
MAX 12 PAGES ALLOWED 
1 

A simple homogenized micro mechanical model for the analysis at the 
collapse of out-of-plane loaded masonry walls 

 
Gabriele Milani 
Department of Engineering, University of Ferrara, Ferrara, Italy 
E-mail: gmilani@ing.unife.it 

 
Paulo Lourenço 
Department of Civil Engineering, University of Minho, Campus de Azurem, Guimaraes, Portugal  
E-mail: pbl@civil.uminho.pt 

 
Antonio Tralli 
Department of Engineering, University of Ferrara, Ferrara, Italy 
E-mail: atralli@ing.unife.it 

 
Keywords: masonry, out-of-plane homogenization, limit analysis, linear programming 

 
SUMMARY: The paper presents a simple micro-mechanical model for the limit analysis of out-of-
plane loaded masonry walls by means of homogenization techniques. In this framework, masonry 
thickness is subdivided into several layers and for each layer polynomial distributions for the stress 
fields are a-priori assumed inside a fixed number of sub-domains. In this way, a simple linear 
programming problem is derived with the aim of obtaining out-of-plane homogenized failure surfaces 
of masonry. Finally, such strength domains are implemented in FE limit analysis codes for upper and 
lower bound analyses on entire masonry panels out-of-plane loaded. One of these numerical analyses is 
reported in order to show the reliability (in terms both of collapse loads and failure mechanisms) of the 
model at hand in comparison with experimental data. 

 
1. INTRODUCTION 
The prediction of the ultimate load bearing capacity of masonry walls out-of-plane loaded is of 

great technical relevance. As a matter of fact, out-of-plane failures are mostly related to seismic and 
wind loads. Furthermore, earthquake surveys have shown that the lack of out-of-plane strength is a 
primary cause of failure in many traditional forms of masonry and this is confirmed in the case of 
historical buildings, where the façades are often characterized by a relative small thickness (Spence and 
Coburn 1992). Many damages suffered by historical masonry buildings during the Friuli (1976), 
Umbria-Marche (1997-1998) and Molise (2002) earthquakes might be ascribed to out-of-plane 
collapses. Another important aspect to underline is that masonry structures are usually subjected 
simultaneously to in-plane compressive vertical loads and out-of-plane actions. As shown by 
experimentations, vertical loads increase not only the ultimate out-of-plane strength but also the 
ductility of masonry. 

On the other hand, laboratory tests conducted on brick masonry walls subjected to lateral loads, 
have demonstrated that failure takes place along a definite pattern of lines, so inspiring approximate 
analytical solutions based on the yield line theory (Sinha 1978). Up to now, the yield line method 
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seems the only suitable to be applied in practice for the evaluation of the ultimate load bearing capacity 
of masonry out-of-plane loaded. Furthermore, probably for its theoretical simplicity, it has been 
adopted by many codes of practice, as for instance BS 5628 and EC 6. Nevertheless, all codes employ 
only horizontal and vertical out-of-plane masonry strengths (which are experimentally available 
directly), leading unavoidably to an approximate estimation of the collapse load, which does not take 
into account brickwork torsion contribute. A limit analysis approach has been recently adopted also by 
OPCM 3274, where masonry is modeled as a no tension material. 

For this reason, limit analysis combined with a homogenization approach seems a powerful tool 
able to predict masonry behavior at collapse. Furthermore, this approach both requires only a reduced 
number of material parameters and allows to avoid an independent modeling of units and mortar. On 
the other hand, it is able to provide limit load multipliers, failure mechanisms and, at least on critical 
sections, the stress distribution at collapse. Nevertheless, an evident drawback of homogenization is 
that it requires to solve (usually by means of FE techniques) a field problem on the elementary cell and 
different loading conditions require different expensive simulations. 

The simple micro-mechanical model presented in this paper allows to avoid a FE discretization at a 
cell level; the elementary cell is subdivided along the thickness in several layers, for each layer fully 
equilibrated stress fields are assumed, a-priori fixing polynomial expressions for the stress tensor 
components in a finite number of sub-domains, imposing the continuity of the stress vector on the 
interfaces and anti-periodicity conditions on the boundary surface. As the lower bound theorem of limit 
analysis states, such stress distribution represents a statically admissible micro-stress field, provided 
that admissibility conditions for the constituent materials are imposed on the unit cell. A simple linear 
optimization problem with few variables is obtained in order to recover out-of-plane failure surfaces of 
masonry. Finally, such homogenized strength domains are implemented in FE limit analysis codes 
(both upper and lower bound) for a limit analysis of entire panels out-of-plane loaded. 

In Section 2, after a brief review of the homogenization theory combined with limit analysis, the 
fully equilibrated micro-mechanical model is presented in detail. 

In Section 3 a comparison between the results obtained by means of the micro-mechanical model at 
hand and experimental data by Gazzola and Drysdale (1986) is presented. The comparison refers to the 
out-of-plane strength of specimens in four point bending at different angles ϑ  of the ultimate moment 
with respect to bed joints orientation. A further comparison at a cell level between the equilibrated 
micro-mechanical model proposed and a recently presented kinematic approach by Sab (2003) in the 
case of joints reduced to interfaces with a Mohr-Coulomb failure criterion and bricks infinitely resistant 
is reported. The comparison shows that the equilibrated model offers reliable results even for a 
relatively coarse subdivision of masonry thickness. Finally, an adding numerical simulation is carried 
on for a technically meaningful case, varying progressively vertical in-plane compressive load with the 
aim of testing the ability of the model to reproduce the influence of membrane actions on out-of-plane 
masonry strength. 

In Section 4 a numerical example on a masonry panel out-of-plane loaded and simply supported at 
three edges is reported. Both lower and upper bound FE limit analyses are dealt with in detail. The 
lower bound approach is based on the equilibrated triangular element by Hellan (1967) and Herrmann 
(1967), whereas the upper bound is based on the triangular element by Munro and Da Fonseca (1978). 
The results, in terms of collapse load and failure mechanism, show the reliability of the simple model 
presented. 
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2. A SIMPLE MICRO-MECHANICAL MODEL 
Let us consider a masonry wall Ω  constituted by a periodic arrangement of bricks and mortar 

disposed in stretcher bond texture. As shown in a classical paper by Suquet (1983), homogenization 
techniques combined with limit analysis can be applied for an extimation of the homogenized out-of-
plane strength domain homS  of masonry. 
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Figure 1: Periodic structure ( 21 XX −  macroscopic frame of 

reference) and elementary cell ( 321 yyy −−  local frame of 
reference) 

Figure 2: The micro-mechanical 
model proposed. Subdivision in 
layers along the thickness and 
subdivision of each layer in sub-
domains. 

 
In this framework, bricks and mortar are assumed rigid-perfectly plastic materials with associated 

flow rule. As the lower bound theorem of limit analysis states and under the hypotheses of 
homogenization, homS  can be derived by means of the following (non-linear) optimization problem 
(see also Figure 1). 
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where: 
- N  and M  are the macroscopic in-plane (membrane forces) and out-of-plane (bending 

moments) tensors; 
- σ  denotes the microscopic stress tensor and n  is the outward versor of lY∂  surface; 

lY∂  is defined in Figure 1; 

- [ ][ ]σ  is the jump of micro-stresses across any discontinuity surface of normal intn ; 

- mS  and bS  denote respectively the strength domains of mortar and bricks; 
- Y  is the cross section of the 3D elementary cell with 03 =y  (Figure 1), Y  is its area, V  is the 

elementary cell, h  represents the wall thickness and ( )321 yyyy = . 
In order to solve problem ( 1 ) in a simple manner, the unit cell is subdivided into a fixed number 

of layers along its thickness, as shown in Figure 2. According to classical limit analysis plate models 
(Capurso 1971), for each layer out-of-plane components 3iσ  ( 3,2,1=i ) of the micro-stress tensor 

σ  are set to zero, so that only in-plane components ijσ  ( 2,1, =ji ) are considered in the 
optimization. 

Then, ijσ  ( 2,1, =ji ) are kept constant along the 
Li∆  thickness of each layer. As proposed by 

the authors for in-plane actions (Milani et al. 2005a), for each layer one-fourth of the REV is sub-
divided into nine geometrical elementary entities (sub-domains), so that all the cell is sub-divided into 
36 sub-domains (Figure 2). 

Inside each sub-domain )(k  and layer )( Li , polynomial distributions of degree (m) are assumed 
for the stress components. Being stress fields polynomial expressions, the generic ijth component of the 
stress tensor can be written as follows: 
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representing the unknown stress parameters of sub-domain )(k  of layer )( Li ; 

- ),( LikY  represents the kth sub-domain of layer )( Li . 
The imposition of equilibrium inside each sub-domain, the continuity of the stress vector on 

interfaces and the anti-periodicity of σn  permit a strong reduction of the total number of independent 
stress parameters. 
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For instance, the imposition of micro-stress equilibrium ( 2,10, == ijijσ ) in each sub-domain 
yields: 
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If p  is the degree of the polynomial expansion, ( )1+pp  equations can be written. 
A further reduction of the total unknowns is obtained imposing the continuity of the (micro)-stress 

vector on internal interfaces ( 2,10int),(int),( ==+ inσnσ j
ir

ijj
ik

ij
LL ) for every ( )Lik,  and ( )Lir,  

contiguous sub-domains with a common interface of normal intn . Other ( )12 +p  equations in the 
stress coefficients can be written for each interface as follows: 
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Furthermore, anti-periodicity of σn on V∂  requires other ( )12 +p  equations per pair of 

external faces ( )Lim,  and ( )Lin, , i.e. it should be imposed that stress vectors σn are opposite on 
opposite sides of V∂ : 
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Where 1n  and 2n  are oriented versors of the external faces of the paired sub-domains ( )Lim,  

and ( )Lin, . 
After some trivial elementary assemblage operations on the local variables, stress vector of layer 

Li  inside sub-domain ( )k  can be written as follows: 
 

( ) ( )LLL iikik SyXσ ~~~ ),(),( =  ( 6 ) 

 
Where ( )LiS~  is the vector of unknown stress parameters of layer Li . 
As it has been show for the in-plane case by the authors (Milani et al. 2005a), reliable results can 

be obtained if a fourth order polynomial expansion is chosen for the stress field. For this reason, in 
what follows, expansions of degree four are adopted. 

Once fixed the polynomial degree, the out-of-plane model presented requires a subdivision ( Ln ) 
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of the wall thickness into several layers (Figure 2-a), with an a-priori fixed constant thickness 
LL nt

i
/=∆  for each layer. In this way, the following simple (non) linear optimization problem is 

derived: 
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( 7 ) 
 
where: 
- λ  is the direction of the ultimate bending moment in the xyyyxx MMM −−  space; 

- ψ  and ϑ  are spherical cooridinates in xyyyxx MMM −− , given by ( ) ( )22
tan

yyxx

xy

MM

M

+
=ϑ , 

- ( )
xx

yy

M
M

=ψtan ; 

- ),( LikS  denotes the (non-linear) strength domain of the constituent material (mortar or brick) 
corresponding to the thk  sub-domain and th

Li  layer; 

- S~  collects all the unknown polynomial coefficients (of each sub-domain of each layer). 
For the sake of simplicity, membrane actions are kept constant and independent from load 

multiplier. In this way, in-plane actions effect optimization only in the evaluation of xyyyxx MMM ,,  
strength domains. This assumption is technically acceptable for the experimental tests analyzed next, 
since in these cases a fixed in-plane compressive load (if present) 0NN yy −=  is applied before out-of-
plane actions and kept constant until failure, whereas 0== xyxx NN . 

Finally, we refer the reader to classical papers (Anderheggen and Knopfel 1972, Maier 1977) for a 
critical discussion both on the procedures adopted to reduce ( 7 ) to a linear programming problem and 
on the algorithms used (based on the revised simplex method) to solve efficiently the linearized 
problem derived from ( 7 ). 
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3. OUT-OF-PLANE STRENGTH FOR DIFFERENT ORIENTATIONS ϑ  OF THE 
LOADING WITH RESPECT TO THE BED JOINT 

In this section, the ability of the homogenization procedure proposed to reproduce the strength of 
different masonry walls subjected to out-of-plane loads is tested for different orientations ϑ  of the 
bending moment with respect to the bed joint direction. A further comparison with a kinematic 
approach recently presented in the technical literature (Sab 2003) is reported when the bricks are 
supposed infinitely resistant and joints are reduced to interfaces with a pure Mohr-Coulomb failure 
criterion. 

It is worth mentioning that experimental data available from different authors are reported in terms 
of maximum bending moments or flexural tensile strengths along horizontal and vertical directions. 
Usually, flexural tensile strengths tf  are quantities derived from experimental failure moments uM  by 

means of the elastic relation )/(6/ 2bhMWMf uelut == , see also Figure 3-b, where h  is the wall 

thickness and b  is a unitary length. Of course, these values of tf  are not the real uniaxial tensile 
strengths. A more realistic stress distribution along the thickness of the wall at failure (under the 
assumption of perfect plasticity for the constituent materials) is depicted in Figure 3-a. This implies that 
mechanical properties to adopt for mortar and units in the homogenization model has to be chosen in 
order to fit horizontal and vertical uniaxial tensile strengths of Figure 3-a, i.e. experimental values 
divided roughly by 3 (see also stress/strain diagrams reported in EC6 code). 

The most complete set of experimental strength data for specimens subjected to out-of-plane 
loading in four-point bending seems to be given by Gazzola et al. (1985) and Gazzola and Drysdale 
(1986), who tested 25 wallettes of hollow concrete block masonry, with different dimensions and with 
the bed joints making a variable angle ϑ  with the direction of loading. 
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Figure 3: Uniaxial tensile strength from known 
values of failure moment uM  in four point 
bending. –a: collapse stress distribution, perfect 
plasticity (present model). –b: experimental 
procedure (elastic properties of section) 

Figure 4: Comparison among experimental 
results by Gazzola and Drysdale (1986), 
plasticity model by Lourenço (1999) and 
proposed model for the evaluation of flexural 
strength at different values of ϑ  angle. 

 
In order to compare experimental data with the model at hand mechanical properties of mortar and 
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bricks are taken in order to reproduce exactly the experimental value of ftf  reported by Gazzola 

Drysdale (1986) for °= 90ϑ . Mechanical properties of mortar and bricks are reported in Table 1, 
whereas bricks dimensions and joints thickness are assumed 3150190390 mmxx  and mm10  
respectively. 

 
Mortar Brick 
Mohr Coulomb plane strain with tension cut-off Compression cut-off 





= 2

2 )6//(
mm

NhMf uhtm
 (tension cut-off) 

tmm fc 2= (cohesion) °=Φ 36m  (friction angle) 
27.22

mm
Nfcb =  

Table 1: Comparison with experimental data by Gazzola et al. (1985) for masonry specimens in 
four-point bending 
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Figure 5: Failure surfaces in the plane xxM - yyM  obtained using the micro-mechanical model 
proposed (number of layers 10=Ln  and 100=Ln ) and a kinematic approach recently presented in 
literature. 

 
A comparison between experimental values and results from the numerical model for different 

orientation of ϑ  angle is given in Figure 4, which shows the average and standard deviation of the 
tests for each orientation of loading. In general, num

ftf  values, depend on both geometry and 
mechanical properties of mortar and bricks, and are obtained solving the following optimization 
problem: 
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( 8 ) 

 
Where inin bMA ≤  represents the linearized out-of-plane strength domain and h  is the wall 
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thickness (see Figure 3). 
It is worth noting both that for the evaluation of nnM , also the torsion moment xyM  is taken into 

account and that stress distribution along the thickness of the wall is assumed as in Figure 3-a. 
In this section, a further comparison with a kinematic approach recently presented by Sab (2003) is 

presented in order to evaluate the capability of the equilibrated micro-mechanical model proposed to 
approximate the homogenized failure surfaces obtained by means of kinematic limit analyses. In the 
kinematic approach proposed by Sab (2003), bricks are supposed infinitely resistant and a Mohr-
Coulomb failure criterion is chosen for joints reduced to interfaces. In this way, a “closed form” 
solution is obtained only when torsion 

xyM  is set to zero. 
Here, a masonry wall with joints reduced to interfaces and bricks of dimensions 

355120250 mmxxbxhxa =  (width x thickness x height) and 44.0/2 == bam  is considered.  

Mechanical characteristics of joints are [ ]2/1.0 mmNc =  (cohesion) and °=Φ 37  (friction 
angle). In Figure 5 a comparison between failure surfaces (in the plane xxM  and yyM ) obtained using 
the micro-mechanical model proposed and the kinematic approach by Sab (2003) is reported. As it is 
possible to note, the model proposed both approximates accurately results from the kinematic 
procedure and is able to reproduce the orthotropic masonry behavior at failure. On the other hand, 
different mechanical characteristics for bricks and mortar can be taken into account, as well as the 
actual thickness of joints. 
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Figure 6: Some cross sections of the failure surface with 0=xyM  and α=yyN  for different values of 
α . Brickwork by Raijmakers and Vermeltfoort (1992), numerical results obtained using two layers of 
unknown thickness and non-linear programming. 

 
Finally, it is worth noting that the influence of a vertical compressive in-plane load can be easily 

taken into account with the model at hand. As already mentioned, a vertical compressive load can 
increase out-of-plane strength. In order to study this effect on a meaningful technical case, the 
brickwork considered by Raijmakers and Vermeltfoort (1992) for performing some experimental tests 
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on shear walls is considered. The units dimensions are 310052210 mmxx , whereas the thickness of the 
mortar joints is mm10 . For the sake of simplicity, joints are reduced to interfaces assuming for them a 
frictional type failure criterion ( °=Φ 37m , tmm fc 4.1= ) with a tension cut-off 

( 2/16.0 mmNftm = ) and a linearized cap in compression ( 2/5.11 mmNf cm = , °=Φ 30cm ), see 
Milani 2004 for further details, whereas bricks are assumed infinitely resistant. 

In Figure 6 some cross sections of the failure surface in the space 0=xyM  with α=yyN  are 
reported for different values of α  in-plane vertical load. 
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Figure 7: Gazzola et al. (1985) experimental tests 
on out of-plane loaded masonry walls. Panels 
dimensions and boundary conditions 

Figure 8: Homogenized failure surface for 
Gazzola et al. 1985 tests. 

 
4. STRUCTURAL EXAMPLE 
In this section, the homogenized model previously presented is validated by means of some 

comparisons with experimental data on entire masonry panels out-of-plane loaded. In order to make the 
comparison, both upper and lower bound FE limit analysis codes have been implemented (Matlab 
6.5TM). The lower bound approach is based on the triangular elements by Hellan (1967) and Herrmann 
(1967), whereas the upper bound is based on the finite element presented by Munro and Da Fonseca 
(1978). For the sake of conciseness, a detailed description of the elements used is not reported here and 
the reader is referred to Milani et al 2005b. 

The panels here analyzed consist of hollow concrete block masonry. The tests were carried out by 
Gazzola et al. 1985 and are denoted by W. Five panels were tested by the authors (WI, WII, WIII, 
WP1 and WF), as shown in Figure 7. The panels were loaded until failure with increasing out-of-plane 
uniform pressure p . For each configuration, three different tests were carried out and the results 
reported by the authors represent the average of the tests. The only panel with in-plane action was 
WP1, which was loaded, previously to the application of the out-of-plane loading, with an in-plane 
confining vertical pressure of 2/2.0 mmN . 

In this paper, for the sake of conciseness, only panel WF is analyzed with the homogenized model 
at hand. Referring to the incremental non-linear analysis conducted by Lourenço (1997 and 1999), 
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these panels have a relatively ductile behavior and therefore are suitable for a homogenized limit 
analysis. 

 
Mortar Brick 
Mohr Coulomb plane strain with tension cut-off Compression cut-off 

2157.0
mm

Nftm =  (tension cut-off) 

tmm fc 8.3=  (cohesion), °=Φ 36m  (friction angle) 

27.22
mm

Nfcb =  

 

Table 2: Comparison with experimental data by Gazzola et al. (1985) on out-of-plane loaded panels 
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Figure 9: Comparison between experimental and 
numerical results, Gazzola et al. 1985 tests, panels 
WII and WF 
Figure 10: Gazzola et al. 1985 experimental tests, 
lower and upper bound FE limit analysis results. –
a: Principal moments at collapse, panel WF, -b: 
failure mechanism from the upper bound FE limit 
analysis and mesh used, panel WF 

-b 

 
 
Inelastic properties of mortar and bricks are reported in Table 2 and are chosen in order to fit 

experimental vertical/horizontal masonry strengths reported by Gazzola et al. (1985). The 
homogenized failure surface obtained solving problem ( 7 ) for several directions of λ  is reported in 
Figure 8. 

Figure 9 shows a comparison among the failure loads obtained numerically (both upper and lower 
bound methods), the load-displacement diagrams obtained by Lourenço (1997 and 1999) and 
experimental failure loads. It is worth noting that no information is available from Gazzola et al. 1995 
regarding experimental load-displacement diagrams, as well as about the scatter of their tests. 

Finally, in Figure 10 principal moments distribution at collapse from the lower bound analysis for 
panel WF and failure mechanism (with the relative mesh used) from the upper bound analysis are 
reported. The comparison shows that reliable predictions can be obtained using the homogenized 
model proposed. 
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