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Abstract It is known that if A is a Toeplitz matrix, then A enjoys a circulant and skew circulant splitting (de-
noted by CSCS), i.e. , A = C+ S with C a circulant matrix and S a skew circulant matrix. Based on the CSCS
iteration [ 7], we give m — step preconditioners P,, for certain classes of Toeplitz matrices in this paper. We
show that if both C and S are positive definite, then the spectrum of the preconditioned matrix (P,A)* P, A are
clustered around one for some moderate size m . Experimental results show that the proposed preconditioners
perform slightly better than T. Chan’s preconditioners in [ 3] for some moderate size m .
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1 Introduction

Consider the solution to a large linear system of equations
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Ax = b, 1
by Preconditioned conjugate gradient (PCG) method, where A is an n X n nonhermitian posi-
tive definite Toeplitz matrix where A is constant along its diagonals,

Toeplitz linear systems arise in a variety of applications in mathematics, scientific com-
puting and engineering, see for instance [ 3] and references therein. There are two main
types of methods for solving Toeplitz systems: direct methods and iterative methods. The di-
rect methods are based on the idea of solving Toeplitz systems recursively. The operational
cost of these direct methods is O(x#%) [5]. The second type of method is iterative methods.
Conjugate Gradient (CG) method is a popular method for solving Toeplitz systems. An im-
portant property of a Toeplitz matrix is that it can be embedded into 2n X 22 circulant matrix.
Thus the operational cost for a Toeplitz matrix— vector multiplication is O(nlogn) by using
the Fast Fourier Transforms (FFT). One of the main important results of this methodology
is that the complexity of solving a large class of Toeplitz systems can be reduced to O(nlogn)
operations as compared to the O(»®) operations required by fast direct Toeplitz solvers, pro-
vided that a suitable preconditioner is chosen under certain conditions on Toeplitz solvers. In
the context of the preconditioners for Toeplitz matrices, various preconditioners proposed u-
sually correspond to different classes of Toeplitz matrices with certain structures and proper-
ties, That is why the theory and algorithms of preconditioners for Toeplitz systems have
been intrigued the researchers for decades, see for instance [ 3] and references therein.

Here we consider the m — step preconditioners (proposed in [1] and denoted by P,, ) for
such classes of Toeplitz matrices of which each consists of the sum of a positive definite circu-
lant matrix and a positive definite skew circulant matrix. Thepreconditioners are constructed
based on CSCS iteration proposed in [ 7). Note that the system (1) have the same solution as
the following preconditioned system:

(P,A)" (P,A)x = (P,A)" P,b. (2)

For such classes of Toeplitz matrices, we’ll show that the eigenvalues of the coefficient
matrix in (2) is clustered around one for some moderate large sizem . when the conjugate

gradient method is applied to solve system (2), we therefore expect fast convergence.

2 m —step preconditioners based on CSCS iteration

In this section, we first review some basic definitions, notation and preliminaries used in

the sequel, then introduce the CSCS iteration for Toeplitz system (1) and finally construct
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them —step preconditioners based on CSCS,

2.1 Preliminaries

Recall that a matrix A € C™" is said to be positive definite if x* Ax > 0 for all nonzero =
€ C" ( £ denotes the conjugate transpose of a vector x ), and that the expression A = M —
N is called,respectively, a splitting of A if M is nonsingular and a convergent splitting A if the
spectral radius of M™' N is less than one, i.e. , p(M'N) < 1.

The following two lemmas are classical results in matrix analysis[4]. A matrix [— H &€
C™" is invertible if there is a matrix norm ||+|| such that || H ||<C 1. If this condition is
satisfied, then (] — H)™! = Z:onk .

Let A € C™ , ande > 0 be given. There is a matrix norm ||« ||, such that p(A) <<|| A
[ < p(A) +e.

The following conclusion is very often used in iterative methods[ 6]. Given a nonsingular
matrix A and H such that (I — H)™' exists, there exists a unique pair of matrices My , Ny ,
such that H = M Ny and A = My — N , where My is nonsingular.

It is said that A = My — Ny is an induced splitting of A by H .

2.2 The CSCS iteration

Recall that any Toeplitz matrixA enjoys a circulant and skew—circulant splitting [7]. If
A =C+Sis aCSCSof A, then the CSCS iteration for solving (1) in [7] can be described as
follows.

Algorithm . (CSCS iteration) Given an initial guess z° , for £ = 0,1,2,+* until conver-

ges, compute

(ol +O 2T = (ol — Szt + b
(3)

(ol + ) = (ol — Ozt +5
where q is positive constants,
It is shown in [ 7] that the CSCS iteration is convergent unconditionally if bothC and S
are positive definite, and that the parameter ¢ has an optimal choice.
2.3 m —step preconditioners
For a general nonsingular matrix A , if A = M — N is a convergent splitting, then an m
—step approximate inverse preconditioner of A can be defined as
P,=U+H+HA4+H""HOM", (4
where H = M1'N, see [1].

Before giving the preconditioners of this paper, we first establish the following theorem.
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Let A = C+ S be the circulant and skew—circulant splitting of A. If both C and S are positive
definite, then the CSCS iteration induces a convergent splitting A = M — N with M =

(al +C)(al +5)

5 and M 'N=( 4+ (=0 (+0O"(al — 9.
Q

Proof In fact, one CSCS iteration (3) consists of two half step iterations, which can be
thought of as the following single step iteration
! = Hx* +Gb, (5
where H = (ol +8)7 ' (al —C) (el +C) ' (al —S) and G = 2¢ (al +S)7! (ol + C)7! . From
the assumption, « >> 0 , which implies that G is invertible. By Lemma 2. 1, we then have the
following induced splitting by H ,
A=G'—G'H, (6)
By settingM = G and N = G'H , we thus complete the proof.
For system (1), if A = C+ Sis a CSCS with positive definite C and S , by Theorem 4,
we then have that A = G —G ™' H is a convergent splitting, where G and H are defined as in

(6). Thus the m —step preconditioner P,, in (4) for A can be defined.

3 Analysis of the convergence

The following lemma concerns an error bound which describes the convergence rate of
the preconditioned system. ([2]) Let x* be the kth iteration of the CG method applied to the
symmetric positive definite system Bz = b and x be the exact solution of the system. If the ei-

genvalues A; of B are ordered such that 0 < ¢ <CA; << ++» <<, << By wherea and Bare two con-

1 &
stants, then | | | x—x* || )<l 2 (%T}—) ||} x—x°|]], where||]+}|] is the energy norm giv-

enby ||| v|||?=v"Bvandy = (ﬂ/a)%Zl.

This Lemma tell us that the more clustered the eigenvalues are, the faster the conver-
gence rate will be. The following theorem is the main result of this paper, in which the
bounds of eigenvalues of the preconditioned matrix in (2) is given.

Let A = C+ S be the circulant and skew—circulant splitting of A , let the preconditioner

P, be defined as in (4), and the eigenvalues of the preconditioned matrix A = (P,A)* (P,A)
in (2) be ordered such thatA, <{A,; <<+ <{A, . If bothCand S are positive definite, then we

have the following bounds

Q-1 H 1) <A <A+ H L2, e
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where H = H" , A = (P,A)* (P,A) , ||<|], is the matrix norm in Lemma

Table 1 No. of iters. with P, and Cr in Example 4, 1—4. 2

Precons

n Example 4, 1 Example 4, 2

P, Cr P, P, Py Cr Py P,
128 18 7 5 3 23 7 5 3
256 18 7 5 3 23 7 5 3
512 18 7 5 3 23 7 5 3
1024 18 7 5 3 23 7 5 3

Proof Now we consider the preconditioned linear system (2), P,A = I — H , since

p(H) <1, we get p(H) < 1. By lemma 2.1, for any sufficient smalle > 0 , there exists a
norm | [+11, >0, such that o(H) < || H ||, <p(H)+e< 1. It suffices to show that2,(A)

= A-—1| H [ 12 andAl(A) < (141 H [1)2. We first prove the left inequality (7): B

lemma 2.1, we get

1 > S : > L
p(ADY (U= U= |1, U= |2

A (A =

> 1 > : L = C—[|HI])
[WAd+H+H +- [} Q+|IH||l.+IIHI||II+

For the right inequality of (7), we have

M (A < p((T— YT —H) < (= DUT—=H) |1, <A+ H D%

Thus we complete the proof.

4 Numerical examples

All the numerical tests were done on a Founder desktop PC with Pentium dual — core
E6700 CPU 3. 20 GHz with Matlab 7. 4, 0. 287 (R2007a). When CG method is applied to the
preconditioned system (2), the initial guessx’ is chosen to be zero vector. The stopping cri-
EEaNEP
e

teria is 7t = : < 1077 , where r* is the residual vector at kth iteration.

To verify the effectiveness of our preconditioners, three kinds of generating functions

were tested and listed as follows
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Example 4.1 a,=5,a, =—1,a,=1,a, =—2, anda; =0, elsewhere; b =e¢ =
(1,1,-,D7T,

Example 4.2 oy =10,a  =—1—2%{,a,=—1—3%i,a,=2%1,a_,=3%1,b
= Se .,

Example 4.3 a, = (0.1+]| j [D™#,j = 0sand e, =: (0. 14 j | *,j<0,b= Ae.

Table 2 No. of iters with P,, and Cr in Example 4. 3

Precons
n Cr Py P, P,
0.9 1 1.1 0.9 1 1.1 0.9 1 1.1 0.9 1 1.1
128 7 [ 6 12 10 9 4 4 3 3 2 2
256 7 6 6 13 11 9 5 4 3 3 3 2
512 7 6 6 14 11 10 5 4 3 3 3 2
1024 7 6 6 15 12 10 5 4 3 3 3 2

For comparison, we also test T. Chan’s circulant preconditioner Cr in [3]. The numer-
ical results are illustrated in Tables 1—2, where #n is the order of coefficient matrix A, Cr is
Chan’s preconditioner and P,,, m=0,1,2 are our new preconditioners. In the numerical test
of Example , the scalar u is taken to be 0.9, 1. 0 and 1. 1, respectively, Numerical experi-

ments show that our preconditioners P,,, m=1,2, perform slightly better than Chan’s one.
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