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Abstract:

e C(lustering of exceedances of a critical level is a phenomenon that concerns risk man-
agers in many areas. The extremal index 6 measures the propensity of the large
observations in a dataset to cluster. Thus the estimation of # is an important issue
recurrently addressed in literature. Besides a declustering parameter, inference also
depends on a threshold. This choice is actually a crucial topic and is transversal to
many other extremal parameters. In this paper we analyze a threshold-free heuris-
tic procedure. We also make comparisons with other heuristic procedures already
developed within the extremal index estimation. Our study is based on simulation.
We illustrate with an application to environmental data.

Key-Words:

o cxtreme value theory; extremal index estimation; heuristic methods.

AMS Subject Classification:

o 62G32, 60G70.



116 Marta Ferreira



Extremal Index Estimation 117

1. INTRODUCTION

In many environmental applications, extreme events are the main aspects of
practical concern. Financial time series are increasingly being analyzed to assess
the risk from extreme events. A description of extreme events is usually based
on observations that exceed a high threshold. Serial dependence leads to large
values occurring close in time and thus forming clusters. Clustering of extremes
does not take place in an independent and identically distributed (i.i.d.) setting.

Consider {X,},>1 a stationary sequence with common distribution func-
tion (df) F and {Y,}n>1 an ii.d. sequence with the same parent df F. We say
{X, }n>1 has extremal index 6 (0 < 6 < 1) if, for all 7 > 0, there is a sequence of
levels u,, = u,(7), n > 1, such that

P(max(Yl,...,Yn) < un) = Fn(un) — e 7

n—oo

(1.1) and P(max(Xl,...,Xn) Sun) — 0

n—od
(Leadbetter et al. [20] 1983). The sequence u,, = un(7), n > 1, satisfying F"(u,,) —
exp(—7) or, equivalently, n(1 — F(u,)) — 7, as n — 00, is usually denoted as nor-
malized levels.

There are several characterizations of the extremal index bringing out differ-
ent estimators. Many of these estimators can be stated as functions of a number &
of upper order statistics. Analogous to the semiparametric estimation of various
tail measures (e.g., the tail index and tail dependence coefficients in a multivari-
ate framework), there is a proverbial tradeoff between bias and variance. The
first increases with k (large bias for a large amount of top order statistics used in
estimates) and the second increases as k gets smaller (large variability as fewer
top order statistics are considered). A typical path is plotted in Figure 1. After
the great variability in the beginning, there is a stable sample path, as function
of k, around the true value and then the bias starts to stand out and dominate.

Thus & needs to be chosen from the stability zone that mediates the variance
domain and the bias domain. There are several methods developed in literature
towards this choice of k concerning the estimation of tail measures. A survey
within the tail index estimation can be seen in Beirlant et al. ([2] 2004). More
recently, a general procedure was introduced in Gomes et al. ([14] 2013) for the
tail index estimation, which was latter adopted in Neves et al. ([23] 2015) to
estimate the extremal index. This consists of a pure heuristic procedure to find
the “plateau” region of the estimates path from which we may infer the true value
of the parameter. The methodology in Frahm et al. ([12] 2005), developed within
the estimation of the tail dependence coefficient of random pairs, also seeks a
stable region but after a smoothing of the sample path; see Frahm et al. ([12]
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2005) and Ferreira and Silva ([9] 2014). In Ferreira ([5] 2014) and Ferreira ([6]
2015a) it was also adapted to the tail index estimation.
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Figure 1: Runs estimates sample path of a moving maximum process,
Xi = HlaX(a()Zi, alZi,l, GQZZ',Q)7 ) > 17 where {Zi}i2,1 is an
i.i.d. unit Fréchet sequence, ag = 1/3, a; = 1/6 and ay = 1/2,
with run length r = 2. The horizontal line corresponds to the
true value.

Here we are going to apply the methodology of Frahm et al. ([12] 2005) to
several estimators of the extremal index. For comparison, we also analyze the
performance of the procedure in Neves et al. ([23] 2015) applied to those esti-
mators. As these are threshold-free methods, we also compare with the blocks
and sliding estimation threshold-free procedure presented in Robert et al. ([25]
2009). The description of the methods is addressed in Section 2. The comparison
of the procedures is assessed through simulation in Section 3 and an illustration
with real data is stated in Section 4. A small discussion is presented in Section 5.

2. ESTIMATION METHODS

The extremal index can be interpreted in different ways, leading to different
estimators. In O’Brien ([24] 1974) it is proved that

(2.1) P(max(Xg,...,Xrn < uplXp > un)) — 0,

n—oo

where 7, is such that r, — oo and 7, = o(n). Under a mild mixing condition,
Hsing et al. ([17], 1988) stated that

(2.2) B[ Ly suny 0 1 sy 2 1] = 078
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with 1(-) denoting the indicator function, i.e., the limiting mean number of ex-
ceedances of u, in an interval of length r,, corresponds to the arithmetic inverse
of the extremal index, given that there are exceedances.

Also under a slight mixing condition, Ferro and Segers ([11] 2003) show
that

(2.3) P(F(up) T(un) >t) — 0%, >0,

n—oo
where T'(u,) = min{n > 1: X;,11 > u,|X1 > un}, ie., the process of inter-
exceedance times normalized by exceedances of u, follows a mixture of a point
mass and an exponential distribution Exp(6~1).

Relations (2.1)—(2.3) yield the most common approaches to estimate 6,
respectively, the runs, the blocks and the intervals method.

The blocks and the runs estimators are based on their own clusters identifi-
cation procedure and both correspond to the ratio between the number of clusters
and the number of exceedances of a high threshold u,, (Hsing [15] 1991; Weissman
and Novak [29] 1998; Nandagopalan [22] 1990; Hsing [16] 1993). The intervals
estimator is based on an inter-exceedance times method (Ferro and Segers [11]
2003).

More precisely, the runs estimator is expressed as
n—r
(2.4) o = (Na ()™ " Lixisunt Lx<un) - 1Xapo<uns
=1

where N, (uy,) is the number of exceedances of u,. Independent clusters are
identified as runs of observations above wu,, separated by r, consecutive values
under u,,.

By considering b,, = [n/ry] blocks of length r,, ([-] means the integer part),
the simple blocks estimator corresponds to

(2.5) g = Cnlun)

where C,(u) is the number of clusters, i.e, in this context it corresponds to the
number of blocks in which at least one exceedance of u,, occurs. The variant

log(1 — Cn(un)/kn)

ZBL _
(2.6) 0= = r1og(1 — Ny (u) /1)

has been proposed in Smith and Weissman ([27] 1994) as having a better asymp-
totic behavior of second order.
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After some considerations and based on the result in (2.3), the intervals
estimator is stated as

2(xX'n)’
2.7) 6 eI
| A AEG @)
(N-1) SN N (T -1)(T-2)

yifmax{T;: 1 <i<N—-1} <2

yifmax{T;: 1 <i< N -1} > 2
where T; denotes the i-th inter-exceedance time, i = 1,..., N — 1 and N = N, (uy,).

The analysis of convenient local dependence conditions may eliminate the
need for a cluster identification scheme, such as the local dependence condition
D™ (u,) of Chernick et al. ([4] 1991), with m some positive integer. Consider
notation M; ; = max{X;1,..., X;}, fori < j, M; ; = —ocifi > j and My ; = M;.
Under condition D(u,) of Leadbetter ([19] 1974) which holds whenever «, ;, — 0,
as n — oo, for I, = o(n), where

Qn,l = Sup{‘P(Mihil-i-p < U, Mj, 149 < u”)

- P(Mil,iler S ’LLn) P(Mjl,jl+q S ’LLn)

L<ih<iitp+l<i<p+qg<nl,

we say that D™ (u,) is satisfied by {X,},>1 if, for some {b,}n>1 such that, as
n — oo,

b, =00, byapg, =0, byly/n—0,

we have
nP(Xl >un’M1,m < up <Mm,rn) — 0, n — oo,

with {r, = [n/by]}n>1. The stronger conditions

Tn
n ZP(X1>un,MLm§un<Xj)—>0, n — 00,
j=m+1

also stated in Chernick et al. ([4] 1991), lead to D’ (uy,) if m =1 and D" (u,,) if m =2,
considered in Leadbetter et al. ([20] 1983) and Leadbetter and Nandagopalan ([21]
1989), respectively. Condition D’(u,,) inhibits clustering of exceedances and thus
resembles an i.i.d. behavior and brings out § = 1, whilst D”(u,,) allows clustering

but inhibits the occurrence of two or more upcrossings. Moreover, if condition
D(0) (u,,) holds then D™ (u,,) also holds for all m > my.

Ferreira and Ferreira ([10] 2015) stated a new estimator that works un-
der D™ (u,,). More precisely, if {X,},>1 satisfies condition D™ (u,,), we can
estimate 6 by

(2.8) grr — U (un)
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where UZ (u,,) is the number of upcrossings of u,, within {77, ..., Zin/(m—1))} With
Zn = Mpn-1)(m-1),n(m—1)» ? = 1. Other estimators developed in the same context
were also considered in that work whose overall performance did not surpass OFF .
Estimation approaches working only for series that satisfy condition D (u,,) can
also be seen in Siiveges (28] 2007), Ferreira and Ferreira ([8] 2012) and Ferreira
([7] 2015b).

Chernick et al. ([4] 1991) also show that, under D™ (u,), the extremal
index exists and can be computed by the limit

(2.9) 0 = lim P(Mm < un|X1 > up).

n—oo

Observe that the runs estimator in (2.4) corresponds to the empirical counterpart
of (2.9) by considering r = m. Diagnostic tools to analyze condition D™ (u,,) may
be seen in Siiveges ([28] 2007) and Ferreira and Ferreira ([10] 2015).

Observe also that taking r = 2 in (2.4) corresponds to the Nandagopalan’s
runs estimator derived in Nandagopalan ([22] 1990) under D" (uy,).

The disjoint blocks and the sliding blocks estimators presented in Robert
et al. ([25] 2009) are derived from the extremal index definition in (1.1).

Consider, for r positive integer,

log F,
F.(u) == P(M, <wu), 7(u):=r(1—-F(u) and 0,(u):= —LT(U).

7 (u)
We have 0 = lim,_, 0, (u,) for normalized levels u, = u,(7) according to defini-
tion in (1.1). The estimation of the block maxima df F, through b = [n/r] disjoint

blocks or n — r + 1 sliding blocks, that is

~ 1 b N 1 n—r+1
ng"(u) = b ZH{M(iA)anU} and F?“Sbﬁ"(u) = n—r+1 Z ]l{Mifl,iflJrrSu}
i=1 i=1

originates the estimators, respectively,

log F (u log St (4,
(2.10) oo — o8 Furlun) g g —%”7”"("),
To,r (Un) Tor(Un)
with N
~ r N, (u
Tn,r(un) —_—_nmm/

n
In order to achieve consistency in the estimators above, 7 must be actually taken
as an intermediate sequence 7,,, n > 1, that is,

Tn — oo and 7,/n — 0.

Gomes et al. ([13] 2008) and Neves et al. ([23] 2015) considered the lev-
els u, in the interval between the k4 1 and the k-th upper order statistics,
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[Xp—km, Xn—k+1m), for the Nandagopalan’s runs estimators. The advantage is
to move the framework to a similar context of the semiparametric estimation of
other important tail measures existing in the literature which allows new estima-
tion methods of the extremal index by adapting the existing ones. In this paper
we will consider those levels u,, € [Xy—kmn, Xn—k+1:n) in the estimators (2.4)—(2.8)
and (2.10) and denote, respectively,

(2.11) O O 0% Ok OF. O and OF

Observe that we are replacing 7 by k. Indeed, we consider that k = k,, n > 1, is
replacing 7, and thus it is also an intermediate sequence on behalf of consistency.
Estimators in (2.11) are functions of k, the number of order statistics higher than
the chosen level, where an increasing/decreasing k increases the bias/variance
(see Figure 1). Thus the choice of k is central in the estimation, not only of the
extremal index, but also of many other tail measures, making this topic largely
addressed in literature (see, e.g., Beirlant et al. [2] 2004).

The “plateau-finding” algorithm of Frahm et al. ([12] 2005), applied to the
estimation of the tail dependence coefficient of random pairs and here adopted to
estimate the extremal index, is based on a smoothing of the estimator’s sample
path by a simple box kernel with integer bandwidth d > 0. The resulting trajec-
tory thus corresponds to the moving average of 2d 4+ 1 successive points of the
initial one and will be used in the rest of the procedure that consists on the ap-
plication of a plateau definition and respective finding criterium. In the following
we detail the method which we denote Algorithm 1.

Algorithm 1:

For a sample (X7, ..., X},), consider bandwidth d = [wn] € N and compute
the means of 2d + 1 successive points of HA;C, 1 <k < n, with smoothing degree
w = 0.005 (thus each moving average is about 1% of the data, as suggested in
Frahm et al. [12] 2005). In the resulting smoothed values, 51, ...,é\n,gd, define
the plateaus py = (é\k‘v"'?é\k‘-i—m—l)a k=1,....n—2d—m+ 1, with length m =
[v/n — 2d]. The algorithm stops at the first plateau satisfying

k+m—1 _ o
> 10— k| < 25,
i=k+1
where s is the empirical standard deviation of 51, cees én,Qd. Estimate 6 as the

mean of the values of the chosen plane region (consider the estimate zero if no
stable region fulfills the stopping condition).

For comparison, we also consider another heuristic procedure introduced in
Gomes et al. ([14] 2013), also seeking the plane region that presumably includes



Extremal Index Estimation 123

the “optimal” sample fraction k to be estimated. The algorithm is described below
and denoted Algorithm 2.

Algorithms 2 and 3:

For a sample (Xi,..., X,,), obtain the minimum value jj, such that the
rounded values to j decimal places of @k, 1 <k < n, denoted 67;.3(3) are not all
equal. Identify the set of values of k associated to equal consecutive values of
§k (jo). Consider the set with largest range ¢ := kpayx — knin. Take all the estimates
gk(jo + 2) with kpax < k < knin, i.e., the estimates with two more decimal points
and obtain the mode. Denote IC the set of k-values associated with this mode.
Consider %, where % is the maximum of K.

We also consider the variant /0\75 by taking k = ¢ as mentioned in Neves et
al. ([23] 2015). This will be denoted Algorithm 3.

Observe that the described methodologies are all threshold-free. Robert
et al. ([25] 2009) also presented a threshold-free procedure based on blocks and
sliding estimators defined in (2.10). It is described downwards and will be called
Algorithm 4:

Algorithm 4:

For a sample (X1, ..., X,,), choose a block size r, take b = [n/r], 7 = 1 and

U= Xn—[bT]—‘rl:n' Consider Na,b(u) = Za<i§b 1{X¢>u}7 Nnﬂ“(u) = (1/(11—7’—1—/\1)) x
S Nogr(), 52,(0) i= 00 (N (1) — N 0))? and @2, (a) 1= 22 x

3377«(10 — 1. Calculate 6 = 5[1;7_

T e {SL,DJ} and ¢ = ¢, (u). Obtain i through

UsL = 4904_2(60‘ —1—a)+ a~16c?
'LL =
pps = 0(2a) " (e — 1) + a~10c?,

replacing 6, ¢ and a by, respectively, 5, Zand 7. Obtain the bias-corrected § — /b
and estimate the variance by evaluating v = 2(62/a3)(e® — 1 —a —a?/2) +6%c?/a
at 0 = /0\, c=7¢and a = 0r. Take @ as the value that minimizes v when § = §
and ¢ = ¢. Now repeat the procedure for the founded optimal value 7 = a/ 0.

In the sequel, we use the abbreviations Al, A2, A3 and A4, respectively,
to refer the algorithms above.
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3. SIMULATION STUDY

We are going to analyze through simulation the performance of the esti-
mators in (2.11) within the methodologies A1-A4 described above. This study is
based on the following models:

Max-autoregressive process (MAR), X; = aX;_1 V¢, where 0 < a < 1
and {¢;};>1 is an i.i.d. sequence of r.v.’s with d.f. Fi(z) =exp(—(1—a)/z),
x> 0. This process has # =1 —«a. We consider o = 1/2 and hence
0=1/2.

Moving maxima process (MM), X; =\, _q _,, aj€i—j, with 377 ja; =1
and a; > 0, {€;};>1 is an i.i.d. sequence of unit Féchet distributed r.v.’s.
This process has 6 = \/j:(),._.7m a;. We consider m =3, a9 =1/3, a1 =1/6,
ag = 1/2 leading to 6 = 1/2.

Autoregressive Gaussian process (AR), X; = aX;_1 +¢€;, where {¢;};>1 is
an i.i.d. sequence of N(0, 1 — o?) distributed r.v.’s. This process satisfies
condition D'(u,,) and thus § = 1 (Leadbetter et al. [20] 1983).

A first order autoregressive process, with Cauchy marginals (ARCauchy)
of Chernick ([3] 1978), X; = sX;_1 +¢€;, with |s| < 1. The extremal index
is given by 1 — s2. We take s = —3/5 and thus 0 = 0.64.

A negatively correlated uniform autoregressive process (ARUnif) of
Chernick et al. ([4], 1991), X; = —(1/s)X;_1 + €;, where {¢;};>1 is an
i.i.d. sequence such that P(e; =j/s)=1/s for j=1,...,s. We have
6 =1—1/s?. Here we consider s = 2 and thus § = 3/4.

Bivariate extreme value Markov process with standard Gumbel mar-
ginals and logistic dependence function, i.e.,

P(X; <@, Xipa S y) = exp(=(a"/ +y'/)°).

We consider the dependence parameter o = 0.5 which gives 6 = 0.328
(Smith [26] 1992), and denote the process MCBEV.

A GARCH(1,1) process, X; = oie;, with 0? = a+ AX2 | + Bo2 |,
a, A, > 0, where {¢; };>1 is an i.i.d. sequence of standard Gaussian r.v.’s.
We consider o = 1075, A\ = 1/4 and 3 = 7/10 resulting in § = 0.447 (see

details in Laurini and Tawn, [18] 2012).

We consider samples of sizes n = 100, 1000, 5000 and generate 100 inde-

pendent replications of each and for each model. We compare the estimation

procedures by computing the absolute mean bias and the root mean square error

(rmse).
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Remark 3.1. Observe that the methods being compared avoid threshold
selection but need a cluster identification parameter, whether be it a block size
or a run length. Recall that the dependence condition D™ (u,) of Chernick et
al. ([4], 1991) is a diagnostic tool for cluster identification within the runs estima-
tor é\% and estimator HAgF defined in (2.8). More precisely, we take the run length
r equal to m in the first (see discussion concerning (2.9)) and cycles of size m — 1
in the second as stated in (2.8). The MAR process satisfies condition D®)(u,,),
whilst the processes MM, ARCauchy and ARUnif satisfy condition D®)(u,,).
See Ferreira and Ferreira ([10] 2015) and references therein for more details.
In this latter reference, we validated conditions D™ (u,) and D®)(u,) for the
processes MCBEV and GARCH, respectively. In what concerns the remaining
estimators which are based on blocks schemes, the respective cluster parameters
were chosen according to an overall good performance found on further simula-
tions.

The results are presented in Tables 1-6 (the bold numbers correspond to
the smallest estimates obtained in each model). A high bias is observed in the AR
model and also in models ARCauchy, ARUnif and GARCH concerning the runs,
the intervals and the FF estimator, under algorithms A2 and A3. The lowest val-
ues of rmse rely frequently on blocks 52 and 521“ estimators under algorithms A1,
A2 and A3, followed by estimators 52 and 5? within algorithm Al. In the AR
process, the results differ from the others where the estimators 52*] and 521“ tend
to behave better over the four algorithms. Observe that in this case we have the
boundary value # = 1 (as in i.i.d. sequences) where inference is usually problem-
atic (see Ancona-Navarrete and Tawn [1] 2000). The intervals estimator, 5}2, is
parameter-free under the methods in study and may be considered within MAR,
AR, MM and MCBEV models. The worst performances concern mainly estima-
tors §£F and 52 for algorithm A2, where the method is returning a too high k,
corresponding to estimates with very large bias. In Gomes et al. ([13] 2008)
it was presented a reduced-bias version of Nandagopalan’s estimator based on
the Generalized Jackknife (GJ) methodology, which is given by

N R IR R
(31) GkGJ - 59[k/2]+1 - 2 (6[k/4}+1 + gk) .

Notice that Nandagopalan’s estimator corresponds to the runs estimator when-
ever we take the run length 2, which in turn requires D”(u,). In our examples,
only models MAR and AR satisfy this condition. We have also applied the es-
timator (3.1) to all models within algorithms A2 and A3. Indeed, except in the
GARCH case, the rmse of (/9\2(” decreases to about the half of the rmse of the
runs estimator, mostly for larger sample sizes (n > 1000) and with algorithm A2.
In the case of algorithm A3, the rmse of @GJ is smaller than the runs estimator
only within the largest sample size (n = 5000) of models MAR and ARUnif.
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Root mean squared errors obtained for simulated samples of size n = 100.
For estimators 67" and 67 we considered blocks of length 3 except in
MCBEV and GARCH models where we used blocks of length 4 and 5,

respectively. For estimators 521 and §§L we considered blocks of length 5.
For estimator é\% (52‘7) we considered runs (cycles) of length 2 in MAR
and AR, of length 3 in MM, ARCauchy and ARUnif, of length 4 in
MCBEV and length 5 in GARCH. See Remark 3.1.

’Al \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
g | 01338 03603 01215 01534  0.1528  0.1249  0.1782
9. | 02754 02899 02271 03549 02487 03071  0.5170
FF | 01469 05336  0.488 01831  0.1474  0.1352  0.2018
B | 01467 04548 01780  0.2869  0.1820  0.1544  0.1626
B | 01233 04826 01594 01948  0.1459  0.1380  0.1539
| 02971 05041 02803 03296  0.3406 02909  0.5316
5% | 02583 0.2327 02474 02907 03419 03052  0.5185
]Az \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
B | 03183 07928 04133 0.6283  0.7399 02663  0.4366
2 | 03003 05448 05071  0.3925 02500  0.3404  0.5569
9. | 02621 05387 03032 0.2500 02500 02133  0.5511
O | 04353 09410 04627  0.6400  0.7500  0.4447  0.2910
| 0.0996 05217 00948 02176  0.1079 00734  0.1793
@ | 01216 06186 01162 02118 03018  0.0495  0.2108
2 | 02646 04831 02146 02801 03010 02405  0.3230
6% | 03035 04431 02110 03158 04289 02457  0.4511
]As \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
| 01199 04192 01746 03026 02923  0.1158  0.3151
9% | 06235 05285 05323 03673 02505  0.6538  0.6584
6. | 02770 02846 02527 02500 02500  0.3095  0.4959
g | 01801 06620 02295 04697  0.4486 03133 0.1766
2 | 01663 04521 01890 02587 02051  0.1517  0.1580
| 0.0967 05245 0.0775  0.1105  0.1179 00570  0.1439
® | 04813 02096 04017 04394 03769 04782  0.5875
B | 04802 04092 04041 04609  0.4946 05056  0.6435
’A4 \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
| 03001 02423 02748 02888  0.3457  0.3496  0.4886
L | 02482 02445  0.2302 0.2644 0.3279  0.3562  0.4811
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Table 2: Absolute bias obtained for simulated samples of size n = 100.
For estimators 67" and 6} we considered blocks of length 3
except in MCBEV and GARCH models where we used blocks
of length 4 and 5, respectively. For estimators 677 and 67 we
considered blocks of length 5. For estimator 0% (6F) we con-
sidered runs (cycles) of length 2 in MAR and AR, of length 3
in MM, ARCauchy and ARUnif, of length 4 in MCBEV and
length 5 in GARCH. See Remark 3.1.

] Al \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
é),‘; 0.0152 0.3280 0.0833 0.0618 0.0569 0.0076 0.0303
@i 0.1577 0.2040 0.1234 0.3545 0.2487 0.1875 0.5006
@;F 0.0780 0.5172 0.1243 0.1276 0.0003 0.1070 0.1841
/0\;2]“ 0.0063 0.4319 0.0709 0.0307 0.0321 0.0439 0.0771
(92 0.0120 0.4657 0.0432 0.0350 0.0756 0.0265 0.1071
éEJ 0.0454 0.3721 0.1328 0.2646 0.2934 0.2091 0.4143
4/9\1561“ 0.2050 0.1729 0.2186 0.2519 0.2993 0.2797 0.4928

] A2 \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
4/9\2 0.2971 0.7778 0.4045 0.6283 0.7399 0.2586 0.4366
@GJ 0.0057 0.4671 0.3341 0.3714 0.2500 0.0889 0.5222
é\lfc 0.0031 0.4575 0.0879 0.2500 0.2500 0.0017 0.5505
@[;F 0.4294 0.9393 0.4599 0.6400 0.7500 0.4445 0.2861
5;%]“ 0.0371 0.5127 0.0113 0.1278 0.0389 0.0097 0.1673
é}; 0.1135 0.6172 0.1051 0.1628 0.2906 0.0311 0.2047
52‘1 0.0107 0.3768 0.0187 0.0198 0.1110 0.0554 0.1470
é\,sf 0.1030 0.2913 0.0594 0.0748 0.1952 0.1127 0.2979

] A3 \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
é}; 0.0488 0.4056 0.1598 0.2875 0.2800 0.0937 0.3110
@‘k,“ 0.0057 0.4671 0.3341 0.3714 0.2500 0.0889 0.5222
éﬁ 0.1607 0.2045 0.1672 0.2500 0.2500 0.2044 0.4792
é\}rf 0.1593 0.6558 0.2182 0.4652 0.4444 0.3097 0.1711
(9\,? 0.0275 0.4163 0.0766 0.0566 0.0702 0.0565 0.0561
/0\,2 0.0547 0.5184 0.0120 0.0179 0.1023 0.0025 0.1280
ézj 0.3553 0.0206 0.2558 0.3441 0.3146 0.3330 0.4882
éEL 0.2852 0.0424 0.2375 0.2385 0.2952 0.3101 0.4835

] A4 \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
@,;J 0.2433 0.1865 0.2096 0.2462 0.3059 0.3099 0.4571
4/9\1561“ 0.2110 0.2031 0.1921 0.2238 0.2821 0.3219 0.4544
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Table 3:
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Root mean squared errors obtained for simulated samples of size n = 1000.
For estimators 6} and 6} we considered blocks of length 3 except in
MCBEV and GARCH models where we used blocks of length 4 and 5,

respectively. For estimators é\gj and 5,?‘ we considered blocks of length 20.
For estimator é\% (5?) we considered runs (cycles) of length 2 in MAR and
AR, of length 3 in MM, ARCauchy and ARUnif, of length 4 in MCBEV
and length 5 in GARCH. See Remark 3.1.

’Al \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
& | 00666 02877 00645  0.0874 00583  0.0508  0.1059
0. | 00795 03243 00658 02312 02498 00670  0.2217
FF | 00853 04148 00744 01014  0.0566  0.0809  0.1295
B | 0.0467 04381 00767  0.0882  0.0944  0.0836  0.0845
| 00532 04499 00680  0.0624  0.1022 00675  0.0993
| 02161 04323 02225 01859 03059  0.1351  0.2101
o | 01342 03379 01101 01303 01563  0.1057  0.1877
]Az \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
B | 01915 07503 04357  0.6388 07489  0.2656  0.4457
2 | 03003 05448 05071  0.3925 02500  0.3404  0.5569
9. | 0.1227 05738 00688 03600 02500  0.0565  0.5202
O | 04435 09582 04794  0.6397  0.7500 02768  0.4458
7 | 0.0283 04765 0.0647  0.2051  0.0631 00680  0.0615
| 00926 05931 00803 01206 02387 0.0188  0.1398
| 00932 03744 03845 01216 02352 01007  0.2247
6% | 01211 03330 01085 01636 02534  0.1402  0.2763
]As \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
9 | 00950 04033 0.1573 03373 03289  0.1097  0.3671
2 | 01910 02089 03553  0.3774 02954 02495  0.4270
0. | 00781 03848 00640 03600 04200  0.0573  0.3668
g | 01726 06209 01978 04741 04548  0.1633  0.2951
| 0.0321 04584  0.0641  0.0948  0.0562 0.0728  0.0657
2 | 00839 05430 0.0385  0.0320  0.0868 00208  0.1542
® | 01130 02348 01095 01169  0.1568  0.09%  0.1913
B | 00992 02507 00937 01143  0.1497  0.1013  0.1851
’A4 \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
| 01203 02496 01350  0.409  0.1757  0.1336  0.2330

0.1054 0.2313 0.0931 0.1300 0.1753 0.1279 0.2279
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Table 4:  Absolute bias obtained for simulated samples of size n = 1000.
For estimators 67" and 6} we considered blocks of length 3
except in MCBEV and GARCH models where we used blocks
of length 4 and 5, respectively. For estimators 677 and 67 we
considered blocks of length 20. For estimator 8% (6FF) we con-
sidered runs (cycles) of length 2 in MAR and AR, of length 3
in MM, ARCauchy and ARUnif, of length 4 in MCBEV and
length 5 in GARCH. See Remark 3.1.

] Al \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
é},; 0.0301 0.2748 0.0481 0.0607 0.0128 0.0134 0.0608
/0\,[@, 0.0007  0.2901 0.0016 0.1815 0.2498 0.0107 0.1523
é\? 0.0604 0.4010 0.0593 0.0780 0.0074 0.0707 0.1184
(/9);?“ 0.0032 0.4350 0.0595 0.0400 0.0625 0.0683 0.0703
52 0.0146 0.4461 0.0420 0.0174 0.0881 0.0494 0.0886
5;2‘1 0.0368 0.3275 0.0347 0.0332 0.0237 0.0260 0.0934
é\% 0.0417 0.2780 0.0459 0.0562 0.1221 0.0800 0.1571

] A2 \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
52 0.1768 0.7390 0.4300 0.6388 0.7489 0.2584 0.4457
@}im 0.0437 0.3963 0.2290 0.6301 0.2500 0.1622 0.6187
é}c 0.1075 0.5675 0.0368 0.3600 0.2500 0.0334 0.5136
5}? 0.4389 0.9578 0.4783 0.6397 0.7500 0.2700 0.4458
éEL 0.0029 0.4747 0.0533 0.1550 0.0156 0.0629 0.0570
/9),2 0.0894 0.5922 0.0650 0.0608 0.2316 0.0041 0.1370
/OEJ 0.0283 0.3423 0.3701 0.0453 0.1888 0.0847 0.1956
é\,scL 0.0872 0.3160 0.0839 0.1281 0.2122 0.1176 0.2455

] A3 \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
/9\2 0.0853 0.4012 0.1554 0.3363 0.3278 0.1070 0.3667
@,im 0.0031 0.2511 0.1745 0.3805 0.2954 0.0456 0.3930
é\,i 0.0231 0.3732  0.0015 0.3373 0.2490 0.0106 0.3145
@;F 0.1703 0.6203 0.1965 0.4735 0.4545 0.1620 0.2945
é\,EL 0.0006 0.4565 0.0550 0.0677 0.0254 0.0660 0.0597
(/9);2 0.0775 0.5422 0.0314 0.0017 0.0855 0.0124 0.1522
5,2‘] 0.0597 0.2013 0.0679 0.0519 0.0959 0.0792 0.1490
(/9\;?“ 0.0647 0.2340 0.0673 0.0700 0.1147 0.0848 0.1533

] Ad \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
(/9\;2'1 0.0658 0.2172 0.0699 0.0860 0.1134 0.1104 0.2088
521“ 0.0668 0.1988  0.0460 0.0833 0.1302 0.1106 0.2057
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Root mean squared errors obtained for simulated samples of size n = 5000.
For estimators 6} and 6} we considered blocks of length 3 except in
MCBEV and GARCH models where we used blocks of length 4 and 5,

respectively. For estimators é\gj and 5,?‘ we considered blocks of length 20.
For estimator é\% (5?) we considered runs (cycles) of length 2 in MAR and
AR, of length 3 in MM, ARCauchy and ARUnif, of length 4 in MCBEV
and length 5 in GARCH. See Remark 3.1.

’Al \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
B | 00434 02504 00395 00518 00314 00409  0.1257
8. | 0.0460 02004 0.0327 00799 02499  0.0387  0.1004
F7 | 00541 04309 00423 00558  0.0303  0.0608  0.1072
g | 00231 04234 00554  0.0585  0.0803 00715  0.0683
| 00200 04272 00572 00457  0.0865  0.0656  0.0823
| 00587 02439 00755 00895 01030  0.0789  0.1415
B | 00592 02317 00557 00796 00954  0.0781  0.1407
]Az \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
B | 01500 07498 04382  0.6396  0.7498 02648  0.4464
% | 00700 03918 02273 04596 02500  0.1532  0.6150
9. | 00940 05357 00446 03600 02500  0.0370  0.5351
O | 04416 09505 04915  0.6398  0.7500 02749  0.4456
7 | 0.0113 04786  0.0606  0.2282  0.0510  0.0688  0.0547
| 00838 05925 00502 00505 01818  0.0189  0.1308
| 00862 03085 00942 01364 02416  0.1171  0.2121
8% | 01056 02843 01056  0.595 02502  0.1350  0.2456
]As \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
9 | 00970 02576 0.1530  0.3369  0.3316  0.1063  0.3688
2 | 0.0700 03918 02273 04596 02500  0.1532  0.6150
8. | 00611 04150 0.0300  0.3600 02499  0.0378  0.3648
g | 0.1663 06147 01941 04709 04544  0.1587  0.2940
2 | 00190 04818 00606  0.082 00253 00728  0.0777
2 | 00787 05461 00366  0.0308  0.0858  0.0164  0.1553
® | 00716 02528 00777 0.0992  0.1202  0.1035  0.1692
8% | 00842 02695 00908 01062  0.1312  0.1152  0.1769
’A4 \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
2 | 0.0664 0.2149 00561 00989  0.1147  0.1259  0.2109

0.0644 0.2155 0.0523 0.0916 0.1066 0.1224 0.2100
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Table 6:  Absolute bias obtained for simulated samples of size n = 5000.
For estimators 67" and 6} we considered blocks of length 3
except in MCBEV and GARCH models where we used blocks
of length 4 and 5, respectively. For estimators 677 and 67 we
considered blocks of length 20. For estimator 8% (6FF) we con-
sidered runs (cycles) of length 2 in MAR and AR, of length 3
in MM, ARCauchy and ARUnif, of length 4 in MCBEV and
length 5 in GARCH. See Remark 3.1.

] Al \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
é},; 0.0180 0.2431 0.0293 0.0273 0.0035 0.0015 0.1093
/0\,[@, 0.0065 0.2784  0.0024 0.0522 0.2499 0.0118 0.0482
é\? 0.0360 0.4132 0.0321 0.0343 0.0015 0.0500 0.1023
(/9),?“ 0.0044 0.4223 0.0050 0.0363 0.0660 0.0669 0.0638
52 0.0015 0.4258 0.0462 0.0238 0.0774 0.0586 0.0779
5;2‘1 0.0372 0.2241 0.0383 0.0640 0.0752 0.0613 0.1229
é\% 0.0379 0.2251 0.0469 0.0570 0.0711 0.0648 0.1202

] A2 \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
52 0.1394 0.7498 0.4374 0.6396 0.7498 0.2612 0.4464
@}im 0.0475 0.3896 0.2176 0.4050 0.2500 0.1428 0.6102
é}c 0.0852 0.5310 0.0280 0.3600 0.2500 0.0267 0.5330
5}? 0.4406 0.9501 0.4908 0.6398 0.7500 0.2688 0.4456
éEL 0.0009 0.4783 0.0580 0.2202 0.0349 0.0680 0.0532
/9),2 0.0814 0.5919 0.0308 0.0040 0.1602 0.0048 0.1284
/OEJ 0.0747 0.3002 0.0856 0.1167 0.2156 0.1073 0.1987
é\,scL 0.0959 0.2793 0.0976 0.1393 0.2163 0.1240 0.2304

] A3 \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
/9\2 0.0947 0.2573 0.1526 0.3367 0.3314 0.1055 0.3687
@,im 0.0107 0.2890 0.1773 0.3896 0.2990 0.0859 0.4441
é\,i 0.0546 0.4124 0.0164 0.3600 0.2499 0.0210 0.3389
@;F 0.1657 0.6146 0.1939 0.4708 0.4544 0.1584 0.2939
é\,EL 0.0011 0.4813 0.0580 0.1006 0.0152 0.0701 0.0765
(/9);2 0.0777 0.5460 0.0346 0.0064 0.0856 0.0114 0.1545
5,2‘] 0.0609 0.2470 0.0692 0.0857 0.1075 0.0990 0.1592
(/9\;?“ 0.0758 0.2660 0.0854 0.0988 0.1217 0.1121 0.1688

] Ad \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
(/9\,2'1 0.0562 0.2079  0.0451 0.0835 0.0853 0.1212 0.2049
521“ 0.0570 0.2097 0.0449 0.0812 0.0778 0.1190 0.2065
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4. APPLICATION TO REAL DATA

We consider the daily maximum temperatures (in degrees Celsius) at Uccle
(Belgium), from 1901 to 1999, on the warmest month of July (thus station-
arity is assumed), consisting in n = 3051 observations. The data is available
at “http://lstat.kuleuven.be/Wiley/Data/ecad00045TX.txt” and is plotted in
Figure 2. The extremal index of this series was analyzed in Beirlant et al. ([2]
2004), where the respective estimates, obtained through parametric modeling,
ranged between 0.49 and 0.56.
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daily maximum temperatures
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Figure 2: July daily maximum temperatures (in degrees Celsius) at Uccle,
over the years 1901-1999.

We start by checking if we can validate some condition D*)(u,). To this
end, we use the empirical methodology of Ferreira and Ferreira ([10], 2015) by
calculating the proportion of anti—D(m)(un) events among the exceedances for
several pairs of normalized levels u,, and block sizes ry:

{Xj >Un, Xj+1<Un;e o, Xjt+m—1 Sunyj\/[j+m71,rn+j71>un}

P(tn,Tn) =
o Zz'l:l ]I{Xj>un}

More precisely, for each fixed 7 > 0, we take u,, as the empirical (1 —7/n)-th
quantile for increasing sample sizes n and choose the sequence {b, = [n/r,]|}n
growing at a slower rate than n, e.g., b, = [(logn)?], for some a > 0. If D(™)(u,,)
holds with b, the points (n, p(uy,r,)) approach zero as n — oo. Based on the
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suggested declustering parameter r = 4 in Beirlant et al. ([2] 2004), we have ana-
lyzed the proportions of anti-D(*) (u,, ), plotted in Figure 3 (right panel) for 7 = 15
(full line) and 7 = 20 (dashed line), with &, = [(logn)*?]. Observe that the val-
ues are small and almost indistinguishable from the proportions of anti-D®) (u,,)
(left panel). We have also taken k, = [(logn)3] which led to null proportions in
both cases. Therefore, we assume the validity of the D®) (u,,) local condition and
consider run length 3 for the runs estimator and cycles of length 2 for the FF
estimator in (2.8); see Remark 3.1. We also take block-length 3 in the blocks esti-
mators. The disjoint and slides methods were implemented with block-length 15.
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Figure 3: Observed proportions of anti-D) (u,,) (left) and anti-D™®) (u,,)
conditions for Uccle data, for 7 =15 (full line) and 7= 20
(dashed line), with k,, = [(logn)?-%].

The sample paths of the considered estimators in (2.11) and (3.1) are in Figure 4.
Under algorithm A4, we obtained the estimate 0.51 for both disjoint and slide
estimators. We have also applied the bias-reduced GJ Nandagopalan’s runs esti-
mator in (3.1) from which the values 0.41 and 0.57 were derived under A2 and A3,
respectively. The remaining estimates are summarized in Table 7. The results
are mostly in agreement with the simulation study.

Table 7: Extremal index estimates for Uccle data.

R nI DFF B 7BL DI nSL
O 0% O Ok O O 0%

Al | 049 047 046 050 051 053 0.57
A2 | 010 033 0.05 039 050 052 0.53
A3 | 032 030 028 042 0.50 0.49 0.53
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Figure 4: Sample paths of estimators in (2.11) and estimator (3.1)
for Uccle data.

5. DISCUSSION

We have analyzed several estimators of the extremal index under different
methodologies. The procedure based in Frahm et al. ([12] 2005) revealed an over-
all satisfactory performance. The best results were mostly observed within the
blocks estimators, 08 and 6%, under the methodology of Neves et al. ([23] 2015).
The large biases observed in the AR process makes inference within weak depen-
dence, i.e., 8 = 1, an open topic to explore in this framework. Other methods to
analyze the local dependence D-conditions are also welcome. The bias-reduced
GJ Nandagopalan’s estimator is sensitive to the restricted condition D” and a
generalization of the method to the broader runs estimator may be more advan-
tageous. These points will be addressed in a future work.
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