and quantum

convolutional codes [18, 19, 24, 30], took my attention and interest. Their study should be my next

motivation and commitment (unfortunately not for this thesis).

I really enjoy making this project which gave me a new and insightful perspective of convolutional

codes.

I believe that the propose of this work was accomplished and improved my skills in scienti�c areas.
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Appendix

Smith Normal Form

Let R be an Euclidean Domain - ED for abbreviation.

De�nition 4.3.3. Let A and B be to matrices with the same dimension over R.

The matrix A is equivalent to B if exist invertible matrices P and Q such that

A = PBQ,

the conventional notation will be used A ∼ B. The matrices P and Q have dimension u and v,

respectively.

Theorem 4.3.4. Let A ∈ Ms,t(R) be a matrix, i.e., A = aij , where aij ∈ R, 1 ≤ i ≤ s, 1 ≤ j ≤ t

of rank n. A is equivalent to a diagonal matrix in which the elements of the diagonal d1, . . . , dn are

the invariant factors of the matrix A and they satisfy

di|di+1, for i = 1, . . . , n− 1

Further, P = (Pu . . . P1)
−1 and Q = (Q1 . . . Qv)

−1.

Proof. Through elementary row and column operations the matrix A is transformed in a matrix

with the following structure 
d1 0 · · · 0

0
... D∗

0

 , (4.51)

64



where d1 is a nonzero element with smallest possible norm (if d1 = 0 the case would be trivial since

the null matrix would be obtained). Suppose that exists an element in the �rst row (or column)

such that a11 6 | a1j . Since A is over an ED is possible to write

a1j = a11q + r, with r 6= 0 (4.52)

By subtracting q times the �rst column to the j−th column, and then swapping the columns 1

and j, gives origin to replace the main entrie a11 by r. If arriving at the case where a11 divides all

elements of the �rst row (resp. column) then by subtracting appropriate multiples of the �rst row

(resp. column) with the remaining rows (resp. columns) a replacement of all entries in the �rst row

and column by 0 (r = 0) as occurred, with the exception of the entrie a11 (in this case a11 = d1)

and the matrix (4.51) is obtained.

Now suppose that the entrie d1 does not divide some element of the submatrix D∗. Then, exists a

certain d∗ij such that d1 6 | d∗ij . Adding the i−th row to the �rst row results into the case described

previously. Therefore, d1 divides all elements of D∗.

By repeating the process, the matrix D∗ can be reduced to its diagonal elements, which satisfy the

condition of the theorem.

A example is provided. For practical purposes consider matrices over F2[D], and with variable D.

Let

G(D) =

 D D +D3

D3 +D4 1 +D3


The element in the upper-left corner has minimum degree. By cancelling the rest of the �rst row

gives

A(D) = G(D)

1 1 +D2

0 1

 =

 D 0

D3 +D4 1 +D4 +D5 +D6


Similar, clearing the rest of the �rst column yields

B(D) =

 1 0

D2 +D3 1

A(D) =

D 0

0 1 +D4 +D5 +D6


The element 1 +D4 +D5 +D6 is not a multiple of D, and so proceeding as in the proof by adding

the second row to the �rst row gives1 1

0 1

B(D) =

D 1 +D4 +D5 +D6

0 1 +D4 +D5 +D6


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Clearing the �rst row results inD 1 +D4 +D5 +D6

0 1 +D4 +D5 +D6

1 D3 +D4 +D5

0 1

 =

D 1

0 1 +D4 +D5 +D6


Interchanging columns 2 and 1 :D 1

0 1 +D4 +D5 +D6

0 1

1 0

 =

 1 D

1 +D4 +D5 +D6 0


Thus, clearing again the �rst column and row yields

C(D) =

 1 0

1 +D4 +D5 +D6 1

 1 D

1 +D4 +D5 +D6 0

1 D

0 1

 ,
where

C(D) =

1 0

0 D +D5 +D6 +D7


The matrices P (D) and Q(D) are, respectively:

 D4 +D5 +D6 1

1 +D4 +D5 +D9 1 +D2 +D3


and D 1 +D +D3 +D(D3 +D4 +D5)

1 1 +D2 +D3 +D4 +D5


Thus, A(D) = P (D)C(D)Q(D).

Measurement

Quantum mechanics provides a mathematical framework for developing physics laws and it possesses

four postulates (see [29]) in which the third one refers to measurement. The third postulate states

that measurement is performed by a set of measurement operators {Mm}. If the state of the system

is |ψ〉 before the measurement then the probability that m occurs is given by

p(m) = 〈ψ|M †mMm |ψ〉

66



The state after the measurement is then given by

Mm |ψ〉√
p(m)

Further, the measurement operators must satisfy the equation
∑

mM
†
mMm = I. For example, to

measure the qubit |ψ〉 = α |0〉 + β |1〉 one de�nes the measurement operators as Mi = |i〉 〈i| for

i = 0, 1. These operators are Hermitian and the probability of obtaining measurement 0 and 1 is

p(0) = 〈ψ|M0 |ψ〉 = |α|2

p(1) = 〈ψ|M1 |ψ〉 = |β|2

The post-measurement states are

M0 |ψ〉√
|α|2

=
α

|α|
|0〉 and

M1 |ψ〉√
|β|2

=
β

|β|
|1〉 ,

respectively.

Some properties of the Kronecker product

Proposition 4.3.5. Let A ∈ Mm,n, B ∈ Mq,r, C ∈ Mn,p and D ∈ Mr,s with entries over a �eld

F. Then,

(A⊗B)(C ⊗D) = AC ⊗BD

Proof.

(A⊗B)(C⊗D) =


∑n

k=1 a1kBck1D . . .
∑n

k=1 a1kBckpD
...

...∑n
k=1 amkBck1D . . .

∑n
k=1 amkBckpD

 =


∑n

k=1 a1kck1 . . .
∑n

k=1 a1kckp
...

...∑n
k=1 amkck1 . . .

∑n
k=1 amkckp

⊗BD
Since 

∑n
k=1 a1kck1 . . .

∑n
k=1 a1kckp

...
...∑n

k=1 amkck1 . . .
∑n

k=1 amkckp

 = AC

the result follows.

Proposition 4.3.6. Let A ∈Mn,n and B ∈Mm,m with entries over a �eld F. Then, Tr(A⊗B) =

Tr(A)Tr(B).
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Proof. By de�nition,

A⊗B =


a11B . . . a1nB
...

...

an1B . . . annB


Then,

Tr(A⊗B) = Tr([aijB]ni,j=1) =
n∑
i=1

Tr(aiiB) =
n∑
i=1

aiiTr(B) = Tr(A)Tr(B)
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