

Hugo José Pereira Dias

Extending an Ontology-Based Personalized Dietary Recommendation for
Weightlifting with Biomechanical Knowledge

Master Dissertation

Mestrado Integrado em Engenharia Eletrónica

Industrial e Computadores

Supervisors

Professor Paulo Cardoso

Professor Adriano Tavares

i

Acknowledgments

I’m grateful for the opportunity to create something useful and that makes

possible to improve the others work.

I want to express my sincerely thanks to everyone who contributed to the

development and conclusion of this dissertation work.

It was a great experience working with people outside of my knowledge

area who gave me the background knowledge to be able to start my work specially

Por Turnmark for her co-operation and Professor Filipe Conceição for his advices.

Also big thanks to Professor Paulo Cardoso for his guidance and Professor

Adriano Tavares, who had the major influence on my dissertation work, a special

thank you for all support and advices.

ii

Abstract

On olympic weightlifting, just like on any high level competition or sport

athletes are very competitive. World records are being beaten over and over and

the winners are decided by details, that until recently were unnoted by the athletes

themselves and their managers.

The focus of this dissertation is the development of a system to help

olympic weightlifting athlete’s to improve their performance and prevent injuries

from the biomechanical analysis during the athlete’s training sessions.

This dissertation presents a biomechanical ontology using a knowledge-

based framework. Over this ontology will be applied a rule-based knowledge

specific from olympic weightlifting that relates athlete’s body positions and angles

that are collected using an external system during the athlete’s training sessions.

From the inferred rules the system can provide information to the athletes and

their managers if the athlete is doing the exercise correctly and at same time give

some help to prevent injuries.

The system includes a database that saves the athlete’s information and all

data that is collected during the training sessions. It can be useful to verify the

athlete progress comparing the actual and previous data.

This work is focused on olympic weightlifting, however it can be used for

any kind of sport just by doing some adaptations.

This dissertation is a complement of another work focused on nutrition and

menus recommendation for weightlifting.

Keywords: weightlifting, ontology, biomechanics, sports.

iii

Index

Acknowledgments i

Abstract ii

Figure Index vi

Acronyms viii

1. Introduction 1

1.1. Motivation 1

1.2. Contextualization 2

1.3. Objectives 2

1.4. Structure of the Thesis 3

2. State of Art 5

2.1. Olympic Weightlifting 5

2.1.1. Bodyweight Categories 5

2.2. Biomechanics on Weightlifting 6

2.2.1. The Snatch 6

2.2.2. The Clean and Jerk 8

2.3. Injuries on Weightlifting 12

2.4. Relevant Systems for Data Collecting and Analysis 13

2.5. Nutrition Work 13

2.6. OWL Ontologies 14

2.6.1. OWL Sub-languages 14

2.6.2. Components of OWL Ontologies 15

2.6.3. Individuals 15

2.7. SWRL 16

2.8. SQWRL 16

iv

2.9. Protégé 17

2.10. Java Programming Language 17

2.11. MySQL 17

3. Project Analysis 18

3.1. System Overview 18

3.2. System Constraints 19

3.3. System Requirements 19

3.4. Reading biomechanical information 20

3.5. Use Cases Diagram 20

3.6. Sequence Diagram 21

3.7. Ontology Rules 22

4. System Design 23

4.1. Ontology Design 23

4.1.1. Ontology Overview 23

4.1.2. Properties 24

4.1.3. Rules 26

4.2. Application Design 26

4.2.1. Application Overview 26

4.2.2. Main Window Subsystem 27

4.2.3. New Athlete Subsystem 28

4.2.4. Edit Athlete Information Subsystem 29

4.2.5. Delete Athlete Subsystem 30

4.2.6. New Session Subsystem 31

4.2.7. Sessions Listing Subsystem 32

4.2.8. XLS File Reading Subsystem 32

4.2.9. Database Interface Subsystem 33

4.2.10. Ontology Interface Subsystem 34

v

4.2.11. Query Rule Creation Subsystem 35

4.3. Writing Rules on XML File 39

4.4. Database Design 46

4.4.1. Querying Database 47

5. System Implementation 48

5.1. Java Application 48

5.1.1. Main Window Interface 48

5.1.2. New Athlete Window Interface 49

5.1.3. Edit Personal Information Window Interface 50

5.1.4. New Session Window Interface 50

5.1.5. Athlete’s Session List Window Interface 51

5.1.6. Results Page Interface 52

5.1.7. Ontology Interface 52

5.1.8. Creating Database Queries 52

5.1.9. Rules Generation 53

5.1.10. Training Sessions Data Reading 57

5.2. Database Implementation 58

6. Results 60

6.1. Inserting a New Athlete 60

6.2. Inserting a Training Session Data File 61

6.3. Inferring Rules on Ontology 62

6.4. Results Observation 63

Conclusion 64

References 65

vi

Figure Index

Figure 1 - Snatch 1st Pull 6

Figure 2 - Snatch Transition 7

Figure 3 - Snatch 2nd Pull 7

Figure 4 - Snatch Turnover 7

Figure 5 - Snatch Catch 8

Figure 6 - Clean Turnover 9

Figure 7 - Clean Catch 9

Figure 8 - Jerk Start Position 9

Figure 9 - Jerk Dip 10

Figure 10 - Jerk Drive 10

Figure 11 - Jerk Unsupported Split 11

Figure 12 - Jerk Supported Split 11

Figure 13 - Jerk Recovery 11

Figure 14 – System’s Block Diagram 18

Figure 15 – Use Case Diagram for Entering Personal Data 21

Figure 16 – Sequence Diagram for Biomechanical Data Evaluation 21

Figure 17 – Sequence Diagram for Saving Information 22

Figure 18 – Ontology Overview 23

Figure 19 – Descendent DataType Properties 25

Figure 20 – Application Overview 27

Figure 21 - Main Window Subsystem Flowchart 28

Figure 22 - New Athlete Subsystem Flowchart 29

Figure 23 - Edit Athlete Information Subsystem 30

Figure 24 - Delete Athlete Profile Subsystem Flowchart 31

Figure 25 - New Session Data Subsystem Flowchart 31

Figure 26 - Sessions Listing Subsystem Flowchart 32

Figure 27 - XLS File Template 32

Figure 28 - XLS File Reading Subsystem Flowchart 33

Figure 29 - Database Interface Subsystem 34

Figure 30 - Ontology Interface Subsystem Flowchart 34

vii

Figure 31 - Rule XML File Example 36

Figure 32 - Query Rules Creation Subsystem Flowchart 37

Figure 33 - Database Design 46

Figure 34 - Main Window Interface 48

Figure 35 - Main Window Athlete's Personal Information 49

Figure 36 - New Athlete Window Interface 49

Figure 37 - New Athlete Error Message 50

Figure 38 - New Session Window Interface 51

Figure 39 - Training Sessions List window Interface 51

Figure 40 - athlete table 58

Figure 41 - session table 59

Figure 42 - Athlete Profile Insertion 60

Figure 43 - Training Session File Insertion 61

Figure 44 - Results from Inferred Rules 62

viii

Acronyms

3D – three dimensions

API – Application Programming Interface

OWL – Ontology Web Language

SQL – Structured Query Language

SQWRL – Semantic Query-enhanced Web Rule Language

SWRL – Semantic Web Rule Language

XLS - Extensible Stylesheet Language

XLST - Extensible Stylesheet Language Transformations

XML – Extended Markup Language

1

1. Introduction

Nowadays, competition in sports is stronger than ever and a small detail

can make the difference between win or lose.

 Technology is present on every kind of sport, not only to complement or

help the judges or referees on their decisions, it can also detect details that can not

be perceptible by the human and consequently decision can be taken quickly and

accurately; but also because it can help athletes to improve their performance,

prevent injuries and give to the managing teams feedback about the athlete’s

profile and performance in order to get the best training plan.

This dissertation presents the design and implementation of a system that

analyses biomechanical data from weightlifting athletes, and based on that

provides some information about the exercise and suggestions about changes that

the athlete can make in order to improve his performance in competition.

1.1. Motivation

The creation of a system that analyses athlete’s biomechanical behavior not

only is benefic for them to improve their performance, but also for the prevention

of serious injuries, that in some cases can endanger the professional career of an

athlete.

Olympic weightlifting is also a sport that is growing globally, with more

supporters and athletes on countries where there is no tradition in the practice of

this sport, which makes it a sport with a great growth potential to the global scale.

So, a system like the one proposed in this thesis can have a high demand in

this growing sport. It can also be adapted to work in other sports.

2

1.2. Contextualization

There is an increasing competitiveness on sports athletes, and weightlifting

is no exception. Each phase of the exercise is well studied and prepared by the

athletes and their managing teams. Data is collected during the training sessions

and analyzed in detail to understand what the athlete is doing and where he has to

improve in way to do an execution as perfect as possible.

Another subject that torments high level athletes are the injuries. An injury

can take a promising athlete to stop competing for several months or even to

abandon his career. The most common body part where the athletes suffer injuries

is the back due to the high loads that athlete lifts combined with wrong posture.

The technologic systems that are used nowadays to collect data offer a

precision that is impossible to human to detect, which is highly value for data

analysis. However the decisions taken from the analysis of the data are

responsibility of the managers because each athlete is different from another one,

so each analysis has to be interpreted on a different way.

1.3. Objectives

The objective of this dissertation is the design and development of a system

that analyzes the athlete biomechanics during the training sessions and provides

some recommendations to the athlete to improve his posture and consequently

improve his performance and prevent the possibility of the appearance of severe

injuries.

Initially we will study the biomechanical domain of weightlifting athletes,

followed by the design and implementation of an ontology that represents the

biomechanical domain.

3

The ontology will receive some queries represented on a rule-based model.

This model relates ontology properties applying one or more requirements. The

result of each query depends if the requirements were fully satisfied or not.

A database will be created to save the important information about each

athlete as well as every training session data to be possible to visualize after the

athlete’s behavior. It will also be implemented access to his historic data and

consequently check his progress.

To implement the communication between the ontology, the database and

the user it will be created an application with graphic environment based on JAVA

programming language. The communication between the queries and the ontology

the will made using the OWL API. The queries will be written on SQWRL query

language.

1.4. Structure of the Thesis

The second chapter refers the state of art. Here we delve into the

biomechanical knowledge of weightlifting athletes. We will present some study

cases and other work already made on this area. It will also make an approach to

all programming languages that will be used to create the system and in particular

the ontology.

The third chapter describes the system analysis. We will do a study of the

system, separating it on subsystem and check its requirements and constraints.

On fourth chapter we will study the system design, studying deeper how

each subsystem works and how it interacts with another subsystem. It will be

shown all system functionalities step-by-step using block diagrams.

The fifth chapter is the implementation chapter. We will show the

implementation of all subsystems and the interactions between them.

The results obtained from the system implementation will be shown on

sixth chapter. There will be used data from several athletes to analyze and

compare the results.

4

Finally on seventh chapter we will discuss the obtained results. Here will be also

present the conclusion of this dissertation work, future work and possible

improvements and modifications to do to work with another sports.

5

2. State of Art

2.1. Olympic Weightlifting

Olympic-style weightlifting also called olympic weightlifting or just

weightlifting is a sport in which athlete attempts to lift a maximum-weight of a bar

loaded.

There are two competitions in weightlifting, snatch and clean and jerk.

Snatch consists of lifting the barbell from the floor to an overhead position

in one single movement. clean and jerk, otherwise consist of lifting the barbell

from the floor to an overhead position in two movements. The movements consist

of lifting the barbell from the floor to the shoulders and then from the shoulders to

overhead.

2.1.1. Bodyweight Categories

Weightlifters compete in bodyweight categories which are different for men

and women.

Men’s weight Category: Women weight Category:

Under 56 kg; Under 48 kg;

Under 62 kg; Under 53 kg;

Under 69 kg; Under 58 kg;

Under 77 kg; Under 63 kg;

Under 85 kg; Under 69 kg;

Under 94 kg; Under 75 kg;

Under 105 kg; Over 75 kg;

Over 105 kg;

6

2.2. Biomechanics on Weightlifting

Unlike other strength sports, which test limit strength, weightlifting tests

explosive strength, the lifts are executed faster and with more mobility and a

greater range of motion during the execution of the exercise.

2.2.1. The Snatch

As was mentioned before, the snatch involves lifting the weight from the

floor, catching it overhead in a squatting position, and then driving it upward to a

standing position [1].

Snatch includes six phases. On start position both knees and ankles shall be

aligned, hip’s position must be higher than knees, shoulders are aligned with the

bar or slightly ahead and the back is curved.

The first pull is initiated when the lifter extends their knees raising the

barbell from the floor to a position below or at same height than knees.

Figure 1 - Snatch 1st Pull

Transition also referred as double-knee bend happens when the barbell

moves up over the knees and the lifter moves to a near vertical position.

7

 Figure 2 - Snatch Transition

During the second pull barbell reaches its maximum acceleration.

Simultaneously athlete shrugs his shoulders and extends the hip, knees and ankles.

 Figure 3 - Snatch 2nd Pull

On turnover, as barbell raises on a vertical plane, athlete begins to his body

underneath the barbell [2].

Figure 4 - Snatch Turnover

8

On catch position, athlete holds the barbell in a straight-arm overhead

position while flexing the knees and hip, reaching a full squat position. After,

athlete moves from a squat to a standing position, maintaining the barbell

overhead.

Figure 5 - Snatch Catch

2.2.2. The Clean and Jerk

Clean and jerk is a two-part exercise and its divided in two parts, the clean

and the jerk.

The clean requires to athlete to lift the barbell from the platform to the

shoulders height in one single movement. It is subdivided in six phases.

The biomechanical principles of the first four phases (start position, first

pull, transition and second pull) are the same principles as those of the snatch.

Lifter initiates the turnover phase when barbell rises to 55% - 65% of lifters

height.

9

Figure 6 - Clean Turnover

On catch, athlete receives the barbell on his shoulders and descends into a

squat position. Lifter starts preparing the jerk.

Figure 7 - Clean Catch

The jerk has also six phases, start, dip, drive, unsupported split, supported

split, recovery.

On start phase lifter and barbell become motionless.

Figure 8 - Jerk Start Position

10

Dip starts when lifter starts flexing his knees and hip with barbell over the

shoulders.

Figure 9 - Jerk Dip

At drive, athlete is required to accelerate the barbell in vertical plane.

Figure 10 - Jerk Drive

At unsupported split moves vertically off the shoulders and the lifter’s feet

leave the ground.

11

Figure 11 - Jerk Unsupported Split

Lifter is in the supported split when his feet get again in contact with the

floor and barbell is overhead with the arms fully extended.

Figure 12 - Jerk Supported Split

The recovery happens when athlete gets motionless and his feet are parallel

one to another.

Figure 13 - Jerk Recovery

12

2.3. Injuries on Weightlifting

On weightlifting, like in other sports, injuries are a serious problem for

athletes. The most common injuries are relates the high loads and a bad execution

of the exercise.

These are the most common injuries and syndromes on weightlifting.

 The Tired Neck Syndrome: Some athletes perform an inordinate

amount exercises to exclude the execution of other complementary

movements. The resulting imbalance includes tight pectoralis minor

and external rotary shoulder muscles.

 The Thoracolumbar Syndrome: This syndrome is caused by

compressive and large flexion bending moments in the early lifters

training life.

 Sacroilac Joint Dysfunction: Sacroiliac joints are situated between

the spine and the lower extremities. This type of dysfunction is

caused by a wrong pelvis movement during the lift of high loads.

 Extremity Injuries: Upper and lower extremities are at risk of

injury during weightlifting activities. Upper extremities injuries

usually occur when lifter is not using a correct technique or results

from overtrained muscles not prepared to lift heavy loads.

 Cardiovascular consequences: Weightlifter’s blackout typically

occurs after a squat movement as a result of blood pooling in the

lower extremities. This can be avoided using proper breathing

techniques [1].

13

2.4. Relevant Systems for Data Collecting

and Analysis

As known so far, there is no automated systems for data analysis dedicated

exclusively to the sport of weightlifting.

Recently were designed some systems for weight lifting as body building

which has not the same purpose of weight lifting as olympic sport. Most of existing

devices are for personal use and are wearable devices or smartphone applications

which analysis is based on data received from accelerometers and heart beating

sensors.

For professional use, the most common systems used are system for data

collection which collect data during the exercise and in the end traces graphics

with some parameters along time. Systems with most accuracy are composed by a

set of points that are placed in the athlete’s body, each point refers to a body part,

and a set of cameras which traces the points along the exercise.

In all cases the data analysis must be done by humans.

The system that will be used for data collecting for this dissertation work is

based on camera’s system mentioned above.

2.5. Nutrition Work

This dissertation work is part of a major work composed also by a based

personalized dietary recommendation work. The nutrition system is also a

knowledge-based work. Its goal is to give to athletes nutritional menus

recommendations based on their training plans, nutritional needs and personal

preferences.

During the work was developed ontology with rule-based knowledge to

provide specific menus for different times of the day and different train phases for

athlete’s diary nutritional needs and athlete’s preferences for better sport

performance.

14

The main components of this system are the food and nutrition ontology,

the athlete’s profiles and the nutritional rules for sports athletes.

2.6. OWL Ontologies

Ontologies are used to capture knowledge about some domain interest.

From the philosophy, ontology studies the categories and their relations

and deals with questions about what entities exists, how they are grouped, their

hierarchy and the categories which subdivide them. In other words, ontologies

describe a domain, its concepts and the relationships between those concepts.

OWL (Web Semantic Language) is a computational logic-based language.

The goal of OWL Language is to exploit knowledge using computer programs. OWL

documents are also known as OWL ontologies.

OWL is used for authoring ontologies. It will be used this ontology language

because OWL allows the import of other ontologies, adding information from the

imported ontology to the current ontology which means that using OWL it is

possible to join biomechanical information to nutritional ontology.

2.6.1. OWL Sub-languages

OWL ontologies can be categorized into three sub-languages.

OWL-Lite: OWL-Lite is the simplest OWL sub-language. It is used where a

simple class hierarchy and simple constraints are needed.

OWL-DL: OWL-DL is more complex than OWL-Lite and is based on

description logics [3]. It is used for creating ontologies with large expressivity and

at same time conclusive and computable.

The ontology created for this dissertation work was programmed using

OWL-DL.

15

OWL-FULL: OWL-FULL is the most expressive OWL sub-language. It is used

when high expressiveness is required, however there is no guarantee that can be

computable.

2.6.2. Components of OWL Ontologies

OWL ontologies have three main components, classes, properties and

individuals. In way to ontology to have the best performance these components

names should be atomic.

2.6.2.1. Classes:

Classes are collections that contain objects, or abstract groups. Classes

describe concepts of a specific domain. They can contain subclasses describing

even more a specific concept.

2.6.2.2. Properties

Properties are related to individuals or classes. They are divided in two.

Data Properties: Data properties are used to assign values to individuals or

classes.

Object Properties: Object properties are binary relations on individual or

classes. This type of properties can have an inverse.

2.6.3. Individuals

Individuals are instances of classes and represent object in domain that is

being studied.

16

2.7. SWRL

SWRL means Semantic Web Rule Language and is used to express rules as

logic. It can be used over OWL-DL and OWL-Lite.

This rule language will be used create rules that contain data from training

sessions and constraints to comply. Rules will be inferred to ontology that

validates the rule if its data complies with its constraints.

SWRL rules are divided in two parts, the antecedent, also called body, and

the consequent or head, and it has the form of:

[antecedent] -> [consequent]

Rule bellow asserts that if a person (p) who has a brother(x) and a child (y),

then the individual X is uncle of individual Y.

Person(?p) ^ hasBrother(?p, ?x) ^ hasChild(?p, ?y) -> hasUncle(?y, ?x)

 antecedent consequent

2.8. SQWRL

SQWRL (Semantic Query-enhanced Web Rule Language; pronounced

squirriel) is built on the SWRL language. SQWRL takes a standard SWRL rule

antecedent and effectively treats it as a pattern specification for a query [4].

This language allows querying OWL ontologies and it has the same

operators than SWRL allowing the creation of rules inside queries. There are also

SWRL editors that generate SQWRL code.

On this dissertation work, SQWRL will be used to query ontology with rules

about data collected from athletes training sessions.

17

2.9. Protégé

Protégé is a free open-source framework focused for development of

knowledge-based systems using ontologies.

The use of Protégé for the development of our ontology is due to the fact

that Protégé allows the ontology’s development in OWL language and because it is

worldwide used there is a lot of support and documentation.

Protégé also provides API’s for Java applications to communicate to

ontologies.

2.10. Java Programming Language

Java is an object oriented programming language developed in the early of

90s. Java applications are usually compiled to bytecode. Unlike low level

programming languages, Java doesn’t depend of computer architecture because it

runs over a virtual machine.

System will be programmed using Java due to Protégé API’s were written

for this language and as it is used globally, there is a large documentation that can

be used.

2.11. MySQL

MySQL is an-open source relational database management platform. It is

the second most widely used system for database management.

MySQL development project has made its source code available under

terms of the GNU General Public License.

Database will be created using this system because it is open-source and

there is a previous knowledge on working with that.

For this dissertation work database will be used to store data from athlete’s

personal profiles and from training sessions.

18

3. Project Analysis

3.1. System Overview

The goal of the system is to provide recommendations to athletes on how to

improve their posture during the exercise based on data that is collected during

the training sessions and some biomechanical rules.

Figure 14 represents the system’s block diagram and gives an overview on

how system works. Users can insert the athlete’s personal and biomechanical data

collected during training sessions on the application using its graphical interface.

Then, the application will fill some rules already given to the application with the

biomechanical data. Based on that rules, the application, then will query the

ontology through its API (Protégé-OWL) that works as an inference agent.

User

Inference

Agent

Application

Ontology

Database

Figure 14 – System’s Block Diagram

19

3.2. System Constraints

The system has a very little number of constraints:

 Protégé framework to create the ontology.

 The ontology must be compatible with the nutrition recommendation

ontology.

3.3. System Requirements

The system requirements are divided in two, functional requirements and

non-functional requirements.

Functional requirements:

 The user must be able to insert athlete’s personal information;

 The user must be able to insert biomechanical information collected during

the training sessions;

 User must be able to ask to system for recommendations.

Non-functional requirements:

 From the inserted biomechanical data, the system must apply rules based

and query the ontology;

 From the inferred rule, the system must give a report with some

recommendations to the user;

 The system must respond as fast as possible;

 The user interface must be user friendly.

20

3.4. Reading biomechanical information

Since the goal of this system is not collect biomechanical data, we will

collect that data using an external system. There are a large number of systems

available on market to collect data and each one uses a different type of technology

to the reading of the athlete’s posture.

The user needs to insert on our system over than 200 parameters that were

collected from the external system and that can take a lot of time, can be tiring, and

the user can enter wrongly some parameter and consequently the results are not

what should be expected. So the resolution of this problem can be the use of

something that saves all the parameters directly from the collecting data system to

ours. The majority of the systems that are used to collect data can export the data

to a file.

We choose to read the biomechanical information using xls files. The reason

for that choice is that every collecting data system can export the biomechanical

information to this file extension. Besides that, the xls are used worldwide and

there are programs to read this file extension accessible to everyone and for free.

3.5. Use Cases Diagram

Figure 15 represents the use cases diagram for the personal information

window.

The biomechanical information is read directly from a file, so there is no

need of a user case diagram for that.

21

User

Insert Name

Insert Age

Insert Weight

Insert Height

Insert Gender

Insert Photo

Insert Weight

Category

Insert Status

Figure 15 – Use Case Diagram for Entering Personal Data

3.6. Sequence Diagram

On Figure 16 we can see the system sequence diagram when the user runs

the application to evaluate the biomechanical data.

User Application Ontology

Insert Pesornal Information

Insert Biomechanical Information

Run Queries

Give Results

Give Report

Figure 16 – Sequence Diagram for Biomechanical Data Evaluation

22

Figure 17 represents the sequence diagram for saving data on database.

User Application Database

Insert Pesornal Information

Insert Biomechanical Information

Save data

Give Feedback

Give Feedback

Give Feedback

Save data

Give Feedback

Figure 17 – Sequence Diagram for Saving Information

3.7. Ontology Rules

Rules will be written in SWRL language and will be inferred to ontology.

They refer to movements and body postures that athlete needs to have to comply

in order to execute the exercise correctly.

These rules contain data from athlete’s training session and constraints. In

order to verify a correct execution they need to be satisfied.

Example:

Rule: On first pull, barbell position has to be at a lower position than knees.

SWRL Translation: Athlete(?a) ^ Barbell(?b) ^ barbellPosition1stPull(?b,?x) ^

kneesPosition1stPull(?a,?y) ^swrlb:greaterThan(?y,?x) -> RuleOk(?a,true)

23

4. System Design

4.1. Ontology Design

4.1.1. Ontology Overview

Ontology design starts with design of the main concepts. Figure 18 shows

the main concepts and the relationships between them.

Figure 18 – Ontology Overview

Athlete class represents the athlete’s profile containing its properties such

as name, age, weight, etc..

Barbell class represents the barbell that is lifted during the execution of the

exercise.

Exercise class represents the exercise itself and its subdivided in two other

classes, Snatch and Clean and Jerk which represent each competition of the olympic

weightlifting.

24

4.1.2. Properties

As was described above there are two types of properties. Datatype

properties are used to describe class properties and assign concrete values to

instances of class. Objecttype properties are used to describe the relationship

between classes.

ObjectType properties:

 practices: relates Athlete class to Exercise class and assures that the

athlete always practices the exercise.

Domain: Athlete

Range: Exercise

Form: Athlete practices Exercise

 lifts: relates Athlete class and Barbell class.

Domain: Athlete

Range: Barbell

Form: Athlete lifts Barbell

 has: relates Exercise class and Barbell class.

Domain: Exercise

Range: Barbell

Form: Exercise has Barbell

 isPracticedby: is the inverse property of practices.

Domain: Exercise

Range: Athlete

Form: Exercise isPracticedBy Athlete

25

 isliftedBy: is the inverse property of lifts.

Domain: Barbell

Range: Athlete

Form: Barbell isPracticedBy Athlete

 isPartOf: is the inverse property of has.

Domain: Barbell

Range: Exercise

Form: Barbell isPartOf Exercise

Datatype properties:

In some cases we are working with three-dimensional variables, so

what we do is creating a mother property and provide it with the

corresponding attributes and next create three descendent properties to

represent each 3D axis.

There are also properties that used on the six positions of the lifting.

The modus operandi is the same that was used to represent the 3D axes. We

create a mother property and then we create the descendent properties

representing each one of the lifting positions.

From the merge of these two topics, the resulting property is shown

of Figure 19.

Figure 19 – Descendent DataType Properties

26

4.1.3. Rules

Besides the rules are part of the ontology we choose to remove it from the

core of the ontology because the rules can be changed at any moment. If the rules

were built-in on the ontology every time we want to change or add some rule we

need to do it directly on the ontology and if it is not done correctly we can

compromise not only the rule itself but all the ontology work.

Instead, the rules are on a separated file written on XML programming

language that is invoked every time the application starts to load the rules to the

application memory.

The rules are after applied on the ontology in form of queries that we will

describe in following sections.

4.2. Application Design

4.2.1. Application Overview

Application starts by reading and parsing the xml file and transform the

rules from xml language in to SQWRL language. Following, the system loads all

athletes profile and sessions saved on database.

The first window that is presented to user has a list of all athletes that were

loaded from the database. When the athlete name is clicked the program shows all

personal information about him. User can change the athlete’s information using a

window which was created for that purpose. User can also add new athletes to the

program.

It is also possible to add new sessions to athlete’s profile. After inserting a

new session, user has the possibility to run the ontology immediately or just save

session data on database.

27

After running the ontology is presented to user a list showing all rules.

Depending if the rule was satisfied or not, meaning that athlete did the exercise

correctly or not, the rules are presented with different colors.

Figure 20 presents the application overview diagram.

Start Application

Athlete Exists? Yes

New Athlete Page

No

Session

Exists?

New Session

Page

No

Yes Save Data?
Save Data on

Database
Yes Run Ontology?

No

EndNo

Return Results

Yes

Get Rules

Get Data From

Database

Parse XML File

Figure 20 – Application Overview

4.2.2. Main Window Subsystem

The main window is the first window that the user will see when the

application starts. Here the user can see all athletes that are on the system as well

as their personal information.

There are also buttons to access to other functionalities such as creating

new athletes or sessions, edit athlete’s personal information and deleting existing

athletes.

The Figure 21 shows the main window flowchart.

28

Start Application

Load All Athletes

and Sessions from

Database

Parse XML File List All Athletes Athlete Clicked ?
Show Athlete’s

Personal

Information

Yes

New Athlete

Button Clicked?

No

Yes

Edit Athlete’s

Information Button

Clicked?

No

Go to Athlete

Creation Window

Go to Edit

Information

Window

Yes

Delete Athlete

Button Clicked?

No

Delete Athlete

from Database
Yes

New Session

Button Clicked?

No

Go to Session

Creation Window
Yes

Previous

Session button

Clicked?

No

List All Athlete’s

Sessions
Yes

End

No

Figure 21 - Main Window Subsystem Flowchart

4.2.3. New Athlete Subsystem

On New Athlete interface window user can insert new athlete’s personal

information.

29

When information inserted is confirmed the system verifies if that

information is consistent, for example the weight and height fields are only

number characters. Name, weight, height, gender and weight category fields are

mandatory because some rules depend on these data.

Figure 22 shows the flowchart of this subsystem.

Show Window

Insert Data

Confirmation

Button Clicked?
Yes

Name Field

Contains Only

Letters?

Weight Field

Contains Only

Numbers?

Yes

Height Field

Contains Only

Numbers?

Yes
Gender

Selected?
Yes

Weight Category

Selected?
Yes

Save Data On

Database

End

Set Error MessageNo

No

No No

CancelButton

Clicked?
No

Yes

Figure 22 - New Athlete Subsystem Flowchart

4.2.4. Edit Athlete Information Subsystem

This subsystem is much like the New Athlete Subsystem. The only

difference is that the fields are filled with the athlete’s information to be updated

instead blank like on New Athlete Subsystem.

Figure 23 shows the flowchart of this subsystem.

30

Show Window

Update Data

Confirmation

Button Clicked?
Yes

Name Field

Contains Only

Letters?

Weight Field

Contains Only

Numbers?

Yes

Height Field

Contains Only

Numbers?

Yes
Gender

Selected?
Yes

Weight Category

Selected?
Yes

Save Data On

Database

End

Set Error MessageNo

No

No No

CancelButton

Clicked?
No

Yes

Fill Fileds With Old

Data

Figure 23 - Edit Athlete Information Subsystem

4.2.5. Delete Athlete Subsystem

Athlete’s profiles can be deleted. For that there is a button on main window.

When user clicks on delete button the application sends a query to database

to remove the athlete with the id given.

Figure 24 represents the flowchart of this subsystem.

31

Show Window Athlete Clicked
Delete Button

Clicked?

Yes

Delete Athlete on

Database

End

No

Figure 24 - Delete Athlete Profile Subsystem Flowchart

4.2.6. New Session Subsystem

The New Session Subsystem allows user to add new training sessions data

to an athlete.

It was said before that the session’s data is obtained from an external

system on a .xls file, so our concern is only how to read the file.

The XLS file reader subsystem will be explained bellow.

The user is able to add a date and time to session and also some notes that

he consider to be important.

Figure 25 shows this subsystem flowchart.

Show Window
Confirmation

Button Clicked

Data File

Picked?

Sesion Time

After Today?
Yes

No

Set Error Message

Yes

Call XLS File

Reader

Subsystem

No

End

Figure 25 - New Session Data Subsystem Flowchart

32

4.2.7. Sessions Listing Subsystem

This subsystem is used to list all sessions of a given athlete stored on

database and present it to the user.

From this list, user can select a session to run on the ontology.

Show Window Get Athlete’s ID

Get All Athlete’s

Session From

Database

List Sessions End

Figure 26 - Sessions Listing Subsystem Flowchart

4.2.8. XLS File Reading Subsystem

The purpose of this subsystem is to read xls files that are created by the

external systems that capture the biomechanical data.

These systems doesn´t inserts the biomechanical data into the file on the

same order, which is a problem because when our system reads the file can

interpret the data incorrectly. The solution is to give to the user a template file

where all variables are listed. The user needs to insert these variable names on

external system. These systems don’t export data in same order, so what our

application needs to read the variable name to be able to save the correct data

value.

Figure 27 shows training session’s data file example.

Figure 27 - XLS File Template

33

Figure 28 shows this subsystem flowchart.

Start
Read Variable

Name

Save Cell Value

Points Next Line

End of File?

End

Yes

Name

Exists?

Yes

No

Error Message

No

Figure 28 - XLS File Reading Subsystem Flowchart

4.2.9. Database Interface Subsystem

This subsystem is responsible to do the interface between the Java

application and the database.

Here the statements are prepared with information to store on the database

and queries to select, update, delete and insert data.

Figure 29 represents this subsystem flowchart.

34

Start Open Connection Prepare Query

Send Query

Query Result

Ok?
Show Result Yes

Show error

Message to User

No

End

Figure 29 - Database Interface Subsystem

4.2.10. Ontology Interface Subsystem

This subsystem is responsible for interacting with the ontology.

The ontology is loaded to application’s memory, it is inserted an individual

and stored its properties values. These values correspond to data from the training

sessions selected by user. When that is done the system queries the ontology and

waits for the results.

When all results are received the systems reports to the user the results in a

language that he understands.

Figure 30 represents the flowchart of this system.

Start Load Ontology
Create Temporary

Individual

Set Properties

With Values From

Trainning Session

Query Ontology

Get Result

Last Query?Yes
Show Report to

User

No

End

Figure 30 - Ontology Interface Subsystem Flowchart

35

As was mentioned before, the communication with the ontology is made

using SQWRL queries.

It was also mentioned that the queries have this form:

 Comparing two properties values:

Athlete(?a) ^ RightKneePositionStartPosition_xx(?a,?x)^
RightAnklePositionStartPosition_xx(?a,?y) ^ swrlb:equal(?x,?y) ->
sqwrl:select(?r)

Athlete(?a) ^ HipPositionStartPosition_yy(?a, ?x) ^
RightKneePositionStartPosition_yy(?a, ?y) ^ swrlb:greaterThan(?x, ?y)->
sqwrl:select(?r)

 Comparing properties values with numeric values:

Athlete(?a) ^ RightElbowAngleStartPosition(?a, ?x) ^
LeftElbowAngleStartPosition(?a, ?y) ^ swrlb:greaterThan(?x, 175) ^
swrlb:lessThan(?x, 185) ^ swrlb:greaterThan(?y, 175) ^ swrlb:lessThan(?y,185
-> sqwrl:select(?r)

 Comparing the result of arithmetic operations between properties

values:

Athlete(?a) ^ RightAnklePositionStartPosition_xx(?a, ?x) ^
HipPositionStartPosition_xx(?a, ?y) ^ LeftAnklePositionStartPosition_xx(?a,
?w) ^ swrlb:subtract(?z, ?x, ?y) ^ swrlb:subtract(?k, ?y, ?w) ^
swrlb:equal(?z, ?k)-> sqwrl:select(?r)"

4.2.11. Query Rule Creation Subsystem

This subsystem is responsible for parsing the xml file and constructing the

query rules to send to ontology.

Because we do not do a lot documents manipulation we will use a light

parser and create our own handler instead of using a powerful parser with XLST

stylesheet.

System reads the element that was collected by the parser and stores its

value. In the end it makes a string in a form of SQWRL query correspondent with

the rule inserted on XML file.

Figure 31 represents an example of the rule xml file.

36

Figure 31 - Rule XML File Example

The rule of the example above means that on start position, hip must be at

same distance of both ankles, which means that the result of the subtraction of the

parameter RightAnklePositionStartPosition_xx (position of the right ankle on start

position on xx 3D axis) by the parameter HipPositionStartPosition_xx (position of

the hip on start position on xx 3D axis) and the result of the subtraction of

HipPositionStartPosition_xx by LeftAnklePositionStartPosition_xx must be equal.

After parsing, the resulting query on SQWRL language must be:

Athlete(?a)^RightAnklePositionStartPosition_xx(?a,?x)^HipPositionStart

Position_xx(?a,?y)^LeftAnklePositionStartPosition_xx(?a,?w)^swrlb:subtract(?z

,?x,?y)^swrlb:subtract(?k,?y,?w)^swrlb:equal(?z,?k)^RulesOk_7(?a,?r)-

>sqwrl:select(?r)

Figure 32 shows the flowchart of this subsystem.

37

Start Call Parser Read Element
Element

“number”?
Yes

Store Rule

Number

Element

“attibute”?

No

Yes Store attribute

Element

“result_op”?

No

Element

“parameter”?

No

Element

“value”?

No

No

Fires Result

Operation

Attribute Flag

Yes

Store ParameterYes

Yes Store Value

End of File?

No

Create Query

Yes

End

Figure 32 - Query Rules Creation Subsystem Flowchart

There are five functions from the handler class that are called automatically

by parser:

 startDocument() when application starts parsing the file;

 startElement() when parser finds the beginning of an element;

 characters()to read each character of the value contained in the

element;

 endElement() when parser finishes reading the element;

 endDocument()when parser finishes reading the document.

38

The function of the handler is, like the name says, handling with the

information received from parser. On this case, handler verifies the syntax and

stores the data.

There are three main elements: property, attribute and value. To deal with

these three elements were created three arrays, each one containing information

about the elements.

 Property array:

class_name property_name class_argument property_argument

The firs element of the array belongs to the property’s class. The second

element is for the property name. The second and third elements are used to store

the property arguments.

 Attribute array

attribute_name first_argument second_argument third_argument three_argument_flag result

The first element is to store the attribute’s name. If attribute has three

arguments (two arguments for input and one for output) the three_argument_flag

is fired and the three arguments are stored. If the attribute has two arguments,

only the first_argument and second_argument are filled.

If the attribute compares the result of two others the result flag is fired and

the input arguments are the output arguments of the last two attributes stored.

 Value array

The value variable can assume two forms, one if the value element is

a property and other if it is a number or string. The way of array is

filled depends on a flag that exists on the last element of this array.

 Property:

class_name property_name class_argument property_argument type_flag

39

 Numeric value and string:

value type_flag

4.3. Writing Rules on XML File

A template of rules file was present during the design phase.

During the implementation phase were inserted fifteen rules on file.

Following is written the rules meaning, a parameterization, and the xml

code:

1.

Meaning: Right knee and right ankle should be vertically aligned

during the start position;

Paramerters: RightKneeStartPosition_xx = RightAnkleStartPosition_xx

XML code:

<rule>
<number>1</number>
<data_property>

<parameter>RightKneePositionStartPosition_xx</parameter>
<attribute>equal</attribute>
<value>RightAnklePositionStartPosition_xx</value>

</data_property>
</rule>

2.

Meaning: Left knee and left ankle should be vertically aligned during

the start position;

Simplification: LeftKneeStartPosition_xx = LeftAnkleStartPosition_xx

XML code:

<rule>
<number>2</number>
<data_property>

<parameter>LeftKneePositionStartPosition_xx</parameter>
<attribute>equal</attribute>
<value>LefttAnklePositionStartPosition_xx</value>

40

</data_property>
</rule>

3.

Meaning: The position of hip should be higher than the position of

knees;

Simplification: HipPositionStartPosition_yy >=

RightKneePositionStartPosition_yy

XML code:

<rule>
 <number>3</number>
 <data_property>
 <parameter>HipPositionStartPosition_yy</parameter>
 <attribute>greaterThan</attribute>
 <value>RightKneePositionStartPosition_yy</value>
 </data_property>

</rule>

4.

Meaning: At start position shoulders should be aligned or slightly

ahead of the barbell;

Simplification: RightShoulderPosition_zz >= BarPositionStartPosition_zz

XML code:

<rule>
 <number>4</number>
 <data_property>
 <parameter>RightShoulderPositionStartPosition_zz</parameter>
 <attribute>greaterThanOrEqual</attribute>
 <value>BarPositionStartPosition_zz</value>
 </data_property>

</rule>

5.

Meaning: At start position, both elbows should have an angle

between 175º and 185º;

41

Simplification: RightElbowAngleStartPosition > 175 &&

RightElbowAngleStartPosition < 185 && LefttElbowAngleStartPosition >

175 && LeftElbowAngleStartPosition < 185

XML code:

<rule>
 <number>5</number>
 <data_property>
 <parameter>RightElbowAngleStartPosition</parameter>
 <attribute>greaterThan</attribute>
 <value>175</value>
 </data_property>
 <data_property>
 <parameter>RightElbowAngleStartPosition</parameter>
 <attribute>lessThan</attribute>
 <value>185</value>
 </data_property>
 <data_property>
 <parameter>LeftElbowAngleStartPosition</parameter>
 <attribute>greaterThan</attribute>
 <value>175</value>
 </data_property>
 <data_property>
 <parameter>LeftElbowAngleStartPosition</parameter>
 <attribute>lessThan</attribute>
 <value>185</value>
 </data_property>

</rule>

6.

Meaning: The back should be slightly curved at start position;

Simplification: BackAngleStartPosition ≠ 0

XML code:

<rule>
 <number>6</number>
 <data_property>
 <parameter>BackAngleStartPosition</parameter>
 <attribute>notEqual</attribute>
 <value>0</value>
 </data_property>

</rule>

7.

Meaning: On start position, hip should be at same distance of right

and left ankles;

42

Simplification: (RightAnkleStartPosition_xx –

HipPositionStartPosition_xx) = (HipPositionStartPosition_xx -

LeftAnkleStartPosition_xx)

XML code:

<rule>
 <number>7</number>
 <data_property>
 <parameter>RightAnklePositionStartPosition_xx</parameter>
 <attribute>subtract</attribute>
 <value>HipPositionStartPosition_xx</value>
 </data_property>
 <data_property>
 <parameter>HipPositionStartPosition_xx</parameter>
 <attribute>subtract</attribute>
 <value>LeftAnklePositionStartPosition_xx</value>
 </data_property>
 <result_op>
 <attribute>equal</attribute>
 </result_op>

</rule>

8.

Meaning: Shoulders have to be higher than hip on start position;

Simplification: RightSoulderPositionStartPosition_yy >

HipPositionStartPosition_yy

XML code:

<rule>
 <number>8</number>
 <data_property>
 <parameter>RightShoulderPositionStartPosition_yy</parameter>
 <attribute>greaterThan</attribute>
 <value>HipPositionStartPosition_yy</value>
 </data_property>

</rule>

9.

Meaning: During the first pull bar should be higher than knees;

43

Simplification: BarPosition1stPull_yy > RightKneePosition1stPul_yy

XML code:

<rule>
 <number>9</number>
 <data_property>
 <parameter>BarPosition1stPull_yy</parameter>
 <attribute>greaterThan</attribute>
 <value>RightKneePosition1stPull_yy</value>
 </data_property>

</rule>

10.

Meaning: During the first pull shoulders and hip should elevate at

same rate;

Siplification: (RightShoulderPosition1stPull_yy – HipPosition1stPull_yy)

= (RightShoulderPositionStartPosition_yy - HipPositionStartPosition_yy)

XML code:

<rule>
 <number>10</number>
 <data_property>
 <parameter>RightShoulderPosition1stPull_yy</parameter>
 <attribute>subtract</attribute>
 <value>HipPosition1stPull_yy</value>
 </data_property>
 <data_property>
 <parameter>RightShoulderPositionStartPosition_yy</parameter>
 <value>HipPositionStartPosition_yy</value>
 <attribute>subtract</attribute>
 </data_property>
 <result_op>
 <attribute>equal</attribute>
 </result_op>

</rule>

11.

Meaning: The angle of the back on first pull should be the same than

on start position;

Simplification: BackAngleStartPosition = BackAngle1stPull

XML code:

44

<rule>
 <number>11</number>
 <data_property>
 <parameter>BackAngleStartPosition</parameter>
 <attribute>equal</attribute>
 <value>BackAngle1stPull</value>
 </data_property>

</rule>

12.

Meaning: During first pull the angle of elbows should be between

175º and 185º;

Simplification: RightElbowAngle1stPull > 175 &&

RightElbowAngle1stPull < 185 && LefttElbowAngle1stPull > 175 &&

LeftElbowAngle1stPull < 185

XML code:

<rule>
 <number>12</number>
 <data_property>
 <parameter>RightElbowAngle1stPull</parameter>
 <attribute>greaterThan</attribute>
 <value>175</value>
 </data_property>
 <data_property>
 <parameter>RightElbowAngle1stPull</parameter>
 <attribute>lessThan</attribute>
 <value>185</value>
 </data_property>
 <data_property>
 <parameter>LeftElbowAngle1stPull</parameter>
 <attribute>greaterThan</attribute>
 <value>175</value>
 </data_property>
 <data_property>
 <parameter>LeftElbowAngle1stPull</parameter>
 <attribute>lessThan</attribute>
 <value>185</value>
 </data_property>

</rule>

13.

Meaning: During the first pull bar should go backward;

Simplification: BarPosition1stPull_zz < BarPositionStartPosition_zz

XML code:

45

<rule>
 <number>13</number>
 <data_property>
 <parameter>BarPosition1stPull_zz</parameter>
 <attribute>lessThan</attribute>
 <value>BarPositionStartPosition_zz</value>
 </data_property>

</rule>

14.

Meaning: During the first pull knees should go backward;

Simplification: (RightKneePosition1stPull_zz <

RightKneePositionStartPosition_zz) && (LeftKneePosition1stPull_zz

< LeftKneePositionStartPosition_zz)

XML code:

<rule>
 <number>14</number>
 <data_property>
 <parameter>RightKneePosition1stPull_zz</parameter>
 <attribute>lessThan</attribute>
 <value>RightKneePositionStartPosition_zz</value>
 </data_property>
 <data_property>
 <parameter>LeftKneePosition1stPull_zz</parameter>
 <attribute>lessThan</attribute>
 <value>LeftKneePositionStartPosition_zz</value>
 </data_property>

</rule>

15.

Meaning: On first pull shoulders position should be aligned or

slightly ahead than bar position.

Simplification: RightShoulderPosition1stPull_zz>= HipPosition1stPull_zz

XML code:

<rule>
 <number>15</number>
 <data_property>
 <parameter>RightShoulderPosition1stPull_zz</parameter>

46

 <attribute>greaterThanOrEqual</attribute>
 <value>BarPosition1stPull_zz</value>
 </data_property>

</rule>

4.4. Database Design

Database will be created using MySQL. It is composed by two tables, one

containing athlete’s information, with the athlete’s id as its primary key, and

another with the data related with the training sessions, which has the session date

as its primary key and the athlete id as its foreign key.

Figure 33 shows the design of the database.

Figure 33 - Database Design

47

4.4.1. Querying Database

As was said before, the application communicates with database using SQL

queries.

Each type of query has its own format.

 Insert query:

INSERT INTO `biomechanics`.`athlete`(name,gender,height,weight,

weightCategory,photo,status,age) VALUES (?,?,?,?,?,?,?,?)

 Update query:

"UPDATE `biomechanics`.`athlete` SET `name` =?, gender =?, height =?,

weight =?, weightCategory =?, photo =?, status =?, age =? WHERE idathlete =?"

 Select query:

"SELECT idathlete, name, gender, height,weight,weightCategory, photo,

status, age FROM `biomechanics`.`athlete` ORDER BY name"

 Delete query:

"DELETE FROM `biomechanics`.`session` WHERE `date` = '"+date+"' AND

`idAthlete` = "+idAthlete+""

48

5. System Implementation

5.1. Java Application

5.1.1. Main Window Interface

The main window interface is the first window to be presented to user after

application starts. Here user is able to check all athletes that were loaded from

database.

Figure 34 - Main Window Interface

From here user is able to create, update and delete an athlete profile, create

a new session and list all session of the selected athlete by clicking on

corresponding button. Some buttons are disabled by default.

Clicking on an athlete from the list, user can see his personal information. At

this point, the disabled button pass to enable.

49

Figure 35 - Main Window Athlete's Personal Information

5.1.2. New Athlete Window Interface

Here user can insert a new athlete’s profile. The name, weight, height,

gender and weight category fields are mandatory.

Figure 36 - New Athlete Window Interface

If those fields were left blank or filled on a wrong form an error message

will show.

50

Figure 37 - New Athlete Error Message

If all fields were correctly filled data will be saved on database.

5.1.3. Edit Personal Information Window Interface

On this window user can change any personal information about the

athlete. This page is similar to the New Athlete page and contains the same error

controls.

5.1.4. New Session Window Interface

On New Session window interface, user can create a new session by

inserting the training session data file, the session data and time and some

comments.

When user confirms the creation of a new session, is asked to user if he

wants to save the data on database. In positive case, the Database Interface

subsystem is called to store data on database. Following is asked if user wants to

system runs the ontology inferring rules with new data.

Figure 38 shows the interface of this subsystem.

51

Figure 38 - New Session Window Interface

5.1.5. Athlete’s Session List Window Interface

User is able to get a list of all training sessions of an athlete using this

window. From this interface, user can add a new session or delete an existing one.

After selecting a session, user is able to query the ontology with the data from that

session.

Figure 39 shows the interface of this window.

Figure 39 - Training Sessions List window Interface

52

5.1.6. Results Page Interface

Results page gives to user the results of inferred rules. From the results,

athlete knows if he accomplished the rule’s requirements.

5.1.7. Ontology Interface

After preparing queries, as was mentioned on design phase, it is necessary

to load the ontology in order be able to infer rules. The API’s used were provided

by Protégé development team.

OWLModel owlModel = ProtegeOWL.createJenaOWLModelFromURI(uri);
SQWRLQueryEngine queryEngine = P3SQWRLQueryEngineFactory.create(owlModel);

When ontology is fully loaded we just need to send the queries and handle

the results.

Result resultb=(Result)queryEngine.runSQWRLQuery ("queryRule"+i+1+"",

query);

The application receives boolean values from the ontology. If the inferred

rule were satisfied the application receives the true value, otherwise the false value

will be received.

After application received all results the result page will be called to present

them to user.

5.1.8. Creating Database Queries

Before the execution of the query, some steps need to be done.

 First we need to initialize the driver that will serve as interface to

database, its url, credentials, connection and statement. Database

53

was created using MySQL software, so the API’s used on application

are specifically for databases created on that framework.

static final String driver = "com.mysql.jdbc.Driver";
static final String url = "jdbc:mysql://localhost/biomechanics";
static final String user = "root";
static final String pwd = "root";
Statement smt = null;

 Then we have to open a connection to database and create a

statement on the connection:

 conn= DriverManager.getConnection(url,user,pwd);

 smt= conn.createStatement();

 Next we prepare and execute the query and handle with the results:

String sql= "SELECT idathlete, name, gender, height,

weight,weightCategory, photo, status, age FROM

`biomechanics`.`athlete` ORDER BY name";

ResultSet rs = smt.executeQuery(sql);

 Finally, we handle with the results.

while(rs.next())
{…}

5.1.9. Rules Generation

The rules generation is made in three steps. First application does the

parsing of the xml rules file. The API used to parse the file is the SAXPARSER API.

This API has low resources consumption and is fast enough to our needs.

The first thing to do is to declare and instantiate the parser and the handler

classes. The handler class receives the values provided by the parser and stores

them to build the rule later.

XMLReader xr = XMLReaderFactory.createXMLReader();
XmlHandler handler = new XmlHandler();
xr.setContentHandler(handler);
xr.setErrorHandler(handler);

54

File rules = new
File("c:\\javaworkspace\\Weightlifting\\src\\weightlifting\\rules.xml"
);
InputStream inputStream= new FileInputStream(rules);
Reader reader = new InputStreamReader(inputStream,"UTF-8");
InputSource is = new InputSource(reader);

 xr.parse(is);

When the function parse() from the class XMLReader is called the

application starts parsing. This function is provided by the SAX API. The aspect of

the rules file was described during the design phase.

When rule file is completely written and variables store a function to build

the rule on SQWRL language is called.

This function receives all variables and put them on a specific order to build

the rule correctly. For this demonstration we will implement a rule that verifies if

right ankle and right knee are vertically aligned on start position.

First the function adds the class and its argument:

While(parameters[i][0]!=null{

rule=rule +parameters[i][0]+"("+parameters[i][2]+") ^ ";

i++;

}

Where parameters[i][0] represents the class name, for example “Athlete”,

and parameters[i][2] represents the class argument “?a”. The rule can have more

than one class, so the while cycle is needed.

The rule built until now is:

Athlete(?a) ^

After that the program adds the parameters:

rule=rule+parameters[i][1]+"("+parameters[i][2]+","+parameters[i][3] +") ^ ";

parameters[i][1] represents the property name, like

RightAnklePositionStartPosition_xx, while parameters[i][3] represents its

argument.

55

So, the rule built with these new variables should be:

Athlete(?a) ^ RightAnklePositionStartPosition_xx(?a,?f) ^

After this step, program checks if value variable has properties. On positive

case, program adds it to the rule.

rule= rule+values[i][1]+"("+values[i][2]+","+values[i][3]+") ^ ";

On this case the value array has the same form than parameter array, so the

form of reading is the same too.

The rule described should now have this format:

Athlete(?a) ^ RightAnklePositionStartPosition_xx(?a,?f) ^

RightKneePositionStartPosition(?a,?g) ^

After program inserts all parameters on rule it inserts the attributes.

Attributes can have two or three arguments, so we have to threat attributes

depending of the number of arguments it has. As was referenced above, there is a

flag, present on attributes array, that is fired in case of the argument has three

arguments.

if(attributes[i][4]=="y")
{

switch(values[i][4])
 {
 case "p":

rule=rule+attributes[i][0]+"("+attributes[i][3]+","+
parameters[i][3]+","+values[i][3]+") ^ ";

 break;

 case "n":

rule= rule+attributes[i][0]+"("+ attributes[i][3]+","+
parameters[i][3]+","+Float.parseFloat(values[i][0])+")^";

 break;

 case "s":

rule= rule+attributes[i][0]+"("+attributes[i][3]+","+
parameters[i][3]+",\""+values[i][0]+"\") ^ ";

 break;

 default:
 break;
 }
}

56

If attribute receives three arguments, the first one is the operation result

argument, the second is the properties argument and the third is the value

argument that can be a property argument, a number or a string.

In case of attribute receiving only two arguments there is no need to check

the three_argument_flag value. The result operation argument is not inserted in

this case.

switch(values[i][4])
{
 case "p":

rule=rule+attributes[i][0]+"("+parameters[i][3]+","+
values[i][3]+") ^ ";

 break;

 case "n":

rule= rule+attributes[i][0]+"("+parameters[i][3]+","+
Float.parseFloat(values[i][0])+") ^ ";

 break;

 case "s":

rule= rule+attributes[i][0]+"("+parameters[i][3]+",\""+
values[i][0]+"\") ^ ";

 break;

 default:
 break;
} }

We want to verify is right ankle and right knee are aligned which means

that their position value on xx 3D axis must be the same. The attribute that does

that verification is the attribute equal. This attribute receives the property

argument and the value argument that is a property argument as well.

So, the resulting code should be like the one described below.

Athlete(?a) ^ RightAnklePositionStartPosition_xx(?a,?f) ^

RightKneePositionStartPosition(?a,?g) ^ swrlb:equal(?f,?g)

After this the rule only needs an output. This output can only returns a

value of variable present in the input part. We want the output return a Boolean

value, so we have to add a new variable that contains boolean values. For that we

insert the RulesOk variable. This variable has the true value by default. If the

attribute’s verification is satisfied the output returns the RulesOk value, otherwise

57

it returns nothing meaning the rule was not satisfied. Now the program can finish

building the rule.

rule= rule+"RulesOk_"+ruleNumber+"(?a,?z) -> sqwrl:select(?z)"

The resulting rule should now be like:

Athlete(?a) ^ RightAnklePositionStartPosition_xx(?a,?f) ^

RightKneePositionStartPosition(?a,?g) ^ swrlb:equal(?f,?g) ^ RulesOk_1(?a,?z)

-> sqwrl:select(?z)

5.1.10. Training Sessions Data Reading

To start reading file we have to point to a reference cell. In this case will be

cell A1.

CellReference cellRef1 = new CellReference ("A1");

Then, column and row variables are initialized.

Row row1 = sheet.getRow(cellRef1.getRow());

 Iterator<Row> rowIterator1 = sheet.iterator();
int col1 = cellRef1.getCol();

After this application start reading the file and storing variables values.

while (rowIterator1.hasNext()==!errorFlag)
{
 row1 = rowIterator1.next();
 cell1 = row1.getCell(col1);
 cell2 = row1.getCell(col1+1);

 if (cell1!=null) {
 switch(cell1.getStringCellValue()) {
 case "Load":
 if(cell2!=null) {
 session.setLoad((int)cell2.getNumericCellValue());
 }
 break;

58

 case "AnkleAngleStartPosition":
 if(cell2!=null) {

session.setAnkleAngle(0,
(float)cell2.getNumericCellValue());

 }
 break;

session is an instance of the class that contains information about training

sessions data.

5.2. Database Implementation

Database is composed by two tables. One called athlete that is used to store

athlete’s personal information and has idathlete as its primary key.

Figure 40 represents shows all variables present on athlete table.

Figure 40 - athlete table

The other table that is present on database stores training sessions data of

all athletes. It has idSession as its primary key and idAthlete as foreign key that

refers to idathlete on athlete table.

Figure 41 shows session table.

59

Figure 41 - session table

60

6. Results

In this chapter we will test the system and comment the results obtained.

6.1. Inserting a New Athlete

We will start by creating an athlete profile on application.

We will create an athlete named AthleteA with 28 year of age, male, 1,80

meters of height and 87 kg of weight.

Figure 42 presents the insertion of the athlete profile.

Figure 42 - Athlete Profile Insertion

After Confirm button is clicked this athlete profile will be stored on

database.

61

6.2. Inserting a Training Session Data File

After the creation of an athlete profile is possible to add files with data from

training sessions. For that, on main window we choose the corresponding athlete

and next we click on New Session button to show the window for the insertion of

the file.

For this demonstration we will insert data from training session of a novice

athlete.

Figure 43 shows the insertion of the file. It is possible to add the session

data and some observations.

Figure 43 - Training Session File Insertion

When Confirm button is clicked application asks to user if he wants to store

the data on database or run on ontology. If user clicks on button to run data,

application starts inferring rules on ontology.

62

6.3. Inferring Rules on Ontology

When user runs session’s data, application starts inferring rules on

ontology. As was mentioned before, these rules are sent to ontology in a form of

queries.

When all rules are inferred and the application received all results, a

window will present to user showing the result of each inferred rule indicating if

the part of the exercise that each rule refers was successfully performed.

Figure 44 - Results from Inferred Rules

Moving the mouse over a rule it is possible to see a description of that rule

as well as the values of the parameters related with the rule.

Figure 45 – Rule Details

63

6.4. Results Observation

The obtained results demonstrate the system meets the requirements.

Application parses both xml and xls files successfully and the communication with

database and ontology is made without errors. The rules details allow user to

understand the results better and make some corrections on athlete’s posture.

One of the reasons of the majority of rules has been given as failed could be

the accuracy of data due to the lack of accuracy of collecting data systems. In some

cases athlete’s body parts should be equal positioned but they are mismatched by a

small distance that is captured by the collecting data system. Inferring rules with

that data, ontology notices the data is not equal and returns nothing, giving the

rule as not satisfied, meaning the part of the exercise referenced by that rule was

not executed successfully.

One solution for that problem should be the creation of a threshold,

improving the system performance, nevertheless harming the correct execution of

the exercise.

64

Conclusion

In this work was concluded the use of ontology is a viable way to approach

creating systems that deal with knowledge-based concepts. However, comparing

with databases, the waiting time for a result from a query is higher. Each query can

take up to two minutes to return a result.

Setting rules out of the core system allows user to add, remove or edit rules

anytime, adapting the system to the athlete and therefore increasing system’s

performance and gives to user freedom from the programmer. Although the

purpose of this system is the weightlifting it can be used for other sports.

One constraint of system’s performance is the data collection system

accuracy. If a system with low accuracy is used, the collected data will also not be

accurate which low our systems performance and consequently can induce

athletes in error.

System’s performance also depends of the number of rules and its

complexity. The greater number of rules and simpler the greater will be system’s

performance.

Some improvements that can be done on Java application in the future are

the addition of more parameters for data collection and more rules. The addition of

a rule description and some useful information on results window can be done

hereafter.

On ontology, the addition of Snatch and Clean and Jerk’s subparts as

subclasses is an implementation to do on the future.

Concluding, this project was a successful experience on knowledge-base

systems area and weightlifting.

65

References

[

[1] J. D. Fortin and F. J. Falco, "The Biomechanical Principles of Preventing

Weighlifting Injuries," in Phisical Medicine and Rehabilitation: State of Art Reviews,

Philadelphia, Hanley & Belfus, Inc, 1997.

[

[2] A. Storey and H. K. Smith, "Unique Aspects of Competitive

Weightlifting," Springer International Publishing AG, 2012.

[

[3] M. Horridge, H. Knublauch, A. Rector, R. Stevens and C. Wroe, Practical

Guide To Building OWL Ontologies Using The Protégé-OWL Plugin and CO-ODE

Tools, Manchester: The University Of Manchester, 2004.

[

[4] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M.

Dean, "SWRL: A Semantic Web Rule Language Combining OWL and Rule ML," 21

May 2014. [Online]. Available: http://www.w3.org/Submission/2004/SUBM-

SWRL-20040521. [Accessed 18 February 2015].

[

[5] M. O'Connor and A. Das, "SQWRL: a Query Langauge for OWL,"

Stanford Center for Biomedical Informatics Research.

[

[6] M. H.Stone, K. C. Pierce, W. A.Sands and M. E.Stone, "Weightlifting: A

Brief Overview," Strength and Conditioning Journal, vol. 28, pp. 50-66, 2006.

[

[7] N. F. Noy and D. L. McGuinness, Ontology Development 101: A Guide to

Creating Your First Ontology, Stanford University, Stanford, CA, 94305.

[

[8] V. Oliveira, "Based Personalized Dietary Recommendation for

Weightlifting," University of Minho.

66

[

[9] Protégé, "Protege3DevDocs - ProtegeWiki," 29 August 2014. [Online].

Available: http://protegewiki.stanford.edu/wiki/Protege3DevDocs. [Accessed 15

December 2014].

[

[10] R. Pandey and D. Dwivedi, "Ontology Description using OWL to

Support Semantic Web Applications," International Journal of Computer

Applications , vol. 14, 2011.

[

[11] A. Drechsler, The Weightlifting Encyclopedia: A Guide to World Class

Performance, A is A Communications, First Edition,1998.

[

[12] J. Garhammer, "Biomechanical Profiles of Olympic Weightlifters,"

1985.

