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Abstract — Meta-heuristics have been applied for a long time to 
the Travelling Salesman Problem (TSP) but information is still 
lacking in the determination of the parameters with the best 
performance. This paper examines the impact of the Simulated 
Annealing (SA) and Discrete Artificial Bee Colony (DABC) 
parameters in the TSP. One special consideration of this paper is 
how the Neighborhood Structure (NS) interact with the other 
parameters and impacts the performance of the meta-heuristics. 
NS performance has been the topic of much research, with NS 
proposed for the best-known problems, which seem to imply that 
the NS influences the performance of meta-heuristics, more that 
other parameters. Moreover, a comparative analysis of distinct 
meta-heuristics is carried out to demonstrate a non-proportional 
increase in the performance of the NS.  

Keywords - Meta-heuristics, Simulated Annealing, Discrete 
Artificial Bee Colony, Neighborhood Structures, TSP. 

I.  INTRODUCTION 
Complex Combinatorial Problems (COPs) such as the 

Travelling Salesman Problem (TSP) is a classic combinatorial 
optimization problem, which has been applied in, logistics, 
transportation, networking and commercial domains [1-7]. It is 
certainly one of the most well-known and widely studied 
problem in the domain of COPs that can be defined as the 
problem of finding a minimum distance tour of N cities, 
starting and ending at the same city and visiting other city 
exactly once [1]. In this paper, a Simulated Annealing (SA) and 
Artificial Bee Colony algorithm (DABC) are used to approach 
TSP and to determine how much the chosen NS impacts the 
performance of either meta-heuristics.  

Computational tests were performed to demonstrate that the 
proposed meta-heuristics, for instance, the SA algorithm, and 
the DABC algorithm are suitable for being used in the 
Euclidian-TSP. Moreover, in this paper the authors intend to 
show that NS should be treated as another parameter, that 
influences the performance of the optimization techniques. 
Therefore, in this paper four well-known NS are examined with 
SA and DABC in the Symmetric Euclidian TSP. Furthermore, 
a statistical analysis of the performance of the NS is presented.  

The structure of this paper is the following: section II 
overviews the developments in meta-heuristics, and presents in 
more detail Simulated Annealing (SA) and Discrete Artificial 
Bee Colony algorithm (DABC). Section III briefly describes 
the neighbourhood structure (NS) examined in the 
computational study. Section IV details the instances used in 
the computational study, the parameters for both meta-
heuristics before the results are presented and explored and 
finally the sections ends with the statistical study to 
demonstrate how the NS influences the behaviour of the meta-
heuristics. Section V presents the conclusions.  

II. META-HEURISTICS AND DECISION MAKING 
Meta-heuristics are the main techniques to address complex 

computational problems, such as, combinatorial optimization 
problems, which have shown to be the approach techniques 
with better performance [8]. They can be defined as an iterative 
procedure inspired by nature that guides a subordinate heuristic 
in the exploration of the solution space, [9,10]. Unlike the 
Neighborhood Search methods that analyze solutions within 
the solutions space belonging to a particular neighborhood, 
meta-heuristics have mechanisms to move beyond the local 
optima solutions, making them particularly interesting in 
addressing Complex Combinatorial Problems (COPs). As an 
approximation method, a meta-heuristic, cannot guarantee 
optimal solutions, but usually outperform other less evolved 
approximation optimization techniques. In general, meta-
heuristics parameters compromise between the technique 
effectiveness and efficiency [9]. 

There are two distinct classes of meta-heuristics: the single 
solution based meta-heuristics and population based meta-
heuristics. Meta-heuristics are then divided by the number of 
solutions they use. Single solution meta-heuristics are inspired 
by Neighborhood Search techniques, and the population-based 
meta-heuristics are based on Genetic Algorithms (GA). Usually 
the single solution based meta-heuristics have higher intensity 
than population meta-heuristics, since population based meta-
heuristics simultaneously use several solutions to explore a 
larger portion of the solution space, which makes them also 
more time consuming [9,10]. 

A. Simulated Annealling 
Simulated Annealing (SA) is one of the most efficient meta-

heuristic to approach complex optimization problems, through 
adaptation of the procedure of neighborhood search techniques, 
which would enable it to overtake local optimums [11,12]. It is 
a particularly appealing meta-heuristic to address Complex 
Combinatorial Problems (COPs), since it can find near-optimal 
solutions, which, in a real-world environment are usually 
suitable, without much computational effort [1,7]. Further we 
discuss the parameters of SA to show how easily they can be 
tuned to optimize the performance of the meta-heuristic in a 
specific problem. Results in literature demonstrate how suitable 
the SA meta-heuristics is in the Symmetric Euclidean-TSP 
problem. 

Simulated Annealing selects one solution between a finite 
number of possible solutions, but unlike neighbourhood search 
techniques it allows movements that worsen the current 
solution. It can find near-optimal solutions for combinatorial 
problems with low computational effort, and it is relatively 
simple to implement and manipulate its parameters.  



 

In the implemented software, SA provides alternative 
solutions as well as the evolution path of the meta-heuristics 
optimization procedure. Such implementation allows the user 
to visualize the movement through the solution space with 
advantages and disadvantages of the parameters. With such 
information the decision maker understands how the 
parameters impact the optimization technique. The motivation 
for using SA is four fold. First, we can solve complex 
combinatorial optimisation problems. Second, it can be easily 
understood since its procedure is based on the annealing 
process [11,12] and it does not include too many parameters. 
Third, since it is a guided-random search algorithm [11,12], it 
allows us to control its path through the solutions pace with the 
parameters of the meta-heuristic [11,12]. Finally, the algorithm 
is simple to implement and it does not require too much 
computational time to find decent solutions, since the SA 
search procedure is efficient and robust [11,12]. 

B. Discrete Artificial Bee Colony 
Artificial Bee Colony (ABC) is one of the most recent 

optimization techniques inspired by bee behaviour, the Queen 
Bee Evolution (QBE), based on colony structure, Marriage in 
Honey Bees Optimization (MBO) in the reproduction process, 
and Bee Colony Optimization (BCO) or Virtual Bee Algorithm 
(VBA), in search of food [20], which was developed by 
Karaboga, in 2005 [13] and Pham et al., in 2005 [14] and was 
inspired by the behaviour of a colony of bees in search for 
food. Through this meta-heuristic the search within the solution 
space is performed by three types of bees: worker bees, 
opportunistic bees, and scout bees. ABC as been developed to 
approach continuous problems, not discrete problems, such as, 
scheduling problems. Moreover, recently there have been 
proposed versions of the ABC for discrete problems, the 
Discrete Artificial Bee Colony (DABC) procedure, including a 
version proposed by Karaboga & Gorkemli to address the 
Symmetric Euclidian TSP problem [15].  

The DABC is similar to ABC, just changing the way the 
bees move in the neighbourhood of a source of food, which is 
carried out by manipulating the solutions, by transforming 
them into neighbourhood solutions.  

The DABC works through the interaction of three phases, 
until the interruption criterion: the phase of the worker bees, 
the phase of opportunistic bees and the phase of the scout bees. 
Initially it is determined a food source (xi) for each working 
bee, usually randomly or partially randomly with a heuristic 
component. At the phase of working bees, each one will 
explore a solution in the neighbourhood (vi) of its food supply, 
and if it yields a superior performance than the current food 
source, the new one should replace that food source. Next 
occurs the phase of opportunistic bees, which wait for the 
performance of each food source to determine which food 
source they will explore. This means that the opportunistic bees 
wait in the colony for the information provided by the worker 
bees and probabilistically selects a food source. Once it chose a 
food source, the opportunist bee will explore a solution in its 
neighbourhood and if a solutions with a better performance 
than the current source of food, then it replaces it. The phase of 
scout bees, occurs once a food source has been abandoned. A 
food source is abandoned once l iterations did occur without 
improving the performance. Karaboga & Gorkemli in [15] 
present values that indicate the number of iterations without 
improvement that should occur before a food source can be 

abandoned, knowing that the higher l conduct to a more 
intensive search while the lower l conduct to a search with 
higher diversity. Once a food source is abandoned, the working 
bee will become a scout bee and move to a new food source. 

III. NEIGHBOURHOOD STRUCTURES 
One parameter common to all meta-heuristics, and even 

other optimization techniques, is the neighborhood structure. 
NS manipulate solutions to turn one solution into one another 
in one basic movement. In SA, the NS determines how a 
solution is turned into another, in each iteration, while in 
DABC, the NS determines how worker and outlooker bees 
move around their food source. Mechanisms that manipulate 
several solutions, as the crossover mechanism in the Genetic 
Algorithms, are also NS that cross two parental solutions into a 
child solution. Mutation operators that manipulate, some or all, 
of the created solutions, can be understood as part of the NS to 
introduce diversity to the optimization procedure. There are 
dozens of simple NS that are adequately broad-scoped to be 
applied in a vast number of problems, other more advanced NS 
are often developed to be used in a specific problem.  

In the computational study, four NS will be reviewed. NS1, 
2-swap or 2-Exchange, is a notorious neighbourhood structure 
for scheduling problems, it selectes two random operations and 
swaps their positions [16]. For example a execution sequence  
of [1,2,3,4,5,6] where the 2nd and 4th operations were randomly 
selected would become [1,4,3,2,5,6] as demostrated in figure 3. 
Since TSP is a sequence problem, the NS1 can also be used. 
NS2, or 2-opt, is a more tradional choice for TSP problems, it 
selects two paths at random, disconnects and reconnects them 
in another manner [6]. For example the tour [1,2,3,4,5,6], 
where the path [1,2] and [4,5] were selected woud become 
[1,4,3,2,5,6], as demostrated in figure 3. NS3 and NS4 combine 
NS1 and NS2 into a more ample and diverse NS. NS3 uses 
NS2 followed by NS1, or does a 2-opt movement followed by 
2-swap, NS4 uses NS2 twice, or uses 2-opt twice.  

Figure 1.  NS1 and NS2 

Studies about the performance of NS have examined how the 
NS influences the behavior of local-search techniques. In. [17], 
Ahuja et al presents an overview of well-known NS for the 
Euclidian-TSP problem that demonstrate the need to balance the 
size of the NS and the available time. In meta-heuristics, the 
performance of NS has been the topic of much research, with 
several NS proposed and studied for the best-known problems, 
however this seems to infer that the NS is more important than 
the other parameters. Since meta-heuristics are bestowed with 



 

mechanisms to move from the local-optimums, the NS should be 
presented as another parameter, which interacts with the other 
parameters to determine the overall balance between the 
intensity/diversity of the meta-heuristic search procedure. 

IV. RESULTS ANALYSIS 
SA and DABC, with the neighborhood structures (NS) 

previously defined, were implemented in c in Microsoft Visual 
Studio 2012. The computational tests were performed on a 
MacBook Pro with a 3GHz Intel® Core i7 processor, 16GB of 
1600MHz RAM and Windows 10 64-bit.  

Both meta-heuristics were tested with all the implemented 
NS in 5 academic benchmark instances of the Symmetric 
Euclidian TSP [6], KroA100, KroB100, KroC100, KroD100 
and KroE100, with 100 nodes each, which correspond to 
9.33262Ε157 possible solutions. All the problems are available 
in the TSPLIB, which also presents the optimal solutions for 
each problem, for KroA100 is 21282, for KroB100 is 22141, 
for KroC100 is 20749, for KroD100 is 21294 and for KroE100 
is 22068, which allows a better comparison of the results of 
both meta-heuristics with all the NS across the 5 instances, 
since solutions can be normalized around the optimal solution 
in each instance of the problem. 
A. Parameterization 

Meta-heuristics parameterization has concentrated the 
attention of researchers, as an appropriate definition of the 
parameters can improve the technique performance in a 
specific application. However the parameterization can be time 
intensive, often harder than the implementation of the meta-
heuristics [18]. Hunter et al. [19] presents a formal definition of 
the parameterization, as: “Given a parameterised target 
algorithm A, a set of problem instances I and a performance 
metric c, the goal is to find parameter settings of A that 
optimize c in I”.  

In this paper the relation between the NS and the rest of the 
parameters will be studied, instead of the overall performance 
of the meta-heuristics. Moreover each meta-heuristics will be 
tested with parameters that find solutions in less that 1 and 10 
seconds, to examine how the performance of each NS varies 
with the increase of the computational time, to examine the 
evolution of the solutions. Since all the defined NS have 
distinctive levels of intensity/diversity, it is expected that the 
evolution of the solutions will depend on the characteristics of 
each of the NS. 

In SA the parameterization process is simpler than in other 
meta-Heuristics, since with enough time SA performs well, 
even without a detailed parameterization procedure [20, 21]. 
However, with limited computational time the parameters need 
to be precisely determined, in order to conduct an efficient 
search of the solution space. SA parameters include the Initial 
Temperature, the Cooling Ratio, the Epoch Length, the 
Neighborhood Structure (NS) and the Stoppage Condition. 
Park & Kim in [20] examined the impact of each parameter in 
SA and presented some parameterization rules: the initial 
temperature (Ti) should accept almost all movements, which 
means the initial acceptance probability (Pi) should be near 1; 
the cooling ratio (α) should result in a slow decrease of the 
temperature, which means that the cooling ration with a 
proportional cooling function should be between [0.80;0.90]; 
finally, the epoch length (L) should be related to the instance 

size, which means that it should be close to the dimension of 
the problem or the number of neighborhood solutions.  

Since this paper will study the performance of each NS 
bellow 1 and 10 seconds of computational time, the Stoppage 
Condition will be the number of iterations, while the NS will 
be the one presented in the previous point. In table I are the rest 
of the parameters for both 1 and 10 seconds. It is important to 
notice that the overall performance of SA is not the main focus 
of this paper; instead it will examine how the performance of 
each NS varies, under different time limitations. It is expected 
that when the computational time increases, the NS that 
provides more diversity will result in a better performance. 

In DABC the parameterization is more complex than SA, as 
the parameters have a tremendous impact in the performance of 
DABC, more pronounced than in SA, with less parameters. 
DABC parameters include the Colony Size, the Limit, the 
Neighborhood Structure (NS) and the Stoppage Condition. 
Akay & Karaboga [22] examined the impact of each parameter 
in ABC and presented some parameterization rules: the colony 
size (L) does not need an increase of the population sizes to 
solve large optimization problems since this parameter has an 
enormous impact in the computational time; the limit (l) is 
related to the colony size, larger colonies can have smaller 
limits, since the lack of diversity from smaller limits are 
balanced by the number of individuals in the population. In 
[15] the authors presented some rules to determine the limit, 
based on the number of bees and the dimension of the problem. 
Other parameters considered in some implementations of ABC 
and DABC, some authors have used a fixed number of scout 
bees to increase the diversity of the Meta-Heuristic.  

Like in SA, the stop criterion will be the number of 
iterations, since the purpose is to examine the performance of 
each NS bellow 1 and 10 seconds of computational time. 
DABC requires more computational time per iteration than SA, 
so there will be a difference in the number of iterations for SA 
and DABC. In table I are the rest of the parameters for both 1 
and 10 seconds. Once more, the focus on this paper is not the 
overall performance of DABC; it will examine the performance 
of each NS under different time limitations and compare how 
the performance of each Meta-Heuristic is affected.  

TABLE I.  PARAMETERS OF SA AND DABC 

 Parameter 1s 10s 

SA
 

N. of Iterations 200000 2000000 

Initial Temperature (Ti) 2000 20000 

Cooling Ratio (α) 0.95 0.95 

Epoch Length (L) 500 500 

D
A

B
C

 N. of Iterations 10000 100000 

Colony Size (L) 20 20 

Limit (l) 1000 10000 
 

SA and DABC parameters were determined so that the 
procedure would conclude in less than 1 second, and then 
adapted to conclude in less than 10 seconds, with an increased 
of the number of iterations and the initial temperature in SA 
and the limit in DABC. Some parameters were used for both 1 
and 10 seconds and did not impact the run-time of either Meta-
Heuristic. 



 

B. Computational Results 
Both meta-heuristics were run five times for each problem 

and achieved computational results close to the optimum. In 
figure 4 the top row represents the computational result of SA, 
and the bottom row represents the computational results of 
DABC, for 1 and 10 seconds, with each neighborhood structure 
results represented in a different color. 

In SA with 1 second, NS2 found the best solutions (21459, 
22552, 20872, 21508, 22122), close to the optimal solutions, 
represented in blue. NS4 found the second best solutions 
(24070, 24991, 24140, 24321, 24794) and NS3 (25038, 25730, 
25526, 24587, 25662) the third best. NS3 and NS4 solutions 
are similar, with a small lead in the performance of NS4. NS1 
found the worst solutions (25527, 27718, 26510, 26357, 
29442) and also appeared to have more variability across the 
problems, for example, in KroA and KroE. In SA with 10 
seconds, NS2 found the best solutions (21353, 22284, 20812, 
21398, 22216). NS4 found the second best solutions, in KroB, 
KroC, KroD and KroE, (21601, 22535, 20905, 21700, 22717), 
NS3 the third best solutions in all problems but KroA (21357, 
22888, 21007, 22128, 23078) and NS1 the worst solutions 
(24031, 24566, 22888, 22814, 24311) in all problems. 

All the NS performed better with the 10 seconds limit and, 
other than NS2 that already found near optimal solutions with 
the 1 second limit, all NS appeared to improve identically. NS1 
and NS2 intense searches did not appear to be less competitive 
than either NS3 or NS4, with their more diverse searches, even 
with the increase of the available computational time.  

In DABC with 1 second, NS2 found the best solutions, 
(22225, 23650, 21981, 22552, 23161), but unlike SA the 
difference to the other NS is more pronounced. NS4 found the 
second best solution (31739, 32341, 31690, 32302, 31868), 
followed by NS3 (34693, 35482, 34406, 35290, 36253) and 
NS1 (36383, 35157, 37416, 36775, 36202). In DABC with 10 
seconds, NS2 found the best solutions (21504, 22544, 21089, 
21938, 22654) and NS4 found the second (22586, 24332, 
22335, 22712, 23772), improving the solutions until they were 
almost optimal. NS3 found the third best solutions (23989, 
24814, 23624, 23793, 24834) and NS1 found the worst 
solutions (31445, 32701, 33473, 32953, 34060), but this time 
the difference in performance between NS1 and the other NS is 
noticeable, this is evident in figure 1 that shows that NS1 
solutions are almost 50% worse than the other NS. 

Once more, all the NS improved their performance in the 10 
seconds limit, nevertheless, in opposition to the SA, there 
appears to be a difference between the improvement of the NS1 
and NS2 more intense searches and the NS3 or NS4 more 
diverse searches. NS3 and NS4 appeared to improve much 
more that NS2 and specially NS1, which barely improved and 
had the worst result from the computational test. 

Overall SA performed better than the DABC, which is much 
more noticeable in the 1 second experiment. In the 10 seconds 
experiment the performance of both meta-heuristics improved, 
but there appears to be a difference in improvement of NS1 and 
NS2, and NS3 and NS4 in DABC, where NS1 and NS2 did not 
improve as the NS with more diverse searches.   

Figure 2.  Results of SA and DABC 



 

C. Statistical Results 
In the computational trials, there appears to be a 

difference in the evolution in the NS performance, 
however to examine this difference in more detail the 
computational results need to be normalized to compare 
the results across all instances. Since the optimal solutions 
KroA, KroB, KroC, KroD and KroE, are available in 
TSPLIB, this document will use mean percent devotion 
from the optimal solution, which is the best know metric 
to compare different meta-heuristics [23]. Once the results 
are normalized, the improvement of each of the NS 
performance with the available time will be examined. 

SA normalized results are presented in figure 3. In 
KroA, the deviations for 1 second are 19.946%, 0.832%, 
17.649% and 13.100% for NS1, NS2, NS3 and NS4, for 
10 seconds the deviations are 12.917%, 0.334%, 0.352% 
and 1.499%. In KroB, the deviations for 1 second are 
25.189%, 1.856%, 16,210% and 12.872%, for 10 seconds 
the deviations are 10.953%, 0.646%, 3.374% and 1.780%. 
In KroC, the deviations for 1 second are 27.765%, 
0.593%, 23.023% and 16.343%, for 10 the deviations are 
10.309%, 0.304%, 1.243% and 0.752%. In KroD, the 
deviations for 1 second are 23.777%, 1.005%, 15.464% 
and 14.215%, for 10 the deviations are 7.138%, 0.488%, 
3.917% and 1.907%. In KroE, the deviations for 1 second 
are 33.415%, 0.245%, 16.286% and 12.353%, and for 10 
seconds 10.164%, 0.671%, 4.577% and 2.941%.  

Figure 3.  Results from SA with 1 and 10 Seconds 

DABC results are presented in figure 6. In KroA, the 
deviations for 1 second are 70.957%, 4.431%, 63.016% 
and 49.135%, for 10 seconds the deviations are 47.754%, 
1.043%, 12.720% and 6.127%. In KroB, the deviations for 
1 second are 58,787%, 6.815%, 60.255% and 46.068%, 
for 10 seconds the deviations are 47.694%, 1.820%, 
12.073% and 9.896%. In KroC, the deviations for 1 
second are 80.327%, 5.908%, 65.820% and 52.730%, for 
10 the deviations are 61.323%, 1.639%, 13.856% and 
7.644%. In KroD, the deviations for 1 second are 
72.701%, 5.908%, 65.727% and 51.695%, for 10 the 
deviations are 54.753%, 3.024%, 11.736% and 6.659%. In 
KroE, the deviations for 1 second are 64.047%, 4.953%, 
64.279% and 44.408%, for 10 seconds the deviations 
improve to 54.341%, 2.655%, 12.534% and 7.722%. 

 
  

Figure 4.  Results from DABC with 1 and 10 Seconds 

Overall, the improvement of NS1 and NS2 appeared 
less pronounced than the improvements of NS3 and NS4. 
In SA the difference in the improvement of NS1 and NS2, 
and NS3 and NS4 is not as prominent as in DABC. In SA, 
NS1 and NS2 had a mean improvement of 8.069%, and 
NS3 and NS4 an improvement of 13.517%, while in 
DABC, the NS1 and NS2 improved 9.881% and NS3 and 
NS4 improved 46.216%. However, to compare the 
differences between the mean in improvement of NS1/2 
and NS3/4 in SA and DABC, require the Wilcoxon Mann-
Whitney test, with the hypothesis: 

 H଴:	ߟ	୒ୗଵ/ଶ ൌ  ୒ୗଷ/ସ	ߟ
 Hଵ:	ߟ	୒ୗଵ/ଶ ്  ୒ୗଷ/ସ	ߟ

The Wilcoxon test results, in table II, demonstrate that 
there are statistical differences between the mean 
improvement of NS1/2 and NS3/4 in DABC (0.000) but 
not in SA (0.239). 

TABLE II.  WILCOXON  MANN-WHITNEY TEST  

Parameter SA DABC 

Mann-Whitney U 34.000 0.000 

Wilcoxon W 89.000 55.000 

Z -1.210 -3.780 

Asymp. Sig. (2-tailed) 0.226 0.000 

Exact Sig. [2*(1-tailed Sig.)] 0.247 0.000 

Exact Sig. (2-tailed) 0.239 0.000 

Exact Sig. (1-tailed) 0.120 0.000 
 

SA less impactful parameterization procedure can 
explain the lack of variance in the performance of NS1/2 
and NS3/4 with the increase of the available time. Park & 
Kim in [25] state that SA do not require a detailed 
parameterization procedure in order to perform well, if 
there is enough computational time, which explain the SA 
results in the 10s tests. In opposition, in DABC the results 
demonstrate that NS3/4 improved more than NS1/NS2 
with the increase of the available time, since DABC 
requires a detail definition of the meta-heuristics 
parameters. 



 

V. CONCLUSIONS 
In this paper we demonstrated that the behavior of NS 

varies in accordance with the rest of the parameters of the 
meta-heuristics. For that purpose, four simple NS, with 
distinctive levels of intensity/diversity, were studied, NS1 
or 2-swap, which swaps the position of two destinations of 
the tour, NS2 or 2-opt, which disconnects and reconnects 
two paths between destinations, and NS3 and NS4 mix 
NS1 and NS2. In the computational study, it was 
demonstrated that the performance of each NS depends on 
the rest of the parameters in DABC, in the case, the 
duration of the procedure. In all the conducted exams, the 
improvement of NS1/2 appeared less pronounced than the 
improvements of NS3/4. The Wilcoxon Mann-Whitney 
test for DABC showed that NS1/2 improved the 
performance of the meta-heuristic less than NS3/4 (0.239), 
which cannot be demonstrated in the SA test (0.000). 

The computational results appear to demonstrate that 
NS should be treated as another parameter, which 
contribute to the overall balance between the 
intensity/diversity of the meta-heuristics as much as the 
other parameters. Studies that demonstrate the benefits of 
one NS, should take into account how that NS interacts 
with the other parameters. One important consideration is 
how the NS would perform under other time constraints. 
SA does not require an exhaustive parameterization 
procedure, since the performance of the meta-heuristics 
scales with the available computational time, while DABC 
need an attentive determination of the parameters to 
perform well. That distinction, between the two meta-
heuristics, can be examined in the computational study, 
where SA result to scale uniformly with the computational 
time, independently of the values of the parameters, which 
does not appear to happen in DABC. 

Further work will focus on additional computational 
tests with other NS and more time intervals, which should 
allow a more in-depth revision of the evolution of the 
behavior of both meta-heuristics. Other, more advanced 
NS, can also be used, to examine their behavior with 
different time constrains. 
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