Molecular Microbiology and Microbial Physiology

P-270 - ESTABLISHMENT OF GALACTOSE UTILIZATION IN SACCHAROMYCES CEREVISIAE PE-2 THROUGH EXPRESSION OF THE CEN.PK113-5D GAL2 GALACTOSE PERMEASE

Sara L. Baptista¹; Tatiana Q. Aguiar¹; Björn Johansson²; Lucília Domingues¹

1 - Centre of Biological Engineering of the University of Minho; 2 - Centre of Molecular and Environmental Biology of the University of Minho

Background

Saccharomyces cerevisiae PE-2 is one of the most robust yeast chassis for use in second-generation bioprocesses [1-2]. Unfortunately, we noticed that it is incapable of utilizing galactose, which is abundant in diverse agro-industrial derived substrates. In this study we analysed the galactose utilization pathway (Leloir pathway) of this strain and identified the Gal2 galactose permease as the limiting step.

Method

The putative amino acid (aa) sequences of the S. cerevisiae JAY291 (haploid derivate of PE-2) proteins involved in galactose utilization (Gal2, Gal1, Gal7, Gal10, Gal5, Gal4, Gal80 and Gal3) were aligned (Clustal Omega) with the corresponding proteins of other industrial and laboratorial strains, revealing several point mutations in the Gal2 permease. PE-2 was then transformed with a 2 micron plasmid containing the CEN.PK113-5D GAL2 under the regulation of the TDH3 promoter and PGI1 terminator, and the resulting transformants were physiologically characterized in liquid YP containing 2% galactose plus 150 µg/mL G418.

Results & Conclusions

Homology-based analysis of the S. cerevisiae PE-2 Leloir pathway allowed the identification of 12 aa substitutions in the Gal2 sequence that are not conserved across other industrial and laboratorial strains. Three of these point mutations were found in the transmembrane domain 7 (TM7), a region important for substrate recognition [3]. Among these, the most significant includes the substitution F336L, as the loss of aromatic aa in TM7 is reported to be critical for galactose transport activity [3]. These results suggested that the galactose permease of S. cerevisiae PE-2 might lack galactose transport activity, which was further supported by the fact that expression of the CEN.PK113-5D GAL2 in PE-2 established its galactose utilization capacity. In fact, with this modification PE-2 was faster than CEN.PK113-5D in consuming 2% galactose (12h vs 14h, respectively). The high galactose utilization efficiency of this newly constructed PE-2 strain opens new perspectives and opportunities for the valorisation of galactose-containing second-generation substrates.

References & Acknowledgments


Study supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), Project MultiBiorefinery (POCI-01-0145-FEDER-016403), RECI/BBC-EB/0179/2012 (FCOMP-01-0124-FEDER-027462) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.

Keywords: Industrial Saccharomyces cerevisiae PE-2, Galactose utilization, Leloir pathway, Gal2 galactose permease