Sociedad de FEstadistica e Investigacion Operativa
Top(XXXX) Vol. X, No. X, pp. XX-XX

A primal-dual interior-point algorithm for
nonlinear least squares constrained problems

M. Fernanda P. Costa
Departamento de Matemdtica para a Ciéncia e Tecnologia
Universidade do Minho, 4810 Guimaraes, Portugal
email: mfc@mct.uminho.pt

Edite M. G. P. Fernandes
Departamento de Produgdo e Sistemas
Universidade do Minho, 4710-057 Braga, Portugal
email: emgpf@dps.uminho.pt

Abstract

This paper extends prior work by the authors on solving nonlinear least
squares unconstrained problems using a factorized quasi-Newton technique.
With this aim we use a primal-dual interior-point algorithm for nonconvex
nonlinear programming. The factorized quasi-Newton technique is now ap-
plied to the Hessian of the Lagrangian function for the transformed problem
which is based on a logarithmic barrier formulation. We emphasize the im-
portance of establishing and maintaining symmetric quasi-definiteness of the
reduced KKT system. The algorithm then tries to choose a step size that re-
duces a merit function, and to select a penalty parameter that ensures descent
directions along the iterative process. Computational results are included for
a variety of least squares constrained problems and preliminary numerical
testing indicates that the algorithm is robust and efficient in practice.
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1 Introduction

In nonlinear least squares unconstrained problems, the objective func-
tion has the following special form

F() = 5 30 (5 (), (1.1)

Jj=1
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where f; : R® — R for j = 1,...,m are twice continuously differ-
entiable functions and m > n. The mathematical formulation (1.1)
includes nonlinear data fitting and parameter estimation problems.
Researchers in numerical analysis and optimization have been able to
devise efficient and robust minimization algorithms by exploiting the
special structure in F' and its derivatives. Assembling the individual
components f; of F' into a residual vector f : R" — R™ defined by
fx)= (fi (), fo(x), ..., fm (x))T, we can see why the special form of
F' often makes the least squares problem easier to solve than general
unconstrained minimization problems. The derivatives of F' can be
expressed in terms of the Jacobian of f, which is the m x n matrix of
first partial derivatives defined by

J(z) = [afj/axi]jzm,...,m, i=1,2,...,n ° (1.2)

We have then

VF(z) = Z £ @)V (@) = J(@)" f(z), (1.3)

VPF(2) = ZWJ D) VI @)+ Y i @) Vi ()
_ J(a;) J(z) + 2(x). (1.4)

In many applications, it is possible to calculate the first partial
derivatives that make up the Jacobian matrix J(x) explicitly. This
could be used to calculate the gradient VF (x) as written in formula
(1.3). However, the distinctive feature of least squares problems is
that by knowing the Jacobian we can compute the first part of the
Hessian V2F (z) for free. Moreover, the term J(z)TJ(x) is often
more important than the second summation term in (1.4), either
because of near-linearity of the model near the solution or because of
small residuals. Most algorithms for nonlinear least squares exploit
these structural properties of the Hessian. They are based on New-

ton and quasi-Newton approaches. Two well known variants include
the Gauss-Newton method (Dennis and Schnabel (1983), Kelly (1999)
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and Wolfe (1978)) and the Levenberg-Marquardt method (Dennis and
Schnabel (1983) and Moré (1978)). Since these methods neglect the
second part of the Hessian matrix, the local convergence analysis es-
tablishes conditions for a g-quadratic convergence for linear and zero
residual problems (Corollary 10.2.2 and Theorem 10.2.6 in Dennis and
Schnabel (1983)). For the other problems, the convergence becomes q-
linear (Theorem 10.2.1 of Dennis and Schnabel (1983)). Another class
is the structured quasi-Newton methods. Since the term J(z)"J(x)
of V2F () is available, only the second part of the Hessian matrix
is approximated by the matrix Ry (J(zx)TJ(x1) + Ri), which is up-
dated by quasi-Newton formulae. Some references in this domain are
Dennis et al. (1981), Gill and Murray (1976), McKeown (1972) and
Nazareth (1980). Since the updating formulae for the matrix Ry, in
practice, may not generate positive definite matrices and the search
direction would not be a descent direction for F', it seems reasonable to
define updating formulae which preserve, without conditions, positive
definiteness along the iterative process. As Levenberg-Marquardt is a
very simple positive definite correction of Gauss-Newton, it is reasona-
ble to expect that more sophisticated positive definite corrections of
Gauss-Newton work properly. So, we proposed in Costa and Fernan-
des (2003) a scheme similar to the Levenberg-Marquardt implementa-
tion of Wolfe (1978) (a scaled trust-region strategy) combined with a
quasi-Newton technique. Our aim was to generate a positive definite
correction matrix, in a factorized form LT L, to overcome a possible
singularity of JZ.J and to obtain g-superlinear convergence when ap-
plied to problems where ¥(x) is symmetric and positive definite at
the solution, x*. In this context, we have deduced two structured and
factorized quasi-Newton updates for the matrix L, therein denoted by
Type L and Type A, which have proved to be very successful. The
updates for L are as follows:

A _— T
Lpiy = A + k5K (1 / a2k W — AZA]CE]C) (15)
A2k aik

where the matrix Ay is defined by Ly + J(xx) — J(zp41) for Type A
formula and by L for Type L formula. aq; and ag; are scalars defined
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by ai, = 5t wy and ag, = 51 AL AySy, where

5k = Thy1 — Ti, (1.6)
Wi = Zp, — J(@41)" T (T11) 5 (1.7)
and
Zk =Y = VF(xpy1) — VF () (1.8)
or
Zk =0 + J(Te1)" T (Ths1) 3. (1.9)

The vector vy is given by
U = (J (1) = T(2n)") f@ra).

Type A and Type L updating formulae for L come from the minimi-
zation, with respect to L1, of H (J(zx41) + Lk+1)T — (J(zg) + Lk)TH
F

and of HLfil — LfHF respectively, both subject to L{H_E = wj;, and
Ly 1Sy = h, for any unknown m-dimensional vector h, such that

R = 57 wg. In this context (Costa and Fernandes (2003)), the up-
dating formulae were deduced under the conditions that s, and w,
satisfy 31wy > 0 and that 4,5, # 0 for all k.

The local convergence analysis therein presented for the factorized
quasi-Newton formulae uses very well known results of Broyden et al.
(1973) and Dennis and Moré (1974). It is based on the bounded dete-
rioration property of the sequence {J(zx)" J(xx) + LT Ly} of approxi-
mations to V2F(z*) and on the g-linear convergence of the sequence
{z1} to the minimizer x*. For the sake of completeness, we include
here the main theorems. Let D be an open and convex subset of R”
that contains x*. The assumptions made to prove the theorems are
the following:

(A1) There exist positive constants &1, & and p such that

|V?F(u) — V*F(z*)

| <& flu—a"|P
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for any v in D, and
1 (ur) = J (u2) || < & [lus — ua)”
for any u; and uy in D.

(A2) V?F is symmetric and positive definite at z*.

Theorem 1.1. (Theorem 5 in Costa and Fernandes (2003)) Suppose
that the Assumptions (A1) and (A2) are satisfied. Let the matriz Ly,
be updated by formula (1.5), where Zy is given by (1.8) or (1.9). Let
the sequence {xy} be generated by

e =z — (J(a) T (@) + LTLy) " @) flae). (110)

Then, for any r € (0,1), there exist positive constants (r) and
o(r) such that if ||y —2*|| < e(r) and ||By — V2F(2*)|| ), < 0(r),
and if X(x*) is a symmetric positive definite matriz, the sequence
{zx} is well defined and converges g-linearly to x* with

[ [ e [P

boAls} e

} are uniformly bounded and the matriz By, satisfies

Furthermore, the sequences {|| B}, {||By"|

{|(z2)"

the bounded deterioration property with respect to V2F(x*), with By,
given by

S — T A = <T AT
w Wpwy Ay ARSesy Ay Ay
Brn =B + —— — — s =
Wy, Sk 5, Ay ArSk

where
Bl = J(wp1)" I (wrs1) + AL Ay
and
By, = J(zp)' J(zy) + L} Ly,

Theorem 1.2. (Theorem 6 in Costa and Fernandes (2003)) Suppose
that the hypotheses of Theorem 1.1 hold. Then the sequence {x}
generated by (1.10) converges q-superlinearly to x*, that is,

N S |

lim

koo log —avl|

0.
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In some large-scale applications, it is more practical to compute the
gradient VF (x) directly using computational techniques (see Chapter
7 of Nocedal and Wright (2000)) than to compute the first partial
derivatives (1.2) separately to form J(z)T f(x) from (1.3). Since, for
these problems, we do not have access to J(x), we can not exploit the
special least squares structure, and therefore the algorithm therein
proposed does not apply.

As some constrained optimization problems have objective func-
tions of the form (1.1), this paper aims to extend the theory of the
structured and factorized quasi-Newton techniques to constrained prob-
lems. In particular, the factorized formulae are now used to approxi-
mate the terms of the Lagrangian Hessian matrix which involve the
second derivatives information of the residual functions and of the
constraint functions (see more details in Section 3).

Taking into account the success of the software package LOQO
- an interior-point code for general (smooth) nonlinear optimization
problems - the proposed extension will be analyzed and implemented
in a similar interior-point framework context.

We consider now the problem of minimizing a sum of squared non-
linear functions subject to constraints. In a general form, the problem
is

miilei]r%gbize F(x) % Z (fj (@)2

j=1
subject to b < h(z) <b+r,

| < x<u, (1.11)

where hy : R® — R for £ = 1,...,m are twice continuously differen-

tiable functions. r is the vector of ranges on the constraints h(x), u
and [ are the vectors of the upper and lower bounds on the variables
respectively and b is assumed to be a finite real vector. Elements of
the vectors r, [ and u are real numbers subject to the following limi-
tations: 0 <rp <o0; —oco < lj,u; <ocfork=1,....m,i=1,...,n.
Constraints of the form b < h(z) < b+ r are denoted by range con-
straints. When upper and lower bounds on the z variables do not
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exist, the vector x is considered free. Equality constraints are treated
as range constraints with » = 0.

The algorithm herein presented is a particular version of Vanderbei
and Shanno (1999) algorithm for nonlinear least squares problems.

This algorithm is called an infeasible interior-point method. The
term infeasible refers to the fact that primal feasibility is not required
by the algorithm at the beginning although it is enforced throughout
the process. The term interior-point refers to the fact that the slack
variables are required to be positive at the beginning and maintained
as so. Other interior-point methods have been proposed to solve non-
linear problems. Some references in this domain are Armand et al.
(2000), Byrd et al. (1999), Byrd et al. (2000), El-Bakry et al. (1996),
Forsgren and Gill (1998) and Gay et al. (1997).

2 The interior-point paradigm

We begin with a brief description of the interior-point approach to
solve (1.11). We refer to Vanderbei and Shanno (1999) for details.
Adding slack variables w, p, g and ¢, (1.11) becomes

. . . JR— 1 < 2
minimize F(x) = 3 ; (fj (@)
subject to h(z) —w = b,
h(z)+p = b+,
r—g = I,
r+t = u, (2-1)
w,p,g,t = 0.

The nonnegativity constraints are then eliminated by incorporating
them in logarithmic barrier terms in the objective function, transfor-
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ming (2.1) into

minimize  b,(z,w,p,g,t)
subject to  h(x) —w=10; h(x)+p=b+r; z—g=1; z+t=u,
(2.2)
where the objective function

b/ﬁ(l’awap7g7t) = F(:v)—uZln(w])—,uZln(p])—uZln(gZ)

—len (t:)

is the classical logarithmic barrier function (Fiacco and McCormick
(1990)) with p a positive parameter. Note that, we could have intro-
duced the simple bounds directly in barrier terms, but the presented
approach makes the Karush-Kuhn-Tucker (KKT) conditions easier to
write. From the Lagrangian function for problem (2.2)

L(xawapagat>U7Q7Z>S> = bu(x,w,p,g,t) - UT (h(l‘) —w-— b)
—qT(r+b—h(x)—p)—zT(x—g—l)
—sT(u—z—1),

we may produce the standard primal-dual system

VE(x) = Vhz)'y —2+s5 =
y+q—v

—per +WVey =

—pe; + PQep =

—pes + GZey =

—pes +TSey =

h(z) —w—b =

wW+p—1r =

OO0 o0 o0 o0 o0 o o o o

(2.3)

r—g—1 =
r+t—u =
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where V' = diag(vy,...,vm), Q = diag(qu, ..., ¢m), Z = diag(zy, ...,

zn), S = diag(sy,...,8,), W = diag(wy, ..., wm), G = diag(g1, ..., gn),
P = diag(py,...,pm), T = diag(ty,...,t,), e = (1,1,...,1)T and

e = (1,1,...,1)T are m and n vectors respectively, Vh(z) is the Ja-

cobian matrix of the constraints h(z) and y = v — ¢. The first two

equations define the conditions of dual feasibility, the next four equa-

tions are the complementarity conditions and the last four equations

define the primal feasibility.

When applying Newton’s method to obtain the solution for (2.3),
the resulting system is not symmetric, but it can be symmetrized
giving,

[ 77150 0 0 0 |0 0 0 —-I0
0 -G71'Z0 0 0 |0 0 —I0 O
0 0 -P7'Qo 0 |0 —-I0 O O
0 0 0 0 0 |-I —-I0 0 I
0 0 0 0 —-H VA0 I -I0 A
0 0 0 “TVh0O 0 0 0 0 -
0 0 -1 -I0 |0 0 0 0 O
0 —I 0 0O I |0 0 0 0 O
—I 0 0 0 —-I|0 0 0 0 O
| 0 0 0 I 0 [0 0 0 0 VW
(2.4)

where the vectors A and a are given by (At, Ag, Ap, Aw, Az, Ny, Ng,
Az, As, Av) and (—vs, =Yz, —7g: 5, 0, p, —Q, U, —T, Yy, respectively,

H=V2L(z,y) = J(z)"J(x) + Z fi (@) V2 [ (x) = Z y; V2hi(x),

(2.5)
and

Vs = pT ey —s

V. = pGley—z

Ve = pP e —q

b = y+q—v

o = VF(z)—Vh(@@)y—2z+s
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p = w+b—h(x)
a = r—w-—p
v = l—-x+g
T = u—x—1t

Yo = pV lep —w.

Note that p, o, v and 7 measure primal infeasibility and (§ and
o measure dual infeasibility. The symmetry of this system suggests
a systematic process of elimination which brings us to the so-called
reduced KK'T system:

oc—JZG 0 - ST~ 7

—(H?%D)\Vh@df}{zﬁx}

Vi(z) | E Ay p—E (B— QP—1a> !
where
E = (VW '+QP )"
D = ZG '+ ST7!
and
G = B-VWly,
a = a—PQ 'y,
7 = v+GZ My,
T T — TS 1y,

Once the reduced system has been solved for Ax and Ay, the other
A variables that were eliminated are recuperated by

Aw = —E (B— QP~'a + Ay)
Nqg = P'Q(Aw - Q)
Nz = G 'Z({©0- Azx)
Ns = T'S(Ax—7)
At = TS (v, — As)
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Ng = GZ7'(y.— Az)

PQ™ (74 — L)
Ao = VW (v, — Aw).

>
<
I

Let
N=H+ D+ Vh(z)"E"'Vh(x) (2.6)

denote the dual normal matrix.

Theorem 2.1. (Similar to Theorem 1 in Vanderbei and Shanno (1999))
If N is nonsingular, then system (2.4) has a unique solution.

Proof. Theorem 5.1 in Costa (2002). O

From an initial point (x1,w1,p1,91,t1, %1, ¢, 21, S1,01), the algo-
rithm then proceeds iteratively as follows:

Thp1 = Tp + DT, Y1 = Yi + O DY,
Wit1 = Wy + AWy, Qry1 = G + Ay,

Pit1 = Pk + QpApr, 21 = 2 + Qplzy, (2.7)
Gk+1 = Gk + arAgy, Sk+1 = Sk + QpASg,
L1 = i + Dty Vg1 = Uk + Qp Dy,

using the search directions described above, where @, gives the step
length and £ is the iteration counter.

2.1 The merit function

The idea of a merit function is to ensure that joint progress is made
both toward a local minimizer and toward feasibility. The step length
@y, in (2.7) should be chosen to ensure that the slack and the dual vari-
ables are maintained positive and that an appropriate merit function
is reduced. The chosen merit function is the penalty function studied
by Fiacco and McCormick (1990), which has the form



12 Fernanda Costa and Edite Fernandes

B g
W (0,0,0,9,8) = byl w,p,9,0) + 5 o (e w3+ 5 o, )
B
2
when applied to problem (2.2), where 3 > 0 is the penalty parameter.

0 (@l + 5 i (1) 2 (2.9

In practice, the choice of an @,,,, to ensure the positivity of the
slack and the dual variables means that, for Aw; < 0, Ap; < 0,
Agz <0, At; <0, ij <0, qu <0, Az; <0, As; <0, AU]' <0

_ _ . w Dj 9i li Yj
Qmax = minq 1,0.95min | ——2, — y— . ) 5
& { ( ij Apj Agz Atz Ay]

L A B |
Aq]' ’ AZZ ’ AS]‘ ’ AU]‘
with ¢ = 1,...,n and j = 1,...,m. The interval (0, Q.| is then
searched by backtracking, for an @y that produces a reduction in the
function W5 . using merit function evaluations only.

2.2 Choice of the 5 parameter

The following theorem shows, among other things, that for large enough
values of 3, the search directions, corresponding to the primal vari-
ables of (2.2), defined by (2.4) are descent directions for the merit
function (2.8) whenever the problem is strictly convex.

Theorem 2.2. (Similar to Theorem 2 in Vanderbei and Shanno (1999))
Suppose that the dual normal matriz N (2.6) is positive definite. Then,
the search directions have the following properties:
1. If p=0,a=0,v=0 and 7 =0, then
T

Vb, Ax
Vwby Aw
Vb, Ap | <0.
Vb, Ag

Vb, At
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2. There exists B3,... > 0 such that, for every > (3

min min»

T

A Ax
Vs, Aw
VP\PB, # Ap <0.
Vg\IIE’ M Ag
Vt‘I’B, u At

In both cases, equality holds if and only if (x,w,p,g,t) satisfies
(2.3) for some (y,q, z,s,v).

Proof. Theorem 5.2 in Costa (2002). O

In practice, 3 is initialized to 0 and is unchanged as long as (Ax,
Aw, Ap, Ng, At) is a descent direction for W5 .- When (Az, Aw,

Ap, Ag, At) fails as a descent direction, then 3 is calculated using
5 — 10/8m1n.

3 Algorithm modifications for nonconvex optimiza-
tion

For convex optimization, the use of the merit function described in
the Subsection 2.1 to guide the selection of a step length yields an
efficient and robust algorithm. However, for nonconvex optimization
problems, the matrix N (2.6) may fail to be positive definite. In this
section, we describe the algorithm changes that we made to address
this issue.

Theorem 2.2 shows that the direction (Ax, Aw, Ap, Ag, At) has
desirable descent properties for both the barrier function and the merit
function provided that N is positive definite. When N is indefinite,
the algorithm might converge to a point which is not a local minimum.

For the positive definiteness of the dual normal matrix, we need
to guarantee that H is positive definite, to be able to ensure that the
direction (Ax, Aw, Ap, Ag,At) is a descent direction for W5 . For
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our problem (recall (2.5)), the Jacobian matrix J(z) can be computed
analytically or numerically in a expedite form and the term J(z)? J(z)
of H is available at an acceptable cost and is positive definite if J(z)
is full rank. Our aim is to surpass the calculation of the second deriva-
tives of the residual functions and of the constraint functions, and at
same time to guarantee that the H matrix is approximated by a pos-
itive definite matrix. Since in an unconstrained least squares context
(Costa and Fernandes (2003)), we have deduced two factorized quasi-
Newton formulae and they have proved to be very successful, we try
now to extend them to this case as well. So, using a similar argument,
the second order terms of H are to be approximated by a positive
definite matrix.

Our proposal considers a factorized quasi-Newton approximation
of the form LT L to the last two terms of H. So, at each iteration k,

Hy ~ J(xp)" J(21) + L} L.

The updates for Ly, (see (1.5)) that result from the step from iterate
k to iterate k+ 1 will make use of the vectors, s, Zx, W, and vy, which
are defined as follows:

Zk =Yy
or
Zk =0 + J (1) T (Th1)3k
where 7, and v), are now given by
U, = VF(xii1) — Vh(@e1) Yerr — VF () + Vh(zr) ys — 2641

+2k + Sk+1 — Sk
Uy = (J(@r)" = J(@)") flawn) = (VA(zre)" = Vi(a)T) grga
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The vector v, comes easily from

m

m
T —
Lk+1Lk+15k— E Ik+1 V fg Ik+1 E zk—HV h $k+1) Sk

= =1

=1
o~ Z (Tk41) [V fi (1) — V£ (x1)]

- Z?Jz‘,kﬂ [Vhi(zry1) — Vhi(zy)]

=1

= (Jiy = i) forr = (VR — VRE) Yrsr = T

If V2,1 is not positive definite, the condition 57wy > 0 may not
hold when 5, and wy, are defined by (1.6) and (1.7), even when the iter-
ates are close to the solution. To overcome this difficulty, whenever the
condition 57wy, > 0 failed we used |5} w}| instead. A skipping strategy
is also included, whenever the scalars that appear in the denominators
of the updates became too small, i.e., we do skip the update formulae
if

5, Wy > v and/or 5, A} ApSg >
are not satisfied, where ~y is a positive parameter (107'2, say).

In Yamashita and Yabe (1996), among other things, the authors
prove local and superlinear convergence of a primal-dual interior-point
method for constrained optimization, when a quasi-Newton approxi-
mation is used to approximate the Hessian of the Lagrangian and
a single step size rule is implemented for the primal and the dual
variables. Besides the conditions on the objective function, constraint
functions, barrier parameter and on the parameter in the step size rule,
to prove superlinear convergence they also assume that the sequence of
quasi-Newton updates satisfies the bounded deterioration property. In
our view, the analysis can be extended to our factorized quasi-Newton
updates as long as we are able to prove the bounded deterioration
property of the sequence {B;} with respect to V2 L(z*,y*). This is
now under investigation.
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4 Details of implementation

This section provides implementation details of the algorithm that we
have coded and tested.

4.1 The initial point

In an interior-point code, to start the algorithm we need to provide
initial values for all slack and dual variables. It is important to provide
these values to satisfy at least some of the equations. Similarly to what
is done in Vanderbei (1998), the algorithm initializes the variables as
follows. First, giving a starting point x( of the problem, x and y are
found as solutions to the following system:

e

Vh T y b

where J and Vh are computed at zy and ¢ = VF(0). In practice, if
V F is not defined at the point 0 we use x = xy and y = 1. The other
variables are set as follows:

g = max (abs(z — 1), 0)

z = max((abs(z), 0)

t = max (abs(u — x),0)

s = max(abs(z), 0)

= max (abs (h(z) — 1), 0)
max (abs(r — w), )
max (abs(y), 0)
max(abs(y), 0),

where max() and abs() denote componentwise maximum and absolute
value, respectively. The parameter 6 is used to guarantee that all the
variables constrained to be nonnegative are at least as largeas 6. 6 = 1
has proved to be a good choice.

S S
I
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4.2 Stopping rule

The stopping rule used in the algorithm considers both primal and
dual feasibilities. The level of primal infeasibility is measured by

2 2 2 2
\/HpH H I+ lledl” + [l

primal inf. = ,
bl +1
and the dual infeasibility by
dual inf lo]* + 1181°
ual inf. =
lefl +1

A solution is declared primal/dual feasible if these measures are
less than 107% (Vanderbei and Shanno (1999)). In practice, if VF is
not defined at the point 0 we use ¢ = 0.

4.3 The barrier parameter

The duality measure parameter p of the objective function in (2.2) is
computed, at each iteration, by

p="z"g+v"w+sTt+pTq)/(2m + 2n)

where 7 is a scale factor (0 < < 1), with default value equals to 0.1.
We refer to Vanderbei (1998) for details.

4.4 Handling infinities

In our problem formulation (1.11) the variables have two sided bounds.
But in real-world problems we may have some variables with two-sided
bounds, others with only one-sided bounds (either upper or lower) and
yet others without bounds (so-called free variables). Missing bounds
are handled as follows. We simply omit the slack variable associated
with the missing bound as well as the corresponding dual variable.
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If the z variables are free, the technique replaces each one with
the difference of two nonnegative variables, which means adding the
constraints ¢ — g+t =20, g, t > 0 to the problem.

If we have a pure inequality constraint, which means that the i-th
constraint has infinite range, then we leave out the slack variable p;,
associated with this constraint, and the corresponding dual variable

q;-

5 Computational experiments

To compare our factorized formulae (Type L and Type A) with the
BFGS-like formula of Yabe and Takahashi (1991) in this primal-dual
interior-point framework we selected 32 least squares constrained prob-
lems from Hock and Schittkowski (1981) collection (HS). The tests
were done in double precision arithmetic with a Pentium II and For-
tran 90 (LINUX). The initial matrix L, is always set to [1074[0]".

We present in Table 1 some ideas about the performance of the
factorized quasi-Newton updates Type A and BFGS against the Type
L formula, using Al-Baali rule (1991). The performance of these
factorized formulae is measured by computing the numbers (TT,RI),
(TFE,RFE) and TF. These numbers are related to the total number
of iterations (TI), total number of merit function evalutions (TFE)
and failures (TF) required to solve the set of problems. A value of RI
(similarly for RFE) gives the average of N =32 ratios of the form

Cyi )
2 it Cy; <4y
) Cyy
"o % a0
- 1 i i
Co. 2, 1,

where C; and Cy;, for © = 1,2,..., N, denote the costs required to
solve problem i by two methods (1 and 2, respectively). It includes all
problems even if they fail. r; is equal to 1 when the two methods fail,
r; is equal to 0 if method 1 fails and r; is equal to 2 if method 2 fails.

Thus, the RI ratios take all kind of termination into account and
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Formula | TI | RI | TFE | RFE | TF
Type L | 429 | 1 2532 | 1 0
Type A | 396 | 0.988 | 1788 | 1.008 | 0
BFGS | 469 | 1.013 | 2025 | 1.033 | 1

Table 1: Performance of Type A and BFGS-like formulae against
Type L.

always belong to [0,2]. A value of RI < 1 indicates that method 2
improves over method 1 by 100(1— RI)%. If RI > 1 then method 1
improves 100(RI —1)% over method 2. RI = 1 means that the two
methods are comparable to each other.

As conclusion, Table 1 shows that Type A formula improves over
Type L by 1.2% and Type L improves over BFGS by 1.3%, as far as
number of iterations is concerned. For the number of function evalua-
tions, Type L formula improves over Type A by 0.8% and over BFGS
by 3.3%. The large total number of function evaluations required by
Type L formula is due to a single problem. The advantage of this rule
is that it is not sensitive to large values which may occur in a very
small number of problems in the set.

For the second group of experiments, we compare our structured
and factorized quasi-Newton interior-point framework with LOQO
(Vanderbei and Shanno (1999), Shanno and Vanderbei (2000) and
Benson et al. (2004)). In these papers, exact second derivatives are
computed, the least squares structure is not taken in consideration
and to maintain positive definiteness of the dual normal matrix, the
authors replace the A matrix with a diagonal perturbation thereof
H=H+ M, \>0.

In Table 2, we report iteration counts on the 32 HS problems
obtained by our Type L and Type A (L/A) factorized updates. In
this table, n is the number of variables and nc is the total number
of constraints which include range constraints, simple bounds on the
variables and constraints due to the treatment of free variables. The
iteration counts of the column LOQO were taken from Benson et al.
(http://www.princeton.edu/~rvdb/cute table.pdf) (see reference [1]
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Problem(n/nc) | L/A | LOQO || Problem(n/nc) | L/A | LOQO
HS01(2/1) 14 33 | HS3L (3/7) 13 13
HS02 (2/1) 14 32 || HS32 (3/5) 16 23
HS06 (2/1) 11 11 | HS42 (4/2) 9 12
HS14 (2/2) 9 13 | HS46 (5/2) 15%/18* | 20
HS15 (2/3) 22 25 | HS48 (5/2) 8 8
HS16 (2/5) 11 18 | HS49 (5/2) 11* 24
HS17 (2/5) 18 27 || HS50 (5/3) 9 16
HS18 (2/6) 15 18 | HS51 (5/3) 9 8
HS20 (2/5) 18* | 24 | HS52 (5/3) 9 8
HS22 (2/2) 13 9 || HS53 (5/13) 15 11
HS23 (2/9) 13* 18 | HS57 (2/3) 17 16
HS25 (3/6) 20/17 | 26 || HS60 (3/7) 35/18 | 18
HS26 (3/1) 14* 15 | HS65 (3/7) 12 21
HS27 (3/1) 23/18 | 58 | HST0 (4/9) 54/49 | o7
HS28 (3/1) 8 8 | HSTT (5/2) 24* /29 | 16
HS30 (3/7) 20 9 | HST79 (5/3) 13/11 9

Table 2: Iteration counts on Hock-Schittkowski problems.

in Benson et al. (2004)).

For the initial approximations, xy, we considered the Hock and
Schittkowski (1981) published values as well.

We test our framework on other three problems with variable size
(n=30, 100, 200) taken from the CUTE collection (Bongartz et al.
(1995)). Table 3 reports the iteration counts. The numbers in the last
column of the table were obtained running LOQO V4.01.

As in LOQO, the stopping rule includes now primal inf. and dual
inf. < 107% and 8 digits of agreement between the primal and dual
objective functions. For some problems, this level of accuracy was
unattainable by our framework. They are identified in the tables with
the character *. The iteration counts shown in the tables were ob-
tained by relaxing the parameters in the stopping rule. Table 4 con-
tains details of the relaxed parameters. In the table, sigfig gives the
number of digits of agreement between primal and dual objective func-
tions attained at the solution found.
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Problem (n) L/A | LOQO V4.01
argtrig (30) 6 7
argtrig (100) 6 10
argtrig (200) 6 8
brownal (30) 13/12 12
brownal (100) 13 14
brownal (200) 15 13
broydn3d (30) 13/17 11
broydn3d (100) | 15/47* 11
broydn3d (200) | 16/59* 11

Table 3: Iteration counts on three larger CUTE problems.

21

Problem | relaxations

HS20 (L/A -sigfig=0)

HS23 (L/A -sigfig=0)

HS26 (L/A -sigfig=6)(A -dual inf.< 107°)

HS32 (L/A -sigfig=T)

HS46 (L/A -sigfig=3)(L -primal inf.< 1075)(L/A -dual inf.< 1073)
HS49 (L/A -sigfig=5)

HST7 (L -sigfig=5, dual inf.< 1075)(A -sigfig=2, dual inf.< 107?)
broydn3d | (n=100) (A -sigfig=>5, dual inf.< 1075)

broydn3d | (n=200) (A -sigfig="7)

Table 4: Problems that required relaxation of the parameters.
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6 Conclusions

This paper presents a particular version of Vanderbei and Shanno
(1999) interior-point algorithm for constrained nonlinear least squares
problems.

Factorized quasi-Newton updates that exploit the special least
squares structure of the problem are implemented in order to approxi-
mate the second order terms of the Lagrangian Hessian. The new
updates also guarantee positive definite approximations to the H ma-
trix so ensuring descent directions in practice. Numerical experiments
that were carried out on a well known set of small problems indicate
that the efficiency of this quasi-Newton approach is comparable to
that of a general interior-point algorithm that uses second derivative
information and its use may present advantages in those cases when
this second-order information is expensive to compute.
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