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MAYER-VIETORIS SEQUENCE IN COHOMOLOGY OF

LIE ALGEBROIDS ON SIMPLICIAL COMPLEXES

Jose R. Oliveira

Abstract. It is shown that the Mayer-Vietoris sequence holds for the

cohomology of complexes of Lie algebroids which are defined on simplicial
complexes and satisfy the compatibility condition concerning restrictions

to the faces of each simplex. The Mayer-Vietoris sequence will be obtained
as a consequence of the extension lemma for piecewise smooth forms

defined on complexes of Lie algebroids.

1. Introduction

D. Sullivan in [12] and H. Whitney in [13] considered several cell-like con-
structions of cochain complexes which induce isomorphisms in cohomology with
classical cohomologies of the underlying polytope. Mishchenko and Oliveira in
[8] have extended Sullivan-Whitney constructions to transitive Lie algebroids
defined over triangulated manifolds. The main construction considered by
Mishchenko and Oliveira in [8] is the one in which a transitive Lie algebroid
on a triangulated smooth manifold is fixed and one considers the family of
Lie algebroids obtained by restriction of the Lie algebroid to each simplex of
the base. The notion of piecewise smooth form is defined in a similar way to
Whitney forms on a cell space. In [8], it is proved that the cohomology of this
construction is isomorphic to the cohomology of the Lie algebroid. The Mayer-
Vietoris sequence corresponding to two open subsets of the manifold obtained
by the union of open stars is used in the course of the proof of that result.

The work synthesized in the present paper is the extension of the Mayer-
Vietoris property for the cohomology of families of transitive Lie algebroids
defined over simplicial complexes. For this purpose, we follow the main con-
struction presented by Mishchenko and Oliveira in their paper [8]. Based in
that construction, we are going to consider, in this paper, families of transi-
tive Lie algebroids defined over simplicial complexes, satisfying a compatibility
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property concerning restrictions of the Lie algebroids to the faces of each sim-
plex. When this structure is given, we will define piecewise smooth, following
Mishchenko-Oliveira’s work [8]. Furthermore, a differential can be defined,
yielding a commutative differential graded algebra. Its cohomology is, by def-
inition, the piecewise smooth cohomology of the family of Lie algebroids con-
sidered. The aim of the present paper is to state and prove the Mayer-Vietoris
sequence for the cohomology corresponding to this construction. We will show
that the extension lemma for piecewise smooth forms on such families of tran-
sitive Lie algebroids is an essential key on the proof of short exact sequence
which generates the Mayer-Vietoris sequence in cohomology.

Throughout the paper, all manifolds considered are smooth, finite-dimen-
sional and possibly with boundaries of different indices.

Acknowledgments. The author wishes to thank to Aleksandr Mishchenko,
Jesus Alvarez, Nicolae Teleman and James Stasheff for their strong dynamism
to discuss several topics concerning cohomology of cell spaces and Lie algebroids
and also to the referee for many helpful comments and suggestions.

2. Complexes of Lie algebroids and differential forms

We deal with transitive Lie algebroids defined over the simplices of a sim-
plicial complex. We briefly discus a class of spaces for which piecewise smooth
cohomology is defined, precisely the class of all complexes of Lie algebroids.
In what follows, all simplicial complexes considered are geometric and finite.
Simplex means always closed simplex and each simplex can be represented as
a convex body generated by its vertices. We shall denote the boundary of the
simplex ∆ by bd ∆. We shall write s ≺ ∆ to indicate that s is a face of the
simplex ∆. The notation ϕ : s ↪→ ∆, in which ϕ is the inclusion, will also be
used when s is a face of ∆. Various definitions and properties stated through
the entire paper can be found, on level of cell spaces, in [1], [2], [4], [12] and
[13]. We begin by reviewing basic definitions and constructions concerning Lie
algebroids. An extensive discussion on these issues can be found in the book [7]
by Mackenzie. The papers [8], [9] and [10] contain a summary of those issues.

Let M be a smooth manifold, possibly with boundaries of different indices,
TM the tangent bundle to M and Γ(TM) the Lie algebra of the vector fields on
M . We recall that a Lie algebroid on M ([7], [8]) is a vector bundle π : A −→M
on M equipped with a vector bundle morphism γ : A −→ TM , called anchor of
A, and a structure of real Lie algebra on the vector space Γ(A) of the sections
of A such that the map γΓ : Γ(A) −→ Γ(TM), induced by γ, is a Lie algebra
homomorphism and the action of the algebra C∞(M) on Γ(A) satisfies the
natural condition:

[ξ, fη] = f [ξ, η] + (γΓ(ξ) · f)η

for each ξ, η ∈ Γ(A) and f ∈ C∞(M). The Lie algebroid A is called transitive
if the anchor γ is surjective. We recall that Lie algebroids are the infinitesimal
objects of Lie groupoids (for the definition of Lie groupoid, see Mackenzie [7],
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Definition 1.1.1 and Definition 1.1.3). Lie groupoids and Lie algebroids enjoy
some of the properties of Lie groups and Lie algebras. We notice that not
every Lie algebroid is integrable to a Lie groupoid. Theorem 4.1 of the paper
[3] shows necessary and sufficient conditions so that a Lie algebroid is integrable
to a Lie groupoid.

Let M be a smooth manifold and suppose that A is a transitive Lie algebroid
on M . Let ϕ : N ↪→M be a submanifold, possibly with boundaries of different
indices. We recall that the Lie algebroid restriction of A to the submanifold N ,
denoted by A!!

N , is the Lie algebroid ϕ!!A constructed as inverse image of A by
the mapping ϕ (details of image inverse of Lie algebroids can be seen in Section
4.2 of [7] or in the second section of [8]). The Lie algebroid A!!

N is transitive.

Definition. Let K be a simplicial complex. A complex of Lie algebroids on
K is a family A = {A∆}∆∈K such that, for each ∆ ∈ K, A∆ is a transitive
Lie algebroid on ∆ and A∆′ = (A∆)!!

∆′ for each face ∆′ of ∆, that is, the Lie
algebroid restriction of A∆ to ∆′ is the Lie algebroid A∆′ .

Alternatively, a complex of Lie algebroids on K means a family of transitive
Lie algebroids defined on the simplices of K such that the structures of Lie
algebroids induced on each intersection of two simplices coincide.

Definition. Let K be a simplicial complex and A = {A∆}∆∈K a complex of
Lie algebroids on K. Let L be a simplicial subcomplex of K. We can consider
a new complex of Lie algebroids, defined on L and denoted by AL, given by
restriction of A to the simplices of L, that is, AL = {A∆}∆∈L. The complex

AL is called the restriction of the complex of Lie algebroids A to the simplicial
subcomplex L.

We give now some examples of complexes of Lie algebroids.

Example 2.1 (Tangent complex). Let K be a simplicial complex. For each
simplex ∆ ∈ K, consider the tangent Lie algebroid T∆ defined over ∆. If ∆′ is a
face of ∆, then (T∆)!!

∆′ = T∆′ (see Proposition 2.6 of [8]) and consequently we
obtain a complex of Lie algebroids {T∆}∆∈K , which is called the corresponding
tangent complex on K.

Example 2.2 (Trivial complex). Let K be a simplicial complex and g a real
finite dimensional Lie algebra. For each simplex ∆ ∈ K consider the transitive
Lie algebroid T∆⊕ (∆× g). If ∆′ is a face of ∆, then

(T∆⊕ (∆× g))!!
∆′ = T∆′ ⊕ (∆′ × g)

(see Proposition 2.7 of [8]). We conclude that the family {T∆⊕ (∆× g)}∆∈K
is a complex of Lie algebroids. This complex is called the trivial complex on
the simplicial complex K.

Example 2.3 (Complex corresponding to a triangulated manifold). Let M be
a smooth manifold, smoothly triangulated by a simplicial complex K, and A a
transitive Lie algebroid on M . For each simplex ∆ of K, we can consider the
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Lie algebroid restriction A!!
∆ defined on the submanifold ∆ of M . If ∆′ is a

face of ∆, then (A!!
∆)!!

∆′ = A!!
∆′ (see Proposition 2.6 of [8]) and so we obtain a

complex of Lie algebroids on K, which is called the corresponding complex of
A on the simplicial complex K and denoted by {A!!

∆}∆∈K .

Let A = {A∆}∆∈K be a complex of Lie algebroids on a simplicial complex
K. For each simplex ∆ of K, the cochain algebra of all smooth forms on A∆

is denoted by Ω∗(A∆; ∆). Let ∆ and ∆′ be two simplices of K, with ∆′ face
of ∆, and ϕ∆,∆′ : ∆′ ↪→ ∆ the inclusion mapping. By definition of complex of
Lie algebroids, we have that (A∆)!!

∆′ = A∆′ . Let

ϕA∆

∆,∆′ : Ω∗(A∆; ∆) −→ Ω∗(A∆′ ; ∆′)

be the homomorphism of cochain algebras generated by the inclusion ϕ∆,∆′

(see Definition 3.2 of [8]). Based on Whitney’s book [13] and Sullivan’s papers
[11] and [12], we give now the definition of piecewise smooth form on a complex
of Lie algebroids.

Definition. Let K be a simplicial complex and A = {A∆}∆∈K a complex
of Lie algebroids on K. A piecewise smooth form of degree p (p ≥ 0) on the
complex of Lie algebroids A is a family ω = (ω∆)∆∈K such that, for each
∆ ∈ K, ω∆ ∈ Ωp(A∆; ∆) is a smooth form of degree p on A∆ and, for each ∆,
∆′ ∈ K, with ∆′ face of ∆,

ϕA∆

∆,∆′(ω∆) = ω∆′ .

The simplex ∆′ is an embedded compact submanifold of ∆ and so the Lie
algebroid (A∆)!!

∆′ can be identified to the Lie algebroid Im (ϕ∆,∆′)
!! (Proposi-

tion 2.4 of [8]). Hence, for each x ∈ ∆′, the fibre (A∆′)x is a vector subspace
of the fibre (A∆)x. The second condition of the definition given above can be
stated in the following form: for each x ∈ ∆′ and vectors u1, . . . , up ∈ (A∆′)x

ω∆′(x)(u1, . . . , up) = ω∆(x)(u1, . . . , up).

Thus, a piecewise smooth form is a collection of smooth forms, each one defined
on a transitive Lie algebroid over a simplex of K, which are compatible under
restrictions to faces. The set of all piecewise smooth forms of degree p on the
complex of Lie algebroids A will be denoted by Ωp(A;K). We have then

Ωp(A;K) = {(ω∆)∆∈K : ω∆ ∈ Ωp(A∆), ∆′ ≺ ∆ =⇒ (ω∆)/∆′ = ω∆′}

in which (ω∆)/∆′ denotes a form ϕA∆

∆,∆′(ω∆).
Since restrictions of smooth forms are compatible with sums and products,

various operations on Ωp(A;K) can be defined by the corresponding operations
on each simplex of K. The set Ωp(A;K), equipped with these operations,
becomes a real vector subspace of

∏
∆∈K Ωp(A∆; ∆) for each natural p ≥ 0.

Thus, Ωp(A;K) is a module over the subalgebra of C(|K|;R) made by all
continuous maps f : |K| −→ R that are compatible with restrictions to the
faces of K and with smooth restrictions to the faces of K. When p = 0,
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Ω0(A;K) = C(|K|;R) has a structure of an unitary associative algebra over R.
Moreover, the direct sum

Ω∗(A;K) =
⊕
p≥0

Ωp(A;K)

equipped with the exterior product defined by the corresponding exterior prod-
uct on each algebra Ω∗(A∆; ∆) =

⊕
p≥0 Ωp(A∆; ∆), is a commutative graded

algebra over R.
In order to obtain a complex of cochains, especially important is the ana-

logues of exterior derivative. This operator also is obtained by the correspond-
ing exterior derivative on each simplex. Namely, if A = {A∆}∆∈K is a complex
of Lie algebroids on a simplicial complex K, we can define the mapping

dp : Ωp(A;K) −→ Ωp+1(A;K)

by setting
dp((ω∆)∆∈K) = (dp∆ω∆)∆∈K

for each ω = (ω∆)∆∈K ∈ Ωp(A;K). Such as in the case of smooth forms
on transitive Lie algebroids defined on smooth manifolds (see Kubarski [6]),
the space Ω∗(A;K), with the operations and differentiation above, becomes a
commutative differential graded algebra, which is defined over R.

Definition (Piecewise smooth cohomology). Keeping the same hypotheses and
notations as above, the piecewise smooth cohomology of A is the cohomology
space of the algebra Ω∗∗(A;K) equipped with the structures defined above. Its
cohomology, H(Ω∗(A;K)), will be denoted by H∗(A;K).

3. Mayer-Vietoris sequence

Assume that K0 and K1 are two simplicial subcomplexes of a simplicial
complex K such that K = K0 ∪K1. Let A = {A∆}∆∈K be a complex of Lie
algebroids on K. We can consider the following complexes of Lie algebroids
A0 = {A∆}∆∈K0

, A1 = {A∆}∆∈K1
and A0,1 = {A∆}∆∈K0∩K1

. Our propose
now is to know which relations hold between the cohomology of the complexes
of cochains Ω∗(A;K), Ω∗(A0;K0), Ω∗(A1;K1) and Ω∗(A0,1;K0 ∩ K1). The
answer to this question is the Mayer-Vietoris sequence. We start by defining
now the notion of restriction of piecewise smooth forms on a complex of Lie
algebroids and state some lemmas on extensions of forms. Once this is done,
we establish the result concerned to the Mayer-Vietoris sequence.

Definition. Let K be a simplicial complex and A = {A∆}∆∈K a complex

of Lie algebroids on K. Let L be a simplicial subcomplex of K and AL =
{A∆}∆∈L the complex of Lie algebroids given by restriction of A to L. If
ω = (ω∆)∆∈K ∈ Ωp(A;K) is a piecewise smooth form of degree p, we can
define the restriction of ω to the subcomplex L, denoted by ω/L, to be the
form

ω/L = (ω∆)∆∈L ∈ Ωp(AL;L).
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In the conditions of this definition, the equality

d(ω/L) = (dω)/L

holds.
Our first lemma on extensions of piecewise smooth forms is stated for the

particular case of a complex of Lie algebroids defined on the simplicial complex
made by the canonical simplex and its faces.

Proposition 3.1. Let ∆k denote the canonical k-simplex in R∞ having the
vertices

e0 = (0, 0, . . . , 0, . . . ),

e1 = (1, 0, . . . , 0, . . . ),

. . .

ek = (0, 0, . . . , 1, . . . ),

(ej is the vector with 1 in the jth coordinate and zeros elsewhere). Let A be a
transitive Lie algebroid defined on the simplex ∆k and consider the complexes
of Lie algebroids A∆k = {A!!

α}α∈∆k
and Abd∆k = {A!!

α}α∈bd ∆k
given by restric-

tion of A to the correspondent simplicial complexes ∆k and bd ∆k respectively.
Let ξ ∈ Ωp

(
Abd∆k ; bd ∆k

)
be a piecewise smooth form of degree p defined on

bd ∆k. Then, there is a piecewise smooth form ω ∈ Ωp
(
A∆k ; ∆k

)
of degree p

defined on ∆k such that ω/bd ∆k
= ξ.

Proof. We are going to divide the proof into three parts.
Part 1. This part of the proof follows the proof of the extension Lemma 8.3

presented in [5] and the example (i) and (ii) presented in the seventh section of
Sullivan’s paper [12]. Let α be a face of dimension k− 1 of ∆k, say us, α is the
face spanned by the vertices e0, . . . , ej−1, ej+1, . . . , ek. The face α consists of
all points x ∈ R∞ such that

x = t0e0 + · · ·+ tj−1ej−1 + 0ej + tj+1ej+1 + · · ·+ tkek

with
∑
i ti = 1 and ti ≥ 0. Let ej be the opposite vertex to the face α and U

the complement of this vertex. U is an open subset in ∆k. For each

x = t0e0 + · · ·+ tj−1ej−1 + tjej + tj+1ej+1 + · · ·+ tkek ∈ U

we have that tj 6= 1 and the element t0
1−tj e0 + · · ·+ tj−1

1−tj ej−1 +
tj+1

1−tj ej+1 + · · ·+
tk

1−tj ek belongs to α. So, we may define the map

ϕ : U −→ α

by

ϕ(t0e0 + · · ·+ tj−1ej−1 + tjej + tj+1ej+1 + · · ·+ tkek)

=
t0

1− tj
e0 + · · ·+ tj−1

1− tj
ej−1 +

tj+1

1− tj
ej+1 + · · ·+ tk

1− tj
ek.

Obviously ϕ is a smooth map. Thus, ϕ is a retraction. Since ∆k is contractible,
the Lie algebroid A is a trivial Lie algebroid (see [8, Proposition 3.5]) and then
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we can find a map ψ : AU −→ Aα such that λ = (ψ,ϕ) is a morphism of Lie
algebroids and, for each x ∈ α, ψx : Ax −→ Ax is the identity map. Consider
now a smooth form ω ∈ Ωp(A!!

α;α). Take the form λ∗ω. This form is smooth
and belongs to Ωp(AU ;U). By extension lemmas, the form λ∗ω damps out
smoothly to a smooth form ω̃ ∈ Ωp(A; ∆k). By taking the restriction of the
form ω̃ to each face of the simplex ∆k, we obtain a piecewise smooth form
ω̃ ∈ Ωp(A∆k ; ∆k

)
, which is a piecewise smooth extension of ω.

Part 2. The piecewise smooth form ω̃ obtained in the first part has the
following property: for each face β of α,

ω/β = 0 =⇒ ω̃/β∗ej = 0,

where β ∗ ej is the join of β and the vertex ej . This happens because ω̃ej is
obviously equal to zero and, for each x ∈ β ∗ ej with x 6= ej , ϕ(x) lives in β.

Part 3. Let α0, . . . , αk be the k + 1 faces of dimension k − 1 of ∆k and let

ξ = (ξα)α∈ bd∆k
= (ξα0

, ξα1
, . . . , ξαk

) ∈ Ωp(Abd∆k ; bd ∆k)

be a piecewise smooth form of degree p defined over bd∆k. By the first part,

the smooth form ξα0 ∈ Ωp(A!!
α0

;α0) can be extended to a smooth form ξ̃0

∈ Ωp(A; ∆k) defined on ∆k and the form ξ̃0 defines, by restriction to each face

of ∆k, a piecewise smooth form ξ̂0 ∈ Ωp
(
A∆k ; ∆k

)
defined on ∆k. Consider

the form ξ1 defined by

ξ1 = ξ −
(
ξ̂0/

bd∆k

)
∈ Ωp

(
Abd∆k ; bd ∆k

)
.

The form ξ1 vanishes on each point of α0. Repeating the same process for the
face α1 by using the form ξ1, the smooth form ξ1/α1

∈ Ωp(A!!
α1

;α1) extends to

a smooth form ξ̃1 ∈ Ωp(A; ∆k) defined on ∆k, and then we obtain a piecewise

smooth form ξ̂1 ∈ Ωp
(
A∆k ; ∆k

)
defined on ∆k by restrictions to its faces.

Since the faces α0 and α1 have a common vertex, we have that ξ̂1/α0
= 0 by

the second part above. Let ξ2 = ξ − (ξ̂0 + ξ̂1)/
bd∆k

∈ Ωp
(
Abd∆k ; bd ∆k

)
.

Then, ξ2 is a piecewise smooth form defined on bd∆k, in which the equalities

ξ2/α0
= 0 and ξ2/α1

= ξ1/α1
− ξ̃1/α1

= 0 hold. Hence ξ2/α0∪α1
= 0. Therefore,

we construct inductively a finite sequence of forms ξj ∈ Ωp
(
Abd∆k ; bd ∆k

)
and ξ̂j ∈ Ωpps

(
A∆k ; ∆k

)
, with j = 1, . . . , k + 1, such that

ξj = ξ − (ξ̂0 + ξ̂1 + · · ·+ ξ̂j−1)/
∂∆

and
ξj/α0∪α1∪···∪αj−1

= 0

for each j ∈ {1, . . . , k + 1}. Then, setting

ω = ξ̂0 + ξ̂1 + · · ·+ ξ̂l

we have that ω ∈ Ωp
(
A∆k ; ∆k

)
is a piecewise smooth form defined on ∆k such

that ω/bd∆k
= ξ and so the result is proved. �
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We consider now the extension lemma of piecewise smooth forms on a com-
plex of Lie algebroids defined on a simplicial complex made by any general
simplex and its faces.

Proposition 3.2. Let ∆ be any simplex of dimension k and A a transitive Lie
algebroid on ∆. Consider the complexes of Lie algebroids A∆k = {A!!

α}α∈∆k

and Abd∆k = {A!!
α}α∈bd ∆k

given by restriction of A to the correspondent sim-
plicial complexes ∆k and bd ∆k respectively. Let ξ ∈ Ωp

(
Abd∆k ; bd ∆k

)
be a

piecewise smooth form of degree p defined on bd ∆k. Then, there is a piecewise
smooth form ω ∈ Ωp

(
A∆k ; ∆k

)
of degree p defined on ∆k such that ω/bd ∆k

= ξ.

Proof. There is an affine isomorphism ϕ from the simplex ∆k onto the simplex
∆ which maps the boundary bd ∆k onto the boundary bd ∆. Consider the
transitive Lie algebroid ϕ!!(A) on ∆k. Then, ϕ!!(A) is isomorphic (non strong
isomorphism of Lie algebroids) to the Lie algebroid A. Take the inverse image
of the form ξ, apply the previous proposition, take the direct image and we
have the required extension. �

In the previous two propositions, we began with a piecewise smooth form
defined on whole boundary. However, we can improve slightly last propositions
and establish a result concerning extension of piecewise smooth forms when
the form is defined, not on all (k − 1)-dimensional faces, but just on some
(k−1)-dimensional faces of ∆. We note this improvement on next proposition.

Proposition 3.3. Let ∆ be any simplex of dimension k and A a transitive
Lie algebroid on ∆. Consider the complex of Lie algebroids A∆ = {A!!

α}α∈∆

given by restriction of A to the correspondent simplicial complex ∆. Suppose
that α0, . . . , αk are the k + 1 faces of dimension k − 1 of simplex ∆ and that
we have r smooth forms ξj1 ∈ Ωp(A!!

αj1
;αj1), . . . , ξjr ∈ Ωp(A!!

αjr
;αjr ) with

{j1, . . . , jr} ⊂ {1, . . . , k} such that, for each ji e je with αji ∩ αje 6= ∅, the
forms ξji and ξje agree on the intersection αji ∩αje . Then, there is a piecewise
smooth form ω ∈ Ωpps

(
A∆; ∆

)
such that ω/αji

= ξji for i = 1, . . . , r.

Proof. For each vertex which does not belong to any face αj1 , . . . , αjr , we take
the smooth form zero on this vertex and then we have a family of smooth forms,
each one defined on each vertex of ∆. Now, for each two vertices defining a face
of ∆ of dimension 1 different of any 1-dimensional face of αji , with i = 1, . . . , r,
we apply the previous proposition and we obtain a piecewise smooth form
defined on the skeleton of ∆ of dimension 1. This piecewise smooth form is
an extension of each smooth forms given on the 1-dimensional faces of αji
(i = 1, . . . , r) by restriction of the forms ξjr . We repeat the same argument for
dimension 2. This process will end on dimension k and the form obtained is a
piecewise smooth form defined on the simplex ∆, which is an extension of the
forms ξji (i = 1, . . . , r). �

From last propositions, we easily obtain the next general lemma on exten-
sions of piecewise smooth forms on complexes of Lie algebroids.
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Proposition 3.4. Let K be a simplicial complex and A = {Aα}α∈K a complex
of Lie algebroids on K. Let L be a simplicial subcomplex of K and consider
the subcomplex of Lie algebroids {Aα}α∈L defined on L. Then, any piecewise
smooth form of degree p defined on L can be piecewise smoothly extended to a
piecewise smooth form of degree p defined on the whole K.

Next proposition concerns the short exact sequence which generates the
Mayer-Vietoris sequence in cohomology. For transitive Lie algebroids on smooth
manifolds, the short exact sequence is presented in the third section of [6].

Proposition 3.5. Let K be a simplicial complex and A = {Aα}α∈K a complex
of Lie algebroids on K. Let K0 and K1 be two simplicial subcomplexes of K
such that K = K0 ∪K1 and set L = K0 ∩K1. Consider the complexes of Lie
algebroids A0 = {Aα}α∈K0

, A1 = {Aα}α∈K1
and A0,1 = {Aα}α∈L given by

restriction of A to the simplicial subcomplexes K0, K1 and L. Then, it holds
an exact short sequence of cochain complexes

{0} −→ Ω∗(A;K)
λ∗−→Ω∗(A0;K0)⊕ Ω∗(A1;K1)

µ∗−→Ω∗(A0,1;L) −→ {0}
in which the linear maps

λp : Ω∗(A;K) −→ Ω∗(A0;K0)⊕ Ω∗(A1;K1),

µp : Ω∗(A0;K0)⊕ Ω∗(A1;K1) −→ Ω∗(A0,1;L)

are defined by λp(ω) = (ω/K0
, ω/K1

) and µp(ξ, η) = η/L − ξ/L.

Proof. As in the case of smooth forms on a transitive Lie algebroid over a
smooth manifold, the exterior derivative commutes with the restrictions to a
simplicial subcomplexes and, since dp(ξ, η) = (dp(ξ), dp(η)), one deduces im-
mediately that λ∗ and µ∗ are effectively cochain complex morphisms. Obvi-
ously, the linear map λp is injective. Since, for each piecewise smooth form
ω ∈ Ωp(A;K), the forms ω/K0

and ω/K1
have the same restriction ωL to L, we

conclude that µp ◦ λp = 0, and hence the image of the linear map λp is con-
tained in the kernel of the linear map µp. Reciprocally, if µp(ξ, η) = 0, we have
ξα = ηα, for each α ∈ L, and this equality allows to define a piecewise smooth
form ω ∈ Ωp(A;K) by the condition ωα = ξα, for each α ∈ K0, and ωα = ηα,
for each α ∈ K1. We have then λp(ω) = µp(ξ, η). We want now to prove that
µp is surjective. Let γ ∈ Ωp(A0,1;L) be a piecewise smooth form and consider
the piecewise smooth form − 1

2γ ∈ Ωp(A0,1;L). By the extension lemma, we

can consider a piecewise smooth form α ∈ Ωp(A0;K0) such that α/L = − 1
2γ.

Analogously, we can consider a piecewise smooth form β ∈ Ωp(A1;K1) such
that β/L = 1

2γ. We have then that µp(α, β) = γ. �

By applying the zig-zag lemma to the sequence above, we obtain the long
exact sequence in cohomology

· · · −−−−→ Hp−1(A0,1;L)
∂p−1

−−−−→ Hp(A;K)
Hp(λ∗)−−−−−→ Hp(A0;K0)⊕Hp(A1;K1)

Hp(A0;K0)⊕Hp(A1;K1)
Hp(µ∗)−−−−−→ Hp(A0,1;L)

∂p

−−−−→ Hp+1(A;K) −−−−→ · · ·
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which is the Mayer-Vietoris sequence for piecewise smooth cohomology of com-
plexes of Lie algebroids.
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