Study of \textit{hTERT} and Histone 3 Mutations in Medulloblastoma

Marta Viana-Pereiraa,b Gisele Caravina Almeidad
João Norberto Stavaleg Susana Malheiroh Carlos Clarae Patricia Loboc
José Pimentelc Rui Manuel Reisa,b,f

aLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, bICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, and cLaboratory of Neuropathology, Santa Maria Hospital, Institute of Molecular Medicine, Lisbon Faculty of Medicine, Lisbon, Portugal; Departments of dPathology and eNeurosurgery and fMolecular Oncology Research Center, Barretos Cancer Hospital, Barretos, and Departments of gPathology and hNeurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil

Key Words

\textit{hTERT} · Mutations · Medulloblastoma · Biomarkers

Abstract

Hotspot activating mutations of the telomerase reverse transcriptase (\textit{hTERT}) promoter region were recently described in several tumor types. These mutations lead to enhanced expression of telomerase, being responsible for telomere maintenance and allowing continuous cell division. Additionally, there are alternative telomere maintenance mechanisms, associated with histone H3 mutations, responsible for disrupting the histone code and affecting the regulation of transcription. Here, we investigated the clinical relevance of these mechanistically related molecules in medulloblastoma. Sixty-nine medulloblastomas, formalin fixed and paraffin embedded, from a cohort of patients aged 1.5–70 years, were used to investigate the hotspot mutations of the \textit{hTERT} promoter region, i.e. \textit{H3F3A} and \textit{HIST1H3B}, using Sanger sequencing. We successfully sequenced \textit{hTERT} in all 69 medulloblastoma samples and identified a total of 19 mutated cases (27.5%). c.-124:G>A and c.-146:G>A mutations were detected, respectively, in 16 and 3 samples. Similar to previous reports, \textit{hTERT} mutations were more frequent in older patients (p < 0.0001), being found only in 5 patients <20 years of age. In addition, \textit{hTERT}-mutated tumors were more frequently recurrent (p = 0.026) and \textit{hTERT} mutations were significantly enriched in tumors located in the right cerebellar hemisphere (p = 0.039). No mutations were found on the \textit{H3F3A} or \textit{HIST1H3B} genes. \textit{hTERT} promoter mutations are frequent in medulloblastoma and are associated with older patients, prone to recurrence and located in the right cerebellar hemisphere. On the other hand, histone 3 mutations do not seem to be present in medulloblastoma.

Introduction

Shortening of telomeres is a natural mechanism that occurs during the replication of somatic cells, and is responsible for cell aging and replicative senescence \cite{1, 2}. One major mechanism of telomere length control is associated with the activity of the telomerase enzyme \cite{1, 2}. The catalytic subunit of this enzyme is encoded by the telomerase reverse transcriptase (\textit{hTERT}) gene and mod-
ulates telomerase activity [2, 3]. Although telomerase is normally silenced in somatic cells, it is active in male germ cells, activated lymphocytes, stem cell populations and during development [4–6]. In the large majority of human cancers, abnormal telomerase reactivation is observed, leading to telomere maintenance and limitless proliferative potential [7–9].

Hotspot activating mutations were recently described in the hTERT promoter region in a variety tumor types, including medulloblastomas (20%) and glioblastomas (83%) among many others [10–12]. These mutations are located in 2 positions, c.-124:G>A and c.-146:G>A, and are thought to be the main biological mechanism responsible for telomerase overexpression [13, 14]. The functional consequence of the presence of promoter mutations was initially associated with the creation a new binding motif for E-twenty-six (ETS) transcription factors and ternary complex factors (TCFs) near the transcription start, leading to an increased transcription of hTERT promoter of at least 2-fold, as assessed by reporter assays [13, 14]. Recently, it was also demonstrated that the occurrence of these mutations leads to the recruitment of the GABP transcription factor, and the activation of transcription and aberrant expression of hTERT in several cancers [15]. In addition to these mutations, a common functional single nucleotide polymorphism (SNP), rs2853669, located in the hTERT promoter has been shown to influence the prognostic value of the mutations mentioned in gliomas and bladder and renal cell carcinomas [16].

Alternative lengthening of telomeres (ALT) pathways has also been described, being present in 15% of cancers. Inactivating ATRX mutations, associated with histone H3 mutations, were described in tumors with ALT phenotype, including 1.5% of medulloblastoma [17]. These mutations were reported to be responsible for disrupting the histone code and affecting the regulation of transcription [18]. Mutations in histone 3 (H3F3A, encoding H3.3 and HIST1H3B, encoding H3.1) have been reported in higher frequencies in pediatric gliomas of different histologies, but have not been extensively studied in medulloblastoma [18–20].

In this work, we investigated the clinical relevance of these important regulators in medulloblastoma, confirming that hTERT promoter mutations are a frequent event in medulloblastoma. These mutations were associated with older age, tumor recurrence and tumors from the right cerebellar hemisphere. On the other hand, histone mutations do not seem to be present in this type of brain tumor.

Material and Methods

Tumor Samples and DNA Isolation

Formalin-fixed, paraffin-embedded (FFPE) medulloblastoma samples from 68 patients, i.e. 68 primary tumors and 1 recurrence (with a matched primary tumor sample) aged 1.5–70 years, were obtained after approval by local and multicenter ethical review committees at the Laboratory of Neuropathology, Hospital of Santa Maria (CHLN), Lisbon, Portugal, and the Federal University of São Paulo, São Paulo, and Barretos Cancer Hospital, Barretos, Brazil. All the samples enrolled in the study were unlinked and unidentified from their donors. Due the retrospective nature of the study, no written informed consent from patients was obtained. The presence of tumor tissue in the samples and the tumor histology was verified on an H&E-stained section by the pathologists J.N.S., J.P. and G.C.A.

DNA was isolated using the QIAamp DNA mini kit (Qiagen) according to the manufacturer’s instructions and as previously reported [21].

Mutation Analysis

hTERT promoter mutations were screened using the primers previously described [22] that amplify the sites of the c.-124:G>A and c.-146:G>A mutations, as previously described [12, 23, 24].

Histone 3 hotspot regions previously identified [18, 19] were amplified with the following primers: H3F3A (forward: 5′-CAT-GGCTCCTGACAAAGCAGA; reverse: 5′-CAAGAGAGACTTTG-TCCATTATT) and HIST1H3B (forward: 5′-TTTCGTTTTCC-TCACAGAGC; reverse: 5′-CGTGAACGTGAGCCCTTT).

Amplification of PCR products was confirmed by gel electrophoresis. Subsequently, samples were Sanger-sequenced after PCR product purification with ExoStar (Invitrogen). Sequencing PCR was performed using the ABI PRISM 3730xL DNA analyzer (Applied Biosystems, USA) by STAB VIDA services (Portugal).

Statistical Analysis

All statistical tests were done in SPSS v20.0 (SPSS Inc.). Correlations between categorical values were done using the 2-tailed χ² test and the Fisher exact test. Continuous variables were assessed using the Mann-Whitney U test. Associations between hTERT mutational status and patients’ overall survival were analyzed using the Kaplan-Meier method and the log-rank test. A p value of <0.05 was considered significant.

Results

hTERT Is Frequently Mutated in Medulloblastoma

We successfully sequenced hTERT in 69 FFPE medulloblastomas, corresponding to 68 primary tumors and 1 recurrence. Of these, 35 samples were from pediatric patients (1.5–17 years of age) and 32 from adults (>18 years); for an additional sample we could not confirm the age at diagnosis. We identified a total of 19 cases (27.5%) with hTERT promoter mutations (table 1). The c.-124:G>A mutation was detected in 16 samples, and the c.-146:G>A mutation (fig. 1) in 3 cases.
Similarly to previous reports [10, 11], hTERT mutations were more frequent in older patients (table 2; p < 0.0001), being found in only 3 patients younger than 17 years (3/35, 8.6%), whereas >50% of the adult patients presented with hTERT promoter mutations (18/32, 56.3%). In addition, hTERT-mutated tumors were more frequently in the recurrent cases (p = 0.026), and hTERT mutations were significantly enriched in the tumors located in the right cerebellar hemisphere (p = 0.039). No other clinicopathological features were found to be statistically significant (table 2; p > 0.05).

The polymorphism rs2853669 was successfully sequenced in 41 of the 69 samples, and was present in 41.5% of the cases. Although this polymorphism has been described as modifying the survival of mutant carriers [16], we could not confirm these results in our cohort as only 6 samples presenting the variant also had survival data. No differences were seen between wild-type (WT) and mutated samples regarding overall survival (fig. 2; p = 0.200).

Histone Mutations Are Rare Events in Medulloblastoma

We designed primers for the hotspot regions of H3F3A and HIST1H3B and successfully sequenced 59 samples for HIST1H3B and 65 for H3F3A. None of the samples analyzed harbored any mutation on H3F3A or HIST1H3B.
Promoter mutations of the hTERT gene were first described in melanoma in 2 distinct reports [13, 14]. Since then, hTERT promoter mutations have been described across several tumor types, and are one of the most frequent genetic alterations involved in human tumorigenesis [12, 25].

In this study, we demonstrate that 28% of our medulloblastoma samples presented hTERT hotspot promoter mutations, in line with previous reports (18–33%) [10, 11, 25, 26]. These mutations were more frequent in older patients (p < 0.0001), were not seen in any infants (aged <4 years) and were only present in 3 children of 12, 14 and 16 years of age. Previous reports have shown the same trend, with Koelsche et al. [26] reporting 3 and 65% of these mutations, respectively, in pediatric and adult patients. This is line with the literature that demonstrates clinical and molecular characteristics distinguishing pediatric and adult medulloblastomas [27]. hTERT mutations have been described to be associated with less metastatic medulloblastoma at diagnosis [10], and we have shown that these tumors were more prone to recurrence.

Discussion

Fig. 1. Representative electropherogram traces of hTERT Sanger sequencing from a WT sample and c.-124:G>A and c.-146:G>A mutant cases. Arrows indicate the mutated nucleotide.

Fig. 2. Kaplan-Meier survival curves for hTERT WT and mutant samples. No statistical differences were seen between the 2 groups (p = 0.200, log-rank test).

Downloaded by: Kansas State University

129.130.252.222 - 10/3/2016 3:35:16 PM
Mutations in histone 3 leading to K27M and G34R/G34V have been extensively reported in pediatric high-grade gliomas [18, 19]. In spite of this, not many works have reported the results of these mutations in medulloblastomas. In 2014, Huether et al. [20] studied >1,000 different pediatric cancers, 70 of which were medulloblastomas, and did not see histone mutations in this brain tumor type. Similarly, we successfully sequenced approximately 60 samples for the hotspot mutations of HIST1H3B and H3F3A and found no mutations in our samples. Currently, it is well accepted that medulloblastomas can be cytogenetically and molecularly stratified into distinct subgroups that are associated with distinct clinicopathological features [28, 29]. hTERT mutations have been reported more frequently in the SHH molecular subgroup [10], but further studies are needed to validate whether they are associated with particular cytogenetic and molecular subtypes.

In conclusion, we reported that hotspot hTERT mutations are present in approximately 1/3 of medulloblastomas cases and are associated with older patients and recurrent tumors, constituting a potential biomarker for medulloblastomas.

Acknowledgements

This study was partially supported by CNPq/Universal (475358/2011-2), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; 2012/19590-0) and Fundação para a Ciência e Tecnologia (FCT; PTDC/SAU-ONC/115513/2009) grants to R.M.R. The project was cofinanced by Programa Operacional Regional do Norte (ON.2-O Novo Norte), Quadro de Referência Estratégico Nacional (QREN) and Fundo Europeu de Desenvolvimento Regional (FEDER). M.V.-P. is the recipient of an FCT Post-Doctorate Research Fellowship (SFRH/BPD/104290/2014).

Disclosure Statement

The authors disclose no potential conflicts of interest.

Table 2. Association of hTERT mutation with clinicopathological features of medulloblastoma

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>hTERT WT</th>
<th>hTERT mutation</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>11</td>
<td>26</td>
<td><0.0001a</td>
</tr>
<tr>
<td>Range</td>
<td>1.5–65</td>
<td>12–70</td>
<td></td>
</tr>
<tr>
<td>n.a.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>15</td>
<td>7</td>
<td>1.000c</td>
</tr>
<tr>
<td>Male</td>
<td>30</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>n.a.</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classic</td>
<td>38</td>
<td>14</td>
<td>0.108c</td>
</tr>
<tr>
<td>Desmoplastic</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Anaplastic</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nodular</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>n.a.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Metastasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>16</td>
<td>9</td>
<td>0.286b</td>
</tr>
<tr>
<td>Positive</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>n.a.</td>
<td>26</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Recurrence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>18</td>
<td>8</td>
<td>0.026c</td>
</tr>
<tr>
<td>Positive</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>n.a.</td>
<td>27</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebellar vermis +</td>
<td>26</td>
<td>8</td>
<td>0.039b</td>
</tr>
<tr>
<td>4th ventricle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right cerebellar hemisphere</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Left cerebellar hemisphere</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>n.a.</td>
<td>13</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

* a Mann-Whitney U test. b Fisher’s exact test. c χ² test.

(p = 0.026) compared to the hTERT WT medulloblastomas. In addition, we also demonstrate, for the first time, that hTERT mutations were significantly enriched in tumors arising in the right cerebellar hemisphere (p = 0.039).

References

