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Abstract

Counters are an important abstraction in distributed computing, and play a central role in large scale geo-replicated systems,
counting events such as web page impressions or social network “likes”. Classic distributed counters, strongly consistent via
linearisability or sequential consistency, cannot be made both available and partition-tolerant, due to the CAP Theorem, being
unsuitable to large scale scenarios. This paper defines Eventually Consistent Distributed Counters (ECDCs) and presents
an implementation of the concept, Handoff Counters, that is scalable and works over unreliable networks. By giving up the
total operation ordering in classic distributed counters, ECDC implementations can be made AP in the CAP design space,
while retaining the essence of counting. Handoff Counters are the first Conflict-free Replicated Data Type (CRDT) based
mechanism that overcomes the identity explosion problem in naive CRDTs, such as G-Counters (where state size is linear
in the number of independent actors that ever incremented the counter), by managing identities towards avoiding global
propagation and garbage collecting temporary entries. The approach used in Handoff Counters is not restricted to counters,
being more generally applicable to other data types with associative and commutative operations.
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1 Introduction arise if a sequence of load, add one and store is not atomic.

In a distributed setting things are even more difficult, due to

A counter is one of the most basic and important abstractions
in computing. From the small-scale use of counter vari-
ables in building data-types, to large-scale distributed uses
for counting events such as web page impressions, banner
clicks or social network “likes”, the presence of counters is
pervasive. Even in a centralized setting, the increment oper-
ation on a counter is problematic under concurrency, being
one of the examples most used to illustrate the problems that
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the absence of shared memory, possibly unreliable commu-
nication (message loss, reordering or duplication), network
partitions or node failures.

If one has a strongly consistent distributed database with
support for distributed transactions, counters can be trivially
obtained. Unfortunately, such databases are not appropri-
ate for large-scale environments with wide-area replication,
high latency and possible network partitions. A naive counter
obtained through a “get, add one, and put” transaction will
not scale performance-wise to a wide-area deployment with
many thousands of clients.

The CAP theorem [5,12] says that one cannot expect
to have Consistency, Availability, and Partition-tolerance
together; one must choose at most two of these three prop-
erties. Therefore, to have an always-available service under
the possibility of partitions (that in world-wide scenarios are
bound to happen from time to time), distributed data stores
such as Dynamo [9], Cassandra [22] and Riak [21] have
been increasingly choosing to go with AP (availability, and
partition-tolerance) and give up strong consistency and gen-
eral distributed transactions, in what has become known as
the NoSQL movement.
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With no support for strong consistency and distributed
transactions, and an API mostly based on simple get and put
operations, obtaining a “simple” counter becomes a problem.
NoSQL data stores like Cassandra have been trying to offer
counters natively with an increment operation in the API,
something that has revealed a non-trivial problem, involving
many ad hoc evolutions. This issue in Cassandra is well sum-
marized by [14]: “The existing partitioned counters remain
a source of frustration for most users almost two years after
being introduced. The remaining problems are inherent in
the design, not something that can be fixed given enough
time/eyeballs.”

CRDTs (Conflict-free Replicated Data Types [27]) allow
obtaining provably correct eventually consistent implemen-
tations of data types such as counters. The idea is that each
node keeps a replica that can be locally queried or operated
upon, giving availability even under partitions, but providing
only eventual consistency: queries can return stale values,
but if messages go through, then all nodes will converge to
the correct value. CRDT-based data types trivially tolerate
message loss, duplication or non-FIFO communication.

CRDTs are not, however, a silver bullet. A problem that
can easily arise in CRDTs is scalability. One practical sit-
uation where this occurs, and that motivated our focus on
CRDT scalability, is illustrated by the initial design of the
advertisement counting system for banner control in Rovio’s
Angry Birds mobile game [1]. A game that at its prime listed
50 millions of users. If there is one replica per participating
entity, each one with a unique identity, as many CRDTs keep
maps with these ids as keys, these maps will keep growing
over time, as more entities participate; this results in each
replica having size proportional to the total number of enti-
ties that ever participated in the system, which is not scalable.
Notice that we are not talking about one map entry per node
in the cluster, a number that could be expected to be in the
hundreds, but instead one map entry per edge client or short-
lived thread handling a client, and thus facing hundreds of
thousands of entries or more.

One possible approach is to restrict replicas to a small
number of servers, excluding clients from the participating
entities, in what concerns the CRDT. This will solve the scala-
bility problem and allow unreliable communication between
servers, but will not solve the fault-tolerance problem in the
client-server interaction. This is because a basic problem with
counters is that the increment operation is not idempotent;
therefore, an increment request by a client (which itself does
not keep a replica) cannot just be re-sent to the server in case
there is no acknowledgment. This problem is well recognized
by practitioners [23].

If one looks at theory of distributed counting, a substantial
amount of work has been done, namely Software Com-
bining Trees [13,33], Counting Networks [2], Diffracting
Trees [28] and Counting Pyramid [32] (and their vari-
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ants). However, all these works address a strongly consistent
definition of counter, as a data type that provides a sin-
gle “fetch-and-increment” operation in the sense of [29].
Although a powerful abstraction, capable of generating
globally unique sequence numbers, it is indeed too pow-
erful to be implemented while providing availability under
unreliable communication. The focus of these works is scal-
ability (mainly avoiding contention or bottlenecks) and not
fault-tolerance. While some aspects like wait-freedom are
addressed, to tolerate failures of processes, tolerance to mes-
sage loss or component failure (e.g., a balancer in the case
of counting networks) is not addressed. This means that
these mechanisms are more suitable for tightly-coupled, low-
latency, failure-free environments, such as multiprocessors,
serving as scalable alternatives to lock-based counter imple-
mentations, as discussed by [17].

The contributions of this paper are: formally defining
Eventually Consistent Distributed Counters (ECDCs), an
alternative to classic distributed counters, towards achieving
availability and partition tolerance; exposing the scalabil-
ity issues that may arise when applying the pure CRDT
approach and the availability issues when restricting CRDTs
to server-side; introducing Handoff Counters, an imple-
mentation of the ECDC specification, providing eventually
consistent counters that are simultaneously reliable, available
and partition-tolerant, and scalable in the number of entities
(both active and already terminated).

The main ingredients of our approach are: a replica-
tion mechanism that is non-symmetric (contrary to standard
CRDTs where all replicas converge to the same state); hier-
archical tiered topology, allowing different roles (e.g., many
pure transient clients, a few permanent persistent servers)
and availability through alternative communication paths;
node identity containment (contrary to current CRDTs, node
ids are not propagated to the whole network, being only
temporarily stored in the state of some neighbor nodes); a
mechanism to perform a reliable handoff of a value between
two nodes, possibly using a third party, to achieve tolerance
to partitions or transient node failures.

Standard approaches for fault tolerance for strong consis-
tency (e.g., Paxos Commit [15]) incur the cost of communi-
cation with several nodes, even when no failures occur. Our
approach, by aiming only for eventual consistency and by not
addressing permanent node failures (leaving it as an orthog-
onal issue), does not require sending messages to multiple
nodes, in the normal case, and has better availability and par-
tition tolerance: in case of server crash or link failure, it is
enough that a single alternative server is available and reach-
able, as opposed a majority of nodes.

The remainder of this paper is organized as follows: Sect. 2
briefly revisits classic strongly consistent distributed coun-
ters, and explains why they are not suitable for large-scale AP
scenarios. In Sect. 3 we present the definition of ECDCs, stat-
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ing both safety and liveness conditions. Section 4 describes a
naive eventually consistent CRDT-based counter, that is AP
in unreliable networks, and explains its scalability problems;
it also discusses in more detail the problems that arise if repli-
cas of this CRDT are restricted to server-side. In Sect.5 we
present Handoff Counters. Section 6 contains formal correct-
ness proofs for the mechanism. In Sect.7 we address some
practical implementation issues. Then, in Sect. 8, we evalu-
ate the scalability properties of Handoff Counters by running
a discrete event simulation. In Sect.9 we discuss how the
handoff mechanism proposed can be applied to more general
scenarios, beyond simple counters, to commutative monoids
having an associative and commutative operation. In Sect. 10
we briefly discuss our approach to reliability and availability,
comparing it to more standard approaches, and conclude in
Sect. 11.

2 Classic distributed counters

In most papers about distributed counters, e.g., [2,28,32], a
counter is an abstract data type that provides a fetch-and-
increment operation (increment for short), which returns the
counter value and increments it. The basic correctness criteria
is usually: a counter in a quiescent state (when no operation
is in progress) after n increments have been issued will have
returned all values from 0 to n — 1 with no value missing
or returned twice. i.e., when reaching a quiescent state, all
operations so far must have behaved as if they have occurred
in some sequential order, what is known as quiescent con-
sistency [2]. Some counter mechanisms [32] enforce the
stronger linearizability [18] condition, which ensures that,
whenever a first increment returns before a second one is
issued, the first returns a lower value than the second.

Even not considering the stronger variants that enforce
linearizability, classic distributed counters providing quies-
cent consistency are too strongly consistent if one is aiming
for availability and partition tolerance. For classic distributed
counters we have the following result for deterministic algo-
rithms, with a trivial proof, which is nothing more than an
instantiation of the CAP theorem:

Proposition 1 A quiescently consistent counter with fetch-
and-increment cannot be both available and partition toler-
ant.

Proof Suppose a network with two nodes u and v, and a run
A where they are partitioned. Assume an increment is issued
at node u at time #; and no other operations are in progress.
As the counter is available and partition tolerant, the incre-
ment will eventually return at some later time #,. Because
the system is in a quiescent state after 7, this increment must
have returned 0. Suppose an increment is then issued at node

v at some later time 73 > f,. For the same reasons, this incre-
ment will eventually return, the system becomes quiescent
again, and the returned value must, therefore, be 1. But as
no messages got through between u and v, this run is indis-
tinguishable by v from a run B in which u does not exist
and only a single increment is issued by v. In run B, v will,
therefore, behave the same as in run A and return the same
value 1, which contradicts the requirement for run B that
a single increment in the whole run should have returned 0
after reaching quiescence.

This proof formalizes the intuition that it is not possible
to generate globally unique numbers forming a sequence in
a distributed fashion without communication between the
nodes involved.

3 Eventually consistent distributed counters

In this section we define a weaker variant of distributed coun-
ters, to overcome the too strongly consistent nature of classic
distributed counters, and achieve availability and partition
tolerance. We call it eventually consistent distributed coun-
ters (ECDCs).

Classic counters offer a combination of two different fea-
tures: (1) keeping track of how many increments have been
issued; (2) returning globally unique values. While powerful,
this second feature is the problematic one when aiming for
AP.

For many practical uses of counters (in fact what is being
offered in NoSQL data stores like Cassandra and Riak) one
can get away with not having the second feature, and having a
counter as a data type that can be used to count events, by way
of an increment operation, which does not return anything,
and an independent fetch operation, which returns the value
of the counter.

We are not aiming for obtaining globally unique sequence
numbers, and this split in two operations, where fetch can
return the same value several times, opens the possibility of
returning stale values. Having two independent operations,
one to mutate and the other to report, as opposed to a single
atomic fetch-and-increment, corresponds also to the more
mundane conception of a counter, and to what is required in
a vast number of large scale practical uses (e.g., web page
impressions), where many participants increment a counter
while others (typically less, usually different) ask for reports.

It will be possible to obtain available and partition tolerant
eventually consistent counters, by allowing fetch to return
something other than the most up-to-date value. Neverthe-
less, we need concrete correctness criteria for ECDCs. We
have devised three conditions. Informally:

— A fetch cannot return a value greater than the number of
increments issued so far.
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— Ata given node, a fetch should return at least the sum of
the value returned by the previous fetch (or O if no such
fetch was issued) plus the number of increments issued
by this node between these two fetches.

— At least all increments globally issued up to any given
time will be reported eventually, at a later time, at every
node (as soon as enough messages go through).

The first two criteria can be thought of as safety condi-
tions. The first, not over-counting, is the more obvious one
(and also occurs in classic distributed counters, as implied
by their definition). The second is a local condition on ses-
sion guarantees [30], analogous to having read-your-writes
and monotonic-read, common criteria in eventual consis-
tency [31]. The third is a liveness condition, which states that
eventually, if network communication allows, all updates up
to a given time are propagated and end up being reported
everywhere. It implies that if increments stop being issued,
eventually fetch will report the correct counter value, i.e., the
number of increments. (In practice the third condition nor-
mally leads to implementations where, when the network is
partitioned into multiple connected components, increments
issued in each component are reported eventually in that
same component.) We will now clarify the system model,
and subsequently formalize the above correctness criteria for
ECDCs.

3.1 System model

Consider a distributed system with nodes containing local
memory, with no shared memory between them. Any node
can send messages to any other node. The network is asyn-
chronous, there being no global clock, no bound on the time it
takes for a message to arrive, nor bounds on relative process-
ing speeds. The network is unreliable: messages can be lost,
duplicated or reordered (but are not corrupted). Some mes-
sages will, however, eventually get through: if a node sends
infinitely many messages to another node, infinitely many of
these will be delivered. In particular, this means that there
can be arbitrarily long partitions, but these will eventually
heal.

Nodes have access to stable storage; nodes can crash but
eventually will recover with the content of the stable storage
as at the time of the crash. Each node has access to its globally
unique identifier.

As we never require that data type operations block wait-
ing for other operations or for message reception, they are
modeled as single atomic actions. (In I[/O Automata [24] par-
lance, we will use a single action as opposed to a pair opStart
(input action), and opEnd(r) (output action) “returning” r.)

This allows us to use op to mean that operation op was
performed by node i at global time ¢, and in the case of fetch
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also for the result of that operation. The actions we use are
fetch; and incr; for the data type operations, and send; ; (m)
and receive; ;(m) for message exchange. Global time, under
a total order, is only referred to in traces (sequences of
actions) or correctness criteria but is not available to the nodes
themselves.

3.2 Formal correctness criteria for ECDCs

An eventually consistent distributed counter is a distributed
abstract data type where each node can perform operations
fetch (returning an integer) and incr (short for increment),
such that the following conditions hold (where || denotes
set cardinality and _ the unbound variable, matching any
node identifier; also, for presentation purposes, we assume
an implicit fetch’ = 0 by all nodes). For any node i, and
global times ¢, #1 jtz, with t; < p:

Fetch bounded by increments
fetch! < ’{incri/|t/ < t}‘,
Local monotonicity

’

!
fetch?? — fetch! > ‘{incrﬁ It <t <)

Eventual accounting
3t > t.Vj.fetch;/ > ‘{incr’_"|t” < t}‘ )

These criteria, specific to counters, can be transposed to
more general consistency criteria, namely they imply the
analogous for counters of:

Eventual consistency From [31] “[It] guarantees that ifno
new updates are made to the object, eventually all accesses
will return the last updated value.”. Eventual accounting is
stronger than eventual consistency: it does not require incre-
ments to stop, but clearly leads to eventual consistency if
increments do stop. All CRDTs include this consistency cri-
teria [27].

Read-your-writes From [30] “[It] ensures that the effects
of any Writes made within a session are visible to Reads
within that session.”. The analogous of this property, substi-
tuting increments for writes, is implied by local monotonic-
ity: in a session where a process issues increments to a given
node, at least the effect of those increments is seen by further
fetches by that process.

Monotonic-reads Defined by [30] and using the formu-
lation by [31] “If a process has seen a particular value for
the object, any subsequent accesses will never return any
previous values”. This property is also obtained by local
monotonicity.
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4 Naive CRDT-based counters

In state-based CRDTs [27] a replica can be locally queried
or updated; it directly provides availability and partition
tolerance, as all client-visible data type operations are per-
formed locally, with no need for communication. Information
is propagated asynchronously, by sending the local state to
othernodes (e.g., using some form of Gossip [10]); the receiv-
ing node performs a merge between the local state and the
received state. CRDTs are designed so that: the set of states
that nodes can take conform to a join semilattice (a partially
ordered set for which there is a defined least upper bound
for any two elements [8]); the merge operation amounts to
performing a mathematical join of the local and received
states, computing their least upper bound; every data type
operation is an inflation that moves the state to a larger
value (i.e., Vx.f(x) > x). This allows merges to be per-
formed using arbitrary communication patterns: since join
is associative, commutative and idempotent, duplicates are
not a problem. In case of message loss, a message can be
resent and possibly re-merged; old duplicates and messages
received out-of-order are also not a problem. CRDTs over-
come the problem of unreliable networks, with no need for
some reliable communication mechanism involving global
coordination.

The CRDT concept can be used to trivially obtain an
ECDC. The local state will amount to a version-vector [25]: a
map of node ids to non-negative integers. When a node wants
to perform an increment, it increments the entry correspond-
ing to its unique identifier (or adds an entry mapped to one
if the id is not mapped). The fetch is obtained by adding all
integers in the map. The merge operation also corresponds to
reconciliation of version-vectors: maps are merged by per-
forming a pointwise maximum (each key becomes mapped to
the maximum of the corresponding values, assuming absent
keys are implicitly mapped to 0).

Version-vector based counters respect the criteria for
ECDC:s: fetch is bounded by the number of increments, as
it results from adding values corresponding to increments;
local increments are immediately accounted, ensuring local
monotonicity; increments by different nodes are accounted in
disjoint entries in the map, which implies that, as each replica
is propagated and merged to every other one, all increments
performed by all nodes are eventually accounted.

4.1 The scalability problem of client-side CRDTs

Counters implemented as version-vectors, although meeting
all criteria for ECDCs, suffer from serious scalability prob-
lems. Consider a network in which many nodes (clients)
perform operations on the counter, while others (servers)
allow information propagation and keep durable storage,
allowing client nodes to cease from participating and retire.

Suppose that new clients (each with a unique id) keep arriving
over time, to use the counter.

In a pure CRDT approach each participating entity has
a replica. In this case, each participating node (both clients
and servers) will introduce its id in the map. Over time, as
new clients arrive, and as replica state is propagated and
merged with other replicas, the map will grow to unreason-
able sizes, making both the storage space and communication
costs (of transmitting the map) unbearable. The worst aspect
is that the size does not depend only on the currently partic-
ipating clients: it keeps growing, accumulating all ids from
past clients that have already retired. This means that naive
CRDTs such as version-vectors are not scalable when used
client-side, being restricted to server-side in practice.

The mechanism we introduce in this paper can be seen as
anon-naive CRDT, which: enforces id containment, prevent-
ing ids from spreading all over the network; allows graceful
client retirement, removing ids that were temporarily stored
in servers with which the client communicated, as we show
in Sect. 8.4.

4.2 The availability problem of server-side CRDTs

Due to the above scalability problem, current version-vector
based counters (e.g., in Cassandra or Riak) do not use the
pure CRDT approach, but use CRDTs server-side only. This
means that only a relatively small number of nodes (the
servers) hold replicas, while clients use remote invocations
to ask a server to perform the operation. Server-side CRDTs
allow unreliable communication between servers, including
partitions (e.g., between data-centers). However, the prob-
lem of unreliable communication between client and server
remains.

As the increment operation is not idempotent, it cannot be
simply reissued if there is doubt whether it was successful.
In practice, this leads to the use of remote invocations over
connection-oriented protocols (e.g., TCP [6]) that provide
reliable communication. This only partially solves the prob-
lem: a sequence of acknowledged increments is known to
have been applied exactly-once, but if the last increments are
not acknowledged and the connection times out, these last
increments are not known to have been successfully applied;
these increments cannot be reissued using a new connection,
to the same or a different server, as it could lead to over-
counting (as they could have been applied after all, but only
the reply was lost).

Attempts to circumvent this reliability problem by using a
general data-type-agnostic communication layer bring back
scalability and/or availability problems. If an infinite duration
connection incarnation is maintained for each client, where
no operation can fail due to a timeout, this will imply sta-
ble server state to manage each client connection, leading
to state explosion in servers, as clients cannot be forgotten.
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This is so because there is no protocol that gives reliable
message transfer within an infinite connection incarnation
for general unbounded capacity (e.g., wide-area networks)
non-FIFO lossy networks that does not need stable storage
between crashes [3,11]. This problem can be overcome by
never failing due to a timeout, but allowing connections to
be closed if there are no pending requests and the connec-
tion close handshake is performed successfully (e.g., before
a partition occurs). With a three-way handshake an oblivious
protocol is possible [4], with no need to retain connection
specific information between connection incarnations, but
only a single unbounded counter for the whole server.

With this last approach, the size of stable server state is not
a problem in practice, but the reliability problem is overcome
at the cost of availability: given a partition, a pending request
will never fail due to a time-out, but the client that has issued
a request to a given server will be forced to wait unbound-
edly for the result, without being able to give up waiting and
continue the operation using a different server.

These problems can be summarized as: the use of a general
purpose communication mechanism to send non-idempotent
requests can provide reliability at the cost of availability.
Our data-type specific mechanism overcomes this problem
by allowing client-side CRDTs which are scalable.

5 Handoff Counters

In this section we present a novel CRDT based counter mech-
anism, which we call Handoff Counters, that meets the ECDC
criteria, works in unreliable networks and is scalable. The
mechanism allows arbitrary numbers of nodes to participate
and adopts the pure CRDT approach, having a replica at
each node without distinguishing clients and servers (there-
fore, overcoming the problems of server-side CRDTs), and
allowing an operation (fetch or increment) to be issued at any
node.

It addresses the scalability issues (namely the id explosion
in maps) by: assigning a tier number (a non negative integer)
to each node, in a hierarchical structure, where only a small
number of nodes are classified as tier 0; having “permanent”
version vector entries only in (and for) tier 0 nodes, therefore,
with a small number of entries; having a handoff mecha-
nism which allows a tier n 4+ 1 “client” to handoff values to
some tier n “server” (or to any lower tier node, in general);
making the entries corresponding to “client” ids be garbage-
collected when the handoff is complete. Figure 1 illustrates
a simple configuration, with end-client nodes connecting to
tier 1 nodes in their regional datacenters.

Example 1 Even though no formal client/server distinction is
made, a typical deployment scenario would be having, e.g.,
two (for redundancy) tier 0 nodes per data-center, devoted to
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Tier 2

Tier O

Fig.1 A simple configuration with three tiers and two datacenters

inter-datacenter communication, a substantial, possibly vari-
able, number of tier 1 server nodes per datacenter, and a very
large number of tier 2 nodes in each datacenter. The datas-
tore infrastructure would be made up of tier 0 and 1 nodes,
while tier 2 nodes would be the end-clients (application server
threads handling end-client connections or code running at
the end-clients) connecting to tier 1 nodes in a datacenter.
More tiers can be added in extreme cases, but this setup will
be enough for most purposes: e.g., considering 5 datacenters,
50 tier 1 nodes per datacenter, each serving 1000 concurrent
tier 2 clients, will allow 250,000 concurrent clients, with only
10 entries in the “permanent” version vectors.

The mechanism involves three aspects: classic version
vector dissemination and merging between tier O nodes; the
handoff, which migrates accounted values towards lower
tiers, making all increments eventually be accounted in tier
0 nodes; “vertical” aggregation starting from tier 0, towards
higher-tier nodes, to provide a best-effort monotonic estimate
of the counter value.

Most of the complexity of the mechanism is related to
achieving the handoff without violating correctness under
any circumstances over unreliable networks, while allowing
garbage-collection in typical runs. Other design aspects were
considered, in addition to strictly achieving ECDC, namely:

— An end-client (maximum tier node) is typically transient;
it should be able to know if locally issued increments have
already been handed-off, so that it can stop the interaction
and terminate;

— There should be no notion of session or affinity; a tier
n+ 1 node u that started exchanging messages with a tier
n node v, should be able to switch to another tier n node
w at any time, e.g., if no message arrives and u suspects
that v has crashed or there is a network partition between
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u and v, but u is an end-client that wants to be sure its
locally accounted increments have been handed-off to
some server before terminating.

5.1 Network topology

Handoff Counters can be used with many different network
topologies. The simplest one is to assume a fully connected
graph, where any node can send messages to any other node.
In general, handoff counters can work with less than full
connectivity. The assumptions that we make about network
topology for the remainder of the paper are:

— Each link is bidirectional.

— The network restricted to tier 0 nodes is a connected sub-
network.

— For each node u, there is a path from u to a tier 0 node
along a strictly descending chain of tiers.

— Ifanode u is linked to two lower tier nodes v and w, then
there is also a link between v and w.

These assumptions allow version vector propagation and
merging in tier 0 nodes, while also allowing a client u to start
by exchanging messages with a server v and later switching
to a server w if v becomes unresponsive. These assumptions
are met by Example 1 and by the Fig. 1 topology, where inter-
datacenter communication is performed by tier O nodes, and
where communication between tier 1 nodes or between tier
n + 1 and tier n nodes needs only be attempted within each
datacenter. It should be emphasized that these assumptions
reflect only what communications are attempted (not what
links are available at any given time), and can be thought
of as the rules for forming a communication overlay; any
of these links may be down for some time, even possibly
incurring temporary network partitions.

5.2 Distributed algorithm

A benefit of adopting the CRDT approach is not needing a
complex distributed algorithm to achieve correctness—the
complexity is transferred to the CRDT. Basically any form
of gossip can be used, where each node keeps sending its
replica state to randomly picked neighbors, and each node
upon receiving a replica state merges it with the local one.
Without loss of generality we consider a single distributed
counter replicated at every node. To describe both the mech-
anism and its correctness proofs we consider Algorithm 1 to
be used, with operations defined in Figs. 4 and 5. In this dis-
tributed algorithm, each node i keeps a CRDT replica state
C;.Eachreplica is initialized using the globally unique node
id and the node tier. Actions fetch; and incr; are delegated to
the corresponding CRDT operations. Each node periodically
picks a random neighbor j and sends it the local state. Upon

receiving some state C; through a link (j, i), it is merged
with the local state, through the CRDT merge operation. The
distributed algorithm is quite trivial, all effort being dele-
gated to the Handoff Counter data type, namely through its
init, fetch, incr and merge operations.

The state C; is assumed to be stored in stable storage, and
assigning to it is assumed to be an atomic operation. This
means that temporary variables used in computing a data-
type operation do not need to be in stable storage, and an
operation can crash at any point before completing, in which
case C; will remain unchanged.

ALGORITHM 1: Distributed algorithm for generic
node i.
constants:
i, globally unique node id
tier;, tier of node i
neigh;, set of neighbors of node i

state:
C;, Handoff Counter replica state; initially, C; = init(i, tier;)
on fetch;
return fetch(C;)
on incr;
C; :==incr(Cy)
on receive; ; (C;)
C; :== merge(C;, Cj)
periodically
let j = random(neigh;)
send; ;(C;)

5.3 Handoff Counter data type

Unfortunately, the Handoff Counter data type is not so
trivial. On one hand, a server which is receiving counter val-
ues from a client should be able to remove client-related
entries in its state after the client stops participating; on the
other hand, neither duplicate or old messages should lead
to over-counting, nor lost messages lead to under-counting.
Towards this, a Handoff Counter has state that allows a 4-
way handshake in which some accounted value (a number
of increments) is moved reliably from one node to the other
(handed off).

The state of a Handoff Counter is a record with the fields
shown in Fig. 2. Each replica keeps a map (vals), where the
self-entry (the entry for key i in replica i) is only incremented
or added-to locally, allowing local accounting of increments.
In the case of tier 0 nodes there are also entries regarding
other tier 0 nodes. In other words, the vals field is similar to a
version vector, mapping node ids to integers, which has only
the self-entry in the case of non tier 0 nodes, and also other
tier 0 nodes entries in the case of tier 0 nodes.
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id node id;

tier node tier;

val counter value that can be safely reported by fetch given
local knowledge;

below lower bound of values accounted in lower tiers;

vals map from node ids to integers, storing increments;

sck source clock — logical clock incremented when creating
tokens;

dck destination clock — logical clock incremented when cre-
ating slots;

slots map from source ids to pairs (sck, dck) of logical clocks;

tokens map from pairs (i,5) to pairs ((sck,dck),n) containing
a pair of logical clocks and an integer;

Fig.2 Handoff Counter data type state (record fields)

The state includes two components, one containing what
we call slots—each slot serves as a capability of receiving a
value—and the other contains fokens—a token holds a value
and matches a single slot. The general idea is that, over time:

1. A slot is created in the state of a node j (destination of
the handoff);

2. A token matching that slot is created in another node i
(source of the handoff) to which some value (number of
increments) accounted locally at vals is moved;

3. The slot at j is “filled”: the slot is removed and the value
in the corresponding token is acquired by j (added to the
locally accounted value);

4. Node i removes the token.

The mechanism must ensure correctness no matter what
communication patterns may occur. Several properties are
ensured, namely:

— A given slot cannot be created more than once; even if it
was created, later removed and later a duplicate message
arrives;

— A token is created specifically for a given slot, and does
not match any other slot;

— A given token cannot be created more than once; even if it
was created, later removed and later a duplicate message
having the corresponding slot arrives.

To achieve this, the CRDT state includes a pair of logi-
cal clocks, source clock and destination clock, that are used
when a node plays the role of source of handoff and des-
tination of handoff, respectively. If a node is always a leaf
node, e.g. end-clients in the chosen topology, and never a
destination of an handoff, it does not require a destination
clock. Conversely, nodes that are destination only, e.g. tier O
nodes, can drop the source clock. Each slot or token is identi-
fied by the quadruple: source id, destination id, source clock,
destination clock. When creating a slot the destination clock
is incremented; when creating a token for a given slot, the
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source clock of the source node is checked to be equal to the
one in the slot and incremented. This ensures that neither a
given slot nor a given token can be created more than once.
Even though some analogy can be made to TCP sequence
numbers, here not only each node keeps a pair of sequence
numbers, but also each slot/token is identified by a pair of
sequence numbers, one from each node (in addition to source
and destination ids).

Even though slots and tokens are identified by quadruples,
their entries in the state are maps (as opposed to, e.g., sets
of slots) designed to obtain an efficient lookup in the case of
slots. This is relevant as there may exist a considerable num-
ber of slots, depending on the number of concurrent clients,
while there are typically very few tokens (just one in the more
normal case). Such is possible due to the following:

— Each node j needs to keep at most one slot for any given
node i. Therefore, a slot (i, j, sck, dck) is kept as an
entry mapping i to pairs (sck, dck) in the slot map at j.

— For each pair of nodes i and j, there is only the
need to keep at most one token that follows the form
(@, j,sck,dck), n). However, such token may be kept
at nodes other than i. Tokens are stored in maps from
pairs (i, j) to pairs ((sck, dck), n).

Figure 3 presents a run where a node i hands off some
value (9 in this example) to a node j, when no messages
are lost. The non-zero values in the source clock of node
i and destination clock in node j indicate that the run is a
continuation of a longer run that already did some handoffs
from i to j. This example shows the evolution, after each
merge, of the relevant fields in the state, illustrating the steps
in the 4-way handshake:

1. Node i sends its C; to node j; node j does C} =
merge(C;, C;); the resulting C} has a slot created for
node i, uniquely identified by the source and destinations
clocksini and j;the destination clock in j is incremented
on slot creation;

2. Node j sends C} to i; node i then performs C; :=
merge(C;, C/].); the resulting C; has a token created
specifically for that slot, into which the locally accounted
number of increments has been moved; since a token was
created the i source clock is incremented;

3. Node i sends C; to node j; node j does a C}/ =
merge(C ;., C!); this merge, seeing the token matching
the slot, “fills the slot”, i.e., acquires the accounted value
in the token and removes the slot from the resulting C }/ ;

4. Node j sends C’ to i; node i then performs C/ :=
merge(C/, C;.’); seeing that the slot is gone from C”/,
it removes the token from the resulting C;'.
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Node i Node j
Higher tier source Lower tier destination
Sck: 2 Sck: 0
Dck: 0 Dck: 5
Ci Vals:i~9 Vals: j ~» 1021 Cj
Slots: Slots:
Tokens: Tokens:
\/
Sck: 0
Dck: 6
Vals: j » 1021 Cj
\/ Slots: i = (2,5)
Sek 3 / Tokens:
Dck: 0
Ci Vals: i~ 0
Slots: \/
Tokens: (i,j) » ((2,5),9
1)~ (259 [~y ok 0
Dck: 6
Vals: j » 1030 C"j
\/ Slots:
Tokens:
Sck: 3
Dck: 0
- Vals: i~ 0
c Slots:
Tokens:
\
Time

Fig.3 A handoff from node i to j (only relevant fields are shown)

The end result of such an exchange is that an accounted
value has been moved from node i to node j, and neither i
has an entry related to j in its state C/', nor j has an entry
related toi in C }’ . Temporary entries (slots and tokens) were
removed, i.e., garbage collected.

It should be noted that, although a given handoff takes
4 steps, when a pair of nodes keep exchanging messages
continuously, handoffs are pipelined: steps 1 and 3 are over-
lapped, as well as steps 2 and 4. When a message from a
node i arrives at a lower tier node j, it typically carries a
token. That token is acquired, filling the current slot at j, and
a new slot is created; when the “reply” from j arrives at i, it
makes i garbage collect the current token, and a new token
is created. This means that in the normal no-loss scenario,
each round-trip moves an accounted value (some number of
increments) from i to j.

The reason for having two logical clocks per replica
(source and destination clocks) has to do with liveness. For
safety, having just one clock would suffice. But with a single
clock there would be the danger that during the round-trip
from “server” i to a lower tier node j, messages from clients
arrive at i, increasing the clock at i when creating a slot, and
making the handoff attempt from i to j fail (as a token would
not be created at i because the clock at i would no longer
match the source clock in the slot) and need to be repeated,;
under heavy load progress could be compromised. Having

init(i, tier) = {id = 1, tier = tier,val = 0, below = 0,sck = 0,
dck = 0, slots = {}, tokens = {}, vals = {i — 0}}
fetch(C;) = val;
incr(C;) = C;{val = val; +1, vals = vals;{i — vals; (i) + 1}}
merge(C;, Cj) = cachetokens(createtoken(discardtokens(aggregate(
mergevectors(createslot(discardslot(fillslots(C;, C} ),
C5),C4),C4),C4), C5), C5), Cy)

Fig.4 Handoff Counter data type operations

two logical clocks per node allows a middle tier node to
play both roles (source and destination), allowing the counter
used for handoffs the node has started (as source) to remain
unchanged so that the handoff may complete, even if the node
is a busy server and is itself being the destination of handoffs.

To ensure the local monotonicity ECDC criteria, while
allowing accounted increments to move between nodes, each
Handoff Counter has two integer fields, val and below,
always updated in a non-decreasing way. These fields have
a role of supporting vertical aggregation, allowing higher
tier nodes, the clients, to have an as accurate as possible
estimate of the global count so far. Field val keeps the max-
imum counter value that can be safely reported according to
local knowledge. Field below keeps a lower bound of values
accounted in lower tiers (in the vals field). Also, by sum-
marizing knowledge about tier O version vectors, the below
field avoids the need for their dissemination to other tiers.

The Handoff Counter data type operations are shown in
Fig. 4. The init operation creates a new CRDT replica for the
counter; it takes as parameters the node id and tier number;
it should be invoked only once for each globally unique id.
Operation fetch simply returns the val field, which caches
the highest counter value known so far. Operation incr incre-
ments both the self entry in the “version vector” (i.e., vals; (i))
and the cached value in val. For the purposes of conciseness
and clarity, in a definition of an operation op(C;) = ...,
the fields of C; can be accessed in the form field;, e.g.,
tokens;, and C; denotes a record with field id containing
i;ie., C; = {id =i, tier = tier;, ...}.

The merge operation is by far the most complex one. It
can be written as the composition of eight transformations
that are successively applied, each taking the result of the
previous transformation and the received state as parameters.
Each of these transformations takes care of a different aspect
of merging the two states into a new one; they are presented
in Fig. 5, where the following notation is used.

Notation We use mostly standard notation for sets and
maps/relations. A map is a set of (k, v) pairs (a relation),
where each k is associated with a single v; to emphasize
the functional relationship we also use k +— v for entries
in a map. We use M{...} for map update; M{x +— 3}
maps x to 3 and behaves like M otherwise. For records we
use similar notations but with = instead of >, to empha-
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fillslots(C, Cj) =

discardslot(C;, C;) =

createslot(C;, C;) =

mergevectors(C;, C;) =

aggregate(C;, C;j) =

Ci{vals = vals;{i — vals; (i) + Z[n | (,n) € S]},
slots = dom(S) gslots; }
where S = {(sre,n) | ((src,dst), (ck,n)) € tokens; |
dst =i A (src,ck) € slots; }
if j € dom(slots;) A sck; > fst(slots;(j))
then C;{slots = {j} <dslots;}
else C;
if tier; < tier; A vals;(j) > 0 A j ¢ dom(slots;)
then C;{slots = slots;{j — (sckj, dck;)}, dck = dck; +1}
else C;

if tier; = tier; = 0 then C;{vals = U™?*(vals;, vals;)}
else C;

C;{below = b,val = v}

where b = if tier; = tier; then max(below;, below; )

else if tier; > tier; then max(below;, val;)

else below;

v = if tier; = 0 then > [n | (_,n) € vals;]
else if tier; = tier; then max(val;, val;, b + vals; () + vals; (5))
else max(val;, b+ vals;(i))

discardtokens(C;, C;) = C;{tokens = {(k,v) € tokens; | =P (k,v)}
where P((src,dst), ((,dck),.)) = (dst = j) A
if src € dom(slots;) then snd(slots;(src)) > dck

else dck; > dck

createtoken(C;, C;) = if 4 € dom(slots;) A fst(slots; (%)) = sck;

then C;{tokens = tokens;{(i, j) — (slots; (%), vals;(¢))},
vals = vals; {7 — 0},

sck = sck; +1}

else C;

cachetokens(C;, C;) = if tier; < tier;

then C;{tokens = U7 (tokens;, )}
where ¢t = {((src,dst),v) € tokens; | stc = j A dst # i},
f((ck,n), (ck',n)) = if fst(ck) > fst(ck’) then (ck,n)

else C;

Fig.5 Handoff Counter auxiliary transformations in merge

size a fixed set of keys. We use < for domain subtraction;
S < M is the map obtained by removing from M all pairs
(k,v) with k € S. We use set comprehension of the forms
{x € S|IP(x)} or {f(x)]x € S|P(x)}, or list comprehen-
sions, using square brackets instead. The domain of a relation
R is denoted by dom(R), while fst(7") and snd(T) denote
the first and second component, respectively, of a tuple 7.
We use U/ (m, m’) to represent joining maps while apply-
ing f to the values corresponding to common keys, i.e.,
Ul (m, m"y = {(k, v) € mlk ¢ dom(m’)}U{(k,v) € m'|k ¢
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else (ck/,n’)

dom(m)}U{(k, f(m(k), m'(k)))|k € dom(m) Ndom(m')}.
To define a function or predicate by cases, we use if X then
Y else Z to mean “Y if X is true, Z otherwise”.

‘We now describe informally each of these transformations
used in merge. We leave the formal proof of correctness for
the next section.
fillslots(C;, C;) “Fills” all possible slots in C; for which there
are matching tokens in C;, removing them from slots; and
adding the counter values in the tokens to the self version
vector entry vals; (i). We call this transfer of a counter value
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in a token to the vals entry of the destination node acquiring
the token and the corresponding slot removal filling the slot.
discardslot(C;, C;) Discards a slot, if any, in C; for source
Jj, that cannot ever be possibly filled by a matching token,
because C; ensures that no such token will ever be generated.
For a slot that still remains in C; (and, therefore, has not been
filled by a matching token in C; by the just-applied fillslots)
this is the case if the source clock at C; is greater than the
corresponding value in the slot. Notice that there is at most
one slot per source, in case a slot with an old source clock
is discarded, at most one slot will be re-created (with a more
up-to-date source clock) on the subsequent createslot() call.
If a slot is kept, it must have been up-to-date and no new one
is created in that subsequent call.

createslot(C;, C;) Creates aslotin C; for a higher tier source
node j, if C; has some non-zero value to hand off and there
is no slot for j at C;. If a slot is created, the local destina-
tion clock is stored in it and increased, preventing duplicate
creation of the same slot in case of duplicate messages. A
slot merely opens the possibility of node j creating a corre-
sponding token; not all slots will have corresponding tokens,
some will be discarded or replaced by newer slots. In fact, the
local knowledge in C; after discarding information related to
j makes it impossible to avoid subsequently creating a slot
for j upon receiving a slow or duplicate message; this is not
a problem as such slots will never match any token, being
eventually discarded upon further communication.
mergevectors(C;, C;) Merges the corresponding version
vector entries, doing a pointwise maximum for common ids.
This is only done when merging two tier O replicas.
aggregate(C;, C;) Performs a vertical aggregation step
(from lower to higher tiers up to the current one), that updates
the below and val fields according to the knowledge pro-
vided by C;. This can never decrease their current values.
The effect is to propagate values accounted in tier O version
vectors, while adding knowledge provided by intermediate
nodes, up to C; and C;.

discardtokens(C;, C;) Discards from C; the tokens that have
already been acquired by Cj; this is the case for tokens with
id (src, j, _, dck) if either there is a slot (src, j, _, dck’) at
C; with dck’ > dck or if there is no slot (src, j, _, _) at C;
and dck; > dck. Here src is normally, but not necessarily,
equal to i, as C; can cache tokens from a source other than i.
createtoken(C;, C;) Creates a token, to which the currently
accounted value in vals; (i) is moved, if there is a slot for
i in C; having a source clock equal to the current one at
C;. If a token is created, the local source clock is increased,
preventing duplicate creation of the same token in case of
duplicate messages.

cachetokens(C;, C;) Keeps a copy of tokens generated at a
higher tier node j meant to some other destination k. For each
pair source-destination, older tokens (that must have already
been acquired) are replaced by newer ones. Caching tokens

provides availability under faults, as it allows a client j in the
middle of a handoff to k, to delegate to i the responsibility of
finishing the handoff, in case j wants to terminate but either
k has crashed and is recovering or the link between j and
k is currently down. Only tokens that have been generated
at node j are cached (other tokens currently cached at j are
not considered) so that alternate handoff routes are provided,
while preventing the flooding and the large sets of tokens
that would result from a transitive dissemination of tokens to
other nodes.

5.4 Implementation and experimental validation

We designed Handoff Counters in tandem with a prototype
implementation and a testing infrastructure that allows for
randomized runs over given topologies. We exercised the
solution robustness, in particular by replaying old messages
out of order, which allowed the detection of errors in sev-
eral corner cases, enabling the correction of subtle bugs that
existed in tentative versions of the mechanism.

Although testing does not ensure correctness, the imple-
mentation has successfully passed randomized traces with
one hundred million steps, both in giving the correct result
and also in garbage collecting temporary entries, making it a
complement to a manual formal proof.

An experimentally robust solution was thus a prelude to
the formal correctness proof in the following section, and
added an independent assessment to the overall approach.
This implementation and testing infrastructure, written in
Clojure, is publicly available in GitHub (https://github.com/
pssalmeida/clj-crdt), and can be used for interactively exper-
imenting with counters in the Clojure REPL.

We also performed scalability evaluation of Handoff
Counters in very large scenarios, which we present in Sect. 8.
For that, given the excessive memory demands of Clojure,
we wrote a Rust implementation, available in https://github.
com/pssalmeida/handoff_counter-rs.

6 Correctness

In this section we establish the needed properties to verify that
Handoff Counters meet the criteria for Eventually Consistent
Distributed Counting.

Lemma 1 Any slot (s, d, sck, dck) can be created at most
once.

Proof Each node uses its own id as d in the slot; therefore, no
two nodes can create the same slot. In each node, a slot is only
created when applying createslot, which also increments dck
upon storing it in the slot; therefore, a subsequent createslot
in the same node cannot create the same slot.

@ Springer


https://github.com/pssalmeida/clj-crdt
https://github.com/pssalmeida/clj-crdt
https://github.com/pssalmeida/handoff_counter-rs
https://github.com/pssalmeida/handoff_counter-rs

P.S. Almeida, C. Baquero

Lemma 2 Any token with id (s, d, sck, dck) can be created
at most once.

Proof Identical to Lemma 1.

Lemma 3 Any token with id (s, d, sck, dck) can be acquired
at most once.

Proof Such token can only be acquired in node d having
a corresponding slot (s, d, sck, dck) while performing the
fillslots function, which removes this slot from the resulting
state, preventing a subsequent acquisition of the same token,
as due to Lemma 1 this slot cannot be recreated. O

Proposition 2 Given a token T with id (s, d, sck, dck): (i)
T will not be removed from any node before it has been
acquired; (ii) a corresponding slot S will exist in node d
between the time when T is created and the time when T is
acquired.

Proof By induction on the length of the trace of the
actions performed by the system, using (i) and (ii) together
in the induction hypothesis. The only relevant action is
receive; ;(C;) of a message previously sent by a node j to
a node 7, with the corresponding merge being applied to the
state of i. Given the asynchronous system model allowing
message duplicates, we must assume that C; can be the state
of j at any point in the past, due to some send; ; action that
resulted in a message arbitrarily delayed and/or duplicated.

Regarding (i), a token T with id (s, d, sck, dck) can only
be removed either: (1) In discardtokens when merging with a
state C from d, with eitheraslot (s, d, _, dck”) havingdck’ >
dck, or withno slot for s and the destination clock in C greater
than dck; either way, given that slots for destination d are
created with increasing destination clock values, it implies
that C corresponds to a time after slot S was created. By
the induction hypothesis, S would have existed until 7" was
acquired, and as S is absent from C, this implies that 7 was
already acquired. (2) Or T could be removed by the tokens
map entry for (s, d) being overwritten in createtoken; this
last case is not possible because: tokens are created using
the current source clock, which is then incremented; for a
token with id (s, d, sck;, _) to be created, a received counter
state C from d must contain a slot (s, d, sck’, _) with sck’ =
scky. This means that d would have previously received T
from s and from the induction hypothesis, d would have
had a corresponding slot and would have already acquired T’
filling the slot. When C arrived at s, T would be discarded
by discardtokens before invoking createtoken, i.e., as in the
first case above.

Regarding (ii), T is created, in createtoken, only if a cor-
responding slot has been created at some previous time in
node d; this slot can only be removed either: in fillslots,
when T is acquired; or in discardslot, when merging with
a counter C from node s whose source clock is greater than
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sck, implying a state in s after 7' has been created. But in this
case this slot at node d cannot reach the discardslot function
as, by the induction hypothesis, 7 would be present in C and
would have been acquired by fillslots, filling the slot, just
before invoking discardslot.

Lemma 4 Any token with id (s, d, sck, dck) will be eventu-
ally acquired.

Proof Such token, created at node s, must have resulted from
direct message exchanges between s and a lower tier node
d. From Proposition 2, this token will remain at s and a
corresponding slot will exist at d until the token is acquired.
As s will keep sending its C; to its neighbors, therefore to d,
and from the system model assumptions (Sect. 3.1) messages
eventually get through, if the token has not yet been acquired
(e.g., by communication between d and some other node
caching the token), C containing the token will eventually
arrive at d, which will acquire it.

Definition 1 (Configuration) A configuration C is the set of
replicas existing at a given time in all nodes, i.e., the set
composed of each state C;, for each node i.

When mentioning time explicitly, we denote the configu-
ration at time 7 by C?, and the state of replica i at time 7 by
Cl.

1

Definition 2 (Enabled token) A given token with ((s, d, sck,
dck), n) is called enabled if there exists a corresponding slot
(s,d, sck,dck) at node d. The set of enabled tokens in a
configuration C is denoted Ec.

Whether a token is enabled is a global property, not decid-
able given local state by nodes holding the token. From
Proposition 2, a token is enabled when created; it remains
enabled until it is acquired, when the corresponding slot is
filled. As E¢ is defined as the set (not multiset) of enabled
tokens, the presence of duplicates of some token, created at
one node and cached at some other node(s), is irrelevant.

Lemma5 Fields below and val are non-decreasing.

Proof By induction on the length of the trace of the actions
performed by the system. These fields only change by anincr;
atnode i, which increments val;, or when doing a merge when
receiving a message, in aggregate, which either updates
below and val using a maximum involving the respective
current value, or stores in val; the sum of vals; entries, if i
is a tier 0 node, which is also non-decreasing, as vals; for
tier O nodes contain a set of entries always from tier O nodes,
only updated by a pointwise maximum (as tier 0 nodes never
create tokens).

Definition 3 (Cumulative Tier Value) In a configuration C,
the cumulative tier value for tier k, written CTV ¢ (k), is the



Scalable eventually consistent counters over unreliable networks

sum, for all nodes with tier up to k, of the self component of
the vals field plus the tokens created by these nodes that are
still enabled, i.e.:

CTVc (k) iZ[valsi(iﬂCi € Cltier; < k]

+ Y Inl(G. _. . ). n) € Ecltier; <k].

Lemma 6 For each k, CTV ¢ (k) is non-decreasing, i.e., for
any transition between configurations C and C', CTV ¢ (k) <
CTV¢r (k).

Proof For any node i, the only time vals; (i) can decrease is
when a token is created, enabled, and the value is moved to
the token; in this case CTV (k) remains unchanged for all
k. When a token holding value n ceases to be enabled (being
acquired), n is added to the vals; () field for some lower tier
node j; this makes CTV ¢ (k) either unchanged or greater.

Lemma7 CTV (k) is monotonic over k, ie., ki < ky =
ClVc (k1) < CTVce (k).

Proof Trivial from the CTV definition.

Proposition 3 For any counter replica C; in a configuration
C: (i) below; < CTV(tier; — 1), (ii) val; < CTV(tier;).

Proof By induction on the length of the trace of the actions
performed by the system, using (i) and (ii) together in the
induction hypothesis. Given that CTV ¢ (k) is non-decreasing
(by Lemma 6), so are the right-hand sides of the inequali-
ties, and the only relevant actions are those that update either
below; or val;: (1) An increment incr; at node i, resulting
in an increment of both val; and vals; (i), in which case the
inequality remains true. (2) A receive; ; (M) of a message
previously sent by a node j to node i, with the correspond-
ing merge being applied to the state of i, and the fields being
updated by aggregate. Regarding below;, there are three
cases: it remains unchanged, it can be possibly set to below ;
iftier; = tier;, oritcanbe possibly settoval; if tier; < tier;;
in each case the induction hypothesis is preserved because
CTV ¢ is non-decreasing (M can be any message from node
J,arbitrarily from the past) and in the last case also due to the
monotonicity of CTV¢ (k) over k (by Lemma 7). Regarding
val;, either it is set to the sum of the vals; values, if tier; = 0,
which does not exceed CTV(0) due to the pointwise max-
imum updating of vals fields for tier O nodes; or it either
remains unchanged, is set to val; only if tier; = tier;, or
is set to the sum of the values (computed for the next con-
figuration) of below; with vals; (i) and also vals;(j) when
tier; = tier;; in each case the induction hypothesis is pre-
served.

Proposition 4 The number of increments globally issued up
to any time t, say 1', is equal to the sum of the values held

in the set of enabled tokens and of the self entries in the vals
field of all nodes; i.e., for a network having maximum tier T,
given a configuration C' at time t, we have I' = CTV ¢« (T).

Proof By induction on the length of the trace of the actions
performed by the system. The relevant actions are an incre-
ment at some node i, which results in an increment of the
i component of the vals field of node i; or a receive; ; (C;)
of a message previously sent by a node j to a node i, with
the corresponding merge being applied to the state of i, lead-
ing possibly to: the filling of one or more slots, each slot
S corresponding to a token (S, n), which adds » to vals; (i)
and removes slot S from i, which makes the token no longer
enabled, leaving the sum unchanged; discarding a slot, which
cannot, however, correspond to an enabled token, as from
Proposition 2 a slot will exist until the corresponding token is
acquired; merging vals pointwise for two tier 0 nodes, which
does not change the self component vals; (i) of any node
i; discarding tokens, which cannot be enabled because, by
Proposition 2, tokens are only removed from any node after
being acquired; the creation of an enabled token (_, n), at
node i, holding the value n = vals; (i) and resetting vals; (i)
to 0, leaving the sum unchanged; caching an existing token,
which does not change the set of tokens in the system.

Proposition 5 Any execution of Handoff Counters ensures
ECDC fetch bounded by increments.

Proof In any configuration C, a fetch; at replica C; simply
returns val;. From Proposition 3, this value does not exceed
CTV (tier;), which, from the monotonicity of CTVc (k)
(Lemma 7) and Proposition 4, does not exceed the number
of globally issued increments.

Proposition 6 Any execution of Handoff Counters ensures
ECDC local monotonicity.

Proof Operation fetch; simply returns val;, which is non-
decreasing (Lemma 5) and which is always incremented upon
alocal incr;; therefore, for any node i the difference between
fetch; at two points in time will be at least the number of
increments issued at node i in that time interval.

Proposition 7 Any execution of Handoff Counters ensures
ECDC eventual accounting.

Proof Let T be the maximum node tier in the network, and
N the set of nodes. From Proposition 4, the number of incre-
ments /' globally issued up to any time ¢, for a configuration
C',isequal to CTV ¢+ (T). From Lemma 4, by some later time
t’ > t, all tokens from tier 7 enabled at time ¢ will have been
acquired by lower tier nodes (if 7 > 0 ), and also because
CTV is non-decreasing, it follows that I' < CTV ../ (T"),
for some T’ < T. Repeating this reasoning along a finite
chain T > T’ > ... > 0, by some later time t” we have
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I' < CTVr (0) = Y[vals! ()|C!" e C"[tier; = 0], this
last equality holds because there are no tokens created at tier
0; given the network topology assumptions of tier 0 connect-
edness, eventually at some later time ¢, all vals entries in all
tier O nodes will be pointwise greater than the corresponding
self entry at time ¢”, i.e., valsﬁm () = vals;-” (j) for all tier 0
nodes i and j. Given the topology assumptions of the exis-
tence, for each node 7, of a path along a strictly descending
chain of tiers tier; > --- > 0, eventually, by the aggregate
that is performed when merging a received counter, repeated
along the reverse of this path, at some later time the val; field
for each node i in the network will have a value not less
than the sum above, and therefore, not less than the number
of increments I’ globally issued up to time ¢, which will be
returned in the fetch; operation.

Theorem 1 Handoff Counters implement eventually consis-
tent distributed counters.

Proof Combine Propositions 5, 6, and 7. O

7 Practical considerations and
enhancements

Handoff Counters were presented as a pure CRDT, that works
under a simple gossip algorithm “send counter to all neigh-
bors and merge received counters”. Here we discuss practical
issues and outline some enhancements such as more selective
communication, how to amortize the cost of durable writes
while ensuring correctness, how to avoid sending the full
CRDT state and the issue of client retirement. A formal treat-
ment of these issues is deferred to further work.

7.1 Topology and message exchanges

We have described a mechanism which is arbitrarily scalable,
through the use of any suitable number of tiers. In Example 1
we have described a three tier scenario: Tier O for permanent
nodes, Tier 1 for serving nodes, appropriate to the number of
end-clients, and Tier 2 for end-clients.

In practice, the most common deployment will probably
consist of only Tier O (for the data-store) and Tier 1 (for the
end-clients). This is because a large scale scenario typically
involves not only many clients, but also many counters, with
requests spread over those many counters. Having a couple
of Tier 0 nodes per data-center per counter will cover the
most common usage.

For presentation purposes, the distributed algorithm con-
sisted simply of a general gossip, where each node keeps
sending its counter replica to each neighbor. In practice, in
the role of client, a node will simply choose one lower tier
neighbor as server, to use in the message exchange, to max-
imize the effectiveness of the handoff. Not only does this
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avoid extra token caching by other nodes, and subsequent
work in removing them after they have been acquired, but it
also avoids the creation of slots that will have no chance of
being filled and will have to be discarded. It is only when a
client suspects that the chosen server is down, or there is a
network partition, that the client should choose another node
as server.

7.2 Fault tolerance

The mechanism was designed to tolerate network failures and
transient node failures, but assumes that the state resulting
from an operation is successfully stored in durable stor-
age. We leave it as orthogonal to our mechanism the way
each node achieves tolerance against permanent failure (e.g.,
through the use of storage redundancy).

To improve performance, in nodes that have the server role
and receive handoffs from clients but do not receive local incr
requests, the actual write to durable storage should not be
made after each merge operation. But if the write to durable
storage is delayed and messages continue to be exchanged,
a node crash will violate the correctness assumptions, as the
local in-memory state, which other nodes could already have
received and merged, will be lost.

To overcome this problem, a maximum frequency of
durable writes can be defined. Between durable writes, all
state received from other nodes is merged to the transient in-
memory state, but no messages are sent back; instead, sender
node ids are collected in a transient set. After a durable write,
messages containing the written state are sent to those nodes
in the collected set of ids.

This means that all messages sent correspond to a durably
stored state; if the node crashes the transient state is lost, but
this is equivalent to losing the messages received since the
last durable write. As the mechanism supports arbitrary mes-
sage loss, correctness will not be compromised. This solution
amortizes the cost of a durable write over many received
requests, essential for a heavily loaded server. Under light
load, durable writes can be made and a reply message sent
immediately.

The maximum frequency of writes can be tuned according
to both storage device characteristics and network latency. As
an example, if clients of a given node are spread geographi-
cally and there is considerable latency (e.g., S0 ms), waiting
some time (e.g., 5 ms) to collect and merge messages from
several clients before writing to durable storage and replying
should not have a noticeable impact.

At high-tier nodes, that only have a client role, and where
incr requests are handled, the persistent logging requirement
might also be a concern. Depending on the rate of incr oper-
ations issued, it might not be feasible (without assuming
incoming new technology, such as non-volatile memory) to
persist after each incr operation issued. The consequence of
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not persisting immediately, is to have a vulnerability win-
dow of accepted and non persisted increments. However, if
we consider the client tier to be located next to the user (e.g.
in a smart-phone) and consequently only handling requests
from that user, the rate of incr is probably low enough to
support immediate persistence.

7.3 Restricting transmitted state through views

The algorithm as described adopts the standard state-based
CRDT philosophy, in which the full replica state is sent in
a message to be merged at the destination node. We can
optimize by sending only the state that is relevant for the des-
tination node. This strategy assumes that messages are sent
to specific nodes (as opposed to, e.g., being broadcasted) and
that the sender knows the node id and tier of the message des-
tination. It also assumes that server nodes that a given client
uses for handoff are all of the same tier. This assumption is
reasonable, and met by the examples discussed, where clients
of tier n + 1 hand off to nodes of tier n.

The insight is that when a node i is sending C; to a higher
tier node j, in what regards the slots field, only the entry
for node j is relevant when the merge is applied at j; all the
other entries are ignored when merge(C;, C;) is performed
at j, and can be omitted from the state to be sent. When i
is sending to a lower tier node j, no slots need to be sent,
because no slot from C; is relevant for the merge at j. It is
only when communicating with a node j of the same tier that
the full slots; map must be sent, as j may be caching tokens
from some higher tier client, destined for i.

Using the insight above, instead of doing a send; ;(C;),
node i can make use of a function view to restrict the
state to the information relevant to node j, and do a
send;_ ; (view(C;, j)). This function can be defined as:

view(C;, j) = if tier; < tier; then
C;{slots = {(k, s) € slots; |k = j}}
else if tier; > tier; then C;{slots = {}}
else C;.

Even though this only involves the slots field, this com-
ponent will constitute the largest part of the counter state in a
busy server with many concurrent clients, as it can have one
slot per client. This optimization will allow sending only a
small message to each client, and also avoid sending slots to
lower tier nodes (e.g., when a tier 1 node communicates with
tier 0).

7.4 Client retirement

Given that each node accounts locally issued increments until
they are handed off, when an end-client has stopped issuing

increments and wants to retire, it should continue exchang-
ing messages until it is certain that those increments will be
accounted elsewhere (in lower tier nodes).

The normal way of doing so is to keep exchanging mes-
sages with the chosen server, until the vals self component is
zero and the tokens map is empty. This can, however, mean
waiting until a partition heals, if there is a token for a parti-
tioned server. The token caching mechanism allows the client
to start a message exchange with an alternate server, which
will cache the token, to be delivered later to the destination.

While an end-client i wishes to remain active, even if some
node k has already cached a token from i to server j, client
i cannot discard the token unless it communicates with j
after j has acquired it; otherwise, it could cause an incorrect
slot discarding at j. But in the retirement scenario, if vals; (i)
self component is zero, and i has learned that all its tokens
are already cached at other nodes (by having seen them in
messages received from those nodes), i can stop sending mes-
sages and retire definitely. As no more messages are sent, no
incorrect slot removal will occur, and as all tokens from i are
cached elsewhere they will be eventually acquired, implying
a correct eventual accounting of all increments issued at i.

Another issue regarding client retirement is slot garbage
collection. The mechanism was designed to always ensure
correctness, and to allow temporary entries (slots and tokens)
to be removed in typical runs. As such, slots must be kept
until there is no possibility of them being filled. The mech-
anism was designed so that a server can remain partitioned
an arbitrary amount of time after which a message arrives
containing a token. This raises the possibility that: a client C
sends a message to a server Sy, a slot is created at Sy, a parti-
tion occurs just before a corresponding token is created at C,
the client starts exchanging messages with another server S,
and successfully hands off the local value to S, and retires;
in this scenario, the slot at S; will never be garbage collected,
as C is no longer alive to communicate with S;. (Under our
system model C is not expected to retire for ever, and all
partitions eventually heal, but dealing with client retirement
is a relevant practical extension.)

In this example, even though correctness was not compro-
mised, each such occurrence will lead to irreversible state
increase which, even if incomparable in magnitude to the
scenario of naive CRDTs with client ids always polluting
the state, is nevertheless undesirable. This motivates a com-
plementary mechanism to improve slot garbage collection:
if a client starts using more than one server, it keeps the set
of server ids used; when it wishes to retire the intention is
communicated to the server, together with the set of server
ids, until the retirement is complete; a server which receives
such intention keeps a copy of the last token by that client
(in a separate data-structure, independently of whether the
server caches or acquires the token), and starts an algorithm
which disseminates the token to the set of servers used by
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the client and removes it after all have acknowledged the
receipt. The insight is that when one of these servers sees
the token, it can remove any slot for that client with an older
source clock. For this, it is essential that this information is
piggy-backed in the normal messages between servers, and
processed after the normal merge, so that a server that has a
slot corresponding to an enabled token for that client, which
may be cached in another server will see the token and fill the
corresponding slot, before attempting slot garbage collection
by this complementary mechanism.

8 Scalability evaluation

We now evaluate how scalable is the mechanism in prac-
tice. To efficiently evaluate scenarios with up to one hundred
thousand clients we reimplemented Handoff Counters and
built a discrete event simulator for asynchronous networks
using the Rust programming language. The simulation infras-
tructure, including the scripts used to obtain the results for
each scenario below (as well as the runs performed) can
be obtained from https://github.com/pssalmeida/handoff
counter_simulator-rs.

Even though the actual latency distribution is not impor-
tant, as long as “messages are in transit for some time”,
as in [20], inspired by [19], we model message latency
by the sum of a fixed component and a delay given by
a Weibull distribution; in our case we used 25 ms plus a
Weibull of shape 2 and scale 25 ms, except for communi-
cation between two tier 0 nodes, where we use twice the
latency, i.e., 50 + Weibull(2, 50), as they tend to be more
geographically dispersed.

For comparison with a naive counter CRDT, there was no
need to actually simulate a counter vector, and we just store
and propagate sets of identifiers. For a compact set of inte-
gers representation we used Roaring Bitmaps [7] (through
the roaring Rust crate). Unsurprisingly, each identifier
reaches every node very fast (in under one second) and at
any time the set of ids at each node roughly corresponds to
the set of all nodes.

We evaluated several scenarios. In all of them we used
a three tier network, with a fixed small number (10) of tier
0 nodes, representing the permanent infrastructure; we used
a larger number of tier 1 nodes (either 100 or 1000 nodes),
what we now call servers; and we use a varying number of
tier 2 nodes, what we now call clients, up to one hundred
thousand. The reason for a three tier network is to allow
more scalability and adaptability, allowing the choice of tier
1 nodes according to needs; tier 0 nodes cannot be retired
with no impact, and should always be a small number.

We essentially ignored tier O nodes, and concentrated on
evaluating the impact on the servers (tier 1 nodes) of having
many possible clients (tier 2 nodes) under different scenarios.
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The essential measure of scalability for Handoff Counters
that we used was the average number of slots per tier 1 node,
as a good measure of space complexity. Slots are the state
component that can vary a lot, while the other components do
not in typical interactions (i.e. ignoring naive gossip patterns
that would not be used in practice).

For the scalability evaluation, and towards a positive out-
come, it was important to deploy some of the “practical
considerations” from the previous section; otherwise, e.g.,
using a naive gossip from a client to many servers, larger
counter states could be created, e.g. with many tokens, or
many slots that would persist for a long time without being
discarded. In all scenarios:

— When a client arrives, it chooses a server randomly and
keeps communicating with this server, unless otherwise
stated;

— We use the view function from the previous section to
send state, to keep messages in transit small.

We evaluated four scenarios:

1. Runs with clients arriving continuously at a given rate,
while keeping actively doing increments and exchanging
messages;

2. Runs with clients arriving continuously at a given rate, but
where each client only performs increments in sessions
occupying a given percentage of total time, while keeping
affinity with the chosen server;

3. Runs where clients disconnect abruptly and choose a
different random server when reconnecting, exchanging
messages only with this new server;

4. Runs with client retirement, where clients both arrive and
retire at a given rate, while keeping a given number of
active clients.

The client disconnect scenario provided useful insight,
exposing a scalability problem in which many slots per-
sisted. It was possible to overcome it by “smarter” message
exchange logic without modifying the Handoff Counter
mechanism itself, but only how it was used.

8.1 Varying number of clients

The first scalability test involved varying the number of client
nodes, while fixing the number of servers. Due to the little
variability of outcomes, we present single runs where clients
continuously arrive and keep active, for two scenarios, with
100 and 1000 servers. Figure 6 presents two such runs, each
starting with O clients and a client arriving each 10 ms, up to
100,000 clients. The plots depict the number of clients, the
average for all servers of the size of the set of ids at each
server (representing the size of the vector in naive CRDT
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Fig. 6 Number of clients and average number of ids and slots per server. Comparing tier 1 configurations with 100 and 1000 servers, both for up

to 100,000 clients

counters) and the average number of slots for all servers,
along simulated time.

These runs show that the ids set size is slightly above
the current number of clients (because although there is
propagation delay, it also includes tier 0 and tier 1 ids, not
only clients). It (unsurprisingly) confirms that classic counter
CRDTs do not allow scaling to cope with more clients: if a
given server node has some space capacity, it does not help
to increase the number of servers if there are more clients,
as the space-per-server cannot be kept bounded, and keeps
increasing linearly with clients. On the other hand, Handoff
Counters allow the server infrastructure to be scaled to cope
with more clients: if a given number of slots, say, 100, is the
maximum desirable for a given server, 100 servers can be
used if there are 10,000 clients, and if the number of clients
increases to 100,000, the number of servers can be also scaled
to 1000, allowing to keep the space-per-server bounded.

8.2 Client activity sessions

In the second experiment clients also arrive continuously, one
each 10 ms, but each client is only active (performs incre-
ments) in sessions ocupying a given percentage of time (1, 10,
100%), while keeping affinity with the choosen server. Each
client undergoes a number of sessions, each lasting the given
percentage of a period of 100 s, being inactive the remaining
time. (So, each session lasts either 1, 10 or the full 100 s.)
Figure 7 shows the number of active clients and the aver-
age number of slots per server along time, for each activity
percentage, in a scenario with 100 servers. It can be seen that
the number of slots is roughly proportional to the number
of active clients, not the total number of clients. This shows
another scalability benefit of Handoff Counters: it allows a
smaller number of servers to be used to handle a given num-
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Fig. 7 Number of active clients and slots per server, with clients ses-
sions taking 1, 10, and 100% of time, with server affinity

ber of clients, under the common case where clients are active
only a percentage of time.

8.3 Client reconnection

We experiment a more stressful scenario, where clients dis-
connect and reconnect, but without keeping affinity to the
previous server. Now, each time a client reconnects it chooses
a random server to exchange messages with. Also, contrary
to the previous scenario, now clients disconnect abruptly, as
opposed to merely stopping issuing increments but allowing
some further communication; this will cause slots being left
at a server when a disconnect happens.

The first experiment shows the disaster that would occur
if a naive client were used: a client which simply exchanges
messages with the new chosen server, ignoring the old ones.
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Fig. 8 Slots per server for 100 servers and 1000 clients abruptly dis-
connecting and reconnecting to random server, ignoring old servers

Figure 8 shows one run, with 100 servers and a fixed number
of clients (1000). Each client is active one second, discon-
nects abruptly, remains 1 s offline, and reconnects choosing
a new random server.

It can be seen that, along time the number of slots per
server keeps increasing, as clients disconnect and reconnect.
After 10 min, there are around 564 slots per server; this
contrasts with the 5 slots per server in this scenario if no
disconnects happened.

This unacceptable situation can be overcome by improv-
ing the logic of message exchanges, even while still allowing
abrupt disconnects. The next experiment used such an
improved logic where:

— clients periodically send the counter to the current server,
plus to any other server for which the client still has cor-
responding tokens;

— servers periodically send the counter to any client for
which the server still has corresponding slots open;

— both servers and clients “reply” to such messages after
merging the received counter.

The need for this active behavior from the part of servers
(as opposed to justreacting to messages received) is essential;
otherwise, a slot for which no corresponding token had been
created in a client would not be removed, as a client would not
know that it exists. Figure 8 also shows the result of running
this “smart” control algorithm, in the same scenario as before,
leading to an incomparably better 10 slots per server along
the run.

8.4 Client retirement

The final experiment performed involved assessing the
impact of permanent client retirement on server state. The
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Fig.9 Slots per server for 100 servers and 1000 clients, with one client
retiring a new one arriving each 10 ms. Clients retire gracefully, unless
a partition happens, with probability 1 and 10%

experiment involved 100 servers and 1000 starting clients,
with a new client arriving each 10 ms and a random client
being retired each 10 ms, to keep the number of current clients
constant. Each retired client is always active and keeps affin-
ity to the server. Message exchange is by the same “smart”
algorithm from the previous section, but now clients try to
retire gracefully, keeping exchanging messages until they
have no tokens nor self-value to handoff.

We measure the impact of a client being partitioned when
it decides to retire: with a given probability of partitioning,
a client retires abruptly instead of performing the grace-
ful retirement (causing slots to remain forever in servers).
The experiment assesses whether the exchange algorithm
can handle retirement discarding slots successfully. Figure 9
shows two such runs, for partition probabilities of 1 and 10%,
showing the number of slots per server and also the number of
ids (representing the vector size if standard CRDT counters
were used). It can be seen that, even if some unrecoverable
slot pollution happens, it is orders of magnitude better than
in standard CRDTs.

9 Beyond counters

We have up to now addressed distributed counters, given their
wide applicability and importance. Using counters was also
useful for presentation purposes, as something concrete and
widely known. The resulting mechanism and lessons learned
are, however, applicable far beyond simple counters.

What we have devised is a mechanism which allows some
value to be handed off reliably over unreliable networks,
through multiple paths to allow availability in the face of
temporary node failures or network partitions. Values are
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moved from one place to another by “zeroing” the origin
and later “adding” to the destination. Reporting is made by
aggregating in two dimensions: “adding” values and tak-
ing the “maximum” of values. The value accounted at each
node is updated by a commutative and associative opera-
tion which “inflates” the value. This prompts a generalization
from simple counters over non-negative integers to more gen-
eral domains.

The handoff counter CRDT can be generalized to any
commutative monoid M (an algebraic structure with an asso-
ciative and commutative binary operation () and an identity
element (0)) which is also a join-semilattice (a set with a par-
tial order (E) for which there is a least upper bound (x Ll y)
for any two elements x and y) with a least element (L), as
long as it also satisfies:

1=0
xXUyExDy

The CRDT state and definition of merge remain unchan-
ged, except:

— Fields val, below, range of vals entries and token payload
now store elements of M instead of simple integers;

— Those fields are initialized to 0 in the initialization of the
CRDT; 0 is also used for resetting the self vals; (i) entry
in createtoken;

— The sum operation (+) over elements of the above fields
is replaced by the @ operation;

— The max operation used in mergevectors and aggregate
is replaced by the LI operation;

In terms of client-visible mutation operations, instead of
incr, any set of operations that are associative and commuta-
tive and that can be described as inflations over elements of
M (i.e., such that x T f(x)) can be made available.

In terms of reporting operations, instead of fetch, the data
type can make available functions that can be defined over
elements of M (that result from the aggregation made resort-
ing to @ and L).

9.1 Example: map of counters

Sometimes more than a single counter is needed. Instead of
having a group of Handoff Counter CRDTs, a new CRDT
can be devised, that holds a group of counters together, made
available as a map from counter id to value. This will allow
amortizing the cost of the CRDT state over the group of
counters, instead of having per-counter overhead.

The CRDT for the map-of-counters can then be defined
by making elements of M be maps from ids to integers and
defining:

0 ={}
xEByiUJr(x,y)
XUy =U"(x,y)

and by making available:

fetch(C;, ¢) =val;(c)
incr(C;, ¢) =C;{val = U™ (val;, {c — 1}),

vals = vals; {i > Ut (vals; (i), {c — 1)}}
9.2 Example: PN-counter

A PN-Counter [26] can be both incremented and decre-
mented. It can be implemented as a special case of the
previous example, with two entries in the map: the p entry,
counting increments, and the n entry, counting decrements.
The fetch operation returns the difference between these val-
ues:

fetch(C;) = fetch(C;, p) — fetch(C;, n)
incr(C;) = incr(C;, p)
decr(C;) = incr(C;, n)

10 Discussion

The standard approach to achieving reliability and avail-
ability in distributed systems is to use a replicated service
and distributed transactions, with a fault tolerant distributed
commit protocol, that works if some majority of nodes are
working (and not partitioned), e.g., Paxos Commit [15].
This standard approach attacks several problems in the same
framework: network failures, temporary node failures and
permanent node failures. By doing so, it incurs a perfor-
mance cost, due to the need to communicate with several
nodes, even when no failures occur. Our approach does not
impose such cost: when no failures occur, a node playing the
role of client only communicates with just one server.

Regarding availability, our approach (even after ensuring
that increments were handed off to some server, so that a
client can retire) is also better, as in case of server crash or
link failure, it is enough that a single alternative server is
available and reachable, as opposed to a majority of servers.

A significant characteristic of our approach is that it
focuses on addressing network failures and temporary node
failures, while not addressing permanent node failures, leav-
ing them as an orthogonal issue to be attacked locally, e.g.,
through storage redundancy at each node. By not conflating
temporary and permanent node failures, our approach does
not impose on the distributed execution the cost of tolerating
the latter.
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Our approach can be seen to fit in the general philos-
ophy described by [16] when aiming for “almost-infinite
scaling”: in avoiding large-scale distributed transactions and
only assuming atomic updates to local durable state; in not
requiring exactly-once messaging and having to cope with
duplicates; in using uniquely identified entities; in remember-
ing messages as state; in having entities manage “per-partner
state”. Our approach can be seen as applying that philosophy
in designing a scalable distributed data type.

But the CRDT approach that we adopt goes further: since
messages are unified with state, which evolves monotonically
with time, the required message guarantees are even weaker
than the at-least-once as assumed in the paper above. Mes-
sages with what has become an old version of the state need
not be re-transmitted, as the current state includes all relevant
information, subsuming the old state, so it suffices to keep
transmitting the current state to enable progress (assuming
that some messages will eventually get through).

11 Conclusion

We have addressed the problem of achieving very large scale
counters over unreliable networks. In such scenarios pro-
viding strong consistency criteria precludes availability in
general and, even if there are no network partitions, will
impact performance. We have, therefore, defined what we
called ECDCs—Eventually Consistent Distributed Counters,
that provide the essence of counting (not losing increments or
over-counting), while giving up the total ordering approach
of the stronger classic distributed counters.

While ECDCs can be naively implemented using the
CRDT approach, such implementation is not scalable, as it
suffers from what is being perceived to be the major prob-
lem with CRDT approaches: the state size explosion due to
pollution with node id related entries. This pollution involves
not only current concurrent nodes, but also all already retired
nodes.

We have presented a solution to ECDC, called Hand-
off Counters, that adopts the CRDT philosophy, making the
“protocol” state be a part of the CRDT state. This allows a
clear distinction between what is the durable state to be pre-
served after a crash, and what are temporary variables used
in the computation. It also allows a correction assessment to
focus on CRDT state and the merge operation, while allow-
ing a simple distributed gossip algorithm to be used over an
unreliable network (with arbitrary message loss, reordering
or duplication).

Contrary to a naive CRDT based ECDC, our solution
achieves scalability in two ways. First, node id related entries
have a local nature, and are not propagated to the whole dis-
tributed system: we can have many thousands of participating
nodes and only a few level O entries. Second, even not guar-
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anteeing it in the general case, it allows garbage collection of
entries for nodes that participate in the computation and then
retire, in normal runs, while assuring correctness in arbitrary
communication patterns. (We have also sketched an enhance-
ment towards improving garbage collection upon retirement,
which we leave for future work.) These two aspects make our
approach usable for large scale scenarios, contrary to naive
CRDT based counters using client-based ids, and avoiding
the availability or reliability problems when using server-
based CRDTs and remote invocation.

Moreover, our approach to overcoming the id explosion
problem in CRDTs is not restricted to counters. As we have
discussed, it is more generally applicable to other data types
involving associative and commutative operations.
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