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Abstract:

• Clustering of exceedances of a critical level is a phenomenon that concerns risk man-
agers in many areas. The extremal index θ measures the propensity of the large
observations in a dataset to cluster. Thus the estimation of θ is an important issue
recurrently addressed in literature. Besides a declustering parameter, inference also
depends on a threshold. This choice is actually a crucial topic and is transversal to
many other extremal parameters. In this paper we analyze a threshold-free heuris-
tic procedure. We also make comparisons with other heuristic procedures already
developed within the extremal index estimation. Our study is based on simulation.
We illustrate with an application to environmental data.
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1. INTRODUCTION

In many environmental applications, extreme events are the main aspects of

practical concern. Financial time series are increasingly being analyzed to assess

the risk from extreme events. A description of extreme events is usually based

on observations that exceed a high threshold. Serial dependence leads to large

values occurring close in time and thus forming clusters. Clustering of extremes

does not take place in an independent and identically distributed (i.i.d.) setting.

Consider {Xn}n≥1 a stationary sequence with common distribution func-

tion (df) F and {Yn}n≥1 an i.i.d. sequence with the same parent df F . We say

{Xn}n≥1 has extremal index θ (0 < θ ≤ 1) if, for all τ > 0, there is a sequence of

levels un ≡ un(τ), n ≥ 1, such that

P
(
max(Y1, ..., Yn) ≤ un

)
= Fn(un) −→

n→∞
e−τ

and P
(
max(X1, ..., Xn) ≤ un

)
−→
n→∞

e−θτ(1.1)

(Leadbetter et al. [20] 1983). The sequence un ≡ un(τ), n≥1, satisfying Fn(un)→
exp(−τ) or, equivalently, n(1−F (un)) → τ , as n → ∞, is usually denoted as nor-

malized levels.

There are several characterizations of the extremal index bringing out differ-

ent estimators. Many of these estimators can be stated as functions of a number k

of upper order statistics. Analogous to the semiparametric estimation of various

tail measures (e.g., the tail index and tail dependence coefficients in a multivari-

ate framework), there is a proverbial tradeoff between bias and variance. The

first increases with k (large bias for a large amount of top order statistics used in

estimates) and the second increases as k gets smaller (large variability as fewer

top order statistics are considered). A typical path is plotted in Figure 1. After

the great variability in the beginning, there is a stable sample path, as function

of k, around the true value and then the bias starts to stand out and dominate.

Thus k needs to be chosen from the stability zone that mediates the variance

domain and the bias domain. There are several methods developed in literature

towards this choice of k concerning the estimation of tail measures. A survey

within the tail index estimation can be seen in Beirlant et al. ([2] 2004). More

recently, a general procedure was introduced in Gomes et al. ([14] 2013) for the

tail index estimation, which was latter adopted in Neves et al. ([23] 2015) to

estimate the extremal index. This consists of a pure heuristic procedure to find

the “plateau” region of the estimates path from which we may infer the true value

of the parameter. The methodology in Frahm et al. ([12] 2005), developed within

the estimation of the tail dependence coefficient of random pairs, also seeks a

stable region but after a smoothing of the sample path; see Frahm et al. ([12]
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2005) and Ferreira and Silva ([9] 2014). In Ferreira ([5] 2014) and Ferreira ([6]

2015a) it was also adapted to the tail index estimation.
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Figure 1: Runs estimates sample path of a moving maximum process,
Xi = max(a0Zi, a1Zi−1, a2Zi−2), i ≥ 1, where {Zi}i≥−1 is an
i.i.d. unit Fréchet sequence, a0 = 1/3, a1 = 1/6 and a2 = 1/2,
with run length r = 2. The horizontal line corresponds to the
true value.

Here we are going to apply the methodology of Frahm et al. ([12] 2005) to

several estimators of the extremal index. For comparison, we also analyze the

performance of the procedure in Neves et al. ([23] 2015) applied to those esti-

mators. As these are threshold-free methods, we also compare with the blocks

and sliding estimation threshold-free procedure presented in Robert et al. ([25]

2009). The description of the methods is addressed in Section 2. The comparison

of the procedures is assessed through simulation in Section 3 and an illustration

with real data is stated in Section 4. A small discussion is presented in Section 5.

2. ESTIMATION METHODS

The extremal index can be interpreted in different ways, leading to different

estimators. In O’Brien ([24] 1974) it is proved that

(2.1) P
(
max(X2, ..., Xrn ≤ un|X1 > un)

)
−→
n→∞

θ ,

where rn is such that rn → ∞ and rn = o(n). Under a mild mixing condition,

Hsing et al. ([17], 1988) stated that

(2.2) E
[∑rn

i=1 1{Xj>un}|
∑rn

i=1 1{Xj>un} ≥ 1
]
→ θ−1,
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with 1(·) denoting the indicator function, i.e., the limiting mean number of ex-

ceedances of un in an interval of length rn corresponds to the arithmetic inverse

of the extremal index, given that there are exceedances.

Also under a slight mixing condition, Ferro and Segers ([11] 2003) show

that

(2.3) P
(
F (un)T (un) > t

)
−→
n→∞

θe−θt , t > 0,

where T (un) = min{n ≥ 1 : Xn+1 > un|X1 > un}, i.e., the process of inter-

exceedance times normalized by exceedances of un follows a mixture of a point

mass and an exponential distribution Exp(θ−1).

Relations (2.1)–(2.3) yield the most common approaches to estimate θ,

respectively, the runs, the blocks and the intervals method.

The blocks and the runs estimators are based on their own clusters identifi-

cation procedure and both correspond to the ratio between the number of clusters

and the number of exceedances of a high threshold un (Hsing [15] 1991; Weissman

and Novak [29] 1998; Nandagopalan [22] 1990; Hsing [16] 1993). The intervals

estimator is based on an inter-exceedance times method (Ferro and Segers [11]

2003).

More precisely, the runs estimator is expressed as

(2.4) θ̂R = (Nn(un))−1
n−r∑

i=1

1{Xi>un} 1{Xi+1≤un} ··· 1{Xi+r≤un},

where Nn(un) is the number of exceedances of un. Independent clusters are

identified as runs of observations above un, separated by rn consecutive values

under un.

By considering bn = [n/rn] blocks of length rn ([·] means the integer part),

the simple blocks estimator corresponds to

(2.5) θ̂B =
Cn(un)

Nn(un)

where Cn(u) is the number of clusters, i.e, in this context it corresponds to the

number of blocks in which at least one exceedance of un occurs. The variant

(2.6) θ̂BL =
log(1 − Cn(un)/kn)

rn log(1 − Nn(un)/n)

has been proposed in Smith and Weissman ([27] 1994) as having a better asymp-

totic behavior of second order.
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After some considerations and based on the result in (2.3), the intervals

estimator is stated as

(2.7) θ̂I =





1 ∧ 2(
PN−1

i=1 Ti)
2

(N−1)
PN−1

i=1 T 2
i

, if max{Ti : 1 ≤ i ≤ N − 1} ≤ 2

1 ∧ 2(
PN−1

i=1 (Ti−1))
2

(N−1)
PN−1

i=1 (Ti−1)(Ti−2)
, if max{Ti : 1 ≤ i ≤ N − 1} > 2,

where Ti denotes the i-th inter-exceedance time, i = 1, ..., N −1 and N ≡ Nn(un).

The analysis of convenient local dependence conditions may eliminate the

need for a cluster identification scheme, such as the local dependence condition

D(m)(un) of Chernick et al. ([4] 1991), with m some positive integer. Consider

notation Mi,j = max{Xi+1, ..., Xj}, for i < j, Mi,j = −∞ if i ≥ j and M0,j = Mj .

Under condition D(un) of Leadbetter ([19] 1974) which holds whenever αn, ln → 0,

as n → ∞, for ln = o(n), where

αn, l = sup
{∣∣∣P

(
Mi1,i1+p ≤ un, Mj1,j1+q ≤ un

)

− P (Mi1,i1+p ≤ un)P (Mj1,j1+q ≤ un)
∣∣∣ :

1 ≤ i1 < i1 + p + l ≤ j1 < j1 + q ≤ n
}
,

we say that D(m)(un) is satisfied by {Xn}n≥1 if, for some {bn}n≥1 such that, as

n → ∞,

bn → ∞ , bnαn, ln → 0 , bnln/n → 0,

we have

nP
(
X1 > un, M1,m ≤ un < Mm,rn

)
→ 0 , n → ∞,

with {rn = [n/bn]}n≥1. The stronger conditions

n

rn∑

j=m+1

P
(
X1 > un, M1,m ≤ un < Xj

)
→ 0 , n → ∞,

also stated in Chernick et al. ([4] 1991), lead to D′(un) if m =1 and D′′(un) if m = 2,

considered in Leadbetter et al. ([20] 1983) and Leadbetter and Nandagopalan ([21]

1989), respectively. Condition D′(un) inhibits clustering of exceedances and thus

resembles an i.i.d. behavior and brings out θ = 1, whilst D′′(un) allows clustering

but inhibits the occurrence of two or more upcrossings. Moreover, if condition

D(m0)(un) holds then D(m)(un) also holds for all m ≥ m0.

Ferreira and Ferreira ([10] 2015) stated a new estimator that works un-

der D(m)(un). More precisely, if {Xn}n≥1 satisfies condition D(m)(un), we can

estimate θ by

(2.8) θ̂FF =
UZ

n (un)

Nn(un)
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where UZ
n (un) is the number of upcrossings of un within {Z1, ..., Z[n/(m−1)]} with

Zn = M(n−1)(m−1),n(m−1), n ≥ 1. Other estimators developed in the same context

were also considered in that work whose overall performance did not surpass θ̂FF.

Estimation approaches working only for series that satisfy condition D(2)(un) can

also be seen in Süveges ([28] 2007), Ferreira and Ferreira ([8] 2012) and Ferreira

([7] 2015b).

Chernick et al. ([4] 1991) also show that, under D(m)(un), the extremal

index exists and can be computed by the limit

(2.9) θ = lim
n→∞

P
(
M1,m ≤ un|X1 > un

)
.

Observe that the runs estimator in (2.4) corresponds to the empirical counterpart

of (2.9) by considering r = m. Diagnostic tools to analyze condition D(m)(un) may

be seen in Süveges ([28] 2007) and Ferreira and Ferreira ([10] 2015).

Observe also that taking r = 2 in (2.4) corresponds to the Nandagopalan’s

runs estimator derived in Nandagopalan ([22] 1990) under D′′(un).

The disjoint blocks and the sliding blocks estimators presented in Robert

et al. ([25] 2009) are derived from the extremal index definition in (1.1).

Consider, for r positive integer,

Fr(u) := P (Mr ≤ u), τr(u) := r(1 − F (u)) and θr(u) := − log Fr(u)

τr(u)
.

We have θ = limr→∞ θr(ur) for normalized levels ur = ur(τ) according to defini-

tion in (1.1). The estimation of the block maxima df Fr through b = [n/r] disjoint

blocks or n − r + 1 sliding blocks, that is

F̂ DJ

n,r(u) :=
1

b

b∑

i=1

1{M(i−1)r,ir≤u} and F̂ SL

n,r(u) :=
1

n − r + 1

n−r+1∑

i=1

1{Mi−1,i−1+r≤u}

originates the estimators, respectively,

(2.10) θ̂DJ = −
log F̂ DJ

n,r(un)

τ̂n,r(un)
and θ̂SL = −

log F̂ SL

n,r(un)

τ̂n,r(un)
,

with

τ̂n,r(un) =
rNn(un)

n
.

In order to achieve consistency in the estimators above, τ must be actually taken

as an intermediate sequence τn, n ≥ 1, that is,

τn → ∞ and τn/n → 0.

Gomes et al. ([13] 2008) and Neves et al. ([23] 2015) considered the lev-

els un in the interval between the k + 1 and the k-th upper order statistics,
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[Xn−k:n, Xn−k+1:n), for the Nandagopalan’s runs estimators. The advantage is

to move the framework to a similar context of the semiparametric estimation of

other important tail measures existing in the literature which allows new estima-

tion methods of the extremal index by adapting the existing ones. In this paper

we will consider those levels un ∈ [Xn−k:n, Xn−k+1:n) in the estimators (2.4)–(2.8)

and (2.10) and denote, respectively,

(2.11) θ̂Rk, θ̂Bk, θ̂BLk , θ̂Ik, θ̂FFk , θ̂DJk and θ̂SLk .

Observe that we are replacing τ by k. Indeed, we consider that k ≡ kn, n ≥ 1, is

replacing τn and thus it is also an intermediate sequence on behalf of consistency.

Estimators in (2.11) are functions of k, the number of order statistics higher than

the chosen level, where an increasing/decreasing k increases the bias/variance

(see Figure 1). Thus the choice of k is central in the estimation, not only of the

extremal index, but also of many other tail measures, making this topic largely

addressed in literature (see, e.g., Beirlant et al. [2] 2004).

The “plateau-finding” algorithm of Frahm et al. ([12] 2005), applied to the

estimation of the tail dependence coefficient of random pairs and here adopted to

estimate the extremal index, is based on a smoothing of the estimator’s sample

path by a simple box kernel with integer bandwidth d > 0. The resulting trajec-

tory thus corresponds to the moving average of 2d + 1 successive points of the

initial one and will be used in the rest of the procedure that consists on the ap-

plication of a plateau definition and respective finding criterium. In the following

we detail the method which we denote Algorithm 1.

Algorithm 1:

For a sample (X1, ..., Xn), consider bandwidth d = [wn] ∈ N and compute

the means of 2d + 1 successive points of θ̂k, 1 ≤ k < n, with smoothing degree

w = 0.005 (thus each moving average is about 1% of the data, as suggested in

Frahm et al. [12] 2005). In the resulting smoothed values, θ̂1, ..., θ̂n−2d, define

the plateaus pk = (θ̂k, ..., θ̂k+m−1), k = 1, ..., n − 2d − m + 1, with length m =

[
√

n − 2d]. The algorithm stops at the first plateau satisfying

k+m−1∑

i=k+1

∣∣∣θ̂i − θ̂k

∣∣∣ ≤ 2s,

where s is the empirical standard deviation of θ̂1, ..., θ̂n−2d. Estimate θ as the

mean of the values of the chosen plane region (consider the estimate zero if no

stable region fulfills the stopping condition).

For comparison, we also consider another heuristic procedure introduced in

Gomes et al. ([14] 2013), also seeking the plane region that presumably includes
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the“optimal”sample fraction k to be estimated. The algorithm is described below

and denoted Algorithm 2.

Algorithms 2 and 3:

For a sample (X1, ..., Xn), obtain the minimum value j0, such that the

rounded values to j decimal places of θ̂k, 1 ≤ k < n, denoted θ̂k(j) are not all

equal. Identify the set of values of k associated to equal consecutive values of

θ̂k(j0). Consider the set with largest range ℓ := kmax−kmin. Take all the estimates

θ̂k(j0 + 2) with kmax ≤ k ≤ kmin, i.e., the estimates with two more decimal points

and obtain the mode. Denote K the set of k-values associated with this mode.

Consider θ̂bk, where k̂ is the maximum of K.

We also consider the variant θ̂ek by taking k̃ = ℓ as mentioned in Neves et

al. ([23] 2015). This will be denoted Algorithm 3.

Observe that the described methodologies are all threshold-free. Robert

et al. ([25] 2009) also presented a threshold-free procedure based on blocks and

sliding estimators defined in (2.10). It is described downwards and will be called

Algorithm 4:

Algorithm 4:

For a sample (X1, ..., Xn), choose a block size r, take b = [n/r], τ = 1 and

u = Xn−[bτ ]+1:n. Consider Na,b(u) :=
∑

a<i≤b 1{Xi>u}, Nn,r(u) := (1/(n−r+1))×
∑n−r

i=0 Ni,i+r(u), σ̂ 2
n,r(u) :=

∑n−r
i=0 (Ni,i+r(u) − Nn,r(u))2 and ĉ 2

n,r(u) :=
bθbτn,r(u) ×

σ̂ 2
n,r(u) − 1. Calculate θ̂ = θ̂ Γ

[bτ ], Γ ∈ {SL, DJ} and ĉ = ĉn,r(u). Obtain µ̂ through

µ =





µSL := θα−2(eα − 1 − α) + α−1θc2

µDJ := θ(2α)−1(eα − 1) + α−1θc2,

replacing θ, c and α by, respectively, θ̂, ĉ and θ̂τ . Obtain the bias-corrected θ̂− µ̂/b

and estimate the variance by evaluating v = 2(θ2/α3)(eα −1−α−α2/2)+θ2c2/α

at θ = θ̂, c = ĉ and α = θ̂τ . Take α̂ as the value that minimizes v when θ = θ̂

and c = ĉ. Now repeat the procedure for the founded optimal value τ = α̂/θ̂.

In the sequel, we use the abbreviations A1, A2, A3 and A4, respectively,

to refer the algorithms above.
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3. SIMULATION STUDY

We are going to analyze through simulation the performance of the esti-

mators in (2.11) within the methodologies A1–A4 described above. This study is

based on the following models:

• Max-autoregressive process (MAR), Xi = αXi−1 ∨ ǫi, where 0 < α < 1

and {ǫi}i≥1 is an i.i.d. sequence of r.v.’s with d.f. Fǫ(x) = exp(−(1−α)/x),

x > 0. This process has θ = 1 − α. We consider α = 1/2 and hence

θ = 1/2.

• Moving maxima process (MM), Xi =
∨

j=0,...,m αjǫi−j , with
∑m

j=0 αj = 1

and αj ≥ 0, {ǫi}i≥1 is an i.i.d. sequence of unit Féchet distributed r.v.’s.

This process has θ =
∨

j=0,...,m αj . We consider m = 3, α0 = 1/3, α1 = 1/6,

α2 = 1/2 leading to θ = 1/2.

• Autoregressive Gaussian process (AR), Xi = αXi−1 +ǫi, where {ǫi}i≥1 is

an i.i.d. sequence of N(0, 1−α2) distributed r.v.’s. This process satisfies

condition D′(un) and thus θ = 1 (Leadbetter et al. [20] 1983).

• A first order autoregressive process, with Cauchy marginals (ARCauchy)

of Chernick ([3] 1978), Xi = sXi−1 +ǫi, with |s| < 1. The extremal index

is given by 1 − s2. We take s = −3/5 and thus θ = 0.64.

• A negatively correlated uniform autoregressive process (ARUnif) of

Chernick et al. ([4], 1991), Xi = −(1/s)Xi−1 + ǫi, where {ǫi}i≥1 is an

i.i.d. sequence such that P (ǫ1 = j/s) = 1/s for j = 1, ..., s. We have

θ = 1 − 1/s2. Here we consider s = 2 and thus θ = 3/4.

• Bivariate extreme value Markov process with standard Gumbel mar-

ginals and logistic dependence function, i.e.,

P
(
Xi ≤ x, Xi+1 ≤ y

)
= exp

(
−(x1/α + y1/α)α

)
.

We consider the dependence parameter α = 0.5 which gives θ = 0.328

(Smith [26] 1992), and denote the process MCBEV.

• A GARCH(1,1) process, Xi = σiǫi, with σ2
i = α + λX2

i−1 + βσ2
i−1,

α, λ, β > 0, where {ǫi}i≥1 is an i.i.d. sequence of standard Gaussian r.v.’s.

We consider α = 10−6, λ = 1/4 and β = 7/10 resulting in θ = 0.447 (see

details in Laurini and Tawn, [18] 2012).

We consider samples of sizes n = 100, 1000, 5000 and generate 100 inde-

pendent replications of each and for each model. We compare the estimation

procedures by computing the absolute mean bias and the root mean square error

(rmse).
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Remark 3.1. Observe that the methods being compared avoid threshold

selection but need a cluster identification parameter, whether be it a block size

or a run length. Recall that the dependence condition D(m)(un) of Chernick et

al. ([4], 1991) is a diagnostic tool for cluster identification within the runs estima-

tor θ̂Rk and estimator θ̂FFk defined in (2.8). More precisely, we take the run length

r equal to m in the first (see discussion concerning (2.9)) and cycles of size m− 1

in the second as stated in (2.8). The MAR process satisfies condition D(2)(un),

whilst the processes MM, ARCauchy and ARUnif satisfy condition D(3)(un).

See Ferreira and Ferreira ([10] 2015) and references therein for more details.

In this latter reference, we validated conditions D(4)(un) and D(5)(un) for the

processes MCBEV and GARCH, respectively. In what concerns the remaining

estimators which are based on blocks schemes, the respective cluster parameters

were chosen according to an overall good performance found on further simula-

tions.

The results are presented in Tables 1–6 (the bold numbers correspond to

the smallest estimates obtained in each model). A high bias is observed in the AR

model and also in models ARCauchy, ARUnif and GARCH concerning the runs,

the intervals and the FF estimator, under algorithms A2 and A3. The lowest val-

ues of rmse rely frequently on blocks θ̂Bk and θ̂BLk estimators under algorithms A1,

A2 and A3, followed by estimators θ̂Rk and θ̂FFk within algorithm A1. In the AR

process, the results differ from the others where the estimators θ̂DJk and θ̂SLk tend

to behave better over the four algorithms. Observe that in this case we have the

boundary value θ = 1 (as in i.i.d. sequences) where inference is usually problem-

atic (see Ancona-Navarrete and Tawn [1] 2000). The intervals estimator, θ̂Ik, is

parameter-free under the methods in study and may be considered within MAR,

AR, MM and MCBEV models. The worst performances concern mainly estima-

tors θ̂FFk and θ̂Rk for algorithm A2, where the method is returning a too high k,

corresponding to estimates with very large bias. In Gomes et al. ([13] 2008)

it was presented a reduced-bias version of Nandagopalan’s estimator based on

the Generalized Jackknife (GJ) methodology, which is given by

θ̂NGJk = 5θ̂R[k/2]+1 − 2
(
θ̂R[k/4]+1 + θ̂Rk

)
.(3.1)

Notice that Nandagopalan’s estimator corresponds to the runs estimator when-

ever we take the run length 2, which in turn requires D′′(un). In our examples,

only models MAR and AR satisfy this condition. We have also applied the es-

timator (3.1) to all models within algorithms A2 and A3. Indeed, except in the

GARCH case, the rmse of θ̂NGJk decreases to about the half of the rmse of the

runs estimator, mostly for larger sample sizes (n ≥ 1000) and with algorithm A2.

In the case of algorithm A3, the rmse of θ̂NGJk is smaller than the runs estimator

only within the largest sample size (n = 5000) of models MAR and ARUnif.
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Table 1: Root mean squared errors obtained for simulated samples of size n = 100.
For estimators θ̂BL

k
and θ̂B

k
we considered blocks of length 3 except in

MCBEV and GARCH models where we used blocks of length 4 and 5,
respectively. For estimators θ̂DJ

k
and θ̂SL

k
we considered blocks of length 5.

For estimator θ̂R
k

(θ̂FF
k

) we considered runs (cycles) of length 2 in MAR
and AR, of length 3 in MM, ARCauchy and ARUnif, of length 4 in
MCBEV and length 5 in GARCH. See Remark 3.1.

A1 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.1338 0.3603 0.1215 0.1534 0.1528 0.1249 0.1782bθIk 0.2754 0.2899 0.2271 0.3549 0.2487 0.3071 0.5170bθFFk 0.1469 0.5336 0.1488 0.1831 0.1474 0.1352 0.2018bθBLk 0.1467 0.4548 0.1780 0.2869 0.1820 0.1544 0.1626bθBk 0.1233 0.4826 0.1594 0.1948 0.1459 0.1380 0.1539bθDJk 0.2971 0.5041 0.2803 0.3296 0.3406 0.2909 0.5316bθSLk 0.2583 0.2327 0.2474 0.2907 0.3419 0.3052 0.5185

A2 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.3183 0.7928 0.4133 0.6283 0.7399 0.2663 0.4366bθNGJk 0.3003 0.5448 0.5071 0.3925 0.2500 0.3404 0.5569bθIk 0.2621 0.5387 0.3032 0.2500 0.2500 0.2133 0.5511bθFFk 0.4353 0.9410 0.4627 0.6400 0.7500 0.4447 0.2910bθBLk 0.0996 0.5217 0.0948 0.2176 0.1079 0.0734 0.1793bθBk 0.1216 0.6186 0.1162 0.2118 0.3018 0.0495 0.2108bθDJk 0.2646 0.4831 0.2146 0.2801 0.3010 0.2405 0.3230bθSLk 0.3035 0.4431 0.2110 0.3158 0.4289 0.2457 0.4511

A3 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.1199 0.4192 0.1746 0.3026 0.2923 0.1158 0.3151bθNGJk 0.6235 0.5285 0.5323 0.3673 0.2505 0.6538 0.6584bθIk 0.2770 0.2846 0.2527 0.2500 0.2500 0.3095 0.4959bθFFk 0.1801 0.6620 0.2295 0.4697 0.4486 0.3133 0.1766bθBLk 0.1663 0.4521 0.1890 0.2587 0.2051 0.1517 0.1580bθBk 0.0967 0.5245 0.0775 0.1105 0.1179 0.0570 0.1439bθDJk 0.4813 0.2996 0.4017 0.4394 0.3769 0.4782 0.5875bθSLk 0.4802 0.4092 0.4041 0.4609 0.4946 0.5056 0.6435

A4 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθDJk 0.3001 0.2423 0.2748 0.2888 0.3457 0.3496 0.4886bθSLk 0.2482 0.2445 0.2302 0.2644 0.3279 0.3562 0.4811
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Table 2: Absolute bias obtained for simulated samples of size n = 100.
For estimators θ̂BL

k
and θ̂B

k
we considered blocks of length 3

except in MCBEV and GARCH models where we used blocks
of length 4 and 5, respectively. For estimators θ̂DJ

k
and θ̂SL

k
we

considered blocks of length 5. For estimator θ̂R
k

(θ̂FF
k

) we con-
sidered runs (cycles) of length 2 in MAR and AR, of length 3
in MM, ARCauchy and ARUnif, of length 4 in MCBEV and
length 5 in GARCH. See Remark 3.1.

A1 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0152 0.3280 0.0833 0.0618 0.0569 0.0076 0.0303bθIk 0.1577 0.2040 0.1234 0.3545 0.2487 0.1875 0.5006bθFFk 0.0780 0.5172 0.1243 0.1276 0.0003 0.1070 0.1841bθBLk 0.0063 0.4319 0.0709 0.0307 0.0321 0.0439 0.0771bθBk 0.0120 0.4657 0.0432 0.0350 0.0756 0.0265 0.1071bθDJk 0.0454 0.3721 0.1328 0.2646 0.2934 0.2091 0.4143bθSLk 0.2050 0.1729 0.2186 0.2519 0.2993 0.2797 0.4928

A2 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.2971 0.7778 0.4045 0.6283 0.7399 0.2586 0.4366bθNGJk 0.0057 0.4671 0.3341 0.3714 0.2500 0.0889 0.5222bθIk 0.0031 0.4575 0.0879 0.2500 0.2500 0.0017 0.5505bθFFk 0.4294 0.9393 0.4599 0.6400 0.7500 0.4445 0.2861bθBLk 0.0371 0.5127 0.0113 0.1278 0.0389 0.0097 0.1673bθBk 0.1135 0.6172 0.1051 0.1628 0.2906 0.0311 0.2047bθDJk 0.0107 0.3768 0.0187 0.0198 0.1110 0.0554 0.1470bθSLk 0.1030 0.2913 0.0594 0.0748 0.1952 0.1127 0.2979

A3 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0488 0.4056 0.1598 0.2875 0.2800 0.0937 0.3110bθNGJk 0.0057 0.4671 0.3341 0.3714 0.2500 0.0889 0.5222bθIk 0.1607 0.2045 0.1672 0.2500 0.2500 0.2044 0.4792bθFFk 0.1593 0.6558 0.2182 0.4652 0.4444 0.3097 0.1711bθBLk 0.0275 0.4163 0.0766 0.0566 0.0702 0.0565 0.0561bθBk 0.0547 0.5184 0.0120 0.0179 0.1023 0.0025 0.1280bθDJk 0.3553 0.0206 0.2558 0.3441 0.3146 0.3330 0.4882bθSLk 0.2852 0.0424 0.2375 0.2385 0.2952 0.3101 0.4835

A4 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθDJk 0.2433 0.1865 0.2096 0.2462 0.3059 0.3099 0.4571bθSLk 0.2110 0.2031 0.1921 0.2238 0.2821 0.3219 0.4544
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Table 3: Root mean squared errors obtained for simulated samples of size n = 1000.
For estimators θ̂BL

k
and θ̂B

k
we considered blocks of length 3 except in

MCBEV and GARCH models where we used blocks of length 4 and 5,
respectively. For estimators θ̂DJ

k
and θ̂SL

k
we considered blocks of length 20.

For estimator θ̂R
k

(θ̂FF
k

) we considered runs (cycles) of length 2 in MAR and
AR, of length 3 in MM, ARCauchy and ARUnif, of length 4 in MCBEV
and length 5 in GARCH. See Remark 3.1.

A1 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0666 0.2877 0.0645 0.0874 0.0583 0.0508 0.1059bθIk 0.0795 0.3243 0.0658 0.2312 0.2498 0.0670 0.2217bθFFk 0.0853 0.4148 0.0744 0.1014 0.0566 0.0809 0.1295bθBLk 0.0467 0.4381 0.0767 0.0882 0.0944 0.0836 0.0845bθBk 0.0532 0.4499 0.0680 0.0624 0.1022 0.0675 0.0993bθDJk 0.2161 0.4323 0.2225 0.1859 0.3059 0.1351 0.2101bθSLk 0.1342 0.3379 0.1101 0.1303 0.1563 0.1057 0.1877

A2 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.1915 0.7503 0.4357 0.6388 0.7489 0.2656 0.4457bθNGJk 0.3003 0.5448 0.5071 0.3925 0.2500 0.3404 0.5569bθIk 0.1227 0.5738 0.0688 0.3600 0.2500 0.0565 0.5202bθFFk 0.4435 0.9582 0.4794 0.6397 0.7500 0.2768 0.4458bθBLk 0.0283 0.4765 0.0647 0.2051 0.0631 0.0680 0.0615bθBk 0.0926 0.5931 0.0803 0.1206 0.2387 0.0188 0.1398bθDJk 0.0932 0.3744 0.3845 0.1216 0.2352 0.1007 0.2247bθSLk 0.1211 0.3330 0.1085 0.1636 0.2534 0.1402 0.2763

A3 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0950 0.4033 0.1573 0.3373 0.3289 0.1097 0.3671bθNGJk 0.1910 0.2989 0.3553 0.3774 0.2954 0.2495 0.4270bθIk 0.0781 0.3848 0.0640 0.3600 0.4290 0.0573 0.3668bθFFk 0.1726 0.6209 0.1978 0.4741 0.4548 0.1633 0.2951bθBLk 0.0321 0.4584 0.0641 0.0948 0.0562 0.0728 0.0657bθBk 0.0839 0.5430 0.0385 0.0320 0.0868 0.0298 0.1542bθDJk 0.1130 0.2348 0.1095 0.1169 0.1568 0.0986 0.1913bθSLk 0.0992 0.2507 0.0937 0.1143 0.1497 0.1013 0.1851

A4 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθDJk 0.1203 0.2496 0.1350 0.1409 0.1757 0.1336 0.2330bθSLk 0.1054 0.2313 0.0931 0.1300 0.1753 0.1279 0.2279
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Table 4: Absolute bias obtained for simulated samples of size n = 1000.
For estimators θ̂BL

k
and θ̂B

k
we considered blocks of length 3

except in MCBEV and GARCH models where we used blocks
of length 4 and 5, respectively. For estimators θ̂DJ

k
and θ̂SL

k
we

considered blocks of length 20. For estimator θ̂R
k

(θ̂FF
k

) we con-
sidered runs (cycles) of length 2 in MAR and AR, of length 3
in MM, ARCauchy and ARUnif, of length 4 in MCBEV and
length 5 in GARCH. See Remark 3.1.

A1 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0301 0.2748 0.0481 0.0607 0.0128 0.0134 0.0608bθIk 0.0007 0.2901 0.0016 0.1815 0.2498 0.0107 0.1523bθFFk 0.0604 0.4010 0.0593 0.0780 0.0074 0.0707 0.1184bθBLk 0.0032 0.4350 0.0595 0.0400 0.0625 0.0683 0.0703bθBk 0.0146 0.4461 0.0420 0.0174 0.0881 0.0494 0.0886bθDJk 0.0368 0.3275 0.0347 0.0332 0.0237 0.0260 0.0934bθSLk 0.0417 0.2780 0.0459 0.0562 0.1221 0.0800 0.1571

A2 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.1768 0.7390 0.4300 0.6388 0.7489 0.2584 0.4457bθNGJk 0.0437 0.3963 0.2290 0.6301 0.2500 0.1622 0.6187bθIk 0.1075 0.5675 0.0368 0.3600 0.2500 0.0334 0.5136bθFFk 0.4389 0.9578 0.4783 0.6397 0.7500 0.2700 0.4458bθBLk 0.0029 0.4747 0.0533 0.1550 0.0156 0.0629 0.0570bθBk 0.0894 0.5922 0.0650 0.0608 0.2316 0.0041 0.1370bθDJk 0.0283 0.3423 0.3701 0.0453 0.1888 0.0847 0.1956bθSLk 0.0872 0.3160 0.0839 0.1281 0.2122 0.1176 0.2455

A3 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0853 0.4012 0.1554 0.3363 0.3278 0.1070 0.3667bθNGJk 0.0031 0.2511 0.1745 0.3805 0.2954 0.0456 0.3930bθIk 0.0231 0.3732 0.0015 0.3373 0.2490 0.0106 0.3145bθFFk 0.1703 0.6203 0.1965 0.4735 0.4545 0.1620 0.2945bθBLk 0.0006 0.4565 0.0550 0.0677 0.0254 0.0660 0.0597bθBk 0.0775 0.5422 0.0314 0.0017 0.0855 0.0124 0.1522bθDJk 0.0597 0.2013 0.0679 0.0519 0.0959 0.0792 0.1490bθSLk 0.0647 0.2340 0.0673 0.0700 0.1147 0.0848 0.1533

A4 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθDJk 0.0658 0.2172 0.0699 0.0860 0.1134 0.1104 0.2088bθSLk 0.0668 0.1988 0.0460 0.0833 0.1302 0.1106 0.2057
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Table 5: Root mean squared errors obtained for simulated samples of size n = 5000.
For estimators θ̂BL

k
and θ̂B

k
we considered blocks of length 3 except in

MCBEV and GARCH models where we used blocks of length 4 and 5,
respectively. For estimators θ̂DJ

k
and θ̂SL

k
we considered blocks of length 20.

For estimator θ̂R
k

(θ̂FF
k

) we considered runs (cycles) of length 2 in MAR and
AR, of length 3 in MM, ARCauchy and ARUnif, of length 4 in MCBEV
and length 5 in GARCH. See Remark 3.1.

A1 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0434 0.2504 0.0395 0.0518 0.0314 0.0409 0.1257bθIk 0.0460 0.2904 0.0327 0.0799 0.2499 0.0387 0.1004bθFFk 0.0541 0.4309 0.0423 0.0558 0.0303 0.0608 0.1072bθBLk 0.0231 0.4234 0.0554 0.0585 0.0803 0.0715 0.0683bθBk 0.0290 0.4272 0.0572 0.0457 0.0865 0.0656 0.0823bθDJk 0.0587 0.2439 0.0755 0.0895 0.1030 0.0789 0.1415bθSLk 0.0592 0.2317 0.0557 0.0796 0.0954 0.0781 0.1407

A2 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.1500 0.7498 0.4382 0.6396 0.7498 0.2648 0.4464bθNGJk 0.0700 0.3918 0.2273 0.4596 0.2500 0.1532 0.6150bθIk 0.0940 0.5357 0.0446 0.3600 0.2500 0.0370 0.5351bθFFk 0.4416 0.9505 0.4915 0.6398 0.7500 0.2749 0.4456bθBLk 0.0113 0.4786 0.0606 0.2282 0.0510 0.0688 0.0547bθBk 0.0838 0.5925 0.0502 0.0505 0.1818 0.0189 0.1308bθDJk 0.0862 0.3085 0.0942 0.1364 0.2416 0.1171 0.2121bθSLk 0.1056 0.2843 0.1056 0.1595 0.2502 0.1350 0.2456

A3 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0970 0.2576 0.1530 0.3369 0.3316 0.1063 0.3688bθNGJk 0.0700 0.3918 0.2273 0.4596 0.2500 0.1532 0.6150bθIk 0.0611 0.4150 0.0300 0.3600 0.2499 0.0378 0.3648bθFFk 0.1663 0.6147 0.1941 0.4709 0.4544 0.1587 0.2940bθBLk 0.0190 0.4818 0.0606 0.1082 0.0253 0.0728 0.0777bθBk 0.0787 0.5461 0.0366 0.0308 0.0858 0.0164 0.1553bθDJk 0.0716 0.2528 0.0777 0.0992 0.1202 0.1035 0.1692bθSLk 0.0842 0.2695 0.0908 0.1062 0.1312 0.1152 0.1769

A4 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθDJk 0.0664 0.2149 0.0561 0.0989 0.1147 0.1259 0.2109bθSLk 0.0644 0.2155 0.0523 0.0916 0.1066 0.1224 0.2100
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Table 6: Absolute bias obtained for simulated samples of size n = 5000.
For estimators θ̂BL

k
and θ̂B

k
we considered blocks of length 3

except in MCBEV and GARCH models where we used blocks
of length 4 and 5, respectively. For estimators θ̂DJ

k
and θ̂SL

k
we

considered blocks of length 20. For estimator θ̂R
k

(θ̂FF
k

) we con-
sidered runs (cycles) of length 2 in MAR and AR, of length 3
in MM, ARCauchy and ARUnif, of length 4 in MCBEV and
length 5 in GARCH. See Remark 3.1.

A1 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0180 0.2431 0.0293 0.0273 0.0035 0.0015 0.1093bθIk 0.0065 0.2784 0.0024 0.0522 0.2499 0.0118 0.0482bθFFk 0.0360 0.4132 0.0321 0.0343 0.0015 0.0500 0.1023bθBLk 0.0044 0.4223 0.0050 0.0363 0.0660 0.0669 0.0638bθBk 0.0015 0.4258 0.0462 0.0238 0.0774 0.0586 0.0779bθDJk 0.0372 0.2241 0.0383 0.0640 0.0752 0.0613 0.1229bθSLk 0.0379 0.2251 0.0469 0.0570 0.0711 0.0648 0.1202

A2 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.1394 0.7498 0.4374 0.6396 0.7498 0.2612 0.4464bθNGJk 0.0475 0.3896 0.2176 0.4050 0.2500 0.1428 0.6102bθIk 0.0852 0.5310 0.0280 0.3600 0.2500 0.0267 0.5330bθFFk 0.4406 0.9501 0.4908 0.6398 0.7500 0.2688 0.4456bθBLk 0.0009 0.4783 0.0580 0.2202 0.0349 0.0680 0.0532bθBk 0.0814 0.5919 0.0308 0.0040 0.1602 0.0048 0.1284bθDJk 0.0747 0.3002 0.0856 0.1167 0.2156 0.1073 0.1987bθSLk 0.0959 0.2793 0.0976 0.1393 0.2163 0.1240 0.2304

A3 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0947 0.2573 0.1526 0.3367 0.3314 0.1055 0.3687bθNGJk 0.0107 0.2890 0.1773 0.3896 0.2990 0.0859 0.4441bθIk 0.0546 0.4124 0.0164 0.3600 0.2499 0.0210 0.3389bθFFk 0.1657 0.6146 0.1939 0.4708 0.4544 0.1584 0.2939bθBLk 0.0011 0.4813 0.0580 0.1006 0.0152 0.0701 0.0765bθBk 0.0777 0.5460 0.0346 0.0064 0.0856 0.0114 0.1545bθDJk 0.0609 0.2470 0.0692 0.0857 0.1075 0.0990 0.1592bθSLk 0.0758 0.2660 0.0854 0.0988 0.1217 0.1121 0.1688

A4 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθDJk 0.0562 0.2079 0.0451 0.0835 0.0853 0.1212 0.2049bθSLk 0.0570 0.2097 0.0449 0.0812 0.0778 0.1190 0.2065
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4. APPLICATION TO REAL DATA

We consider the daily maximum temperatures (in degrees Celsius) at Uccle

(Belgium), from 1901 to 1999, on the warmest month of July (thus station-

arity is assumed), consisting in n = 3051 observations. The data is available

at “http://lstat.kuleuven.be/Wiley/Data/ecad00045TX.txt” and is plotted in

Figure 2. The extremal index of this series was analyzed in Beirlant et al. ([2]

2004), where the respective estimates, obtained through parametric modeling,

ranged between 0.49 and 0.56.
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Figure 2: July daily maximum temperatures (in degrees Celsius) at Uccle,
over the years 1901–1999.

We start by checking if we can validate some condition D(k)(un). To this

end, we use the empirical methodology of Ferreira and Ferreira ([10], 2015) by

calculating the proportion of anti-D(m)(un) events among the exceedances for

several pairs of normalized levels un and block sizes rn:

p(un, rn) =

∑n−rn+1
j=1 1{

Xj>un,Xj+1≤un,...,Xj+m−1≤un,Mj+m−1,rn+j−1>un

}
∑n

j=1 1{Xj>un}
.

More precisely, for each fixed τ > 0, we take un as the empirical (1 − τ/n)-th

quantile for increasing sample sizes n and choose the sequence {bn = [n/rn]}n

growing at a slower rate than n, e.g., bn = [(log n)a], for some a > 0. If D(m)(un)

holds with bn, the points (n, p(un, rn)) approach zero as n → ∞. Based on the
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suggested declustering parameter r = 4 in Beirlant et al. ([2] 2004), we have ana-

lyzed the proportions of anti-D(4)(un), plotted in Figure 3 (right panel) for τ = 15

(full line) and τ = 20 (dashed line), with kn = [(log n)2.5]. Observe that the val-

ues are small and almost indistinguishable from the proportions of anti-D(3)(un)

(left panel). We have also taken kn = [(log n)3] which led to null proportions in

both cases. Therefore, we assume the validity of the D(3)(un) local condition and

consider run length 3 for the runs estimator and cycles of length 2 for the FF

estimator in (2.8); see Remark 3.1. We also take block-length 3 in the blocks esti-

mators. The disjoint and slides methods were implemented with block-length 15.

500 1000 1500 2000 2500 3000

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

n

p
(u

n
, 
r n

)

500 1000 1500 2000 2500 3000

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

n

p
(u

n
, 
r n

)

Figure 3: Observed proportions of anti-D(3)(un) (left) and anti-D(4)(un)
conditions for Uccle data, for τ = 15 (full line) and τ = 20
(dashed line), with kn = [(log n)2.5].

The sample paths of the considered estimators in (2.11) and (3.1) are in Figure 4.

Under algorithm A4, we obtained the estimate 0.51 for both disjoint and slide

estimators. We have also applied the bias-reduced GJ Nandagopalan’s runs esti-

mator in (3.1) from which the values 0.41 and 0.57 were derived under A2 and A3,

respectively. The remaining estimates are summarized in Table 7. The results

are mostly in agreement with the simulation study.

Table 7: Extremal index estimates for Uccle data.

θ̂R
k

θ̂I
k

θ̂FF
k

θ̂B
k

θ̂BL
k

θ̂DJ
k

θ̂SL
k

A1 0.49 0.47 0.46 0.50 0.51 0.53 0.57
A2 0.10 0.33 0.05 0.39 0.50 0.52 0.53
A3 0.32 0.30 0.28 0.42 0.50 0.49 0.53
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Figure 4: Sample paths of estimators in (2.11) and estimator (3.1)
for Uccle data.

5. DISCUSSION

We have analyzed several estimators of the extremal index under different

methodologies. The procedure based in Frahm et al. ([12] 2005) revealed an over-

all satisfactory performance. The best results were mostly observed within the

blocks estimators, θ̂Bk and θ̂BLk , under the methodology of Neves et al. ([23] 2015).

The large biases observed in the AR process makes inference within weak depen-

dence, i.e., θ = 1, an open topic to explore in this framework. Other methods to

analyze the local dependence D-conditions are also welcome. The bias-reduced

GJ Nandagopalan’s estimator is sensitive to the restricted condition D′′ and a

generalization of the method to the broader runs estimator may be more advan-

tageous. These points will be addressed in a future work.
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