
Renato da Cunha Castro

Automotive HMI: Management of
product development using Agile framework

Re
na

to
 d

a
Cu

nh
a

Ca
st

ro

October 2016UM
in

ho
 |

 2
01

6
Au

to
m

ot
iv

e
H

M
I:

M
an

ag
em

en
t o

f
pr

od
uc

t d
ev

el
op

m
en

t u
si

ng
 A

gi
le

 fr
am

ew
or

k

Universidade do Minho
Escola de Engenharia

October 2016

Master Thesis
MSc on Industrial Electronics and Computer Engineering

Supervised by
Professor Jorge Miguel Nunes dos Santos Cabral

Renato da Cunha Castro

Automotive HMI: Management of
product development using Agile framework

Universidade do Minho
Escola de Engenharia

iii

“It’s not that I’m so smart, it’s just that I stay with problems longer”
Albert Einstein

v

ACKNOWLEDGMENTS

Words cannot express my gratefulness for the help and encouragement received along this journey.

This achievement is also result of the inspiration and support of many important people, who I must

remember and truly thank.

To my advisor, professor Jorge Cabral for the availability to monitor this work, and specially for the

motivation on pursuing my personal interests as a future engineer.

To my mentor and friend, Marco Martins, for the opportunity and encouragement on embracing new

challenges. Thank you for making me grow!

To my investigation teammates for their support, but mainly for the fellowship and the laughs which

definitely made the work fun and enjoyable.

To my insuperable colleagues of electronics engineering. We battled together for years! Despite

following different paths, our experiences will never be forgotten! A special recognition to my partner

and good friend Pedro Silva, for his support and encouragement along these years.

Finally, to my family and friends, for the patient and support, even though they still have no idea what I

have been doing in the past ages. Yes, studying is no longer an excuse for missing dinners!

Thank you all, for the learnings, for the laughs, for the challenges … For shaping who I am!

All the best!

vii

ABSTRACT

This work aims to investigate the compliance and potential benefits of applying Agile to automotive

development. Technological innovation has had a strong impact on recent decades with a major focus

on the automotive world. A growing amount of devices are connected to the car leading to a sharp

increase of available functionalities, which are expected to grow in number and in complexity over the

next few years. Therefore, in order to keep pace with technological growth, a constant renewal of

human machine interface systems is required leading to a considerable decrease of the period of

product life cycle in the automotive industry. Consequently, with the purpose of responding to

competitiveness and matching the user needs, it is mandatory for the automotive world to adopt new

development methods in order not only to manage the growing complexity but also to reduce the time

to market, since this readiness is crucial to maximize the return of investment. The proposed solution

aims to meet this necessity through the use of Agile methodologies, focused on iterative development

and oriented to customer needs. Thus, an action research was conducted aiming to evaluate the

efficiency and compliance between the framework and the automotive industry. After an initial study on

Agile methods, a process was designed for an automotive development project, in partnership with a

reputable company in the automotive industry. Data gathered along this case study shown the major

benefits and drawbacks of employing the Agile into a development project. Finally, the implemented

approach was matched with recognizable models as CMMI and ASPICE, revealing the Agile compliance

for automotive industry. (Davydov, 2012; “Manifesto for Agile Software Development,” 2001; Oracle &

Paper, 2013)

KEYWORDS: Automotive Development; Agile; Compliance;

ix

RESUMO

O presente trabalho pretende investigar a compatibilidade e potenciais benefícios de aplicar

metodologias Agile ao desenvolvimento automóvel. Ao longo das últimas décadas, a inovação

tecnológica tem causado um forte impacto no ramo automóvel. O aumento de dispositivos conectados

ao carro é refletido no elevado crescimento de funcionalidades, que tendem a crescer em número e

complexidade ao longo dos próximos anos. Para acompanhar o crescimento tecnológico, o ramo

automóvel é obrigado a uma renovação constante dos interfaces homem máquina, conduzindo a uma

redução considerável no ciclo dos seus produtos. A fim de manter a competitividade e responder às

necessidades dos utilizadores, o ramo automóvel carece de novos métodos de desenvolvimento. Além

de lidar com a crescente complexidade, a nova abordagem visaria também a redução do tempo de

mercado, que é crucial para maximizar o retorno de investimento. A solução proposta aborda estes

desafios através da aplicação de metodologias Agile, centradas em desenvolvimento iterativo e

orientado às necessidades do utilizador. Uma investigação ativa foi conduzida com o objetivo de avaliar

a eficácia e compatibilidade da framework com a indústria automóvel. Após um estudo inicial sobre os

métodos Agile, um processo foi concebido para um projeto de desenvolvimento automóvel, em parceria

com uma respeitável companhia nesta indústria. Evidencias recolhidas ao longo deste caso de estudo

mostraram os potenciais benefícios de aplicar Agile num projeto de desenvolvimento. Por fim, o

processo foi comparado com modelos como CMMI e ASPICE, expondo a compatibilidade entre Agile e

a indústria automóvel. (Davydov, 2012; “Manifesto for Agile Software Development,” 2001; Oracle &

Paper, 2013)

PALAVRAS CHAVE: Desenvolvimento Automóvel; Agile; Compatibilidade;

xi

CONTENTS

Declaration .. ii

Acknowledgments .. v

Abstract... vii

Resumo.. ix

Contents .. xi

List of Figures .. xv

List of Tables .. xvii

Acronyms Dictionary .. xix

1. Introduction .. 1

1.1 Background... 1

1.2 Motivation and Objectives .. 4

1.3 Research Methodology .. 5

1.4 Document Layout .. 7

2. Literature Review .. 9

2.1 Evolution of automotive development processes ... 9

2.1.1 Waterfall Model .. 10

2.1.2 V-Model ... 11

2.1.3 Modern cars demand modern processes .. 13

2.2 An emerging solution ... 15

2.2.1 State of practice .. 16

2.2.2 Vodafone UK: Halving lifecycle through agile .. 19

2.2.3 Samsung: Moving to agile to shorten development ... 20

2.2.4 Primavera: A Successful Transition to Agile .. 20

xii

2.3 Agile Software Development .. 22

2.3.1 Background ... 22

2.3.2 Principles and General Practices .. 23

2.3.3 Methodologies ... 29

2.3.4 Selecting the Approach .. 34

2.4 Scrum ... 36

2.4.1 Definition ... 36

2.4.2 Principles and Values ... 36

2.4.3 Roles ... 37

2.4.4 Artefacts .. 39

2.4.5 Events ... 43

2.5 Automotive Process Standards .. 46

2.5.1 CMMI – Capability Maturity Model Integration .. 46

2.5.2 ASPICE - Automotive Spice... 53

3. Methodology ... 57

3.1 Project Bosch InnovCar: “Cockpit of Future.. 58

3.1.1 Background ... 58

3.1.2 Aims and Goals ... 58

3.1.3 Structure and Organization .. 59

3.2 Development Strategy ... 60

3.2.1 Process Requirements ... 60

3.2.2 Process Specification ... 61

3.2.3 Supporting Practices and Tools .. 63

3.3 Product Management .. 65

3.3.1 Vision and Plan .. 66

3.3.2 Requirements Gathering .. 66

3.3.3 Development Management .. 67

xiii

3.4 Process Appraisal .. 71

3.4.1 CMMI .. 72

3.4.2 ASPICE .. 73

4. Results and Discussion ... 75

4.1 Process Implementation .. 75

4.1.1 Scheduling the Iteration ... 77

4.1.2 Planning the Work ... 78

4.1.3 Tracking Development ... 80

4.1.4 Review and Retrospectives ... 82

4.2 Automotive Compliance ... 83

4.2.1 CMMI .. 83

4.2.2 ASPICE .. 85

5. Final Conclusions .. 91

5.1.1 Learnings .. 91

5.1.2 Future Work... 94

Bibliography ... 95

Appendix I. Principles behind the Agile Manifesto ... 101

Appendix II. CMMI: Continuous Representation ... 103

Appendix III. CMMI: Staged Representation .. 105

Appendix IV. ASPICE: Process Attributes .. 107

Appendix VI. Bosch Innovcar: Project Calendar .. 109

Appendix VII. CMMI: Matching and Appraisal ... 111

Appendix VIII. ASPICE: Matching and Appraisal .. 117

xv

LIST OF FIGURES

Figure 1 - Software Size: Millions of Lines ... 2

Figure 2 - TTM Comparison: Car vs. Smartphone .. 3

Figure 3 - Action Research - Five stage process ... 6

Figure 4 - Waterfall Model phases ... 10

Figure 5 - V-Model process .. 11

Figure 6 - Project resolution by CHAOS ... 14

Figure 7 - Methodologies Timeline ... 15

Figure 8 - HP Survey: Development methods usage .. 16

Figure 9 - HP Survey: Agile adoption over time ... 17

Figure 10 - VersionOne survey: Respondent Demographics .. 17

Figure 11 - VersionOne survey: Agile benefits .. 18

Figure 12 - Continuous Integration stages ... 27

Figure 13 - Testing as part of development ... 28

Figure 14 - Agile umbrella ... 30

Figure 15 - DSDM Project Variables ... 33

Figure 16 - Agile Methodogies: Prescriptive Vs. Adaptive .. 35

Figure 17 - Scrum Values to Continuous Improvement ... 37

Figure 18 - Scrum Team .. 38

Figure 19 - Product Backlog refinement .. 40

Figure 20 - Sprint Backlog ... 41

Figure 21 - Release Burndown chart ... 42

Figure 22 - Scrum Events ... 43

Figure 23 - CMMI Constellations .. 47

Figure 24 - CMMI Process Area components ... 48

Figure 25 - CMMI Continuous representation .. 50

Figure 26 - CMMI Staged representation ... 51

Figure 27 - ASPICE key concept ... 53

file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157257
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157258
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157259
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157260
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157261
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157262
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157263
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157264
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157265
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157266
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157267
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157268
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157269
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157270
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157271
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157272
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157273
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157274
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157275
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157276
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157277
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157278
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157279
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157280
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157281
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157282
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157283

xvi

Figure 28 - ASPICE Process Dimension ... 54

Figure 29 - ASPICE Capability dimension (Adapted) ... 55

Figure 30 - ASPICE Process Dimension ... 56

Figure 31 – Action Research Method .. 57

Figure 32 - Overall workflow .. 60

Figure 33 - Scrum: organization and timeboxing .. 62

Figure 34 - Continuous Integration system .. 64

Figure 35 - Development flow.. 65

Figure 36 - Requirements gathering framework ... 67

Figure 37 - Sprint backlog item ... 68

Figure 38 - Representation and comparison on CMMI & ASPICE models .. 71

Figure 39 - Bosch Innovcar - Temporal diagram .. 75

Figure 40 - Iterating teams .. 76

Figure 41 - Sprint #3: Iteration schedule ... 77

Figure 42 - Sprint #3: Product Backlog .. 78

Figure 43 - Sprint #3: Story card ... 79

Figure 44 - Sprint #3: Scrum board ... 79

Figure 45 - Sprint #3: Burndown chart .. 80

Figure 46 - Sprint #3: Jenkins build history & comparison of ... 81

Figure 47 - Sprint #3: Daily effort chart ... 82

Figure 48 - CMMI appraisal results.. 84

Figure 49 - CMMI level 2 global achievement .. 85

Figure 50 - ASPICE SYS appraisal results .. 86

Figure 51 - ASPICE SWE appraisal results ... 87

Figure 52- ASPICE SUP appraisal results ... 88

Figure 53- ASPICE MAN & ACQ appraisal results ... 88

Figure 54 - ASPICE level 1 global achievement .. 89

file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157284
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157285
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157286
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157287
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157288
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157289
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157290
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157291
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157292
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157293
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157294
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157295
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157296
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157297
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157298
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157299
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157300
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157301
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157302
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157303
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157304
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157305
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157306
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157307
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157308
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157309
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157310

xvii

LIST OF TABLES

Table 1 - CMMI-DEV Process Areas ... 49

Table 2 - ASPICE Process domain ... 54

Table 3 - HIS Scope process domain ... 56

Table 4 - Bosch Innovcar P689: Project work packages ... 59

Table 5 - Story points scale ... 70

Table 6 - CMMI Capability levels ... 103

Table 7 - CMMI Maturity levels .. 105

Table 8 - ASPICE Rating scale ... 107

Table 9 - ASPICE Capability levels ... 108

Table 10 - Bosch innovcar process plan .. 109

Table 11 - CMMI Process matching ... 115

Table 12 - ASPICE Process matching .. 125

file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157312
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157313
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157314
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157315
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157318
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157319
file:///C:/Users/Renato/Desktop/Renato%20Castro%20-%20Automotive%20HMI-Management%20of%20product%20development%20using%20Agile%20framework%20-%20Final%20Corrections.docx%23_Toc466157320

xix

ACRONYMS DICTIONARY

HMI Human Machine Interfaces

ECU Electronic Control Unit

TTM Time To Market

ROI Return Of Investment

AR Action Research

IT Information Technology

DSDM Dynamic Systems Development Method

FDD Feature-Driven Development

CI Continuous Integration

VCS Version Control Software

TDD Test Driven Development

XP eXtreme Programming

ASD Adaptive Software Development

JIT Just-In-Time

FDD Feature Driven Development

DoD Definition of Done

CMMI Capability Maturity Model Integration

SPICE Software Process Improvement and Capability dEtermination

ASPICE Automotive SPICE

LCP Life Cycle Processes

PA Process Attribute

DSM Driving Simulator Mockup

COTS Commercial Off-The-Shelf

1

1. INTRODUCTION

This preclusive chapter intents to firstly describe the scope of the project and its relevance for the

automotive industry. Furthermore, it includes a brief explanation of the research methodology and an

overview of the document layout.

1.1 BACKGROUND

Over the past decades, the global impact caused by technological revolution is undeniable. The effects

are evident in an increasingly consumerist society, always looking for the ultimate novelty. Although the

tendency is verified in several domains, this constant effort to innovate always had a special focus on

the automotive world.

Efforts have been made to push mechanical performance to the limits, conceive futuristic and pleasing

designs, find novel alternative materials, and even attempt new energy sources. However, the greatest

improvements are definitely inside the vehicle. Nowadays the common driver can take advantage of a

large number of infotainment features in order to make the driving act more safe and comfortable.

These functionalities became so popular that today they are widely available, proving that consumers

are willing to pay for technology that enhances the driving experience [1].

The tasks performed by drivers are mostly travel-related, so the Human Machine Interface (HMI) is

centered over traditional functionalities regarding vehicle diagnosis and telematics, navigation, traffic

and weather information, etc. However, as consumer electronics like smartphones and wearables

constantly evolve and gets connected, users expect automotive technology to do the same [2].

Therefore, automotive HMI is including concepts and technologies well known from personal devices:

traditional buttons and visual warnings are being replaced by touch, speech commands, gesture

recognition, and biometric sensing.

Thus, it is not a surprise that, in order to meet market requirements and achieve the desired

interoperability, the electronic content in regular cars has drastically raised. A decade ago, it

2

represented about 20 to 30 percent of production costs, but that number is expected to double in the

following years [1]. While the average car nowadays has nearly 25 microprocessor-based electronic

control units (ECU’s), some premium models already surpassed 100 independent modules [3]. Such a

sharp growth is explained by the fact that more than 80% of automotive innovations are now related to

software [4]. Thereby, including a new functionality directly results in a considerable increment of code;

so the amount of software on cars has reached impressive numbers. Although complexity should not be

measured through the number of code lines, they might provide a general impression of the system, as

depicted on chart below.

Despite the global concerning about software and its importance within the automotive industry, few

people know that their own cars contain the double of software volume of Windows Vista Operating

System, or 8 times more than a Boeing 787. Figure 1 shows that a modern car runs around 100

million code lines, and this number is expected to increase to 200-300 millions in the near future [5].

Besides the volume of the software, its structure is also evolving. Since the beginning of automotive

industry, the concern always was to define a new car functionality as independent as possible, so their

development and production could be modular. Nevertheless, the sharp increase of software-based

functions is clearly breaking that independence [6]. As a result, the same car that once was pure

modular assembly now has to be understood as a complex system where all the software functions act

together.

Figure 1 - Software Size: Millions of Lines [5]

3

This central and increasingly complex role of software in cars brought several challenges to automotive

development, especially when it comes to innovation. At the same time as software-realized

functionalities increase in number, quality demands for reliability, safety and performance remain high.

Moreover, literature reveals that each time a new car model is conceived, more than 90% of the

software must be rewritten [7].

Consequently, to introduce a new product into the market is not only expensive (can cost up to $6

billion [8]) but it is also a long and extensive process. When compared to other industries and its

products such as smartphones or computers, automotive has a time to market (TTM) almost four times

higher, as depicted on Figure 2.

Considering the constant pressure to innovate and keep pace with other technological industries,

automotive finds here a resilient obstacle. Buying preferences concerning automotive are expected to

change like never before [1], so automotive industry must be prepared to react to market demands.

Thus, release products faster is absolutely crucial in order to capture their full lifecycle and realize the

desired return of investment (ROI).

Therefore, competitive advantage within the automotive industry critically depends on finding a solution

to manage innovation and time to market. Since software is becoming a core activity in that extensive

process, the key might be on software development methods.

Figure 2 - TTM Comparison: Car vs. Smartphone

4

1.2 MOTIVATION AND OBJECTIVES

From the software engineering perspective, the automotive industry is dangerous as well as a

fascinating domain. Besides being an area characterized by a high investment risk, automotive is facing

increasing complexity, and the pressure to not only innovate, but innovate faster. Flee from these

challenges would mean be unresponsive to business conditions, so automotive urgently needs a

solution to surpass them.

Analysing other domains where software performs an important role, an answer may be found through

the use of Agile processes. As a flexible and iterative framework, Agile focuses on continuous delivery,

customer collaboration, creative teamwork, and the ability of responding to change. These values intend

to accelerate the development, always maintaining the high quality of the product. Since its official

presentation, Agile has been successfully implemented by several software companies [9][10][11],

attesting its potential benefits. Although automotive tends to progressively embrace practices from other

industries, Agile still remains distant from automotive development. In fact, there is little research about

how the framework can be applied to this particular domain, and consequent lack of results on the

impact of Agile implementation on an automotive development project. This thesis aims to fill that gap

and explore a solution for automotive urgent needs through the use of Agile methodologies.

In such a broad objective, the initial step is to conduct a detailed study on Agile principles, methods,

and core practices. Since the process targets an automotive development environment, the research

shall also address automotive norms and standards to comply with. From this study and critical

analysis, is expected to design an Agile framework which should ensure the operation of all stages of a

development project. The conceived approach shall then be applied to an HMI automotive development

project conducted in partnership with Bosch Car Multimedia, entitled “Innovcar: The Cockpit of the

Future”. The main purpose of the project (further described in 3.1), is to develop innovative HMI

solutions for futuristic cars. Therefore, in addition to a single opportunity to increase the knowledge

about the automotive development, this project is the perfect experiment for the hypothesis formulated

by this study. Along with data gathered along the implementation of the process, conducted appraisals

shall reveal benefits and drawbacks of employing Agile and its compliance with automotive

development.

5

Summarizing, the purpose of the present work may be decomposed on the following goals:

 Research on Agile framework focusing its methods, principles, and core practices;

 Design and implement an Agile process into an HMI automotive development project;

 Match and evaluate compliance of implemented process with automotive development

standards;

Since automotive development is a highly extensive domain, the scope of the study will be delimited in

accordance with the requirements of an experimental project. Nevertheless, the final results shall

provide general guidelines for the application of Agile methodologies on other development

environments, as concrete information on its compliance for automotive development.

1.3 RESEARCH METHODOLOGY

In order to plan and establish a method for research, it is essential to define and clarify its key

questions. Although the main focus is on the automotive challenges previously mentioned, it would be

unrealistic to cover all domains of such a broad and complex subject.

Therefore, considering both time and project constraints, the scope of this research was narrowed to

the following questions:

 How can Agile be applied to a specific automotive HMI development project?

 Is Agile compliant with automotive development?

As a solid research needs to be accurately grounded, the first phase of the method consists in doing a

theoretical study about Agile practices and its suitability for automotive development. After defining an

Agile approach, it will be tested on a real automotive HMI development project in which the author has

a decisive role as product manager. Throughout the development process, data will be gathered in

order to clarify advantages and disadvantages of using Agile methodologies in this environment.

Moreover, the implemented process shall be appraised and matched with models for development,

attesting Agile compliance with automotive standards.

In order to address both scientific research and active part on the project, an Action Research (AR)

methodology will be employed. Widely used in information systems research [12], AR is an approach

where the investigator forsakes the traditional role as observer and takes part in the real situation [13].

6

Besides helping an organization solve its problems and improve productivity and the quality of their

products, AR involves gathering, analysing and drawing conclusions from research data [14].

Therefore, AR is a method that both solves an immediate practical problem while developing scientific

knowledge. In this particular case, it is expected to evaluate Agile as possible solution to automotive

challenges through an active participation on an automotive HMI development project.

AR methodology is driven over five cyclical phases:

 Diagnosis: Identify the primary problem;

 Action Planning: Determine actions that should relieve or improve the real problem;

 Taking Action: Implementation of the plan through collaboration between researcher and other

practitioners;

 Evaluation: Determination if the previous action produced the theoretically expected results and

whether these relieved the problem.

 Specifying Learning: Final conclusions and formalization of the knowledge obtained along the

AR.

Since it is an empirical procedure, the goal is to continuously improve the approach and some practices

might be changed along the process. Figure 3 presents the stages of an Action Research method.

Since this study serves both scientific and business sides, it is necessary to consider the practical goals

of the client and the research goals of the scientific community. Thus, the major objective is to design a

successful solution for this particular development project always targeting the big world of automotive.

Figure 3 - Action Research - Five stage process

7

1.4 DOCUMENT LAYOUT

Following the structure delineated by previous methodology, this document is divided in 5 chapters:

 1 “Introduction”: An opening chapter addressing the major concerts of automotive development

and its main challenges, followed by the research questions which drove this study. Moreover,

the research questions are stated as the implemented methodology to seek their answer.

 2 “Literature Review”: As the base of the overall work, it presents all theoretical concepts

needed to design the development approach. Initially, it is described the evolution of

automotive development processes which led to the present challenges. Then follows a close

focus on Agile development methods and practices. Finally, the major automotive development

standards are addressed, constituting the basis for a further comparison with Agile.

 3 “Methodology”: After the theoretical study, it is necessary to perform the ’action planning’ and

design the Agile methodology to apply on the HMI development project. Firstly, this chapter

provides a detailed explanation about the project. Then, it presents the Agile process to be

implemented on the project, and relevant practices from the product management perspective.

Finally, the chapter describes the method to appraise the process according to automotive

norms.

 4 “Results and Discussion”: Correspondent to the evaluation phase, this chapter exhibits the

results of the employed methodology. A practical example provides a clear insight on the

implemented process. Moreover, appraisal results evince the process compliance with

automotive development models.

 5 “Final Conclusions”: Considering the presented results, this final chapter contains the final

conclusions focusing on the impact of Agile on the project and how that may represent

significant findings to the automotive industry.

8

9

2. LITERATURE REVIEW

This chapter addresses relevant concepts to design the development approach. Primarily it describes

the evolution of automotive development processes. The aim for a solution introduces Agile, focusing its

methods and practices. Finally, the main automotive development standards and models are

addressed, constituting a basis for a further appraisal.

2.1 EVOLUTION OF AUTOMOTIVE DEVELOPMENT PROCESSES

Nowadays, hundred millions of code lines, associated to a high amount of ECU’s [15], are loaded into

every car. However, it has been a long time since the first ECU was introduced to automotive world.

General Motors was the pioneer when, back in 1981, introduced the first successful unit to the market

[16]. Nevertheless, software was not so complex neither demanding as now; so the development

process was not the main concern. Moreover, the initial guidelines for development could be provided

by other industries which already had solid experience on software.

Therefore, the early approaches of automotive software development were based on traditional

methodologies. In this category, the most recognized models are Waterfall and V-Model, posteriorly

described in detail. However, due to some constraints and limitations, software development is evolving

to more flexible and iterative approaches, already adopted in several areas by companies all over the

world.

Despite being characterized by slower changes, automotive world seems to be closer to that mindset.

The evolution of its software development processes described along the following sections shall make

it clear.

10

2.1.1 WATERFALL MODEL

Based on a sequential development process, Waterfall provided the primordial solution for larger

projects. Consequently, since the first formal description in 1970 [17], this model has been widely used

in several domains.

In a simple view, development is seen as flowing steadily downward through several phases, as shown

through the Figure 4.

The sequential phases in Waterfall model include:

 Requirements: Gathering and analysis of all possible requirements of system to be developed

in order to produce a complete specification document.

 Design: Study of requirements and overall system architecture definition, including hardware

and software specification.

 Implementation: Development of system based on inputs from previous phases. Typically,

implementation is made through small programs to simplify functionality testing.

 Verification: Tests on each unit and finally, the integration of the whole system.

 Maintenance: Support and deliver of improved versions to customer environment.

Besides the clear definition of each phase, the overall process is simple and organized, easing its

understanding and implementation.

Figure 4 - Waterfall Model phases

11

The highest concern of Waterfall methodology is definitely to achieve a solid requirement gathering and

planning stage. That initial effort intends to reduce time spent in later stages, especially during

implementation. Another important focus is to produce extensive and high detailed documentation

about every stage of the process. Meticulous written guidelines might be advantageous when new

developers join the project. Characterized by strict and rigid values, Waterfall methods allow a certain

predictability on time and cost estimations, establishing a clearer view of the whole project.

After long decades of test and implementation, Waterfall Model definitely has its place on software

engineering history and proved that can be a useful solution for several kind of projects.

2.1.2 V-MODEL

Since its first presentation in 1981 [18], V-Model became increasingly popular until being considered

the most used process within automotive industry nowadays. Also known as Verification and Validation

model, it is based on association between test and development phases which are disposed in a V

shape.

As an extension to Waterfall, V-Model is equally a sequential development life cycle process, so the

stages are essentially the same. However, as the V shape reveals, the procedure is divided between two

main cycles: development on left and validation on right, united by coding phase on the middle. Then,

for every development phase a corresponding testing phase should be planned in parallel.

The working principle of V-Model is clarified by the Figure 5, presented below.

Figure 5 - V-Model process

12

Verification sets the beginning steps of the process through the following phases:

 Requirements: Evaluation of user needs in order to establish what features should be included

in the final system. All requirements imposed by the customer such as interface, performance

and security are compiled into a detailed document which has an important role to system

design. As mentioned before, verification phases should also plan the correspondent validation

stages. Therefore, at this point acceptance tests must also be designed based on specified user

requirements.

 System Specifications: Study and analysis of user requirements for the purpose of define

techniques to solve the proposed problem. Thus, a software specification involving system

organization, data structures and interface menus should be the content of a new document

which serves as a blueprint for development stage. Finally, metrics for system testing must be

prepared.

 System Design: Also referred as High-Level design, this stage is responsible for the design of

the global system’s software architecture. Consequently, at this point overall concepts like

architectural diagrams, list of modules, interface relationships, dependencies, and databases

should be detailed. Lastly, integration tests are also designed at this phase.

 Unit Design: Described as a Low-Level design, this phase implicates a division and explanation

of the global system into smaller modules, facilitating implementation of individual units.

Following any programming convention such as pseudocode, every module should contain

details about database tables, dependency issues, error messages, and a complete list of

inputs and outputs. Ultimately, each development unit should be tested separately.

A complete and detailed verification provides a clear roadmap to the implementation phase, when the

system is finally implemented. Development is followed by a long process of validation, correspondent

to the second cycle of V-Model. Every validation phase has been already planned in parallel with

verification, facilitating the course of the next steps:

 Unit Testing: Plans executed to obliterate bugs at code or module level. Basically, a unit test

verifies if the smallest entities function properly when isolated from the whole system.

 Integration Testing: With plans conceived during system design, integration tests verify if units

are able to communicate and coexist among themselves.

13

 System Testing: Differently from previous verification tests, system test plans are composed by

the business team of the client in order to assure the accomplishment of system expectations.

Verification can move to the next stage when functional and non-functional requirements are

validated.

 User Acceptance Testing: In order to ensure the systems meet the initial requirements, this

last stage includes verification plans performed by business users in a real environment, and

using realistic data. Lastly, those results suggest if the system is ready for delivery.

Both verification and validation phases are intuitive and well defined, easing considerably the

implementation of V-Model. Moreover, testing activities are planned before the actual development,

leading to a significant reduction on the validation periods. Thus, a V shaped model has been an

effective approach on small to medium sized projects where requirements are well defined and fixed.

2.1.3 MODERN CARS DEMAND MODERN PROCESSES

For many years, traditional models as Waterfall and V-Model successfully filled the software engineering

needs. The major advantages are centered on simplicity, well-defined stages, complete documentation,

and clear understanding of the project goals. Those characteristics have assuredly brought great

benefits to automotive world and software industry in general.

Nevertheless, resembling any other area, software has evolved along the past decades, and became an

essential part of the ultimate technology. Thus, same methods that used to support software

development are now facing several challenges. Rigorous plans and sequential structures of traditional

methodologies such as Waterfall and V-Model turned into serious disadvantages. Due to the rigidity of

the models, requirements must be stated explicitly before development, and no working software is

produced until late stages of the process. Any change in development objectives might be disastrous

since it would mean the resumption of all project. Moreover, it is difficult to measure progress through

stages, making the management harder when projects are complex and extensive. Those issues clearly

increase the uncertainty and risk, making the projects more susceptible to fail.

14

Analysing the overall state of global IT projects, the results are far away from achieving the desired

success. A recognizable database containing near 50,000 development projects of real-life IT

environments [19] shows that although the number of successful projects has been increasing during

the last years, the success rates remain far low. The amount of challenged or even failed projects is

surprisingly high, as presented on the following chart.

Only 39% of those projects were delivered on time, with the predicted budget, and comprising the

required features and functions. On other hand, 43% were challenged due to late delivery, over budget,

and less functionalities. Finally, 18% of those projects failed because of impossibility of completion, or

they become useless for the company. These alarming statistics depicted on Figure 6 show the urgent

need of new approaches to software industry. Although the use of traditional methodologies is not the

problem itself, some practices do not fit the current market and user demands.

As a result of the considerable increase of software complexity, the development of a new product is

nowadays an extensive process. Due to its unpredictability, establishing a detailed plan about the

development course is becoming more and more difficult. Moreover, the present competitive market

often instigates changes on client requirements, invalidating the initial development plan, which has to

be reformulated or even restarted. Even when the plan prevails until the end of the project, studies

suggest that only 20% of the required features are often used and 50% are hardly never used.

Consequently, 20% of the product represents about 80% of the value to the customer [19]. If that

valuable part of the product is developed and delivered first in the project, customer satisfaction is

rapidly achieved and the time to market might be significantly reduced.

Figure 6 - Project resolution by CHAOS

15

The software industry is aware of those challenges and already concluded that following a rigid plan

might not be the best approach to develop every product. That is why new iterative and flexible

methodologies such as Agile have been created.

As presented on the opening chapter, Automotive industry is facing the exact same challenges: software

complexity has been increasing and has now a central role on automotive innovation, customer

demands over the next few years are expected to change like never before, and there is an urgent need

to reduce the time to market [20]. Moreover, while the amount of software increases, quality demands

for reliability, safety and performance must remain high [4]. The key to overcome these challenges

might be on the software development processes. So far the processes in the car industry are not

adapted to engineering necessities. Therefore, it is critical to study and experiment new development

approaches to support automotive industry.

2.2 AN EMERGING SOLUTION

Simplicity and rigorousness of sequential development processes attest their suitability for projects with

clear and well defined roadmaps. On the other hand, when requirements are unknown or subject to

change, employing traditional methodologies might not be the best approach.

Software industry became aware of those weaknesses, and progressively instigated the search for new

development methods. The main focus always been to conceive a process capable of ensuring flexibility

on requirements and a continuous product review. It is not a surprise that, as presented on Figure 7,

iterative and incremental methodologies are nearly as ancient as sequential models like waterfall.

Figure 7 - Methodologies Timeline [80]

16

Since its first appearance during the ‘60’s, the concept behind iterative and incremental methods

evolved considerably, until 2001 when Agile was formally presented. Agile methodology intends to

follow the project throughout the entire development lifecycle. In order to achieve it, development is

organized in regular cadences of work, known as iterations or sprints, in which result a potentially

shippable product increment.

Instead of an extensive analysis phase, in this “inspect-adapt” approach [21] requirements are

gathered continuously along with development. Moreover, since working cycles have fixed and limited

periods, stakeholders have recurring opportunities to readjust the product roadmap according to the

changing market. Besides reducing both development costs and time to market, this flexible and

iterative methodology aims to optimize return of investment and increase marketplace competitiveness.

2.2.1 STATE OF PRACTICE

Software industry is aware of Agile potential benefits, and this becomes evident on its increasing

utilization. Recognizable companies such as Yahoo, Microsoft, Google, Motorola, SAP, Cisco and many

others are already using it [22]. In fact, they are only a small fraction of the growing number of

organizations that discarded traditional methodologies in order to adopt an Agile based approach, as

depicted in Figure 8.

Despite being based on a limited number of companies, approximately 600, the survey conducted by

HP [10] evidences an increasing mastery of Agile methods. Although the framework has been

presented during the 2000’s, adoption of Agile practice occurred mostly over the past years. The

growth seems to follow the characteristic spreading of innovation into a marketplace.

Figure 8 - HP Survey: Development methods usage [10]

17

After the incremental growth, Figure 9 shows a significant inflection point during 2009 and 2010,

followed by a sharp increase until recent years. Therefore, Agile is definitely an upcoming methodology,

and is currently being experimented across several domains.

Although most of the companies who have adopted a new approach are related to software industry,

other sectors such as Financial, Healthcare or even Transportation are experiencing it as well. A survey

conducted by a company named VersionOne [23], one of the ancient defenders of Agile, shows the

variety of industries which are currently employing it. Distribution of the companies amongst nearly four

thousand responses is presented on Figure 10.

Figure 9 - HP Survey: Agile adoption over time [10]

Figure 10 - VersionOne survey: Respondent Demographics [53]

18

Statistics demonstrate that the Agile methods are spreading by a growing number of industries, proven

by the sharp growth in the companies that use them.

However, a decision involving the approach of project management cannot be based on a trend. In

other words, companies must somehow benefit from the migration of well-known methods as Waterfall

to a relatively new and untested approaches like Agile.

VersionOne’s survey shows the major advantages of Agile, pointed by several companies that are

already using it. Respondents were able to do multiple choices, presented by order of selection on the

Figure 11.

Agile is clearly in an excellent position after these findings, since are presented great advantages which

are assets to any project.

Accelerating the product delivery is presented as the highest rated benefit, and definitely represents a

concern when seeking competitiveness and costs reduction. A shorter release period may be achieved,

partly due to an increased productivity, which represents another maximum profit. However, faster

production is not an advantage if the delivered product is poor. In this sense, Agile maintains the value

since one of the major benefits is the enhancement of software quality.

Consequently, there are several reasons to consider Agile as a beneficial approach. Certainty is

provided by numerous companies that are already using it, and are keen to point out the advantages of

taking that decision.

Figure 11 - VersionOne survey: Agile benefits [53]

19

2.2.2 VODAFONE UK: HALVING LIFECYCLE THROUGH AGILE

As a leading telecommunications provider, the success of Vodafone UK revolves around innovation and

customer satisfaction. In this sense, an online service for existing and potential clients plays a vital role

on the business. In order to increase revenues and service levels, software development teams

continuously work to add new features to the sites.

Before migration to Agile methodologies, development was conducted through a traditional waterfall

approach with a lifecycle of 24 weeks comprising preparation, development and testing. Thus, the

process was slow, frequently generating poor quality releases. As a result, the return of investment was

non-reasonable since a great part of the costs were associated with testing rather than develop new

features. Moreover, lack of contributions by stakeholders often led to poor developed features, causing

frequent requests to change and consequent late delivery. This process was not efficient or cost

effective and the company was further from its objectives.

Management became aware of these drawbacks and rapidly decided to search for a new approach.

Through collaboration with a consultancy company, the entire process was reviewed in order to assess

whether Agile software development principles would be more appropriate. Consequently, the

established waterfall process was replaced for iterative and incremental development with requirements

and solutions evolving via collaboration between customer and self-organized teams.

After an initial period to evaluate the impact of these dramatic changes, results started to show the

benefits of the new methodology. The end-to-end process from starting work to release has fallen from

24 weeks to 11 weeks, which has reflected on time-to-market. If the process length reduced to less

than half, the overall costs were realigned too. Test and deployment costs went to 20.5 per cent of total

costs instead of the previous 51 per cent. Since production issues have fallen, the period of production

support has also lowered, conceding staff additional time to conduct more development work. Thus,

more functionalities could be developed with a higher velocity, improving client satisfaction.

Furthermore, successful and frequent releases motivated the team and led to continuous improvement.

Vodafone UK clearly benefited with the adoption of Agile. After conducting its transformation, the former

head of e-technology concluded “We have successfully managed to resolve the change and culture

issues associated with introducing an agile methodology to software development. This rapid

transformation has quickly delivered effective results to the business” [9].

20

2.2.3 SAMSUNG: MOVING TO AGILE TO SHORTEN DEVELOPMENT

When the subject is technology and innovation, Samsung is assuredly one of the major topics. As one of

the most influent brands nowadays, Samsung has decades of experience developing worldwide

products which frequently take the lead in the market.

Gadgets and smartphones have been one of the main focus lately, and the launch of new products or

upgraded versions is regular. Galaxy line of smartphones is particularly well known, as it is one of the

most acclaimed categories in the market. For its production, Samsung used to conduct the

development through traditional methodologies such as Waterfall. However, despite the veteran

development and proved success, the company continued to seek improvement and decided to move

towards a more Agile approach.

The results were immediately observed since the development time of the S7 model was expected to

shorten by one or two months [24]. Agile key practices such as frequent collaboration, introduction of

continuous testing and shorter cycles increased development velocity.

Speeding the development means launch ahead of the schedule, which represents a major competitive

advantage in the market. Samsung successfully achieved it by taking a step forward into Agile

methodologies. Changing the mindset may be a major challenge, but can also yield major benefits

companywide, and the experience conducted under development of last Galaxy model is a proof of that.

2.2.4 PRIMAVERA: A SUCCESSFUL TRANSITION TO AGILE

Primavera is a worldwide software development company, focused on providing enterprise project

management solutions that help customers manage their projects, programs, and resources. Despite

the experience on supporting other companies developing new products, Primavera has its own

struggles. Because of its roots in construction and engineering, Primavera culture used to support the

commonly used waterfall development approach. For some years, this sequential cycle empowered the

business and positively answered to the changing market demands.

However, it often resulted in working overtime and burned weekends in an attempt to finish projects on

time. This routine instigated frustrations and disappointment, especially when the releases were not

appreciated by the customers. Furthermore, since the decisions were based on a command-and-control

philosophy, the relationships between the development team and other departments began to

21

deteriorate because expectations were seldom fulfilled. Primavera needed to change. Needed flexibility,

quick adaptation to market needs, and more involvement from people.

Willing about the risks, the company decided to embrace a new iterative approach, and started to get

some ideas from Scrum1. Rather than a sudden reformulation, management decided to progressively

present and train the developers with the framework. After an initial apprehensive period, the positive

results were noticed. Considering the number of customer-reported defects, quality increased about 30

percent in the first nine months [25]. Least time fixing bugs meant more time to development, leading

to a four months earlier release.

The true benefits of adopting Agile went beyond measuring features completed and release cycles,

because the development team also felt noticeable benefits. Since a sustainable pace was maintained

during the entire development cycle, the team was happy and focused on achieving the established

goals. This teamwork made the work environment more enjoyable for developers and helped to build

trust between them.

Among all the benefits, the major lesson for Primavera was that building software is a continuous

learning process, and sometimes changes are needed. Thus, it is not surprising that, after its

preliminary implementation in 2004, Primavera has been extending this Agile mindset along their

development centres around the world. More recently in 2014, Portugal followed that move when the

local organization was entirely restructured in order to embrace a new Agile approach [26]. Two years

later, the process was positively assessed with a recognizable certification, attesting its effectiveness.

Still, these good reports should not hide the hard work behind them. After a long experience on

software development, changing directions takes time and requires a great effort. Nevertheless,

Primavera clearly proved its benefits, and became a model for other companies which are looking to

adopt Agile.

1 Agile approach, described along the following topics

22

2.3 AGILE SOFTWARE DEVELOPMENT

Flexible and iterative methods have been applied over the last decades in order to overcome the

shortcomings of software development, spreading and increasing the popularity of Agile methodologies.

As a basis for its further implementation, following topics provide a detailed explanation of Agile

practices and main approaches.

2.3.1 BACKGROUND

Agility can be defined as the ability to both create and respond to change, always seeking the profit in a

turbulent business environment [27]. Following these values, Agile methods stress two main concepts:

the effectiveness of people working together and the honesty of working code [28].

Effective team work enables flexibility, speed, and cost savings. Ideas may be transferred faster when

talking directly than through documentation. Moreover, open communication between development

team and customers provides opportunities to adjust priorities, identify new difficulties, and discuss

alternative paths. In the other hand, working code represents a warranty for developers and customers.

Instead of promises or expectations regarding the final product, working code can be shipped, modified

or scrapped, but it is always real.

In recognition of these ideas, in February of 2001, seventeen practitioners of several programming

methodologies joined together at a summit in Utah, in order to discuss how lightweight software

development could fulfil the problems of existing methodologies. Through that work resulted ‘The Agile

Manifesto’ [29] which states four main values for software development:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

With these values, the Agile Manifesto clearly states what is more important for a better software

development. The purpose is not to question the usefulness of processes, tools, documentation,

contracts and plans, but to focus and enhance the importance of those four main values.

Relying on interactions between individuals facilitates sharing information and allow a quicker

intervention in the process if needed.

23

Documentation is a useful part of software development process, since it helps to visualize concepts,

specify requirements and observe measurements. However, instead of a heavy documentation, working

software provides an actual measurement of the project status and enables rapid feedback of the

product development.

Customer collaboration means that all members - including the customer, sponsor, developer and user

– are on the same team. Thus, merging different experiences and expertise enriches the process and

allows to produce more appropriate results. Contracts or project charters are definitely needed, but

without continuous collaboration, they may be insufficient.

Working through detailed plans pushes the team to focus on the project and its contingencies.

Nevertheless, constant change of requirements, progression of information systems, and new business

forms often make obsolete the initial plan. Therefore, rather than focus rigorously on the plan, it is

important to flexibly respond to changing realities according to the needs of the customer. These values

clearly expose what Agile is about. The main focus is not on the employed practices, but their

recognition of people as the primary drivers of project success, coupled with the pursuit for

effectiveness and adaptability.

2.3.2 PRINCIPLES AND GENERAL PRACTICES

Creativity and autonomy are praised qualities and a key element to succeed [30]. Therefore, an

organization is viewed as a complex adaptive system in which individuals interact in self organizing

ways, guided by a set of simple and general rules.

Traditional methodologies often provide inclusive rules – all the procedures to be executed under all

different scenarios. Teams that follow inclusive rules usually depend on a leader to advance the

practices and conditions for every situation. On the other hand, Agile methodologies offer generative

rules – minimum set of principles and applicable under all situations to generate appropriate practices.

Thus, instead of voluminous written rules, problems are solved through individuals and their creativity.

24

Based on its main values, Agile defines a set of guiding concepts that should support the entire

development process. They are organized in twelve principles2 involving customer satisfaction,

efficiency, iterability, collaboration, product quality, and continuous improvement. These overall rules

are common to all approaches, and provide the basis for the general practices that characterize Agile

methodologies. The following topics shall provide an overview of the most relevant ones.

 Short Iterations

Collaboration and responding to change are essential values of Agile methodologies [29]. They are

strongly linked, since interaction between customers, development and management is

fundamental to face sudden changes on project roadmap. In order to achieve such collaboration

and flexibility, the feedback loop must be regular enough to continuously get input from all

participants.

Therefore, Agile approaches recommend to organize development in short iterations, usually

periods from two to six weeks, where the team makes constant trade-off decisions and adjusts to

new information. These short iterative cycles are combined with feature planning and dynamic

prioritization. It means that at the end of an iteration, the customer should be able reprioritize the

features desired in the next cycle, discarding originally planned functionalities and adding new ones.

This close collaboration makes the product development robust, since its requirements are

continuously gathered and readjusted. Consequently, the team has a better understanding of what

is desired by the customer, who follows closely the development process. With such a strong

cooperation, Agile aims to build confident teams, happy users and satisfied customers.

 Cross Functional and Self-Organizing Teams

Individual competency is crucial for success of any development process. In other hand, when

those competencies are unified in a team that interacts and works together, individual talents are

likely to grow, improving the potential of the whole team. Thus, Agile encourages cross-functional

teams, where the group should be composed by people having differing personalities and from

different functional areas, such as developers, designers, testers, etc. Besides fostering a spirit of

cooperation, bringing diversified people together usually improves problem solving, facilitates task

2 Appendix I – Principles Behind Agile Manifesto

25

switching, and leads to better decisions. If less time is spent on those issues, project objectives

may be achieved earlier, decreasing the production cycle time.

As indicated through ‘Agile Manifesto’ previously addressed, Agile mindset promotes leadership-

collaboration rather than command-control management. In order to achieve effectiveness in such

an open process, Agile clearly relies on people and their creativity [31] as part of a self-organizing

team. Rather than a leaderless team, this mindset promotes a team that can organize itself in

various configurations and scenarios to meet challenges as they arise. Therefore, significant

authority and responsibility for many aspects of the work must be given to the team as planning,

scheduling, assigning tasks, and take some decisions. Such autonomy stimulates participation,

involvement, creativity, and leads to higher productivity.

Therefore, Agile organizational strategy aims to get the best of the team: cross-functionality seeks

for individual skills that contribute for team competency; self-organization promotes autonomy,

creativity, and responsibility for work.

 Collective Ownership

An Agile team is much more than just agile. Is not only about iterating and responding to change,

because “That is what agile teams do, not what they are” [32]. The great Agile teams must

encourage a certain feel of professionalism, pride in the work, and above all, an intense

collaboration.

This last mindset is, perhaps, the hardest to achieve, because most companies and its developers

opt to divide the work into modules or independent sections. They are contributing for the same

product and the code will certainly be integrated, but that is not collaborative. Collaboration involves

working together in all stages: creating, critiquing, and refining. Rather than claiming ownership

over one component of the system, everyone shares responsibility for its overall quality. With this

joint commitment to produce good code, every team member shall feel the necessity to discuss

designs, explore problems, fix bugs and improve the solution of the whole product [33]. Moreover,

when the team is aware of the entire product and aims to improve it together, the risks of

concentrating the knowledge in a few members are reduced, assuring the stability of the

development if some elements leave.

Since teams usually have individuals with specific skills, taking ownership of unfamiliar code may

be challenging. However, having stronger areas of knowledge and intervention shall not be a

26

constraint to learn and embrace different tasks. In that sense, an Agile practice named Pair

Programming might be a useful help to get into unknown code. It is a development practice in

which two programmers work side-by-side at one computer, continuously collaborating on the same

design, algorithm, code or test [34][35]. Besides sharing knowledge, Pair Programming helps the

team to learn the strengths and weaknesses of each member, and based on that better adjust the

development strategy. Despite having a development-time cost of about 15%, studies suggest that

Pair Programming increases quality, reduces defects, improves team communications, and

enhances technical skills at significant levels [36].

Nevertheless, the major benefits are not on the practices, but on the collective mindset. By working

as a group on a single codebase, is promoted a sense of shared responsibility, shared success, and

joint pride of ownership. And usually, it is when individuals learn to think and work together that

great teams emerge.

 Continuous Integration

Traditional methodologies rarely dictate the frequency of integration of new source code into the

project. Consequently, programmers often work for long periods on their own code without realizing

how many conflicts are being generated. Since Agile teams must deliver robust code at the end of

each iteration, integrate all work at the end of the cycle would be a long process with a high risk of

failure.

In order to prevent those problems, Agile praises continuous integration (CI): “a software

development practice where members of a team integrate their work frequently” [37]. Through

clean and periodic builds of the system, CI aims to minimize the effort required to each integration

episode and ensure the existence of a releasable version of the product.

A simplified CI process embraces four main stages, as depicted on Figure 12.

27

Source version control mechanisms became absolutely essential to software development and are

no longer an option. In this particular scenario of CI, a new source version of software represents

the beginning of the integration process. Typically the Version Control Software (VCS) tool provides

detection of a new committed version, which should serve as a trigger to the CI procedure. The first

step regards the building of the code, which should be automated. If it does not fail, predefined unit

tests can be executed in order to check the integrity of previous developed software. Depending on

success of those tests, the new software version may be deployed to the final target, opening the

way for acceptance tests. Afterwards, if the process was fully accomplished, the result is a

releasable version of the product.

The stages of CI should be adjusted according to the team and project needs. However, the main

focus always must be to repeatedly integrate the recent work. This disciplined practice leads to low-

defect code with the simplest robust design that fits the features currently implemented. Moreover,

avoiding an extensive integration phase definitely speeds up the development time and contributes

to earlier delivery of the product.

Figure 12 - Continuous Integration stages

28

 Consecutive Testing

Regardless the process, tests always had a key role on software development. Nevertheless, while

traditional methodologies consider tests as a phase after development, Agile uses them to guide

and support the development. Since it is iterative and incremental, each new portion of functional

code can be tested as soon as it is finished.

Figure 13 shows an example of a workflow. New features are added every iteration and must be

tested separately in order to finish its development.

Due to its high importance on validation, tests are part of development, and must be successfully

completed in order to finalize the features. Although some teams might have specialized individuals

to perform them, Agile organizations are cross-functional, in which several team members may be

able to collaborate on tests.

Despite the great importance given to testing, Agile does not specify how it must be implemented.

There are numerous approaches such as Unit Testing, Regression Testing, Acceptance Testing, and

Test Driven Development (TDD).

Unit tests are short fragments of software, written and maintained by developers, with the main

goal of exercise some specific part of the product source code. Through a binary outcome resultant

from that evaluation, it is possible to reduce defects in newly developed features, improve software

design and allow a better refactoring of the overall code.

Figure 13 - Testing as part of development [81]

29

In other hand, instead of focusing only the recently developed functionalities, Regression Testing

checks the effects of that upgrade on older functions, which apparently are unrelated to the new

changes. Thus, besides evaluating the behaviour of the new modification, regression tests also

intend to prevent issues on functionalities that have worked properly before.

Acceptance tests are a formal expression of business requirements, since they emphasize

functional specifications, frequently derived from use cases or narrative documents. This approach

intends to establish a clear and unambiguous contract between developers, customers and users

about the product.

Rather than just validation, tests may also drive the entire development process, as promoted by

TDD. System requirements are translated into specific Unit Tests, then software is developed or

improved only to surpass them, reducing the probabilities of producing useless code. Moreover,

design tests before development generally leads to a better structured software, improving the

quality of the product.

Despite the testing approach, its automation constitutes one of Agile best practices. Because tests

are continuous and not just a phase, running them automatically clearly reduces the effort and

time, decreasing the development time.

All of these testing methods and techniques surely make clear that besides seeking a faster

delivery, Agile also demands high quality products.

2.3.3 METHODOLOGIES

Rather than predefined rules regarding roles, relationships, and activities, Agile principle-based

philosophy allows shaping the methodology to each domain and its necessities. Such flexibility lead

to the emergence of several new development approaches under the broad umbrella of Agile, as

presented on Figure 14.

30

Despite having different strategies, all Agile methodologies follow common principles and even

share some practices between them. Following topics shall provide a clear overview of each

method.

 XP – eXtreme Programing

After its introduction in 1998 by Kent Beck, XP was described as “a lightweight methodology for

small-to-medium-sized teams developing software in the face of vague or rapidly changing

requirements” [38]. Success is measured through client satisfaction, which constitutes the main

focus of the process. Rather than planning a long term delivery, XP simply emphasizes the current

needs. Consequently, customer collaboration during short iterations (usually one to three weeks) is

fundamental to discuss and ensure the development of the most valuable features.

Four main values are advocated: communication, simplicity, feedback and courage; and should

drive the XP development along its core activities: listening, designing, coding, and testing. The

flexibility of these stages is assured through twelve core practices, including planning games, CI,

TDD, and pair programming [39].

 Scrum

Aware of the challenges of producing quality work in a changing environment, Ken Schawber

introduced a process that “accepts that the development process is unpredictable” [40]. The

strategy is on a Rugby practice named Scrum, where the players “huddle closely together … in an

attempt to advance down the playing field” [27]. When playing, each team acts as a whole, as an

integrated unit in which every member performs a specific role towards a common objective [41].

Figure 14 - Agile umbrella [82]

31

That is also true for development teams that embrace the Scrum process. The major focus is on

people and on their united effort to achieve a collective success. Thus, individuals work together to

iteratively develop the items of a list named product backlog, which contains a prioritized list of all

features, functions, enhancements, and bugs. Every sprint (usually with one to four weeks), the

highest priority items are planned, moved to an additional backlog, and implemented along the

iteration. Finally, a review meeting is held to demonstrate the new functionality to the customer,

and create an opportunity for discussion and feedback.

 Lean Software Development (LSD)

After its first introduction on Toyota manufacturing process, Lean principles performed an important

role within Japanese automobile industry [42]. The strategy involved reversing the flow of

information signals, by pulling materials and components through the production system as

needed, rather than pushing them using fully predetermined production plans [43]. This change

gave Toyota the ability of make small batches of components “just in time” (JIT), minimizing waste

in terms of time and staffing.

Despite being ‘born’ from the production lines, in the ‘00’s Lean began to be seen as “a synthesis

of system of practices, principles, and philosophy for building software systems for a customer’s

use” [44]. As a result, same core values were afterwards transposed into a software development

approach officialised as LSD: an iterative methodology focused on continuous optimization and

eliminating waste, which involves effort spend on unnecessary features, partially done work,

handovers, defect fixing, and other activities that are valueless to the customer.

 Kanban

Japanese word for “card” or “signboard”, Kanban was first used in Lean manufacturing as a

scheduling system. Conceived as a flow control mechanism for JIT production, “kanbans” were

delivered among the production line as a signal of availability to pull more work. Despite the

evolvement of the signalling technology, the system remains at the core of manufacturing today.

In 2004, David Anderson extended the domains of Kanban method, by applying it to a small IT

team at Microsoft that was operating poorly [45]. According to Kanban methodology, software

development should be driven through three main principles: visualise the workflow, limit work in

progress (WIP) at each workflow stage, and measure cycle time [46]. Therefore, the Kanban board

plays a fundamental role, since it provides information about the stages of the process, priorities,

32

and current assigned work. Moreover, Kanban visual indicators allow tracking the work in progress.

By limiting it to team capacities, a sustainable pace of development is achieved, yielding higher

quality products and greater performances [47].

 Adaptive Software Development (ASD)

Originated from rapid application development work by Jim Highsmith and Sam Bayer [48], ASD

embodies the principle of incremental and iterative development through constant prototyping.

Considering the difficulty in defining requirements for large and complex systems, the strategy is to

continuously iterate through three main phases: speculate, collaborate, and learn [49].

Speculate evolves a joint effort with customer to establish goals and plan the development. Then,

collaboration to deliver the engineering component and develop the desired features. Finally, at the

end of each cycle both customer opinion and technical perspective are discussed in order to

improve and adapt planning for the next cycle.

 Feature Driven Development (FDD)

First appeared on a software project at a large Singapore bank in 1997, where Jeff DeLuca

managed requirements and its development through an overall model containing a feature list [50].

The process consists in five main activities: develop an overall model, build feature list, plan by

feature, design by feature, and build by feature.

In the primary stage, the overall domain model is developed, containing diagrams, classes,

relationships, methods and attributes that should express functionality. The object modelled

approach constitutes the base for the feature list, which should be planned and prioritized

according by the value for the customer. Then, apart from eventual changes on customer

preferences, features are designed, built and inspected iteratively until the end of the project.

 Dynamic Systems Development Model (DSDM)

Initially created in 1994, when a large number of project practitioners across many companies

joined efforts to build quality into Rapid Application Development (RAD) processes as they

developed business-focussed computer solutions. DSDM philosophy states that “best business

value emerges when projects are aligned to clear business goals, deliver frequently and involve the

collaboration of motivated and empowered people.”[51].

33

The adoption of Agile practices is by itself a step away from traditional methods, yet the major

difference between them and DSDM is on business management. Figure 15 shows that rather than

fixing features, DSDM fixes time, cost, and quality.

Considering that requirements are agreed and duly prioritized, the most valuable features are

assured with quality. Moreover, since time and cost are fixed, missed deadlines and over budgets

are prevented.

DSDM pursues this reliability through a process of six stages: pre-project, feasibility, foundations,

evolutionary development, deployment and post-project. According to DSDM philosophy, the first

phase, pre-project, ensures that the business values are aligned and clear objectives are defined.

The feasibility phase establishes if those marks appear to be cost-effective, as well as the likelihood

of accomplish the project goals from a technical perspective. Then, foundations stage aims to

establish a fundamental understanding of the potential solution to the project, and how

development and delivery of the solution will be managed. Evolutionary development comprises

timeboxes, iterative exploration, MoSCoW3 prioritisation, testing and other activities that

progressively build the solution. Afterwards, the deployment phase consist of assembly, review, and

3 Prioritisation method with four priority levels: M(Must have), S(Should have), C(Could have), and W(Won’t have) [79]

Figure 15 - DSDM Project Variables [51]

34

transfer the solution into operational use. Finally, the post-project phase ensures if the expected

business benefits have been achieved.

 Crystal

After years of study and interviews of different teams, Alistair Cockburn concluded that following a

formal procedure is not mandatory to achieve success. Therefore, those approaches were

catalogued into a family of lightweight methodologies named Crystal [52].

When developing software, teams typically have varied skill and talent sets, which should be

tailored to project necessities. Hence, Cockburn considered the process as a secondary factor,

since the focus shall be on people, interactions, talents, and communications.

Nevertheless, teams of different sizes undeniably need different strategies to solve the upcoming

problems. Cockburn aimed to cover that diversity by including several methods into Crystal family,

and are divided into colours such as ‘clear’, ‘yellow’, ‘orange’, and ‘red’. That indicator denotes the

“weight” of which methodology to use in the project: larger and more critical, darker the colour.

2.3.4 SELECTING THE APPROACH

Being Agile has become a trend among the software development industry, and its potential benefits

have been tested in several domains with distinct environments. Since each one has its own

necessities, it is not a surprising that so many methods have been suggested. Thereby, same core

values of a decade ago resulted in a great diversity of Agile approaches today.

According to the report of “Annual State of Agile” [53], Scrum, XP and Kanban are currently the most

employed methodologies. Despite being based on the same principles and having common practices,

these methods are fairly different. Even among the wide world of Agile, there are different levels of

‘agility’. The amount of roles and practices determines how flexible the approach is: less rules, more

adaptive; more rules, more prescriptive. Figure 16 presents a scale of the most recognized Agile

methodologies, organized according to these characteristics.

35

Even considering only the major Agile approaches, the previous picture exposes significant differences

between them. For example, with a process composed by six stages, nine principles, and more than 12

roles, DSDM is appropriately considered the most prescriptive. In the opposite side, Kanban only

promotes six principles, not defining specific practices neither prescribing any roles.

Analysing such contrast does not detract the credibility of any method. Moreover, it proves that every

specific environment demands an evaluation of the best approach. Accordingly, the project where this

research is inserted already gave that step, by selecting the Agile methodology to implement. Based on

the project scope, teams involved, and individuals past experience, Scrum seemed to be the most

suitable approach. Thus, following sub-chapter shall provide a detailed explanation on the method and

its practices.

Figure 16 - Agile Methodologies: Prescriptive Vs. Adaptive

36

2.4 SCRUM

As a project management framework that encourages teams to work together and deliver functionalities

iteratively, Scrum is unquestionably the most popular of Agile methods nowadays [53]. Based on its

official document, the ‘Scrum Guide’ [40], the following topics shall clarify the details behind such

success.

2.4.1 DEFINITION

The Scrum is one set formation in Rugby, where “each team’s eight forwards bind together and try to

push the opposition eight backwards in order to gain possession” [54]. When playing, a successful

Scrum movement requires skill, team work, and a lot of raw power.

Inspired by the game, Ken Schwaber and Jeff Sunderland used Scrum as an analogy to define their

development approach: “A framework within which people can address complex adaptive problems,

while productively and creatively delivering products of the highest possible value.” [40].

As a simple and lightweight process, Scrum aims to manage the development of complex products.

Thus, rather than a procedure or a technique, Scrum is a framework where other practices can also be

employed.

2.4.2 PRINCIPLES AND VALUES

The iterability of Scrum has roots on a process control theory, named empiricism. It asserts that

knowledge comes from experience and decisions should be based on it. Thus, with an incremental

approach, Scrum aims to optimize predictability and continuously improve the process.

As every empirical process, Scrum is founded on three main principles:

 Transparency

Open communication is encouraged, guided by standards and nomenclatures that should be

common to the entire team. Significant aspects of the process must be visible to those responsible

for the outcome, including the stakeholders. With their continuous engagement, clients are kept

accountable in the development of the product.

37

 Inspection

Besides the stakeholders, every member evolved in the process must frequently inspect the

artefacts and the progress towards the immediate goals. Without distressing the workflow, such

inspection helps to detect undesirable variances.

 Adaption

When after an inspection some aspects are reported as being deviated outside the acceptable

limits, then the process must be adjusted. An immediate correction prevents further deviations, and

maintains the development on the right track.

Despite being transcendent to the process, these values are recognisable on specific moments such as

deliveries for inspecting, or the start of new iterations to adapt.

When these three empirical principles are duly applied, Scrum becomes way more than just an iterative

approach. A transparent process where the team works towards a unique goal, followed by successive

cycles of inspection and adaption, which enhance the framework and stimulate its continuous

improvement.

2.4.3 ROLES

The team includes everyone who works toward the completion of the product [55]. As an Agile

methodology, Scrum teams are cross-functional, so it is critical to ensure that all skills needed to

develop the product are covered. The team is typically composed by the scrum master, the product

owner, and the core team of developers. An overall scheme is presented on Figure 18.

Figure 17 - Scrum Values to Continuous Improvement [83]

38

The Product Owner is the empowered central point of product leadership. The Scrum Master acts as a

coach, facilitator and impediment remover for the team, who is focused on developing the product. This

overall picture attests the simplicity of the process and its participants, yet the following topics will

provide a detailed explanation on each role.

 Scrum Master

Responsible for ensuring the framework is understood and enacted. Thus, it must be continuously

certified that theory, practices, and rules of Scrum are duly followed by the team. Scrum Master

also acts as a servant-leader, by removing potential impediments of the development team and

providing help on their interactions to maximize the created value. Moreover, Scrum Master serves

the Product Owner in finding techniques for effective product management, implementing them

among the development team, and facilitating Scrum events as requested.

 Development Team

Composed by professionals that work together in order to continuously deliver the requested and

committed product increments. The team is empowered and self-organizing, meaning that they are

responsible to manage their own work and define the best approach to turn requirements into

functionalities. Regardless of particular development domains as testing or business analysis, there

are recognized no sub-teams or individual titles than developer. Moreover, despite having

specialized skills or areas of focus, accountability belongs to the team as a whole. Such synergy

aims to inspire union, and optimize overall efficiency and effectiveness.

Figure 18 - Scrum Team [84]

39

 Product Owner

Responsible for maximizing the value of the product and manage its development. Focused on

understanding business and customer requirements, the Product Owner prioritizes the work to be

accordingly performed by the development team. For that purpose, a Scrum artefact named

Product Backlog shall provide information about the more important features to implement, in

which the Product Owner is accountable of ordering the items to best achieve the project goals.

Moreover, it must be ensured that the Product Backlog is visible, transparent, clear, and contains

the information needed to move the development forward. Besides representing a committee, the

Product Owner is an individual, whose decisions must be respected by the entire organization in

order to make the product successful.

2.4.4 ARTEFACTS

The Scrum Artefacts intend to provide key information for the team and stakeholders about the product

status and its development activities. Scrum pillars must be evident throughout the entire process, and

here transparency is particularly relevant. Artefacts should be clearly visible to everyone involved,

encouraging a common understanding on the information. Such transparency enriches the remaining

values, since it enhances the inspection and adaption cycle. That relation shall be clarified through the

explanation of each Artefact and its significance on the process, detailed along the following topics.

 Product Backlog

Replacing the traditional requirement specification documents, the Product Backlog is a prioritized

list, which contains short descriptions of every functionality to be included on the product. The

Product Owner is responsible for its ordering, content, and availability.

Typically, the Scrum backlog comprises items of four different types: features, bugs, technical work,

and knowledge acquisition. Features are expressed in the form of User Stories, which are short and

simple descriptions of the feature from the user perspective. According to the template “As a <type

of user>, I want <some goal> so that <some reason>” [56], an example of a User Story applied to web

business would be "As a shopper, I can review the items in my shopping cart before checking out so that I

can see what I've already selected." [57]. Since bugs also express requirements, they follow the same

format as the features, and are also inserted into the Product Backlog. Technical work and

knowledge acquisition may not be noticeable on the developed product, but they undoubtedly

40

perform a key part on achieving it. To attest their importance, valid examples would be “Upgrade

workstations to latest software version” for technical work, and “research and select QML libraries”

for knowledge acquisition.

Every item included in the Backlog should have a clear description, order, estimate, and value.

Usually the order reflects the value through the position on the list: top items of the Backlog have

higher value, and should be developed first. Then, the effort to achieve them is estimated in a

collaboration between the Development Team and the Product Owner. Several estimation

techniques may be employed, such as Planning Poker, T-Shirt Sizing, or Relative Mass Evaluation

[58].

This act of ordering, detailing and estimating the Product Backlog items is entitled refinement.

Since just a few features are selected for each sprint, usually higher ordered items are more

detailed and better estimated than the lower ones, as depicted through the Figure 19. When the

items are duly refined and transparent to the entire team, they are ready to be selected for

development.

Figure 19 - Product Backlog refinement

41

Because of the continuous updates, the Product Backlog is never complete. The earliest

development is based on the initially known and best understood requirements. Nevertheless, the

Product Backlog adapts to market conditions and customer requirements, then accordingly

changes to be more useful and competitive. Therefore, the Backlog is a living and dynamic artefact,

which reflects the requirements and their value for the product.

 Sprint Backlog

The Sprint Backlog is a detailed list of items committed by the team to be included on the following

product increment. It results from a forecast by the Development Team on which items from the

Product Backlog can be developed along the iteration. Moreover, the Sprint Backlog should include

the work needed to achieve the Sprint Goal, through the decomposition of stories into tasks. An

overview of the backlogs and its relation is depicted in Figure 20.

The Sprint Backlog emerges along the sprint, meaning that it may be completed as the

Development Team works and learns more about the effort needed to achieve the committed

items. Thus, when new work is required or tasks are finished, the Sprint Backlog should be

updated. In order to track and manage the progress, the Sprint Backlog should be highly visible,

serving as a real-time picture of the ongoing work.

Figure 20 - Sprint Backlog

42

 Burn-Down Charts

The burn-down charts are a visual indicator of the work progress over a period of time. It is usually

presented through a chart that comprises remaining effort depending on time. Effort could be

measured in terms of working hours or story points, while time should target the release or the

current sprint. An example of a release burndown chart is presented in the Figure 21.

While some work is progressively completed, other is necessarily added. Considering this volatility,

Burndown charts are helpful since they provide a clear vision of the remaining work. Moreover, they

enable an efficient tracking of the development pace, which facilitates the estimation on the further

iterations. As the responsible for the development, the Product Owner clearly benefits from the

measurements provided through this artefact.

 Increment

The increment is delivered at the end of the sprint, and represents the sum of the completed work

with the value delivered on previous iterations. It should be shippable, meaning “that all the work

that needs to be done for the currently implemented features has been done and technically the

product can be shipped” [59]. Nevertheless, in order to be part of the increment, Product Backlog

primarily must achieve the ‘Definition of Done’ (DoD).

Figure 21 - Release Burndown chart [85]

43

 Definition of Done

In order to ensure transparency and establish a common standard, the word ‘Done’ shall have the

same meaning for the entire team. DoD is a simple list of activities that add verifiable value to the

product [60], such as writing code, comments, tests, documentation, etc. After establishing a

criteria, the statement “Feature is Done” is clarified, and becomes common to every team

member. Besides enabling transparency on the work status, communication within the team is

improved. As the Scrum Team mature, its DoD also tend to expand. Since it constitutes a criteria

for delivering the increment, an effective DoD is fundamental to achieve higher quality products.

2.4.5 EVENTS

As an iterative process, time is divided into fixed periods of one to four weeks, called sprints. In each

sprint, the team strives to create a potentially shippable product increment, including implementation,

tests, and needed documentation. Every sprint must be considered as a project with specific goals,

whose quality and content cannot be decreased or changed along the iteration. Thus, in order to

continuously improve and achieve the established objectives, it is fundamental to have a well-structured

inspect-adapt cycle. Therefore, as presented on Figure 22, each sprint comprises four ceremonies:

Sprint Planning, Daily Scrums, Sprint Review, and Sprint Retrospective.

Figure 22 - Scrum Events

44

 Sprint Planning

Through a collaborative discussion within the entire team, the Sprint Planning intends to define the

work to be performed in the current iteration. The meeting is time-boxed to a maximum of eight

hours for a one-month sprint, so it should be less for shorter periods. During the planning, two main

topics must be addressed: what can be included in the increment for the upcoming sprint, and how

will that work be achieved.

Every delivered increment should target the most valuable features for the customer. Consequently,

the leading input to define them is clearly the Product Backlog, since it contains an agreed

prioritization of the desired functionalities. Therefore, based on past performances and the

projected capacity, the development team decides how many top items from the Product Backlog

can be accomplished. Then, together with the Product Owner, an overall spring goal is defined.

Besides providing guidance along the sprint, keeping this objective in mind should help to visualize

the desired increment.

After deciding what work will be done, it is time to define how to achieve it. The development team

starts by designing the system and the tasks needed to convert the items on the backlog into a

working product increment. The work is planned according with forecast for the upcoming sprint.

However, if the work is found to be excessive or insufficient, it may be renegotiated with the Product

Owner.

Therefore, the main output of the planning meeting is the sprint backlog. Accordingly, the

development team should shall a clear understanding of the established goals and the strategy to

achieve them.

 Daily Scrum

A 15-minute time-boxed event dedicated to establish a daily plan, by inspecting the work from the

previous day and forecasting the present one. In order to reduce complexity and time, the daily

scrum has a fixed schedule and is held at the same place every day.

During the meeting, each member explains what has been done on the day before, what will be

done on the present day, and if there are any impediments to achieve it. That regular information is

used to inspect the progress towards the sprint goal and the work defined on the sprint backlog.

Moreover, it provides an opportunity to improve communications, promote quick decision-making,

and to detect eventual problems and miscalculations, which can be immediately addressed.

45

 Sprint Review

After a cycle of development, the Sprint Review is the occasion to inspect the increment produced

along the iteration. Besides being an opportunity for both team and stakeholders discuss the

resultant work, the review intends to elicit feedback. Therefore, the meeting should be kept

informal, and with a time-box of four hours for one-month sprints.

The Product Owner is responsible for explaining to the stakeholders what Product Backlog items

have been successfully achieved, or ‘Done’. Then, the Development Team demonstrates the work,

describes how it was performed, and answers questions about it. Finally, the entire group discusses

on the following steps. Through collaboration, attendees may realize possible improvements and

agree on new opportunities to optimize value. Then, the Product Backlog should be accordingly

updated, providing a valuable input for the following sprint.

 Sprint Retrospective

After reviewing the work, the Sprint Retrospective provides an opportunity for the Scrum Team to

inspect itself. It is a three-hour time-boxed meeting for one-month sprints, and should occur

between the Review and the next Planning.

The purpose of the Retrospective is to examine the flow of the last sprint, regarding relationships,

process, and tools. Such collective reflection should lead to a plan for improvements, which must

be enacted during the next sprint. Through the application of these improvements, the team

completes a cycle of inspection and adaption, which is the essential focus of the Sprint

Retrospective.

46

2.5 AUTOMOTIVE PROCESS STANDARDS

Finding efficient approaches to ensure adherence to universal regulations means competitive

advantage. Strategies and practices comprised on international standards constitute a recognized

quality indicator. Same occurs within automotive development, which has become an increasingly

complex domain. Several standards have been devised in order to attest the safety and reliability of

automotive products. Therefore, achieving compliance with these models is vital when designing a

development process.

There is a wide range of regulations, models, and standards within the automotive field. The most

recognized programs to comply with are ISO 61508, ISO 26262, ISO/IEC 15504 (APICE), and the

Capability Maturity Model Integration (CMMI) [61]. While the first two mainly focus safety-related

systems, ASPICE and CMMI clearly match the scope of this work, as they emphasize organizations and

its development processes. Therefore, following subchapters shall provide a brief explanation on each

model and how they can be applied to this project.

2.5.1 CMMI – CAPABILITY MATURITY MODEL INTEGRATION

“The quality of a system or product is highly influenced by the quality of the process used to develop

and maintain it,” [62]. This premise stimulated a group of experts from industry and government, along

with the Software Engineering Institute (SEI) [63], to create a performance improvement framework and

appraisal program [64] named Capability Maturity Model Integration (CMMI). It has assumed great

importance nowadays, since several worldwide companies are using it such as Boeing, Intel, NASA, and

IBM. In that sense, CMMI has also performed an important role on automotive field, supporting

companies as BMW, Bosch, and General Motors [65].

As a product suite, the main goal of CMMI is to provide organizations with the essential elements for

effective processes on several fields, including software engineering. In order to support the

improvement of organizational processes, CMMI is based on proved practices that have been collected

from various organizations and fields of application. Rather than defining a process, CMMI states the

core activities to be performed. Thus, focusing what to do instead of the how to do it makes the model

applicable to any process and organization.

47

Achieving compliance with CMMI represents a commitment to reach competitive goals in the global

market. Moreover, the formal maturity or capability rating provides an indicator on the effectiveness of

the organization and its processes.

 Overview

CMMI is organized in constellations or particular areas, precisely designed to improve a given

business need. Consequently, the model focus three specific fields of interest: Acquisition (ACQ),

Services (SVC), and Development (DEV). Their purpose and relation is clarified by the Figure 23.

All constellations have a common strategy to implement several practices regarding project and

organizational management, explaining the sixteen core Process Areas. Then, in order to

complement these shared activities, each field delineates its specific goals and practices. Due to its

relevance for this work, it is appropriate consider CMMI for Development (CMMI-DEV) as the main

focus on the following topics.

Figure 23 - CMMI Constellations [86]

48

 Process Areas

A process area is “a cluster of related practices in that area that, when implemented collectively,

satisfies a set of goals considered important for making improvement in that area” [62]. Therefore,

rather than a single procedure, a process area represents a collection of goals and practices to be

achieved, as shown by the following diagram on Figure 24.

Specific goals describe unique characteristics that must be present to fulfil the requirements of the

process area, and to determine whether it is satisfied. Accordingly, specific practices define

activities that are considered essential to achieve the related specific goal.

Generic goals describe attributes that must be present as a basis for implementing a process area.

In order to achieve them, generic practices describe the activities to institutionalize the process, or

ensure its consistency within the organization. Both goals and practices are considered generic, in

the sense that they are applicable and mutual to several process areas.

Figure 24 - CMMI Process Area components

49

CMMI for development comprises twenty-two process areas, in which sixteen are common to all

constellations, and the remaining are specific to development. They are divided in four main

categories: Engineering, Project Management, Process Management, and Support. A complete

list of each category and its process areas presented in the table 1.

Category Abbr. Process Area

Engineering PI
RD
TS
VAL
VER

Product Integration
Requirements Development
Technical Solution
Validation
Verification

Project Management

IPM
PMC
PP

QPM
RSKM
SAM

REQM

Integrated Project Management
Project Monitoring and Control
Project Planning
Quantitative Project Management
Risk Management
Supplier Agreement Management
Requirements Management

Process Management

OPD
OPF
OPP
OT

OPM

Organizational Process Definition
Organizational Process Focus
Organizational Process Performance
Organizational Training
Organizational Performance Management

Support

CAR
CM
DAR
MA

PPQA

Causal Analysis and Resolution
Configuration Management
Decision Analysis and Resolution
Measurement and Analysis
Process and Product Quality Assurance

Table 1 - Process Areas CMMI-DEV v1.3

These process areas perform a vital role on the model, since they define the evolutionary path of

the organization and also constitute the basis for its process appraisals.

In order to characterize them, two representations are supported: continuous, where the

organization selects the process areas to be assessed; and staged, comprises successive maturity

levels with predefined sets of process areas. Following topics shall clarify each model and its

measurement levels.

50

 Continuous Representation

Focuses single process areas for improvement. There are no restrictions on the number or

category, so the organization is able to select the process areas to assess and improve. In order to

characterize the performance relative to an individual process area, continuous representation uses

four Capability Levels:

 0 – Incomplete: A process that either is partially performed or not performed. If one or

more specific goals are not satisfied then no generic goals need to be achieved, since there

is no reason to establish a partially performed process.

 1 – Performed: A process that satisfies the specific goals of the process area, and

accomplishes the needed work to create products.

 2 – Managed: A process whose implementation complies with policy, demands contraction

of skilled assets to produce the expected outputs, involves stakeholders, and is monitored

according to its purpose.

 3 – Defined: A process that is not only managed, but is also planned, tailored, and

monitored according to the guidelines of the organization. Moreover, the process

experiences even shall contribute to the organizational process resources.

Each capability level comprises a group of generic goals and practices, described in detail on

Appendix II. Consequently, a capability level for a process area is only achieved when all generic

goals are satisfied up to that level. Such flexibility on evaluating process areas individually provides

an opportunity for the organization to focus on their specific needs, improve on particular fields,

and monitor the most suitable practices.

Figure 25 - CMMI Continuous representation

51

 Staged Representation

Rather than considering process areas individually, the staged representation focuses on the

organization and its processes as a whole. Stages are composed by a predefined set of process

areas, which must be fully performed in order to achieve the corresponded level. To address them,

staged representation defines five Maturity Levels:

 1 – Initial: Processes are unstable, ad-hoc, and chaotic. Organization occasionally may

create working products, yet budget and schedule are frequently exceeded.

 2 – Managed: The process is characterized for a specific project. The implementation

complies with policy and involves contraction of skilled people with adequate profile to

produce the expected outputs. Moreover, it requires collaboration with stakeholders,

discipline on monitorization and management, and constant review of the process.

 3 – Defined: Processes are based and characterized through organization standards,

procedures, tools, and methods. When organizations achieve consistency on their standard

processes, upcoming projects tailor new processes based on them. Hence, processes are

well defined, managed proactively, and tend to improve over time.

 4 – Quantitatively Managed: The organization and its projects establish quantitative goals

for quality and performance, which are used as measurement and criteria on project

management. Qualitative objectives frequently consider needs of organization, customer,

final users, and even people involved in the process.

 5 – Optimizing: An organization continuously improve its processes based on past

experience and data collected along other projects. Then, considering business and

performance objectives, incremental changes are performed involving innovative processes

and technological enhancements.

Figure 26 - CMMI Staged representation

52

Maturity levels enable improvement across multiple process areas in an organization. Predefined

sets of process areas must be performed in order to successfully achieve the correspondent

maturity level. The relation between each level and its related process areas is explained in detail

on Appendix III.

The staged model is an appropriate approach for organizations that seek global improvement.

Moreover, achieving a maturity level also enacts as a marketing strategy since it improves the

visibility of the organization.

 Assessment Strategies

CMMI delineates appraisals, rather than providing certifications. Appraisals helps the organization

to identify strengths and weaknesses on its processes, and to examine how related they are to

CMMI best practices. Besides being an opportunity to develop improvement strategies and mitigate

risks, appraisals also enable the organization to demonstrate the consistency of its process to

customers and business partners [66].

In that sense, the Standard CMMI Appraisal Method for Process Improvement (SCAMPI) is an

official model to perform rigorous appraisals and assign quality ratings to organizations [67].

The appraisals follow the same strategies as the representations presented before: assess

predefined process areas, and the results are expressed through capability levels; or assess the

organization and its processes as a whole, resulting in an overall maturity level.

Regardless the strategy, CMMI appraisals provide guidance for developing and improving

processes, and definitely help the organization to focus and achieve its business goals.

53

2.5.2 ASPICE - AUTOMOTIVE SPICE

The inclusion of complex software and safety-critical systems into vehicles brought new challenges to

original equipment manufacturers (OEM’s) within the automotive industry. Consequently, the AUTOSIG

(Automotive Special Interest Group), including Audi, BMW, Fiat, Ford, Jaguar, VW, and Volvo [68],

decided to define a global reference for manufacturers and suppliers named Automotive SPICE.

Developed as a variant of ISO/IEC 330044 standards, ASPICE represents is a framework dedicated to

assess organizational processes related to software and embedded systems development in the

automotive industry. It is used either as a status determination for internal process improvement, or to

evaluate the process quality of a supplier, acting as a risk assessment tool during the supplier selection

[69]. Despite being created in Europe, ASPICE has been expanded to Asia and USA, and nowadays

constitutes a prerequisite for becoming a supplier of the most car manufacturers.

The concept of process capability determination of ASPICE is based on a two-dimensional framework

presented on Figure 27, consisting of a process dimension and a capability dimension. In order to

define them, the model comprises a process reference model (PRM) and a process assessment model

(PAM) [70]. While PRM defines the relevant processes to be inspected, the PAM describes how to

evaluate its capability within the organization.

4 A revised version of ISO/IEC 15504, also known as SPICE

Figure 27 - ASPICE key concept [69]

54

 Process Dimension

ASPICE defines processes through purpose statements, which define their functional goals when

performed in particular environments. Subsequently, each purpose statement has associated a set

of specific outcomes, base practices, and a list of expected output work products of the process.

The model comprises thirty-one processes, classified into three main categories:

 Primary Life Cycle Processes: Embraces acquisition and supply, as system and software

engineering process groups, which define requirements elicitation, system design,

integration, and qualification procedures.

 Organizational Life Cycle Processes: Aim to help the organization to achieve its business

goals, through consistent management and improvement practices.

 Supporting Life Cycle Processes: May be employed by processes owned by other

categories, at determined points in the life cycle.

An overview of each category and its processes is provided in the following table:

Su
pp

or
tin

g
LC

P

Supporting Process Group

SUP.1 Quality Assurance
SUP.2 Verification
SUP.4 Joint Review
SUP.7 Documentation
SUP.8 Configuration Management
SUP.9 Problem Resolution Management
SUP.10 Change Request Management

O
rg

an
iz

at
io

na
l L

C
P

Fi
gu

re
 2

8
- A

SP
IC

E
Pr

oc
es

s

Management Process Group

MAN.3 Project Management
MAN.5 Risk Management
MAN.6 Measurement

Process Improvement Process Group

PIM.3 Process Improvement

Reuse Process Group

REU.2 Reuse Program Management

Pr
im

ar
y

Li
fe

 C
yc

le
 P

ro
ce

ss
es

Acquisition Process Group

ACQ.3 Contract Agreement
ACQ.4 Supplier Monitoring
ACQ.11 Technical Requirements
ACQ.12 Legal and Administrative Requirements
ACQ.13 Project Requirements
ACQ.14 Request for Proposals
ACQ.15 Supplier Qualification

Supply Process Group

SPL.1 Supplier Tendering
SPL.2 Product Release

Systems Engineering Process Group

SYS.1 Requirements Elicitation
SYS.2 System Requirements Analysis
SYS.3 System Architectural Design
SYS.4 System Integration and Integration Test
SYS.5 System Qualification Test

Software Engineering Process Group

SWE.1 Software Requirements Analysis
SWE.2 Software Architectural Design
SWE.3 Software Detailed Design and Unit
Construction
SWE.4 Software Unit Verification
SWE.5 Software Integration and Integration Test
SWE.6 Software Qualification Test

Table 2 - ASPICE Process domain

55

 Capability Dimension

Since no predefined groups of processes are imposed by the model, the organization is able to

define which processes shall include on assessment. Its Capability is appraised on a scale

composed by six progressive stages:

 Level 0 – Incomplete Process: The process either is not implemented, or fails to

accomplish its goals.

 Level 1 – Performed Process: Even without a rigorous plan, the process is implemented

and sucessfuly achieves its purpose.

 Level 2 – Managed Process: The performed process is properly planned, monitored and

ajusted, and its resultant products are controlled and maintained.

 Level 3 – Established Process: The process is implemented trough organization standards

and base processes, leading to the achievement of its outcomes.

 Level 4 – Predictable Process: Process outcomes are meticulously delimited. In order to

predict its performance, quantitative management needs are identified, data is gathered

and analized to identify possible causes of deviation.

 Level 5 – Innovating Process: Data and experience resultant from a predictable process is

used to take action, and continuously improve the process in order to better respond to

organizational change.

PA 5.1 Process Innovation
PA 5.2 Continuous Optimization

PA 4.1 Process Measurement
PA 4.2 Process Control

PA 3.1 Process Definition
PA 3.2 Process Deployment

PA 2.1 Performance Management
PA 2.2 Work Product Management

PA 1.1 Process
Performance

Figure 29 - ASPICE Capability dimension [69] (Adapted)

56

As presented by the picture 29, each specific level is composed by a limited set of process

atributes (PA’s), wich comprise features apllicabe to the entire process dimension. Therefore, in

order to reach a certain capability, they must be achieved by the assessed processes.

In order to measure the extent the achievement of a process atribute and its practices within a

specific level, ASPICE defined a four point rating scale comprising performance and capability

indicators, both described in detail on Appendix I.

 HIS Group

The increasing importance of software on vehicles represents a constant pressure on

manufacturers to extend their competencies and attest the quality of their suppliers. As a result, a

group of german automobile manufacturers, including Audi, BMW, Porshe and Volkswagen, created

the HIS (Herstellerinitiative Software, or ‘manufacturer software initiative'). Their common goal is

to define and use joint standards for software development.

Since all members were using different approaches for assessing the capability of their software

suppliers, a universal strategy based on ASPICE was developed. Consequently, a subset of fifteen

processes was selected from ASPICE PRM [70], and named HIS Scope. Engineering processes are

clearly the main focus, since they represent the majority of the processes. Table 3 provides a

complete list of the processes contemplated by the HIS Scope.

Su
pp

or
tin

g
LC

P Supporting Process Group

SUP.1 Quality Assurance
SUP.8 Configuration Management
SUP.9 Problem Resolution Management
SUP.10 Change Request Management

O
rg

an
iz

at
io

na
l L

C
P

Fi
gu

re
 3

0
- A

SP
IC

E

Management Process Group

MAN.3 Project Management

Pr
im

ar
y

Li
fe

 C
yc

le
 P

ro
ce

ss
es

Acquisition Process Group

ACQ.4 Supplier Monitoring

System Engineering Process Group

SYS.2 System Requirements Analysis
SYS.3 System Architectural Design
SYS.4 System Integration and Integration Test
SYS.5 System Qualification Test

Software Engineering Process Group

SWE.1 Software Requirements Analysis
SWE.2 Software Architectural Design
SWE.3 Software Detailed Design and Unit
Construction
SWE.4 Software Unit Verification
SWE.5 Software Integration and Integration Test
SWE.6 Software Qualification Test

Table 3 - HIS Scope process domain

57

3. METHODOLOGY

The compliance between Agile processes and automotive development is clearly the main focus of this

work. The emphasis on this particular domain arise due to a specific automotive development project,

in which the author had a decisive role on design the Agile process and manage its development.

Both scientific research and active participation on a development project created the conditions to

apply an action research method. In accordance with its previous description5, AR intends to solve an

immediate practical problem while developing scientific knowledge, and is composed by the stages

presented on Figure 31.

Previous sections of the present document already focused the overall challenges of automotive

development, as possible strategies to fulfil its current needs. Subsequently, this chapter shall narrow

the scope, and focus on the immediate practical problem of AR. The initial topics address the problem

diagnosis through a detailed description of the automotive development project. Following, the

strategies to implement a suitable Agile process and manage the product development represent the

action plan. Finally are described the methods for the evaluation phase, focusing on the process

compliance with automotive standards.

5 Detailed under Research Methodology.

Figure 31 – Action Research Method

58

3.1 PROJECT BOSCH INNOVCAR: “COCKPIT OF FUTURE”

As a co-promotion initiative with a recognizable company within the automotive world, this project

constitutes a unique opportunity to acquire more knowledge on this particular domain. An overview on

the project structure and its global objectives shall clarify the purposed challenge.

3.1.1 BACKGROUND

The project “Cockpit of Future” is promoted by a collaborative investigation program between Bosch

Car Multimedia [71] and University of Minho. While Bosch offers a strong and clearer vision of the

automotive business, UMinho ensures innovation and technological knowledge. The combination of

these competencies into a unique initiative intends to originate new concepts and innovative ideas

towards the car of the future. This particular project focuses on advanced HMI systems for automotive,

in which the modern topic of autonomous driving performs a determinant role. Moreover, the concepts

are submitted to usability tests and validated according to specific scenarios in a Driver Simulator

Mockup (DSM). Therefore, the project comprises several domains as engineering, ergonomics, human

factors, and simulation. Since their intervention is closely related, the development process performs an

important role to manage their cooperation and achieve success.

3.1.2 AIMS AND GOALS

Combining new ideas and innovative technologies into a futuristic HMI represents the overall target of

this project. However, due to the extension of the scope and the several teams involved, the objectives

may be divided in three main areas:

 HMI Concepts and Systems: Considering the different levels of autonomous driving, developed

concepts shall ensure the focus on driving task; inform the driver on the current autonomous

decisions and provide alerts when intervention is needed; monitor the driver workload and

cognitive state including fatigue, stress, distraction, and drowsiness; and adapt HMI systems

according with driver profile, past history, and current driving scenario.

 Toolchain and Architecture: As a basis for the development of the HMI systems, a suitable

toolchain must be established. It should consider the hardware and software requirements for

the target systems, and provide the needed resources to develop them. Moreover, both

toolchain and architecture should ensure the interoperability with the systems and platforms

59

existent at Bosch, in order to enhance the development and ensure compliance with the

current automotive standards.

 Usability and User-Experience: Includes the creation of new tests and simulation scenarios in

order to validate the developed HMI systems. They shall ensure the compliance with the

employed platforms and technologies, and finally be implemented on the DSM (Driving

Simulator Mockup).

3.1.3 STRUCTURE AND ORGANIZATION

Considering the scope of the project, four different teams may be distinguished: human factors,

platforms, simulation, and engineering. Each group has a determinant part on accomplishing the

established objectives previously presented. Thus, in order to organize the work and clarify the expected

results, the overall project was divided into intervention areas or sub-projects, named Work Packages

(WPs). Table 4 presents a complete list of the envisioned WPs.

 ID Work-Package

WP1 Wrong-way Driver Warning concept – WDW

WP2 Strategy on how to address warnings

WP3 Workload management

WP4 Driver monitoring for HMI (incl. eye tracking)

WP5 User Interaction Technologies

WP6 Personalization / HMI adaptation – Intelligent HMI

WP7 Autostereoscopic displays

WP8 3D HMI

WP9 Development of competencies for 3D HMI development

WP10 New usability evaluation methods for ADAS

WP11 HMI for Autonomous Driving

WP12 Multi-Modality

WP13 New HMI development & validation process

WP14 Updated DSM

WP15 Instrumented and integrated vehicle

WP16 New methodology for HMI platform selection

WP17 New HMI platform (HW)

WP18 Requirements capture framework

Table 4 - Bosch Innovcar P689: Project work packages

60

Since this dissertation addresses primarily the development process, the major focus of this work will

be on the engineering team. Nevertheless, the awareness of the wide scope and the several groups

involved definitely emphasize its great importance of the project. In order to succeed in such a

demanding field and ensure the collaboration with other teams, it is fundamental to design a flexible but

consistent development process. Accordingly, the process is addressed by the WP13 and WP18, which

respectively discuss the development strategy and the requirements capture framework. Therefore,

besides having a direct output for the defined Work Packages, the development process conceived

along this work will perform an essential role on the project.

3.2 DEVELOPMENT STRATEGY

Establishing a reliable development process is fundamental for such an ambitious and challenging

project. Firstly, it is needed to consider the scope and teams involved, and clarify the overall

requirements for the process. They shall provide the basis for defining a suitable development

approach, described along this section.

3.2.1 PROCESS REQUIREMENTS

Guide the teams towards the project goals is the main concern of the process. Therefore, the initial step

before defining the process requirements is to organize the teams into an overall workflow, capable of

fulfilling the project main objective of creating new automotive HMI concepts. The following diagram in

the Figure 32 provides a global structure and organization of the involved groups.

Figure 32 - Overall workflow

61

Research teams provide inputs for implementing news concepts, whose production comprises design,

development, integration, and validation. Additionally, platforms and tools, and simulation teams

provide support along the entire process.

Since research will be driven according to the work packages, it is expected to have several

investigation lines. They perform a fundamental role on the project, as they constitute the major input of

new concepts and technologies into the development workflow. Therefore, the process must ensure

constant but structured communication between research and design teams.

When the concept is mature and duly designed, it is developed or implemented on the target platforms,

then integrated into the DSM, and finally validated with usability tests. As a sequential workflow, each

team can only manage one concept at a time, which afterwards is delivered to the next team on the

line. In order to achieve such synchronization, the process must ensure a common and well-structured

plan as a constant feedback amongst the teams.

Same characteristic is required regarding the supporting teams. Since the target platforms and

operative systems regularly get updates and new versions, it is important to ensure that constant flow of

information to the development team. Moreover, a reasonable part of the developed concepts demand

interaction with the simulated environment, so the correspondent team must actively participate and

discuss strategies with the development team.

These interactions between several teams, combined with the wide scope of the project, reveal the

difficulty of establishing a detailed plan. Accordingly, they lead to the final and most important

requirement: agility. In order to guide such a complex organization towards the unpredictable priorities

of the project, the process must be flexible and transparent to all involved members. Therefore, the

process shall be designed according to Agile principles, and shaped to meet the project specific needs

and fulfil automotive development standards.

3.2.2 PROCESS SPECIFICATION

The challenge consists in combining flexibility and robustness into a lightweight framework, which shall

support and drive the teams towards the project goals. Amongst the wide range of Agile methodologies,

Scrum represents the balance between adaptability and predictability, and clearly provides a suitable

solution for the project necessities.

62

After considering its detailed explanation on the previous chapter, now the framework needs to be

structured and settled to this specific case of development. Recalling the basics, Scrum organizes the

development into iterations of one to four weeks, called sprints. At the end of a determined number of

sprints, an increment of the product is released. Besides the planning, each sprint comprises inspect

and adapt events, namely the reviews, retrospectives, and daily scrums.

Since these ceremonies are already delineated on the Scrum Guide [40], the most important decision

lies on time-boxing, or defining their length. Thus, considering the needs and structure of the project,

sprints have been organized in periods of two weeks. As medium sized sprints, the work is constantly

tracked and reviewed without spending excessive time on events. After two iterations follows a week of

release, intending to present the results and formulate the overall plan for the next sprints. The diagram

in the Figure 33 illustrates the global structure of the delineated process and its events.

The process flow shall be consistent and coherent with the Scrum rules. Therefore, each sprint

comprises the following events:

 Sprint Planning: (Max: 2h00) Takes place at the beginning of every sprint, and intends to plan

the upcoming work. Besides defining which features from the product backlog may be

implemented during the iteration, the discussion must also focus on the work and tasks

required to achieve them. The major output of the meeting is the sprint backlog, which should

be accordingly updated and clear to the entire team.

Figure 33 - Scrum: organization and timeboxing

63

 Daily Scrums: (Max: 0h15) Short and on place meetings to track the development along the

sprint. Their purpose is to inspect the work produced on the day before, establish a short term

plan for the present day, and report eventual impediments.

 Sprint Review: (Max: 2h00) An opportunity to present results and elicit feedback on iteration

outcomes. Thus, this event may include participants outside the development team, as

company representatives or even members from other the research groups.

 Sprint Retrospective: (Max: 1h30) Team internally discusses its performance during the finalized

sprint, identify weaknesses and drawbacks, and draw future improvements.

After a month of development, corresponding to two sprints, follows the release week. Although the

sprint results were already demonstrated on the review meeting, this week constitutes an opportunity to

integrate that work, and prepare a formal demonstration to company representatives, project

coordination, and other teams involved. As a result, all the participants acquire a transparent view of

the product status, and become able to discuss and give feedback on its progress.

Besides being a formal period of inspection, the release week also intends to prepare the next steps on

the project. The several teams involved may reunite, present their research advancements, and suggest

possible improvements. A collaborative discussion may include new product functionalities as a

reprioritization of the already existent from previous brainstorms. After the release week, teams must be

aware of the project status, and confident about the next steps.

3.2.3 SUPPORTING PRACTICES AND TOOLS

Scrum events attest the consistency and predictability of the framework, as they create specific

occasions to guide and track the development. However, despite organizing the development, Scrum

does not address how it should be performed. Teams shall be self-organisable, meaning they are

responsible to agree on methods and strategies to achieve the purposed goals. Nevertheless, in order

to ensure quality on the delivered work, the development must follow disciplined and consistent

procedures. Consequently, some additional practices were added to support the Scrum base

framework.

An effective coordination is the first step to achieve a consistent software development process. Team

work requires organization, especially when collective code ownership is employed. In order to manage

source code and other important artefacts, it is essential to employ a Version Control System (VCS).

64

Besides providing a clear insight on recent changes, VCSs allow regression to previous versions of the

project, enabling team members to safely collaborate on the same files. Amongst the a wide variety of

available version control systems, and this particular project will implement GIT [72]. Considering both

project and team organization, the tool positively satisfies the requirements. Moreover, the achievement

of the highest rate among users proves GIT as a suitable solution [73].

The control of software changes leads to the next practice: continuous integration. Since new code is

often a source of conflicts, it would be beneficial to progressively integrate new functionalities instead of

a final and long cycle of integration. In this sense, automatic builds may be triggered with specific

schedules or simply by a new version submitted to a control mechanism such as GIT. In order to

implement that automated behaviour, an integration tool named Jenkins [74] will be employed. Located

at a local server mutual to GIT repository, Jenkins triggers a new build every time a developer checks in

changes on the source code. Moreover, it presents a dashboard with detailed information on results of

previous builds, performance reports, and eventual error messages. An overview of both CI and VCS

tools is presented in the Figure 34.

In this particular continuous integration approach, integration starts whenever new code is committed

to local repository, which automatically triggers a build on Jenkins integration tool. Additionally, builds

must be scheduled and automatically performed several times a day. Besides providing a graphical

view of history and performance, building outputs also attest code stability and reveal eventual errors. In

order to ensure safety on this pipeline, the repository and its changes shall be hosted online through a

service as GitHub [75] or Bitbucket [76].

Figure 34 - Continuous Integration system

65

Despite ensuring code stability, behaviour and functionality are not evaluated by integration tools.

Therefore, the final stage after deployment is to verify the recently added features and attest the

conformity with established requirements. Often a result from use cases or narrative documents, these

requirements shall be expressed in a form of acceptance tests. As a specification contract between

customer and developers, acceptance tests comprise user level features and operational requirements

as quality of performance. Once a new functionality and related code surpasses all the tests, is

considered done and integrated. Accordingly, the flow presented in the Figure 35 must be achieved.

Since the process and its practices must be defined according to both team and project necessities, CI

and Acceptance Testing phases were defined according to available tools and the effort needed to

implement them. Still, as every Agile approach, the main focus of this development process shall

always be on repeatedly integrate and delivery the work.

3.3 PRODUCT MANAGEMENT

An effective management of the product artefacts is essential to a successful project. Agile is clearly

aware of that importance, and several methodologies define specific management activities. Scrum in

particular, defines Product Owner role. Focused on understanding business and customer

requirements, the Product Owner prioritizes the work to be accordingly performed by the development

team, “bridging the gap between ‘the suits’ and ‘the techies’” [77]. Such description defines the

responsibility of this author on the present project. As a Product Owner, he is responsible for the

interface between Bosch Car Multimedia and the development team. Besides managing the project

artefacts, additional activities related to requirements gathering and prioritization must be performed, as

described along the following topics.

Figure 35 - Development flow

66

3.3.1 VISION AND PLAN

Sketching the future product and its desired characteristics is essential for its accomplishment. Such

vision acts the overarching goal and guides the entire organization towards its achievement. Thus, it

shall communicate the essence of the future product concisely, and describe a unified goal capable of

providing direction, but general enough to stimulate creativity.

When starting a new project, it is often difficult to establish a long term plan. Even customers and

stakeholders are uncertain on the roadmap; so they are not capable to state the product future

characteristics. An eventual solution is to make use of Scrum first releases, and iteratively construct the

product vision through simple demos and prototypes. Being an opportunity to free innovation and

creativity, this preliminary iterations enable the test of new technologies and architectures, providing a

grounded base for the following work. As a result, this joint effort between customers and development

team shall incrementally enlighten the product and define its vision.

3.3.2 REQUIREMENTS GATHERING

Requirements are critical for defining, estimating, and managing the development; so gathering them

effectively is the cornerstone to a successful project. Traditional approaches define the entire set of

requirements on an early phase, which usually becomes a lengthy process. In other hand,

requirements under Agile methodologies are collected iteratively and through costumer collaboration.

Rather than define every detail on what the system must provide, continuous discussion along the

iterations intends to clarify how the system must work.

Therefore, since requirements primarily target the functionality, Scum express them as short and

simple descriptions named ‘user stories’. Written from the user or costumer perspective, user stories

follow the template: “As a <type of user>, I want <some goal> so that <some reason>”. One of the major

benefits of an approach with user stories is their varying levels of detail. When large amounts of

functionality are covered for a single user story, it is named as ‘epic’. Due to its extension, an epic is

excessively large to be completed in one iteration, so it shall be divided into smaller user stories in order

to be modularly implemented.

Despite the detail and granularity of user stories, they might not be enough to describe the intended

feature. Consequently, each user story shall be accompanied by an Acceptance Criteria, which

according to Microsoft are “conditions that a software product must satisfy to be accepted by a user,

67

customer, or stakeholder” [78]. Accordingly, acceptance criteria comprise a set of statements that

specify functional, non-functional, and performance requirements of the product unit. Through a clear

pass or fail result, criteria help to determine the boundaries of a story and when it is fully completed.

Following diagram provides a practical example on the requirements capture framework to be

implemented.

User stories and consequent acceptance criteria shall be defined with a collaborative participation of

customers and stakeholders. As a result, the development team acquires a clear understanding on

what needs to be accomplished, while the customers obtain realistic expectations on the outcomes.

3.3.3 DEVELOPMENT MANAGEMENT

After discussing and gathering requirements, they must be transposed to the development team. The

product owner shall provide detailed explanations on user stories and acceptance criteria, so the

development team acquires a clear understanding on the next steps. Then, as the product owner

defines the short term plan through work prioritization, the team estimations provide a forecast on the

effort needed to achieve it. Furthermore, the tracking and monitorization along the sprint help the

product owner to evaluate the conformity of development with the established goals. A brief description

on this activities is provided by the following topics.

Figure 36 - Requirements gathering framework

68

 Product Backlog

Product backlog is a list of features to be included on the product. Being expressed on a user story

format, requirements are listed and prioritized according to value for customer. Since they tend to

change and evolve over iterations, the product backlog content may be modified on an ongoing

basis.

When clear and accurately prioritized, backlog items become ready to be selected for development.

Then, the team forecasts the viable amount of work to be conducted under the sprint. As a result,

the committed items are transposed to a short-term artefact, the sprint backlog. Despite following

the same structure as the product backlog, the sprint backlog adds detail to its items, including

description, order, effort, and respective acceptance criteria. In order to comprise that information

and present the backlog items, the following template in Figure 37 was established.

The product owner has accountability for both product and sprint backlog. More than populating

them with user stories, the product owner must prioritize them according to customer

requirements, and ensure a clear understanding from the development team.

 Prioritization

The backlog order dictates the upcoming items, their prioritization performs an essential role on the

development plan. Prioritization is responsibility of the product owner, who shall consider three

factors: value, risk, and dependencies.

Figure 37 - Sprint backlog item

69

An item is valuable if it is indispensable to bring the product to life. Therefore, an item shall be

dispensed when product could still achieve the intended benefits without it. As a result, the product

will only implement the minimum functionality, without consuming time and energy on unnecessary

features. Moreover, customer feedback on new increment will be centered on truly important

functionalities.

Risk is an intrinsic part of software development, and it is closely related to uncertainty and lack of

knowledge. Lack of knowledge causes uncertainty, which clearly represents a risk for process

success. Therefore, uncertain and risky items should have the highest priority. Despite enforcing

early failure, this risk-driven approach intends to accelerate the generation of new knowledge and

change the course while there is opportunity.

Finally, prioritization must also consider dependencies between functional and non-functional

requirements. As they dictate the development flow, dependencies limit the freedom to prioritize the

items and estimate their effort. Therefore, dependencies shall be mitigated whenever possible,

possibly by achieving modularity through smaller items.

 Estimation

Estimating backlog items provide an impression on their rough size and respective effort.

Consequently, estimations enable to forecast and track the work along the sprint. As a joint effort

within the team, they are conducted during the sprint planning, or whenever the understanding of

an item changes.

In order to perform estimations, the first step is to define a measurement scale. Forecasting

development hours is nearly an impossible task, so the approach consists in estimating raw effort

and size through a relative measure, named story points. Rated than defining an absolute value,

points shall be assigned according to a reference story. Table 5 presents the implemented

reference scale.

70

An accurate estimate requires evaluation of possible dependencies. Moreover, the team must have

enough knowledge on the needed procedures for its implementation. Otherwise, a preceding item

must be added so that relevant knowledge can be acquired. Although estimation is only assigned to

team members related to development, the product owner shall be present in order to explain and

clarify the items to estimate.

 Progress Tracking

Development conducted along the sprint is continuously inspected through daily scrums. However,

besides the scrum board, there is no visual representation on the remaining work. In this sense

user story estimates perform an essential role, as they provide a concrete forecast on the ongoing

progress. Each sprint starts a burndown chart where story points are presented by elapsed days.

When a user story is finished or some considerable part is achieved, the remaining points on the

burndown chart are updated. Besides presenting the remaining work, burndown charts also provide

concrete data on performance of the team, which may be used for inspection and further

retrospectives. Moreover, the number of achieved story points per sprint show the average velocity

of the team, constituting a basis for improvement along future iterations.

Story Point T-Shirt Size

1 XS Extra Small

2 S Small

3 M Medium

5 L Large

8 XL Extra Large

13 XXL Double extra-large

20 XXXL Huge

 Table 5 - Story points scale

71

3.4 PROCESS APPRAISAL

Achieving compliance with industry standards is essential when designing a development process.

Regardless the achieved level and maturity, standards provide a clear insight on process weaknesses

and consequent improvements. Moreover, a standardized process undeniably receives more

recognition from customers and competitors. Considering all of these benefits, it was decided to use

both CMMI and ASPICE as appraisal models. More than an overall rate, these models shall indicate an

improvement path towards an effective process for automotive development.

Since CMMI and ASPICE have different structures and appraisal methods, it is needed to define a

common strategy to compare the results. Despite having different names, CMMI’s Staged

Representation and ASPICE’s Capability Dimension follow the same structure presented in Figure 38, in

which results are expressed in a form of a level.

Considering the early stage of the process, establishing high expectations would not be realistic. More

than a rate, both CMMI and ASPICE appraisals mainly intend to identify gaps and deficiencies, and

provide an improvement path towards the automotive development.

Figure 38 - Representation and comparison on CMMI & ASPICE models

72

Therefore, the process shall be matched and assessed according to the primary level of each model.

Since the Incomplete and Initial levels both represent ad-hoc and chaotic procedures, the target shall

comprise Performed and Managed levels for ASPICE and CMMI, respectively.

An important decision on the assessment methodology lies on the measurement. While CMMI does not

define a specific rating level for its practices, ASPICE suggests the “NPLF”, already described on

Appendix I. In order to achieve compliance between appraisals, this same rating scale shall be used for

both models. Considering this overall strategy, the following topics detail the assessment strategy for

each model, as the process areas related to the targeted levels.

3.4.1 CMMI

According to the strategy previously described, the assessment conducted over CMMI targets the

Managed level within its staged representation. Every stage is composed by a predefined set of process

areas, which must be performed in order to accomplish the correspondent level. Therefore, in order to

achieve the targeted level, the following process areas must be considered:

 REQM- Requirements Management: Management of work product requirements and

specification of its components, ensuring the alignment with the plan established for the

project.

 PP- Project Planning: Establishment of consistent plans related to project activities and work

products, including schedule, resources estimation, and risk identification.

 PMC- Project Monitoring and Control: Monitorization of the progress and status of the project,

so corrective actions may be taken when performance deviates significantly from the plan.

 SAM- Supplier Agreement Management: Definition of acquisition processes, involving

comparison of appropriate suppliers, and selection of the most suitable products.

 MA- Measurement and Analysis: Development and maintainability of a measurement

approach to support management information needs.

 PPQA- Process and Product Quality Assurance: Establishment of an objective insight into

processes and associated work products, and its compliance with established standards and

procedures.

 CM- Configuration Management: Supervision and control of the integrity of work products,

including tools, designs, software, and documentation.

73

These process areas represent a collection of generic and specific goals, further reflected on generic

and specific practises. Specific goals and practises are essential to achieve a determined process area.

Generic goals and practises are mutual to several process areas, and describe activities to

institutionalize the process within the organization. Both categories shall be considered and matched

with the implemented process.

3.4.2 ASPICE

Despite having similar capability levels, ASPICE does not define a set of process areas to be accessed.

Such flexibility enables to focus on specific needs of the project, but hinders the comparison to other

appraisals. Therefore, in order to follow a common standard within automotive industry, the set of

process areas contemplated by the HIS scope has been selected. Accordingly, five process groups shall

be addressed:

 ACQ- Acquisition Process Group: Processes performed by the costumer, or by the supplier

when acting as a customer for its own suppliers, in order to acquire a product and/or a service.

 SYS- System Engineering Process Group: Processes addressing the elicitation and

management of customer and internal requirements, definition of the system architecture, and

integration and testing on the system level.

 SWE- Software Engineering Process Group: Processes addressing the management of

software requirements and development of the corresponding software architecture, design,

implementation, integration, and software testing.

 SUP- Supporting Process Group: Processes that may be employed by any of the other

processes at several points along the life cycle.

 MAN- Management Process Group: Processes eventually used by anyone responsible to

manage the project or its process.

Each process group comprises one or more processes to be appraised. In order to accomplish the

primary level, their process attributes must be largely of fully achieved. Therefore, the assessment shall

address each process, and match its attributes with the Agile approach implemented along the project.

75

4. RESULTS AND DISCUSSION

After specifying the development process, this chapter intends to present the primordial outcomes of its

implementation. Moreover, results from comparison with the automotive standards provide concrete

information on future improvement strategies.

4.1 PROCESS IMPLEMENTATION

Scrum development process and its supporting practices were successfully employed within the project

Bosch Innovcar: “The Cockpit of the Future”6. After an initial experiment, the framework has been

established with iterations of two weeks. Since the official project kick off, 11 sprints have been

performed, each one comprising the Scrum regular activities. In view of that, the diagram in Figure 39

depicts the major stages along the process.

The initial iterations were focused on the toolchain and its configuration. In order to setup the

embedded environment, the operating system and its supporting modules were continuously trialled

until achieving a stable version.

6 A detailed overview of the implemented process and conducted activities is presented on Appendix V.

Figure 39 - Bosch Innovcar - Temporal diagram

76

More than preparing the development framework, this experimental period constituted an opportunity to

explore its potentialities and identify eventual limitations. As a result, the experience and knowledge

acquired along this phase were determinant to define new concepts and evaluate its feasibility.

In parallel during this initial phase, several cooperative activities with Bosch including workshops, core

team meetings, and discussions on the DSM vision enabled the perception of potential concepts.

Subsequently, after the 5 early sprints the toolchain was set, and some pilot concepts were ready to be

developed.

On a further stage, the novel HMI concepts were introduced iteratively, and reviewed after each

development sprint. Due to its proximity with implementation, both design and integration teams were

also included on development team sprints (Fig. 40). As a result from this mutual plan, the design team

anticipated the needed resources for the iteration, while the integration team projected the concepts to

be deployed on DSM. The product owner performed a central role on this process. Being the main

interface between Bosch and the development team, the product owner was responsible to evaluate the

concepts in terms of maturity and value for the customer. Accordingly, concepts were refined,

prioritized, and planned before being introduced on development iterations.

Despite the youth of the process and few iterations fully dedicated to development, so far the results are

quite optimistic. During the 6 development sprints, 37 stories have been planned, estimated, and duly

implemented. Several concepts were addressed, regarding HMI personalisation, warning strategy,

infotainment, and the inclusion of personal devices. Since they are closely related to the work packages,

these functionalities constitute a solid basis for further iterations.

Figure 40 - Iterating teams

77

In order to clarify the process and better understand the product management stages during the

iteration, a sprint will be used as an example. Following topics address the events and consequent

results of a development sprint #3, occurred from 5-16 September.

4.1.1 SCHEDULING THE ITERATION

Sprints are organized according to the events and procedures delineated by the Scrum guide [40]. As a

result, every iteration starts with an initial planning, is continuously inspected through daily scrums, and

ends with a global review and a retrospective session. Since sprints were defined with a two-week

length, these events were programmed and time-boxed as depicted in the Figure 41, presented bellow.

Although events are performed on specific days, their schedule is determined by the scrum master and

agreed by all team members. Nevertheless, the agreed routine must be permanent and rigorously

attended by everyone involved.

From the author’s perspective, the product management work during the sprint may be divided in three

distinct actions: planning, tracking, and review. Ensuing topics describe each stage, and how it was

reflected on sprint #3.

Figure 41 - Sprint #3: Iteration schedule

78

4.1.2 PLANNING THE WORK

Every sprint starts with a planning meeting, which intends to define the work to be performed during the

iteration. The event is conducted by the product owner, who describes the product backlog items in

detail and defines an overall goal for the sprint. Being responsible for maximizing the product value, the

product owner must maintain the backlog prioritized according to customer needs and specifications.

The Figure below demonstrates the backlog status early in the sprint #3.

After an explanation on each item by the product owner, the team discusses internally and defines how

many features may be implemented during the iteration. During the sprint #3, the development team

committed to deliver the first six stories, which were immediately included on the sprint backlog.

Nevertheless, the items on the product backlog are not detailed nor self-explainable. In order to provide

an effective guidance during the iteration, items on the sprint backlog are accompanied by a user story

description, priority, estimation points, and acceptance criteria. While estimation points provide an idea

on the remaining work during the sprint, the acceptance criteria intends to clarify the user stories and

establish boundaries for its development.

Priority Story Theme

1 Driver Profile

2 Mobile App: Control Car Functionalities

3 Lower Stack Customization

4 Shortcut Bar

5 Android on Passenger Display

6 Object Between Displays

7 Contacts Synchronization

8 Direct Interface on Music Menu

NP Fingerprint Authentication

NP Access Social Networks

NP Personal Reminders

Figure 42 - Sprint #3: Product Backlog

79

As an example of the procedure, following user story card was filled with information correspondent to

the first item of the product backlog, named “Driver Profile” (Fig. 43).

Now with concrete information on the sprint backlog, the team is able to decompose each item into

specific tasks of implementation. Although knowledge earned along the sprint may result in unpredicted

work, the anticipation of evident tasks promotes structured thinking, and establishes a guidance for

development. During the discussion, agreed tasks are written on commonly used post-its and placed on

the scrum board, which must be visible and clear to the entire team (Fig. 44). The end of the planning

meeting means an agreement on the committed stories, and a detailed plan for their development.

Figure 44 - Sprint #3: Scrum board

Figure 43 - Sprint #3: Story card

80

4.1.3 TRACKING DEVELOPMENT

The development is continuously inspected through daily scrums. Usually performed early during the

day, these short meetings intend to present recent progressions, report difficulties or eventual

impediments, and establish an immediate plan for the current day. As a stand-up event, daily scrums

are performed right near the scrum board, so the team may discuss the tasks and update their status.

In this sense, the scrum board performs an essential role on tracking development, since it provides an

actual standing of development and its progress towards the sprint goal.

Moreover, evaluating the percentage of completed tasks within a story enables the estimation of

remaining points, and consequent drawn of burndown charts. Accordingly, the product owner frequently

verifies the status of the user stories, so the performance of the team can be measured and registered

to further discussion. As an example, the burndown chart resultant from sprint #3 is presented in the

Figure 45.

Considering the accomplishment of the committed work, the Sprint #3 successfully achieved its goals.

The stabilization at the middle of the sprint suggests lack of progress, due to unpredicted bugs and

consequent additional tasks. In fact, it shows the debilities of work estimation since there are several

variables that cannot be anticipated, such as bugs, lack of knowledge, and technological deficiencies.

As a result, the effort spent on solving these issues is negatively reflected on sprint results.

Nevertheless, burndown charts provide relevant information on team capabilities, and may be used as

learning basis for future estimations.

Story Points

Sprint Day #

Figure 45 - Sprint #3: Burndown chart

81

Besides the performance and task execution, development is also tracked on the software level. The

implemented setup of continuous integration tools provide data on versioning, building history,

compilation times, etc. Allocated on a local server, Jenkins presents a complete dashboard with

relevant information, which can be consulted anytime during the iteration. Accordingly, a new

workspace is created for every sprint, so the committed changes and building registries can be easily

consulted. Following chart in Figure 46 shows the Jenkins partial outputs relative to sprint #3.

Both automated and version triggered builds are registered by the integration tool, which provides a

detailed console output for every compilation event and a visual indicator on software stability.

Therefore, due to its relevance and support on continuous integration mindset, Jenkins performs an

essential role within the development.

Being responsible for the product, the product owner must be aware of its condition during the sprint.

Leading the team to the desired results, however, cannot be automated. It requires accompaniment,

discussion, and continuous contact with the team. By closely collaborate on an ongoing basis, the

product owner acquires a clearer view of their concerns, needs, and strategies; so immediate help and

guidance may be provided.

Gathering data during development is only useful when used to improve the product, organization, or its

procedures. Accordingly, sprint measures and results are specifically addressed at the end of the

iteration, as subsequently described.

Figure 46 - Sprint #3: Jenkins build history & comparison of
compilation times

82

4.1.4 REVIEW AND RETROSPECTIVES

Finalizing two weeks of development, the iteration closes with an inspection event. Results and

outcomes of the completed sprint are presented on a review meeting, which may include customers,

stakeholders, and representatives from other teams. Aware of the accomplished goals along the

iteration, the product owner may request specific demos and prototypes to demonstrate the essential

features. Without focusing the technical approach, the product and its functionalities may be conferred.

Besides eliciting feedback on past work, such discussion promotes a critical appreciation that may

serve as a starting point to plan the next sprint.

After discussing and inspecting the product, the retrospective meeting provides an opportunity for the

team to inspect itself. As an internal event, the retrospective addresses the flow of the previous sprint,

regarding relationships, procedures, and tools. Problems and any occurred difficulties shall be

mentioned, as they constitute possible areas of improvement. When invited, the product owner may

discuss on achievement of the iteration goals. In case of missing the committed objectives, the failed

estimation shall be evaluated. Moreover, the effort pace measured through the burndown chart also

may be addressed. As a diary record, the daily effort chart provides a representation on the pace of the

team. As an example, Figure 47 shows the resultant chart of sprint #3.

As previously explained, the effort spent on day #5 was dedicated to bug solving. Nevertheless, the

effort clearly increased on the second half of the sprint, suggesting that the work organization and

division along the sprint may be improved. In fact, this example reveals the purpose of retrospectives:

improvement. Through open and transparent discussions on flaws and difficulties, the team is able to

identify potential enhancements, and proceed to its employment on the next iteration.

Figure 47 - Sprint #3: Daily effort chart

Daily Effort

Sprint Day #

83

4.2 AUTOMOTIVE COMPLIANCE

Standards as CMMI and ASPICE have become imperative nowadays, since they constitute the basis to

achieve consistency and consequent recognition within the automotive industry. Despite being on an

embryonic stage, the implemented development process was matched and assessed for both models.

More than simply achieving a determined level, the appraisals intended to detect process gaps and

major debilities. As a result, an improvement plan may be furtherly defined according to both

organization and project needs.

From a global perspective, Agile and Scrum provide an acceptable response to CMMI and ASPICE

requirements, especially on management and control domains. On the other hand, there are several

process areas which are uncovered and may require additional practices, mainly regarding quality and

monitoring fields. Although some results are identifiable on both models, CMMI and SPICE follow a

different structure and address particular areas. Therefore, the ensuing topics present the outcomes

and consequent analysis for each model.

4.2.1 CMMI

Being the most recognizable framework for improvement, CMMI comprises a certain degree of flexibility

that makes the model applicable to any process or organization. Rather than defining a procedure,

CMMI states the core activities to be performed. Thus, even an early process may benefit from its

appraisals, and use them as improvement guidelines.

The established goal was to achieve the “Managed” maturity stage, which involves control of expected

outputs, collaboration with stakeholders, management, and constant review of the process. In order to

accomplish this second stage, CMMI defines seven process areas to be achieved: Requirements

Management (REQM), Project Planning (PP), Project Monitoring and Control (PMC), Supplier Agreement

Management (SAM), Measurement Analysis (MA), Process and Product Quality Assurance (PPQA), and

Configuration Management (CM). Each process area comprises a predefined set of specific goals and

correspondent practices, which must be satisfied in order to achieve the desired maturity level.

Accordingly, the process areas previously described were evaluated and matched with the implemented

process. Detailed results comprising their description and consequential achievement are provided on

Appendix VI. Nevertheless, Figure 48 presents an overall view of the assessment outcomes.

84

Amongst the evaluated process areas, some positive results were distinguished. Several areas were

generally satisfied as Requirements Management, Project Planning, and Project Monitoring and Control.

Despite having different practises, they are mostly related to management activities such as

requirements gathering, work planning and monitorization, and development review. As previously

discussed, these activities are intrinsically present on the Scrum framework. Practices and events as

planning, daily scrums, grooming sessions, and reviews, ensure an iterative planning and continuous

monitorization of the process. Consequently, the results under the correspondent process areas

achieved a positive evaluation.

In other hand, some process areas are not directly covered by the Scrum methodology, and as a result

were negatively reflected on the assessment. Supplier Agreement Management, regarding acquisition

procedures and supplier selection, represents the process area with more unachieved practices. It is

followed by Configuration Management, which embraces supervision of the work products and

documentation. They constitute an evident gap on the process, mainly due to its absence on Agile

methods and its focus on development. Supplier Agreement Management process area is not crucial

for the process, since the project scope is narrowed to investigation and innovative development, so

buying processes are mainly managed by the costumer. However, Configuration Management definitely

constitutes an area to progress, due to the importance of supporting tools and documentation on the

development process.

Figure 48 - CMMI appraisal results

85

Finally, Process and Product Quality Assurance process area also presents a long way to improve. This

area implicates an objective evaluation on both process and products compliance, and consequent

resolution for nonconformity issues. Besides continuous inspection, explicit quality reviews are not

covered by the Scrum development process, and constitute another field to improve.

Therefore, while Scrum and supporting practices covered the majority of the goals established by

CMMI, some process areas and their related practices require additional attention. Nevertheless, the

development process presents a positive rate, as presented in the overall chart of Figure 49.

The results are optimistic, as nearly 75% of the process areas are largely of fully achieved. However,

more than creating the expectations on achieving a maturity level, these results show that there is still a

long way to accomplish it. Although only a few process areas require full implementation, the entire

group can be significantly enhanced and conduced towards a more effective process.

4.2.2 ASPICE

Contrasting the previous model, ASPICE is exclusively centered on the automotive industry. Thus, rather

than defining overall practices applicable to every domain, ASPICE processes are centred on automotive

specific needs. Accordingly, considering the evolution and actual trends on this demanding industry,

ASPICE puts a special focus on software and embedded systems development. Such emphasis on

automotive development definitely suited the scope of this project, and represented an effective

approach to identify crucial areas of improvement.

Figure 49 - CMMI level 2 global achievement

86

Since no predefined processes are imposed by the ASPICE reference model, the organization must

define which areas shall appraise. In order to follow a common approach within the automotive

industry, this assessment selected the recognizable set of process areas contemplated by the HIS

scope. Besides being mainly focused on software engineering processes, the HIS scope also includes

acquisition, supporting, and management domains. Each of these groups contain several processes,

composed by sets of base practices and resultant work products.

The established goal was to achieve the first capability dimension, entitled the “Performed Process”.

Despite being the primordial level in the progressive scale, the performed dimension requires an

accurate implementation of the process. In order to achieve it, the entire group of processes and

related base practices must be largely of fully achieved. Accordingly, its content was evaluated and

matched with the implemented process. Detailed results comprising their description and consequential

achievement are provided on Appendix I. Nevertheless, following charts present an overall view of the

assessment outcomes for each process group.

The system engineering process group (Fig. 50) addresses the definition of the overall system, involving

both customer and internal requirements (SYS2), architectural design (SYS3), integration (SYS4), and

qualification tests (SYS5). While requirements elicitation and analysis is significantly covered by Scrum,

the development process lacks on specific procedures for the remaining areas, mainly regarding

integration processes. Despite having a positive average on its process areas, this system engineering

process group definitely needs further attention. Moreover, the appointed debilities also become evident

on the subsequent process group, software engineering, whose results are presented next.

Figure 50 - ASPICE SYS appraisal results

87

The software engineering process group (Fig. 51) addresses the entire course of development,

regarding requirements analysis (SWE1), architectural design (SWE2), design (SWE3), unit verification

(SWE4), integration (SWE5), and qualification test (SWE6). Although their average shows a considerable

achievement, nearly 60% of the base practices still need improvement.

Software requirement analysis is clearly the highest rated, mainly due to specific procedures delineated

by Agile that target its specification. Events such as planning, grooming, and user story gathering

provide a consistent framework so requirements can be collected and analysed iteratively. In the other

hand, practices explicitly related to software development are not specified by Scrum, such as

integration procedures, architectural designs, tests, and quality measurements. Some base practices

regarding these areas were achieved through acceptance testing and integration tools which were

additionally implemented. However, in order to largely accomplish the entire software engineering

process group, some consistent procedures concerning architectural design, unit testing, and

integration must be employed.

Transitioning into a broad context, the supporting life cycle category comprises processes that may be

employed by the previous engineering areas. Therefore, rather than specifying additional procedures,

these processes intend to support both system and software development, addressing aspects as

quality assurance (SUP1), configuration management (SUP8), problem resolution management (SUP9),

and request management (SUP10). The results regarding this initial assessment are presented in the

following chart.

Figure 51 - ASPICE SWE appraisal results

88

Considerable debilities on supporting category (Fig. 52) are shown through this results. Problem

resolution management (SUP9) reveals the lowest percentage of fully achieved practices, mainly due to

lack of tracking and analysis procedures. In fact, this deficiency constitutes the principal weakness of

the entire group. The majority of the base practices is considered within the development process, as

problem identification, control of work products, and continuous discussion. However, these procedures

are not repeatable and reliable to be fully achieved. Moreover, in order to achieve the desired

consistency, these supporting processes require documentation and effective reports on every action.

Although avoiding excessive documentation is one of the main Agile principles, this is a necessity to be

furtherly addressed. In fact, such decisions are directly related with the following categories,

Management and Acquisition, whose results are presented in the Figure 53.

Figure 53- ASPICE MAN & ACQ appraisal results

Figure 52- ASPICE SUP appraisal results

89

Acquisition and management are distinct categories, each one represented by a single process. The

acquisition process group addresses relations and procedures between customer and supplier. The

supplier monitoring process (ACQ4) particularly involves tracking and assessing the performance of the

supplier against agreed requirements. Thus, the procedure is mainly applicable when the acquisition

comprises software units, or specific designed components. Since this development process is applied

to an investigation project, and the majority of its acquisitions are COTS, these procedures may not be

essential.

Finally, the management category consists of processes regarding the project roadmaps and goals on

an organizational level. The project management process (MAN3) involves to identification,

establishment, and control of the activities and needed resources, so the project creates the desired

product. Management activities involving the project life cycle, feasibility, resources and knowledge

estimation, and progress reporting are considered by this process area. Despite lacking a rigorous

schedule of the project, Scrum framework comprises planning, estimation, and reporting actions.

Therefore, rather than an exhaustive intervention at the beginning of the project, the project is iteratively

monitored with collaboration and control of the management. Considering the entire set of categories

and correspondent processes, the development process obtained the overall achievement presented in

the following chart (Fig. 54).

Overall results indicate a considerable adherence to ASPICE processes, since nearly 65% of their

subsequent practices are fully or partially achieved. In other hand, 17% of the areas show no evidence

of implementation, while 20% still are unpredictable and just partially achieved. Therefore, several

processes and related practices must be improved in order to accomplish the desired level.

Figure 54 - ASPICE level 1 global achievement

91

5. FINAL CONCLUSIONS

Technological evolution brought serious challenges to automotive industry. In order to keep pace with

innovation and react to market demands, automotive is under constant pressure to modernise and

embrace new technologies. As a result, the same vehicles that once were pure mechanical

progressively turned into sophisticated systems, mainly built over software and embedded units. Their

dependencies and increasing complexity constitute a prominent obstacle for the automotive industry,

evinced by the both long and expensive process of launching a new product. Despite being partially

explained by its rigorous standards, these challenges show an urgent need to enhance automotive

development processes.

Analysing other domains where software performs an important role, a solution was hypothesized

through the use of Agile processes. Employing an action research methodology, the author addressed

an immediate practical problem while developing scientific knowledge on this subject. Accordingly, Agile

was evaluated as a possible solution to automotive challenges through an active participation on an

automotive HMI development project. After an initial phase of research and study on Agile methods, a

development process was designed, and applied to an actual investigation project. Finally, the

implemented process was compared and evaluated according to models highly recognized by the

automotive industry, namely CMMI and ASPICE. While data gathered along the development enabled to

draw concrete conclusions on benefits and drawbacks of Agile, matching the process with the

standards clarified its suitability for automotive industry.

5.1.1 LEARNINGS

The literature revised along this work clearly demonstrated the progression of Agile. Built over iterative

and flexible values, the framework is an absolute advantage for every domain where requirements and

market trends are volatile. Accordingly, several methods have been purposed, and their benefits are

nowadays being attested by numerous industries. Such diversity evinces a fundamental conclusion of

this work: rather than a controlling methodology, Agile virtue remain on its principles. The process and

its practices may consider the needs of a specific field as automotive, but success entirely depends on

92

changing the mindset to Agile values. In fact, that was the leading conclusion of the action taken on this

work. Centered on development of automotive HMI, the project was early divided into work packages

and prioritized according to value for innovation purposes. Although the ordering involved other

international departments of Bosch with a broader view of the technologies and the current market, the

priorities were realigned a few months after its first establishment. Nevertheless, since requirements

are gathered on an iterative approach, Agile encourages communication and openness to redefine the

plan. Such flexibility places Agile closer to business goals, and represented a clear advantage on this

investigation project.

Subsequently, Scrum was the elected methodology to implement. Despite prescribing specific roles and

procedures, the objectivity of the framework made Scrum a balanced and suitable solution for this

project. Consequently, development was organized in sprints of two weeks, which enabled an effective

tracking without spending excessive time on meetings. The team was organized according to Scrum

roles, and specific events as sprint planning, daily scrum, sprint review, and retrospective were

rigorously performed. Besides providing opportunities for discussing and inspecting the work, these

events promoted regular communication and enhanced the development process. Although Scrum

rigorously defines organizational and development tracking procedures, the framework lacks specific

practices for development. Therefore, additional actions regarding validation and continuous integration

were added to the process. Suitable tools were selected according to both team and project necessities,

always taking into account the resultant overhead to the process. While acceptance testing clarified the

requirements for implementation, version control and automated tools made development more

consistent.

Besides defining the process, the author took an active part on managing the development. As a

product owner, the author discussed the product roadmap, gathered requirements, and acted as an

interface between the customer and the development team. Features were prioritized, estimated, and

tracked along each iteration. Therefore, the participation on Scrum events constituted a fundamental

part of the work. More than guiding the development, Scrum ceremonies were regular opportunities to

detect process weaknesses, which were immediately resolved or appointed for further discussion.

Thus, being part of the process provided a broader view of Agile methods, and clarified the major

benefits and drawbacks of implementing a framework as Scrum.

93

Moreover, the active role on the process also represented an advantage when evaluating its compliance

with automotive standards. The implemented process was appraised and compared with two models of

great importance within the automotive industry, namely CMMI and ASPICE. The assessment was

divided in process areas, whose general achievement is measured in maturity or capability levels.

Nevertheless, more than achieving a determined level, the assessment intended to provide an insight

on the implemented process and its shortcomings towards the automotive industry. Accordingly, the

results of both models exposed a considerable number of partially achieved or even not achieved

practices. Deficiencies mainly regarding testing and integration procedures were mutually identified,

and constitute crucial areas to improve. In addition, several procedures concerning design and quality

assurance are fairly addressed, but documentation and progressive recordings are lacking on the

process.

Although both models generally identify the correspondent deficiencies of the process, ASPICE results

are considerably inferior. Nevertheless, the difference only reflects the dissimilarity of the models and

their assessment strategy. While CMMI defines a group of processes for each maturity level, ASPICE

does not prescribe any processes to appraisal. Therefore, this work considered the entire group of

processes comprised by the HIS scope, which covers a wider range than the process areas of CMMI.

Moreover, since ASPICE is explicitly targeted for automotive development, its processes areas are far

more specific than a general model as CMMI. Thus, despite being more negative, ASPICE results are

beneficial in the sense they provide a clearer idea of the process capabilities and deficiencies within the

automotive standards.

Consequently, the conducted assessments show a long way to improve towards an effective

development. The implemented process clearly suits the investigative purposes of the project, as it

enables constant feedback and rapid prototyping. Sprints enable interaction and collaboration of the

several teams on creating innovative concepts. Accordingly, Agile framework has evinced great

advantages on iterative requirements, costumer involvement, and continuous delivery. However, in

order to eventually meet the automotive standards for a development process, the methodology must

be strengthened with additional practices.

94

5.1.2 FUTURE WORK

Further steps of this work may be divided according to both domains of action research methodology:

the practical case study, and the scientific knowledge. Focusing on the Innovcar project, there are

several procedures within the development process to improve. Due to the considerable number of

teams involved, the interface between the research groups and the multidisciplinary team remains

undefined. The design team constitutes the bottleneck for development, so these interactions must be

further delineated.

Scrum framework was duly implemented within the development team; however several procedures still

can be enhanced. As an example, the subjectivity of story estimation complicates the development

tracking. Yet, such effort may be rewarded since the accuracy of the estimates also tend to improve

with team experience. Additionally, supporting tools shall be implemented for automated testing,

requirements gathering, and development tracking. Besides providing statistical data on development,

these management tools typically support documentation and testing procedures, which constitute an

evident deficiency of the process. Nevertheless, any change on the process must ponder the Agile main

principles, which prevent the overhead for excessive tools and documentation. Rather than fixing the

process, the focus shall always be to continuously improve its agility.

Concluding with the broad perspective of the scientific and technological scope of this work, Agile has

strong arguments to become a solid approach within the software industry. Flexibility and customer

involvement are desirable qualities of a framework, which is capable to maintain the teams motivated

while receiving encouraging feedback. Nevertheless, this characteristic flexibility is the exact opposite of

a demanding industry such as automotive. High safety and quality standards are not contemplated for a

raw framework as Scrum. Therefore, an interesting area of research would be to combine the best of

both worlds: quality and validation procedures from automotive, with iterability and involvement from

Agile. The result would be a robust and consistent Agile based framework, plainly suitable for a

demanding industry as automotive.

95

BIBLIOGRAPHY

[1] M. Hoelz, M. Collings, and H. Roehm, “A new era Accelerating toward 2020 — An automotive

industry transformed,” pp. 1–32, 2009.

[2] A. Davydov, “Automotive HMI Fit for 2020,” Technol. Excell. Ser. Key trends Affect. Evol. in-car

user interfaces, 2012.

[3] NXP AMPG Body Electronics Systems Engineering Team, “Future Advances in Body Electronics

AMPG Body Electronics Systems,” 2013.

[4] D. Durisic, M. Nilsson, M. Staron, and J. Hansson, “Measuring the impact of changes to the

complexity and coupling properties of automotive software systems,” J. Syst. Softw., vol. 86, no.

5, pp. 1275–1293, 2013.

[5] A. Busnelli, “Car Software: 100M Lines of Code and Counting.” [Online]. Available:

https://www.linkedin.com/pulse/20140626152045-3625632-car-software-100m-lines-of-code-

and-counting. [Accessed: 06-Apr-2016].

[6] M. Bro, “Challenges in automotive software engineering,” vol. 2006, pp. 33–42, 2006.

[7] A. Shaout and G. Waza, “Solutions to Automotive Software Engineering Challenges,” Int. J.

Comput. Organ. Trends, vol. 16, no. 1, pp. 12–19, 2015.

[8] T. (Translogic) Shea, “Why Does It Cost So Much For Automakers To Develop New Models?”

[Online]. Available: http://www.autoblog.com/2010/07/27/why-does-it-cost-so-much-for-

automakers-to-develop-new-models/. [Accessed: 21-Feb-2016].

[9] Hp and V. Uk, “Case Study: Vodafone UK and HP partnership more than halves the software

development lifecycle.”

[10] HP, “Agile is the new normal,” pp. 1–3, 2015.

[11] B. J. Ehlert and S. Manager, “Agile Quality Automation Speeds Delivery and Reduces Risk.”

[12] R. L. Baskerville, “Investigating information systems with action research,” Commun. AIS, vol. 2,

no. 3, p. 4, 1999.

[13] T. Cornford and S. Smithson, Project Research in Information Systems. 1996.

[14] N. F. Kock, Information systems action research : an applied view of emerging concepts and

methods / edited by Ned Kock. 2007.

[15] R. N. Charette, “This Car Runs on Code,” IEEE Spectrum, 2009. [Online]. Available:

96

http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code. [Accessed: 06-Dec-

2015].

[16] R. W. Cox, “GM Emission Control Project Center - I Was There - Generations of GM.” [Online].

Available:

https://history.gmheritagecenter.com/wiki/index.php/GM_Emission_Control_Project_Center_-

_I_Was_There. [Accessed: 06-Dec-2015].

[17] D. W. W. Royce, “Managing the Development of large Software Systems,” Ieee Wescon, no.

August, pp. 1–9, 1970.

[18] P. Rook, “Controlling software projects,” Softw. Eng. J., vol. 1, p. 7, 1986.

[19] The Standish Group, “CHAOS MANIFESTO 2013: Think Big, Act Small,” Standish Gr. Int., pp.

1–52, 2013.

[20] K. M. C. GmbH, “Agile in automotive - state of practice 2014,” no. January, 2014.

[21] “Principles behind the Agile Manifesto.” [Online]. Available:

http://agilemanifesto.org/principles.html. [Accessed: 12-May-2016].

[22] R. Takahira, L. Laraia, and F. Dias, “Scrum and Embedded Software development for the

automotive industry,” … Eng. …, pp. 2664–2672, 2014.

[23] “VersionOne: Pioneers in Agile.” [Online]. Available: https://www.versionone.com/about/.

[Accessed: 10-Dec-2015].

[24] J. Renaudin, “Samsung Moving from Waterfall to Agile to Shorten Galaxy Development.”

[Online]. Available: https://www.techwell.com/techwell-insights/2015/08/samsung-moving-

waterfall-agile-shorten-galaxy-development. [Accessed: 10-Dec-2015].

[25] B. Schatz, I. Abdelshafi, and P. Systems, “Primavera Gets Agile: A Successful Transition to Agile

Development,” Ieee Softw., vol. 22, no. 3, 2005.

[26] P. Correia and R. Cunha, “CMMI & Scrum at Primavera - A powerfull combination,” 2016.

[27] J. Highsmith, Agile Software Development Ecosystems. 2002.

[28] J. Highsmith, A. Cockburn, and C. Consortium, “Agile Software Development: the business of

innovation,” Computer (Long. Beach. Calif)., vol. 34, no. 9, pp. 120–127, 2001.

[29] “Manifesto for Agile Software Development,” 2001. [Online]. Available:

http://www.agilemanifesto.org/. [Accessed: 05-Nov-2015].

[30] N. B. Moe, T. Dingsøyr, and T. Dybå, “Understanding self-organizing teams in agile software

development,” Proc. Aust. Softw. Eng. Conf. ASWEC, no. 3, pp. 76–85, 2008.

[31] A. Cockburn and J. Highsmith, “Agile Software Development:The People Factor,” Computer

97

(Long. Beach. Calif)., vol. 34, no. 11, pp. 131–133, 2001.

[32] J. Shore, “The Crucible of Great Teams,” The Art of Agile, 2008. [Online]. Available:

http://www.jamesshore.com/Blog/The-Crucible-of-Great-Teams.html.

[33] J. Shore and S. Warden, The Art of Agile Development. O’Reilly.

[34] L. A. Williams and R. R. Kessler, “All I really need to know about pair programming I learned in

kindergarten,” Commun. ACM, vol. 43, no. 5, pp. 108–114, 2000.

[35] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries, “Strengthening the Case for Pair-

Programming,” IEEE Softw., vol. July-Augus, no. August, pp. 19–25, 2000.

[36] A. Cockburn and L. Williams, “The costs and benefits of pair programming,” Extrem. Program.

examined, pp. 223–243, 2001.

[37] S. Stolberg, “Enabling agile testing through continuous integration,” Proc. - 2009 Agil. Conf. Agil.

2009, pp. 369–374, 2009.

[38] K. Beck, Extreme Programming Explained - Embrace change. 2004.

[39] H. K. Flora and S. V. Chande, “A Systematic Study on Agile Software Development

Methodologies and Practices,” Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 3, pp. 3626–3637,

2014.

[40] K. Schwaber and J. Sutherland, “The scrum guide,” Scrum. org, no. July, p. 17, 2014.

[41] B. V. De Carvalhoa and C. H. P. Mellob, “Scrum agile product development method-literature

review, analysis and classification,” Prod. Manag. Dev., vol. 9, no. 1, pp. 39–49, 2011.

[42] T. Ohno, Toyota Production System, vol. 4. 1988.

[43] M. Poppendieck and M. A. Cusumano, “Lean software development: A tutorial,” IEEE Softw.,

vol. 29, no. 5, pp. 26–32, 2012.

[44] R. Charette, “Challenging the Fundamental Notions of Software Development,” 2002.

[45] D. J. Anderson, Kanban: Successful Evolutionary Change for Your Technology Business. Blue

Hole Press, 2010.

[46] H. Kniberg, Kanban and Scrum - Making the most of both. 2009.

[47] M. O. Ahmad, J. Markkula, and M. Ovio, “Kanban in Software Development: A Systematic

Literature Review,” Softw. Eng. Adv. Appl. (SEAA), 2013 39th EUROMICRO Conf., no.

September 2013, pp. 9–16, 2013.

[48] J. A. Highsmith, Adaptive Software Development: A Collaborative Approach to Managing

Complex Systems, vol. 12. 2000.

[49] V. Günal, “Agile Software Development Approaches and Their History,” 2012.

98

[50] P. Coad, E. Lefebvre, J. De Luca, and J. de Luca, “Java Modeling In Color With UML,” in Java

Modeling In Color With UML: Enterprise Components and Process, no. c, 1999, pp. 1–12.

[51] DSDM Consortium, “The DSDM Agile Project Framework.” [Online]. Available:

https://www.dsdm.org.

[52] A. Cockburn, “Crystal Clear. A Human-Powered Methodology For Small Teams, including The

Seven Properties of Effective Software Projects,” Integr. Vlsi J., p. 39, 2004.

[53] VersionOne, “10th Anual State of Agile Report 2015,” 2015.

[54] S. Thomas, “Rugby is a Better Analogy for Agile Delivery than the Scrum | It’s a Delivery Thing,”

2012. [Online]. Available: http://itsadeliverything.com/rugby-is-a-better-analogy-for-agile-delivery-

than-scrum.

[55] Scrum Inc., “The Basics of Scrum: An introduction to the framework.”

[56] M. Cohn, “User Stories and User Story Examples.” [Online]. Available:

https://www.mountaingoatsoftware.com/agile/user-stories.

[57] M. Cohn, “Scrum Product Backlog and Agile Product Backlog Prioritization.” [Online]. Available:

https://www.mountaingoatsoftware.com/agile/scrum/product-backlog.

[58] “3 Powerful Estimation Techniques for Agile Teams,” 2014. [Online]. Available:

https://www.sitepoint.com/3-powerful-estimation-techniques-for-agile-teams/.

[59] LeSS - Large Scale Scrum, “Potentially Shippable Product Increment.” [Online]. Available:

https://less.works/less/framework/potentially-shippable-product-increment.html.

[60] D. Panchal, “What is Definition of Done (DoD)?” [Online]. Available:

https://www.scrumalliance.org/community/articles/2008/september/what-is-definition-of-

done-(dod).

[61] K. Horvath, “Compliance in Automotive Development,” Intland Software, 2015. [Online].

Available: https://intland.com/blog/automotive/compliance-in-automotive-development-iso-

26262-iec-61508-aspice-cmmi-and-more/.

[62] CMMI, “CMMI for Development, Version 1.3,” Carnegie Mellon Univ., no. November, p. 482,

2010.

[63] SEI-Software Engineering Institute, “Capability Maturity Model Integration - Community.”

[Online]. Available: http://www.sei.cmu.edu/cmmi/.

[64] CMMI Institute, “Background on CMMI,” 2016. [Online]. Available:

http://cmmiinstitute.com/about-cmmi-institute.

[65] U. Carnegie Mellon, “CMMI ® Executive Overview,” Defense, pp. 1–41, 2006.

99

[66] P. Cmm, P. A. Results, T. Standard, C. Appraisal, P. Improvement, P. Cmm, S. Method, D.

Document, T. Scampi, and T. P. Cmm, “Introduction to CMMI Appraisals.”

[67] M. Tarnowski, “SCAMPI — Standard CMMI Appraisal Method for Process Improvement,” 2014.

[Online]. Available: http://www.plays-in-business.com/scampi-standard-cmmi-appraisal-method-

for-process-improvement/.

[68] VDA QMC, “Automotive SPICE: Release Statement,” 2008. [Online]. Available:

http://www.automotivespice.com/about/.

[69] Kugler Maag CIE, “Automotive Spice 3.0 - Pocket Guide (Extended HIS Scope),” 2015.

[70] VDA QMC, “Automotive Spice - Process Reference Model & Process Assessment Model 3.0,”

2015.

[71] “Bosch Car Multimedia PT.” [Online]. Available:

http://www.bosch.pt/pt/pt/our_company_10/business_sectors_and_divisions_10/car_multi

media_7/car-multimedia.html.

[72] Software Freedom Conservancy, “Git -- distributed-is-the-new-centralized,” 2016. [Online].

Available: https://git-scm.com/.

[73] G2 Crowd, “Version Control Systems in 2016,” 2016. [Online]. Available:

https://www.g2crowd.com/categories/version-control-systems?order=survey_responses_count.

[74] Jenkins, “Jenkins - Build great things at any scale,” 2016. [Online]. Available:

https://jenkins.io/.

[75] I. GitHub, “GitHub - How people build software,” 2016. [Online]. Available: https://github.com/.

[76] Atlassian, “Bitbucket | The Git solution for professional teams,” 2016. [Online]. Available:

https://bitbucket.org/.

[77] R. Pichler, Agile Product Management with Scrum: Creating Products that Customers Love.

2010.

[78] Segue Technologies, “What Characteristics Make Good Agile Acceptance Criteria?,” 2015.

[Online]. Available: http://www.seguetech.com/what-characteristics-make-good-agile-

acceptance-criteria/.

[79] B. B. Guzina and R. Y. S. Pak, “MoSCoW Prioritisation,” Science (80-.)., vol. 33, no. 7, pp.

1005–1021, 1996.

[80] J. Shepley, “Done Agile, Done Right.” [Online]. Available: http://www.aspe-

it.com/blog/2013/sharepoint-done-agile-done-right/. [Accessed: 07-Dec-2015].

[81] L. Crispin, J. Gregory, A. P. Lead, O. Mentor, and I. K. Services, Agile Testing: A Practical Guide

100

for Testers and Agile Teams. 2009.

[82] M. McLaughlin, “What is Agile Methodology?” [Online]. Available:

https://www.versionone.com/agile-101/agile-methodologies/.

[83] SoftwaySolutions, “There Might Be Scrum-thing To This,” 2012. [Online]. Available:

https://www.softwaysolutions.com/blog/might-scrum-thing/.

[84] D. Rawsthorne and D. Shimp, “Scrum in a Nutshell - a Primer.” [Online]. Available:

http://agileatlas.org/articles/item/scrum-in-a-nutshell.

[85] Mountain Goat Software, “Release Burndown Chart.” [Online]. Available:

https://www.mountaingoatsoftware.com/agile/scrum/release-burndown.

[86] M. Tarnowski, “CMMI — Capability Maturity Model Integration,” 2014. [Online]. Available:

http://www.plays-in-business.com/cmmi-capability-maturity-model-integration/.

101

Appendix I. PRINCIPLES BEHIND THE AGILE MANIFESTO

“We follow these principles:

Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

Welcome changing requirements, even late in development. Agile processes harness change for the
customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to
the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they need, and
trust them to get the job done.

The most efficient and effective method of conveying information to and within a development team is
face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users should be
able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity--the art of maximizing the amount of work not done--is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its
behaviour accordingly.” [21]

103

Appendix II. CMMI: CONTINUOUS REPRESENTATION

Continuous representation uses a four level rating. Each level has assigned a generic goal, which is

achieved by performing the correspondent generic practices. The table below lists the required

practices for every capability level.

Level Generic Goal Generic Practices

0 – Incomplete No generic goal No generic practices

1 – Performed GG 1. Achieve Specific Goals GP 1.1. Perform Specific Practices

2 – Managed
GG 2. Institutionalize a Managed

Process

GP 2.1. Establish an Organizational Policy

GP 2.2. Plan the Process

GP 2.3. Provide Resources

GP 2.4. Assign Responsibility

GP 2.5. Train People

GP 2.6. Control Work Products

GP 2.7. Identify and Involve Relevant
Stakeholders

GP 2.8. Monitor and Control the Process

GP 2.9. Objectively Evaluate Adherence

GP 2.10. Review Status with Higher Level
Management

3 – Defined
GG 3. Institutionalize a Defined

Process

GP 3.1. Establish a Defined Process

GP 3.2. Collect Process Related Experiences

Table 6 - CMMI Capability levels

105

Appendix III. CMMI: STAGED REPRESENTATION

Staged representation is represented through five maturity levels, which have assigned a predefined set

of process areas. The entire group of process areas must be performed in order to achieve the

correspondent level. The table below lists all mature levels and its covered process areas.

Table 7 - CMMI Maturity levels

Level Focus Abbr Process Area

1 – Initial Process is informal and ad-hoc

2 – Managed
Basic Project
Management

CM

MA

PPQA

PMC

PP

REQM

SAM

Configuration Management

Measurement and Analysis

Process and Product Quality Assurance

Project Monitoring and Control

Project Planning

Requirements Management

Supplier Agreement Management

3 – Performed
Process

Standardization

DAR

IPM

OPD

OPF

OT

PI

RD

RSKM

TS

VAL

VER

Decision Analysis and Resolution

Integrated Project Management

Organizational Process Definition

Organizational Process Focus

Organizational Training

Product Integration

Requirements Development

Risk Management

Technical Solution

Validation

Verification

4 – Managed
Quantitatively

Managed

QPM

OPP

Quantitative Project Management

Organizational Process Performance

5 – Defined
Continuous

Process
Improvement

CAR

OPM

Causal Analysis and Resolution

Organizational Performance Management

107

Appendix IV. ASPICE: PROCESS ATTRIBUTES

In order to measure the extent of achievement of a process attribute within a capability level, ASPICE

defined a four point rating scale named NPLF: Not achieved, Partially achieved, Largely achieved, and

Fully achieved. Stages are based on repeatability and results of the implemented process attribute, as

presented by the following table.

The correspondence between the consistency of the process attribute and the stages of NPLF scale

considers two groups of indicators: process performance indicators, and process capability indicators.

The first category, performance indicators, specify the extent of fulfilment of the process outcomes,

including base practices and work products. In other hand, the process capability indicators, target the

fulfilment of process attribute achievements, namely the generic practices and generic resources. Each

process attribute has distinct target indicators, described in detail on the official ASPICE PAM [70].

Abbr. Designation Description Achievement

N Not Achieved
Lacks evidence of achievement of the defined attribute in the

assessed process.
≤ 15%

P
Partially

Achieved

Although some aspects may be unpredictable, there is some

evidence of a systematic approach and a relative achievement

of the process attribute.

16 to ≤ 50%

L
Largely

Achieved

Besides the repeatability, evidences show a significant

achievement of the defined attribute. However, performance

of the process may be affected by particular weaknesses.

51 to ≤ 85%

F

Fully

Achieved

There are clear evidences of a complete and systematic

approach, leading to a full achievement of the process

attribute. No significant weaknesses are revealed across the

defined organizational unit.

86 to ≤ 100%

Table 8 - ASPICE Rating scale

108

Finally, to achieve a specific capability level, all its process attributes must be at least Largely achieved,

while the process attributes of lower levels must be Fully achieved. For example, a process would only

reach capability level three if the process attributes of lower levels were all Fully achieved, and the

process attributes of level three at a minimum Largely achieved.

A complete match between capability levels, and required process attributes and its achievement is

provided on the table bellow.

Capability

Level
Process Attributes Achievement

Level 1 PA 1.1 Process Performance Largely/Fully Achieved

Level 2
PA 1.1 Process Performance
PA 2.1 Performance Management
PA 2.2 Work Product Management

Fully Achieved
Largely/Fully Achieved
Largely/Fully Achieved

Level 3

PA 1.1 Process Performance
PA 2.1 Performance Management
PA 2.2 Work Product Management
PA 3.1 Process Definition
PA 3.2 Process Deployment

Fully Achieved
Fully Achieved
Fully Achieved

Largely/Fully Achieved
Largely/Fully Achieved

Level 4

PA 1.1 Process Performance
PA 2.1 Performance Management
PA 2.2 Work Product Management
PA 3.1 Process Definition
PA 3.2 Process Deployment
PA 4.1 Process Measurement
PA 4.2 Process Control

Fully Achieved
Fully Achieved
Fully Achieved
Fully Achieved
Fully Achieved

Largely/Fully Achieved
Largely/Fully Achieved

Level 5

PA 1.1 Process Performance
PA 2.1 Performance Management
PA 2.2 Work Product Management
PA 3.1 Process Definition
PA 3.2 Process Deployment
PA 4.1 Process Measurement
PA 4.2 Process Control
PA 5.1 Process Innovation
PA 5.2 Continuous Optimization

Fully Achieved
Fully Achieved
Fully Achieved
Fully Achieved
Fully Achieved
Fully Achieved
Fully Achieved

Largely/Fully Achieved
Largely/Fully Achieved

Table 9 - ASPICE Capability levels

109

Appendix V. BOSCH INNOVCAR: PROJECT CALENDAR

Calendar Iteration Monday Tuesday Wednesday Thursday Friday

April

4-8
Sprint #A

Planning Daily Scrum Project Official
Kick Off Daily Scrum Daily Scrum

11-15 Daily Scrum Daily Scrum Bosch Core
Team Meeting

Daily Scrum Review
Retrospective

18-22
Sprint #B

Planning Daily Scrum
Bosch Core

Team Meeting
Daily Scrum Daily Scrum

25-29 Daily Scrum Daily Scrum Bosch Core
Team Meeting

Daily Scrum Review
Retrospective

May

2-6 Release #A Workshop: Defining the cockpit vision

9-13
Sprint #C

Planning Daily Scrum Coordination Report
Meeting

Daily Scrum Daily Scrum

16-20 Daily Scrum Daily Scrum Bosch Core
Team Meeting Daily Scrum Review

Retrospective

23-27
Sprint #D

Planning Daily Scrum Bosch Core
Team Meeting

Daily Scrum Daily Scrum

30-3 Daily Scrum Daily Scrum DSM Concept
Meeting Daily Scrum Review

Retrospective

 6-10 Release #B

June

13-17
Sprint #E

Planning Daily Scrum Bosch Core
Team Meeting

Daily Scrum Daily Scrum

14-20 Daily Scrum Daily Scrum Bosch Core
Team Meeting Daily Scrum Review

Retrospective

27-1
Transitioning

Sprint
Toolchain Integration

Brainstorming on framework capabilities and initial concepts

July

4-8
Sprint #1

Planning Daily Scrum Bosch Core
Team Meeting

Daily Scrum Daily Scrum

11-15 Daily Scrum Daily Scrum Bosch Core
Team Meeting Daily Scrum Review

Retrospective

18-22
Sprint #2

Planning Daily Scrum Coordination Report
Meeting

Daily Scrum Daily Scrum

25-29 Daily Scrum Daily Scrum Bosch Core
Team Meeting Daily Scrum Review

Retrospective

August
1-5 Release #1

29-2 Office Work

September

5-9
Sprint #3

Planning Daily Scrum Core Team
Bosch Meeting Daily Scrum Daily Scrum

12-16 Daily Scrum Daily Scrum Coordination Report
Meeting Daily Scrum Review

Retrospective

19-23
Sprint #4

Planning Daily Scrum Core Team
Bosch Meeting Daily Scrum Daily Scrum

26-30 Daily Scrum Daily Scrum Core Team
Bosch Meeting Daily Scrum Review

Retrospective

October

3-7 Release #2 Team Restructuration

10-14
Sprint #5

Planning Daily Scrum WP Interviews
Activity #1 Daily Scrum Daily Scrum

17-21 Daily Scrum Daily Scrum WP Interviews
Activity #1 Daily Scrum Review

Retrospective

24-28
Sprint #6

Planning Daily Scrum WP Interviews
Activity #1 Daily Scrum Daily Scrum

November
31-4 Daily Scrum Daily Scrum WP Interviews

Activity #1 Daily Scrum Review
Retrospective

7-11 Release #3 Concepts Demonstration to Bosch & WP Owners

Table 10 - Bosch innovcar process plan

111

Appendix VI. CMMI: MATCHING AND APPRAISAL

Goal Specific Practices Rate Accomplishment

Level 2 Generic Goals

Institutionalize a Managed
Process

Process implementation
complies with policy,

produces expected outputs,
and is monitored according

to its purpose

Establish an organizational
policy

F Process elements are
clearly defined, as practices,
roles, and standards.

 Resources and tools are
available, or under the
acquisition process.

 Team members are trained
according to their roles, and are
given authority to perform their
assigned responsibilities.

 Stakeholders constitute a
fundamental part of the
process, as they actively
participate on scrum events.

 Processes are continuously
monitored and improved
through regular inspections,
daily scrums, retrospectives,
and coordination meetings.

Plan the process F

Provide resources F

Assign responsibility F

Train people F

Control work products L

Identify and involve
relevant stakeholders

F

Monitor and control the
process

F

Objectively Evaluate
adherence

L

Review status with higher
level management

P

CM – Configuration Management

Establish Baselines
Configuration of the work
products that compose

baselines

Identify configuration
items

F Required documentation is
previously specified on project
charter.

 Configuration tools for
requirements elicitation, version
control, and code integration.

 Numbered user stories
continuously define baselines for
development.

Establish a configuration
management system

L

Create or release
baselines

F

112

Goal Specific Practices Rate Accomplishment

Track and Control Changes
Practices to support

eventual modifications to
established baselines

Track change requests N
 Eventual changes are

discussed, as its impact on the
project.

 Specific team members are
responsible for changing and
updating configuration systems.

Control changes to
configuration systems

F

Establish Integrity
Ensure the consistency of
the established baselines
along the modifications

Establish configuration
management records

L
 Configuration items are

tracked along the sprint, and
inspected on daily scrums. Perform configuration

audits
F

PMC – Project Monitoring and Control

Monitor Project Against Plan
Tracking of actual

performance and progress
and contrast with
established plan

Monitor project planning
parameters

F Scrum board enable the
tracking of ongoing work and
status of individual tasks.

 Burndown charts provide an
indication of the product left to
complete and the needed effort
to achieve it.

 Stakeholders are included
on review meetings.

 Risks are evaluated and its
solution is planned through
coordination meetings.

 Besides the daily inspection
of development, the overall
progress is tracked for three-
month milestones.

Monitor commitments F

Monitor project risks F

Monitor data management L

Monitor stakeholder
involvement

F

Conduct progress reviews F

Conduct milestone
reviews

F

Manage Corrective Actions to
Closure

Action is managed and
taken when performance or

results deviate from the
plan

Analyse issues F Daily scrums enable to
identify impediments, which
may be instantly addressed.

 Reviews and retrospectives
promote discussion, and help
finding possible improvements.

Take corrective action F

Manage corrective action P

113

Goal Specific Practices Rate Accomplishment

REQM – Requirements Management

Manage Requirements
Develop and sustain a

measurement capability to
support management

information needs

Obtain understanding of
requirements

F
 Requirements are managed

and detailed through the items
of Product Backlog.

 Team commitment is
achieved during the planning
meetings.

 Backlog is open to change
and its requirements, which are
immediately updated on the next
planning.

 Requirements levels as
Epics, Stories, and Concepts
enable their organization and
traceability.

 Reviews provide an
opportunity to inspect the work,
and compare with requirements.

Obtain commitment to
requirements

F

Manage requirements
change

F

Maintain bidirectional
traceability of
requirements

L

Identify inconsistencies
between project work and

requirements

F

SAM – Supplier Agreement Management

Establish Supplier
Agreements

Contracts are settled and
maintained

Determine acquisition type L Acquisitions are
characterized according to type
and value.

 Considering metrics as
availability and purchase period,
a group of preferred suppliers is
established.

Select suppliers P

Establish supplier
agreement

N

Satisfy Supplier Agreements
Contracts are fulfilled by
both project and supplier

Execute the supplier
agreement

N Compatibility of the
acquired products is tested
before its inclusion on the
project.

 Formation, support and
additional material is provided to
deploy the products.

Accept the acquired
product

L

Transition products F

114

Goal Specific Practices Rate Accomplishment

MA – Management and Analysis

Align Measurement and
Analysis Activities

Measurement practices and
variables are allied with
information needs and

objectives

Establish measurement
objectives

P Management defines the
variables to measure as velocity,
features, or story points.

 Outputs include statistic
numbers and burndown charts.

 Procedures are defined
according to measurement
objectives and supported by
management tools.

Specify measures F

Specify data collection and
storage procedures

F

Specify analysis and
procedures

F

Provide Measurement
Results

Results shall be presented,
as a help to monitor
performance, inform

management and enhance
technical decisions

Collect measurement data F Performance data gathered
along the sprint on daily scrums.

 Measured data is always
available for the team, and
exposed to stakeholders on
review meetings.

 Results are analysed and
discussed on retrospective
meetings.

Analyse measurement
data

L

Store data and results F

Communicate results F

PPQA– Process and Product Quality Assurance

Objectively Evaluate
Processes and Work

Products
Compliance of project

elements to standards and
procedures is evaluated

Objectively evaluate
processes

L

 Process is continuously
enhanced by the scrum master,
and improved through
management and team
retrospectives.

 Integrity of developed
product is assured by
automated tools.

 Acceptance tests determine
the conformity with established
requirements.

Objectively evaluate work
products and services

F

Provide Objective Insight
Noncompliance issues are

objectively tracked,
communicated, and

resolved

Communicate and ensure
resolution for

noncompliance issues

F
 Product is inspected by

management and stakeholders
on review meetings.

 Identified issues are
discussed, and included on the
next planning.

Establish records P

115

Goal Specific Practices Rate Accomplishment

PP– Project Planning

Establish Estimates
Maintenance of planning
parameters according to

project objectives

Estimate project scope F Division and planning of
project into modular work
packages, which are planned
and properly described.

 Gates and milestones
defined for each work package.

 Scrum lifecycle defines
iterations and stages of
development.

 Effort and cost are
estimated for iteration.

Establish estimates of
work product and task

attributes

L

Define project lifecycle F

Determine estimates of
effort and cost

F

Develop Project Plan
A formal, approved

document used to manage
and control the execution of

the project and the
fulfilment of its
requirements

Establish the budget and
schedule

F Project charter defines the
budget, deliverables, and overall
scope of the project.

 Needs and risks are
continuously tracked along the
sprints, and reported to
coordination when confirmed.

 Stakeholders are included
and perform an important role
on review ceremonies.

 Every release comprises a
development plan. Management
issues as risks are planned
separately, on coordination
meetings.

Identify project risks F

Plan for data management F

Plan for project resources F

Plan for needed
knowledge and skills

L

Plan for stakeholder
involvement

F

Establish the project plan F

Obtain Commitment to Plan
Plan effectiveness demands

commitment by those
responsible for its

implementation and support

Review plans that affect
the project

F Sprint planning meeting
establishes a short-term plan for
the current iteration.

 Daily scrum ensures
continuous inspection and
compliance with the committed
goals.

Reconcile work and
resource levels

F

Obtain plan commitment F

Table 11 - CMMI Process matching

117

Appendix VII. ASPICE: MATCHING AND APPRAISAL

Process Base Practices Rate Accomplishment

Engineering Process Group

SYS.2
System Requirements Analysis

Transform the requirements
into guidelines to design the

system

Specify system
requirements

F

 Requirements are iteratively
gathered, and detailed on User
Story format.

 User Stories are prioritized
according to value to customer.

 Discussion during grooming
and planning meetings identifies
dependencies and technical
impact.

 Verification is achieved
through the definition of done
and acceptance criteria.

 Requirements are agreed
on planning meetings, and its
consistency is evaluated on the
following reviews.

Structure system
requirements

F

Analyse system
requirements F

Analyse the impact on
the operating
environment

L

Develop verification
criteria

F

Establish bidirectional
traceability

L

Ensure consistency F

Communicate agreed
system requirements

F

SYS.3
System Architectural Design

Establish a system
architectural design, allocate

requirements to system
elements, and evaluate
compliance with defined

criteria.

Develop system
architectural design

F
 Defined general architecture

comprising the main
components and its interaction.

 Systems and their
interactions are discussed within
multidisciplinary teams.

 Research on equivalent
systems and different
approaches exposes alternative
architectures.

Allocate system
requirements

L

Define interfaces of
system elements

F

Describe dynamic
behaviour

L

Evaluate alternative
system architectures

L

118

Process Base Practices Rate Accomplishment

SYS.3
System Architectural Design

Establish bidirectional
traceability

P Architecture requirements
and evaluation criteria are based
on costumer standards.

 Architecture is defined with
approval of customer, ensuring
traceability, consistency, and
openness on the architectural
strategy.

Ensure consistency L

Communicate agreed
system architectural

design

F

SYS.4
System Integration and Test

Ensures the test and
integration of system items,

as the consistency of the
achieved results.

Develop system
integration strategy

F
 Integration strategy defined

according with the committed
work, and discussed on planning
meetings.

 Version control systems
organize new integrations for
every iteration.

 Automated tools evaluate
the integrity of the system while
new features are integrated.

 Compliance with the
architectural specification is part
of criteria for integration,
ensuring its consistency.

 Verification is ensured on
functional levels.

 Integration results are
reported and discussed along
the sprint, and communicated
on daily scrums.

Include regression test
strategy

N

Develop specification for
system integration test

P

Integrate system items P

Select test cases N

Perform system
integration test

P

Establish bidirectional
traceability

N

Ensure consistency L

Summarize and
communicate results

F

SYS.5
System Qualification Test

Validates the integrated
system and evaluates its

compliance with the
requirements.

Develop system
qualification test strategy

L
 Test strategy comprises

both functional and non-
functional test cases.

 Acceptance tests are
defined with customer, and
committed with development
team.

Develop specification for
system qualification test

L

Select test cases P

119

Process Base Practices Rate Accomplishment

Test integrated system L
 Test cases are designed for

each user story, and performed
with integrated system.

 Direct relation between user
stories and acceptance tests
ensures traceability and
consistency with customer
requirements.

 Results are communicated
along the sprint, and attested on
review demonstrations.

Establish bidirectional
traceability

F

Ensure consistency F

Summarize and
communicate results

F

Management Process Group

MAN.3
Project Management

Identify, establish, and
control the activities and
resources necessary for a

project to produce a product.

Define the scope of work F

 Scope of work is macro
defined through its division in
work packages.

 Project life cycle is divided
in gates and milestones.

 Since goals are established
iteratively, their feasibility is
continuously evaluated.

 Project activities are weekly
monitored, while development is
daily accompanied.

 Work package gates are
estimated, and monitored
continuously.

 Formations and learning
sessions are taken according to
development needs.

 Regular sessions intend to
discuss interfaces between
teams.

 Progress is continuously
appraised, and reported to core
team involved.

Define project life cycle F

Evaluate feasibility of the
project

P

Define, monitor and
adjust project activities

L

Determine, monitor and
adjust project estimates

and resources
L

Ensure required skills,
knowledge, and

experience
L

Identify, monitor and
adjust project interfaces

and agreed
commitments

F

Define, monitor and
adjust project schedule

N

Ensure consistency L

Review and report
progress of the project

F

120

Process Base Practices Rate Accomplishment

Supporting Process Group

SUP.1
Quality Assurance

Ensure that work products
and processes comply with
predefined previsions, and

non-compliances are resolved
and further prevented.

Develop a project quality
assurance strategy

N
 Quality strategy agreed with

customer and defined according
to innovative nature of the
project.

 Quality reviews on work
products periodically conducted
under reviews and release
presentations.

 Process is continuously
appraised and improved through
retrospective meetings.

 Non-conformances are
communicated on daily scrums,
and reported to coordination
when needed.

Assure quality of work
products

L

Assure quality of process
activities

F

Summarize and
communicate quality
assurance results.

P

Ensure resolution of non-
conformances

F

Implement an escalation
mechanism

L

SUP.8
Configuration Management

Establish, check availability,
and maintain the integrity of

all work products.

Develop a configuration
management strategy

F

 Configuration strategy
addresses team roles and
responsibilities, tools and
repositories, and integration
procedures.

 Branch management
strategy developed according to
sprints and related user stories.

 Eventual modifications and
releases are previously
discussed within the team.

 Team charters, internal
code naming conventions,
integration procedures, and
other work products establish
baselines for development.

 Configured items are daily
tracked, and kept at local
repositories.

Identify configuration
items

L

Establish a configuration
management system

N

Establish branch
management strategy

F

Control modifications
and releases

F

Establish baselines P

Report configuration
status

N

Verify the information
about configured items

F

Manage the storage of
configuration items and

baselines

F

121

Process Base Practices Rate Accomplishment

SUP.9
Problem Resolution

Management

Certify that problems are
identified, analysed, managed
and controlled to resolution.

Develop a problem
resolution strategy

F

 Problems reported during
daily scrums are immediately
addressed by the scrum master.

 When needed, problems are
tracked and reported to core
team involving customers and
project partners.

 Status and impact of the
problem are addressed on an
Open Points List.

 If the problem can be
solved within the development
team, its resolution is
immediately initiated.

 Problems are continuously
tracked through regular core
team meetings.

Identify and record the
problem

N

Record the status of
problems

P

Determine cause and
impact of the problem

P

Authorize urgent
resolution action

F

Raise alert notifications F

Initiate problem
resolution

L

Track problems to
closure

P

Analyse problem trends N

SUP.10
Change Request Management

Certify that change requests
are tracked and
implemented.

Change request
management strategy

N
 Change requests are

discussed on core team
meetings with customers and
project partners, and afterwards
discussed within the
development team.

 Before implementing any
change request, risks, benefits,
and impact on project are duly
evaluated.

 Change requests are
followed by an experimental
period, in which the new
approach is tested.

 Changes are tracked until
implementation, and
correspondent feedback is
provided to customer and other
interested parts.

Identify and record the
change requests

P

Record the status of
change requests

N

Analyse and assess
change requests

F

Approve and review
change requests

L

Track change requests
to closure

F

Establish bidirectional
traceability

F

122

Process Base Practices Rate Accomplishment

Supporting Process Group

SWE.1
Software Requirements

Analysis

Clarify the requirements of
software related part of the

system.

Specify software
requirements

F
 Requirements are refined

with customer, and expressed
by the form of user stories.

 User stories are grouped
and prioritized according to
customer needs.

 User stories are clarified
and discussed on grooming
sessions, addressing the
prospective impact on project.

 Acceptance criteria provide
detail on functional, non-
functional, and performance
requirements for each feature.

 Requirements are estimated
and committed on planning
meetings.

 Backlog ensures
traceability, while review
meetings provide an opportunity
to inspect consistency and
communicate results.

Structure software
requirements

F

Analyse software
requirements

F

Analyse the impact on
the operating
environment

F

Develop verification
criteria

F

Establish bidirectional
traceability

F

Ensure consistency F

Communicate agreed
software requirements

F

SWE.2
Software Architectural Design

Establish an architectural
design and identify how

software requirements shall
be allocated.

Develop software
architectural design

P

 Overall architecture is
defined according to system
work package requirements.

 Software requirements are
gathered iteratively and resultant
interfaces are discussed along
the sprints.

 Despite not being planned,
dynamic behaviour continuously
evaluated.

Allocate software
requirements

L

Define interfaces of
software elements

F

Describe dynamic
behaviour

P

Define resource
consumption objectives

N

Establish bidirectional
traceability

P

123

Process Base Practices Rate Accomplishment

SWE.2
Software Architectural Design

Ensure consistency F Architectural weaknesses
and inconsistencies are tracked
along the sprints, and reported
to the team on daily scrums.

Communicate agreed
architectural design

F

SWE.3
Software Detailed Design and

Unit Construction

Produce and provide a
detailed design for the

software units.

Develop software
detailed design

P Software functional and
non-functional behaviour
specified through acceptance
criteria and discussed with
design team.

 Software design is implicit
on defined tasks for each
feature.

 Interfaces are discussed
and evaluated while planning the
development.

 Relation between criteria,
tasks, and user stories
establishes traceability between
requirements and developed
units.

 Consistency is continuously
inspected and reported through
daily scrums.

Define interfaces of
software units

P

Describe dynamic
behaviour

F

Evaluate software
detailed design

N

Establish bidirectional
traceability

L

Ensure consistency F

Communicate agreed
software detailed design

F

Develop software units L

SWE.4
Software Unit Verification

Verify software units to
provide evidence for

compliance between software
units and correspondent
requirements and design.

Develop software unit
verification strategy

P
 Verification strategy

includes acceptance tests and
code reviews.

 User stories constitute
software units, which are tested
separately.

 User stories are tested
continuously along the sprint.

 Dependencies between user
stories and correspondent
acceptance tests ensure
traceability.

 Relation between user
stories and designed tests
ensures consistency.

Develop criteria for unit
verification

L

Perform verification of
software units

L

Test software units N

Establish bidirectional
traceability

P

Ensure consistency L

124

Process Base Practices Rate Accomplishment

Summarize and

communicate results
F

 Team discusses results on
review meetings.

SWE.5
Software Integration and

Integration Test

Integrate software units into
the global system, ensuring
consistency and compliance

with both software and
architectural designs.

Develop software
integration strategy

F

 Integration steps discussed
on planning meetings, and
organized according to user
story prioritization.

 Automated tools and scripts
as Jenkins support the
continuous integration practice.

 Results and logs resultant
from integration episodes are
provided by automated tools.

 Integration results are
placed on local repositories, and
communicated within the team
during daily meetings.

Develop software
integration test strategy
including regression test

N

Specification for software
integration test

N

Integrate software units
and software items

F

Select test cases N

Perform software
integration test

P

Establish bidirectional
traceability

N

Ensure consistency N

Summarize and
communicate results

F

SWE.6
Software Qualification Test

Ensure the integrated
software is tested and

compliant with established
requirements.

Develop software
qualification test strategy
including regression test

P
 Testing strategies are

discussed iteratively, considering
the committed work for the
ongoing sprint.

 Qualification criteria is
specified for each user story.

 Software is tested
continuously by the pace of
integration.

 Consistency and traceability
of requirements are ensured
through relation between user
stories and acceptance criteria.

 Results are analysed on
review meetings, and shared
within the team.

Specification for software
qualification test

L

Select test cases N

Test integrated software L

Ensure consistency and
bidirectional traceability

P

Summarize and
communicate results

F

125

Process Base Practices Rate Accomplishment

Supporting Process Group

ACQ.4
Supplier Monitoring

Track and assess the
performance of the supplier

against agreed requirements.

Agree and maintain joint
processes

P

 Supplier agreements
include support, documentation,
and training if needed.

 Contacts are mainly
performed through intermediary
companies.

 Supplier follows the
development until the acquired
product becomes established.

Exchange all agreed
information

F

Review technical
development with the

supplier
L

Review progress of the
supplier

N

Act to correct deviations F

Table 12 - ASPICE Process matching

