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Drying shrinkage performance is a very important factor for reinforced concrete composites because a high
shrinkage performance is associated with a high cracking tendency, which leads to future durability problems.
Geopolymeric mortars show much higher drying shrinkage than Portland cement-based composites because they use
a low amount of structural water and thus have a higher pore content than ordinary Portland cement composites.
Therefore, the use of fibres is especially interesting to counteract the drying shrinkage tendency of geopolymeric
mortars. This paper provides results on the restrained and unrestrained shrinkage performance of fly ash-based
geopolymeric mortars reinforced with short polymer hybrid fibres (SPHF). The results show that SPHF reduces the
shrinkage cracking tendency. A content of SPHF as low as 0·08% was able to reduce the average crack width by four
times when compared with non-reinforced mortars. Increasing the content of SPHF from 0·08 to 0·8% reduces the
time of appearance of the first crack by 25 h and reduces the average crack width by two times.

1. Introduction
Geopolymers are alternative materials to ordinary Portland
cement (OPC), which are produced through the reaction of an
aluminosilicate powder (precursor) with an alkaline activator,
usually composed of hydroxide, silicate, carbonate or sulfate,
leading to the formation of amorphous aluminosilicate gel and
secondary nano crystalline zeolite-like structures (Pacheco-
Torgal, 2014; Provis, 2014; Van Deventer et al., 2010, 2012).
These materials have a particular ability for the reuse of
several types of wastes (Bernal et al., 2016; Chindaprasirt and
Cao, 2014; Payá et al., 2014). This is an important feature,
especially in the European context of a circular economy and
zero waste target (COM 398 (EC, 2014)) that may lead to an
overall savings potential of E630 billion per year for European
industry and can also create more than 180 000 direct jobs in
the EU by 2030. Some wastes like fly ash deserve special atten-
tion because they are generated in high amounts and have a
very low reuse rate. The USA has a reuse rate for fly ash of
around 50%, meaning that 30 Mt of fly ash are not reused
annually (ACAA, 2016). Other recent works confirm the
importance of further studies regarding the development of
geopolymers based on fly ash percursors (Zhuang et al., 2016).
Shrinkage performance is an important factor for reinforced
concrete composites because a high shrinkage performance is
associated with a high cracking tendency that leads to future
durability problems. Unlike Portland cement hydration, only a
small amount of water known as ‘interstitial or structural
water’ is incorporated into the geopolymer gel production;
thus more water is available for evaporation, leading to a

higher porosity and causing a large shrinkage deformation
(Ranjbar et al., 2016). Several authors (Collins and Sanjayan,
2000b) have confirmed that geopolymers can have much
higher shrinkage than Portland cement-based composites,
which is due to a much higher mesopore content (82 against
36%). Also, more recent investigations have confirmed this
pore-related explanation (Mobili et al., 2016). However, geo-
polymer shrinkage is also dependent on the curing conditions
because curing with heat is associated with a lower shrinkage
(Wallah and Hardjito, 2014). Recent investigations have shown
that slag–fly ash geopolymers with a higher content of slag
are associated with higher drying shrinkage (Gao et al., 2016;
Lee et al., 2014). This was also confirmed by Ye and
Radlinska (2016) who suggest that shrinkage may be attributed
to the structural incorporation of alkali cations in calcium–

aluminate–silicate–hydrates (C–A–S–H), which reduces the
stacking regularity of C–A–S–H layers and makes it easier for
the C–A–S–H to collapse and become redistributed upon drying.
Usually shrinkage performance is assessed through unre-
strained shrinkage testing. Assessment of shrinkage using the
circular or ellipse restrained ring test is especially interesting
for materials that will be used under restrained conditions like
repair mortars (Beushausen and Chilwesa, 2013; Khan, 2013;
Kristiawan, 2012; Pacheco-Torgal et al., 2015). Collins and
Sanjayan (2000a) compared geopolymers and OPC concrete
performance with the restrained ring test, reporting that the
former cracked after only 1 week of curing, while the latter
cracked only after 5 months. Ma and Ye (2015) recently pub-
lished results comparing the unrestrained and restrained
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shrinkage performance of fly ash geopolymer pastes, stating
that no cracks were detected. Therefore, the use of fibres is
especially interesting to counteract the shrinkage tendency of
geopolymer mortars (Ranjbar et al., 2016) also because previous
studies show that a strong bond exists between geopolymers and
polymer fibres (Bhutta et al., 2017). This paper provides results
on the restrained and unrestrained shrinkage performance of fly
ash geopolymer mortars reinforced with SPHF.

2. Experimental programme

2.1 Materials
The raw materials used for the preparation of the geopolymeric
mortars were fly ash, calcium hydroxide, sand, sodium silicate,
sodium hydroxide (NaOH) and fibres. Sodium hydroxide was
obtained from Ercros, SA, Spain, and used to prepare a
12 M sodium hydroxide solution. Distilled water was used to
dissolve the sodium hydroxide flakes to avoid the effect of
unknown contaminants in the mixing water. The sodium
hydroxide mix was made 1 d prior to use in order to have a
homogeneous solution at the time of mortar preparation. The
sodium silicate liquid was supplied by Marcande, Portugal.
The chemical composition of the sodium silicate was 13·5%
sodium oxide (Na2O), 58·7% silicon dioxide (SiO2) and 45·2%
water (H2O). The fly ash was obtained from the Pego thermal
power plant in Portugal and classified as class F according to
the ASTM C618 (ASTM, 2015) standard. The chemical com-
position of the fly ash is presented in Table 1. The loss on
ignition is 2.9%. The particle size distribution of the fly ash
varied from 2 to 59 μm (Figure 1). Fly ash was partially
replaced by calcium hydroxide from Lusical H100 to enhance
strength (Van Deventer et al., 2012). The sand was provided by
Mibal, Minas de Barqueiros, SA, Portugal. Before the use of
the sand a sieving operation was carried out to remove dust
and coarser particles. Two sieves with a mesh size of 4·75 and
0·6 mm were used. The size distribution of the aggregates is
presented in Figure 2. Two types of fibres (iPlast and iShots)
were used to reinforce the geopolymer mortars. The use of
those fibres relates to the fact that previous investigations show
that they are more effective than monofibres in relation to
crack bridging (Pakravan et al., 2017). The fibres used in this
study were provided by iSTRiCE (ISTRICE, 2016), Italy
(Figures 3 and 4). It should be noted that, as the initial length
of the fibres was too long for incorporation into the mortar,
it was decided to cut the fibres to a dimension <8 mm long.

The detailed characteristics of the hybrid fibres are shown in
Table 2.

2.2 Design and production of mortars
Four mixtures were studied in relation to water absorption,
modulus of elasticity and shrinkage. These included mixtures
composed of fly ash (90% FA) and 10% calcium hydroxide
activated with a molar activator (12 M) with an activator/
binder ratio of 1·0 and a sodium silicate to sodium hydroxide
mass ratio of 2·5. The binder was the sum of fly ash and
calcium hydroxide. The composition of the mortars is shown
in Table 3. Four fibre contents (0, 0·08, 0·2 or 0·8%) by weight
of binder were used. The mortars incorporate a combination
of two fibres that were used in equal mass quantity (50%
iPlast–50% iShots). Sodium hydroxide was mixed with sodium
silicate solution to dissolve the silica and alumina of the fly
ash particles, resulting in a homogenised gel lasting 1 min;
next, all the solid material was mixed by using a standard
mixture following speed I (65 r/min) for 3 min; this was fol-
lowed by the addition of the activator into the mixture, which
was then run for 1 min at speed I (65 r/min) and another
1 min at speed II (90 r/min). The mixture for the unrestrained
shrinkage test was transferred to metallic moulds that were
cured under laboratory conditions with a temperature of about
25°C and 65% relative humidity. After ≈24 h the specimens
were demoulded and kept sealed with plastic wrap and then
left under the same curing conditions until the date of testing.
For the testing of modulus of elasticity, the cylindrical

Table 1. The major oxides in fly ash

Material

Oxides: wt%

Silicon
dioxide

Aluminium
oxide

Ferric
oxide

Calcium
oxide

Magnesium
oxide

Sodium
oxide

Potassium
oxide

Titanium
dioxide

Fly ash 60·81 22·68 7·64 1·01 2·24 1·45 2·7 1·46

50 µm

Figure 1. Scanning electron microscopy (SEM) image of fly ash
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specimens (with diameter of 88 mm and length of 170 mm)
were kept sealed by using plastic wrap and cured under labora-
tory conditions with heat for a testing time of 28 d. In the case
of restrained shrinkage, the mixture was transferred to a
special elliptical mould. Then, it was placed on the standard
vibration table for 2 min. The specimens were kept sealed by
using plastic wrap and they were cured under laboratory con-
ditions with temperatures of 20 ± 3°C and 70%±10% relative
humidity. After 24 h the specimens’ outer ellipse ring was
removed and then left under the same curing conditions, and
the test was then immediately started by monitoring the
appearance of cracking on the tested specimens for 14 d
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Figure 2. Particle size characteristics of the sand material

Figure 3. Image of the hybrid fibres: iPlast (in grey colour) and
iShots (in orange/dark-grey colour). A full-colour version of this
figure can be found on the ICE Virtual Library (www.
icevirtuallibrary.com)

1 mm

1 mm

Figure 4. Low-resolution SEM image of hybrid fibre in the mortar
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(through visual observation). The specimen was checked regu-
larly during this period in order to identify the crack formation
on the surface of the specimen.

2.3 Test procedures

2.3.1 Modulus of elasticity
The determination of the modulus of elasticity was conducted
in a compression test according to the European standard EN
12390-13 (CEN, 2014). Twenty four hours prior to testing, cylin-
ders were capped using a stabiliser compound which provided

a smooth surface for the platen to make contact and reduced
the variability between compression specimens. Three cylinders
from each mixture were tested under a 100 kN capacity testing
frame (Figure 5). A computer software controlled the load rate
and collected data for the applied force. Three linear variable
differential transformers (LVDTs) were attached to a compress-
ometer and wired to the data acquisition system and computer
software as standard strain gauges. Two rings were placed at a
heights of one-third and two-thirds of the global height of the
cylinder, of which the axis distances between the rings were
considered fixed at 60 mm through all the tests. Three LVDTs

Table 2. Properties of the fibres (ISTRICE, 2016)

Fibre
name Composition Geometric shape Colour

Initial
length:
mm

Diameter:
mm

Specific
weight:
kg/dm3

Ultimate
strength:

MPa

Elastic
modulus:

GPa

iPlast Polymer Monofilament/macro Grey 29 0·55 1·0 520 4·1
iShots Polymer Monofilament/macro Orange 49 0·79 1·0 520 4·1

Table 3. Composition of the alkali activated cement based binder (AACB) mortars

Sample name

Materials: kg/m3

FA CH SA SS SH HF

90FA_10CH_12M_2·5S/H_1·0A/B_0·0HF 415·8 46·2 1385·9 329·5 132·4 0
90FA_10CH_12M_2·5S/H_1·0A/B_0·08HF 415·5 46·1 1385·1 329·3 132·3 0·6
90FA_10CH_12M_2·5S/H_1·0A/B_0·2HF 415·1 46·1 1383·9 329·1 132·2 1·4
90FA_10CH_12M_2·5S/H_1·0A/B_0·8HF 413·4 45·9 1378·1 327·7 131·7 5·7

FA, fly ash; CH, calcium hydroxide; SA, sand; SS, sodium silicate; SH, sodium hydroxide; HF, hybrid fibres

Monitoring
results

Test frame

Data
aquisition
system

Cylinder
placement

Three
LVDT
sensors

Load cell

Configuration
system

60 mm

Figure 5. Modulus of elasticity test frame
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were attached on the top ring, being free to rotate on the hori-
zontal surface of the bottom ring. A loading cycle of 40% of
the ultimate stress was used, to obtain the equation of the
straight line in the elastic zone. Data for load and displacement
were acquired automatically by the computer software, and the
modulus of elasticity of each specimen was calculated as the
average of the three slopes of the stress–strain curves.

2.3.2 Unrestrained drying shrinkage
For unrestrained drying shrinkage, mortar prisms of dimen-
sions 40 mm� 40 mm� 160 mm were used. Demoulding was
conducted after 24 h and then the length change testing
procedure started from this age as per ASTM C490 (ASTM,
2000) standard up to 28 d. The specimens were cured under
control room conditions at 20± 3°C and 70%±10% relative
humidity. In order to calculate the length change of the speci-
mens, each type of specimen was placed into an apparatus
model Mahr-MarCator 1075R. A dimensionless parameter L
was introduced to evaluate the effect of controlled curing on
the mass loss percentage, as follows

1: L ¼ Δw
w0

Placement Dimension: mm

Outer ellipse ring long axis 600

Outer ellipse ring short axis 240

Inner ellipse ring long axis 560

Inner ellipse ring short axis 200

Height 80

Figure 6. Ellipse ring test set-up (with dimensions of the ellipse mould)

Table 4. Modulus of elasticity of the AACB mortars

Formulation
Modulus of

elasticity: GPa

90FA_10CH_12M_2·5S/H_1·0A/B_0·0HF 4·6
90FA_10CH_12M_2·5S/H_1·0A/B_0·08HF 4·7
90FA_10CH_12M_2·5S/H_1·0A/B_0·2HF 5·1
90FA_10CH_12M_2·5S/H_1·0A/B_0·8HF 6·2

4000

3500

3000

Sh
rin

ka
ge

: μ
ε 2500

2000

1500

1000

500

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Time: d
15 16 17 18 19 20 21 22 23 24 25 26 27 28

90FA_10CH_12M_2·5S/H_1·0A/B_0·0HF

90FA_10CH_12M_2·5S/H_1·0A/B_0·08HF

90FA_10CH_12M_2·5S/H_1·0A/B_0·2HF

90FA_10CH_12M_2·5S/H_1·0A/B_0·8HF

Figure 7. Unrestrained shrinkage behaviour of mortars with different hybrid fibre content
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where the Δw is the increment of weight loss, and w0 is the
initial weight of the specimen.

2.3.3 Restrained shrinkage
Restrained shrinkage tests were conducted using an ellipse
ring test through visual observation and monitoring for the
development of cracking. The dimensions of the ellipse ring

(Figure 6) test were the same as those used recently by Ma and
Ye (2015).

3. Results and discussion

3.1 Modulus of elasticity
The results of the modulus of elasticity are shown in Table 4.
The increase in the SHPF from 0·08 to 0·8% leads to an
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Figure 8. Unrestrained shrinkage plotted against weight loss for mortars with different hybrid fibre content
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Figure 9. Relationship between ultimate value of unrestrained shrinkage and the modulus of elasticity for mortars with different hybrid
fibre content. A full-colour version of this figure can be found on the ICE Virtual Library (www.icevirtuallibrary.com)
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increase of the modulus of elasticity of around 30% from 4·7
to 6·2 GPa. This SHPF has a modulus of elasticity that is
around 10% lower than the non-reinforced geopolymeric
mortar, so it would be expected that an increase in the fibre
content could be associated with a slight reduction on the
reinforced geopolymeric mortars. This may be associated with
the fact that under compression the presence of SHPF may
have a delayed cracking effect.

3.2 Unrestrained drying shrinkage
Figure 7 shows the results of the unrestrained shrinkage. The
addition of SHPF is associated with an increase in unre-
strained shrinkage from 2500 με for the non-reinforced mortar
mixture up to 3500 με for the mixture with the high SHPF
content. These results can be explained not only by the

patterns of water evaporation (Figure 8) but also by the per-
formance of the modulus of elasticity for the different mixtures
(Figure 9). This is in agreement with the results reported by
others (Mobili et al., 2016). Also Ranjbar et al. (2016) recently
reported that the use of a content of 5% of polypropylene
fibres caused increased unrestrained shrinkage due to an
increase in pore volume.

3.3 Restrained shrinkage

3.3.1 Crack initiation and propagation
Cracks were carefully monitored across the outer circumferen-
tial surface, alongside the top surface of the thin elliptical ring
specimen. Figure 10 shows the crack positions in the thin
elliptical ring specimen and the wall of the plain mortar with
formulation of 90FA_10CH_12M_2·5S/H_1·0A/B_0·0HF.

(a)

(b)

(c)

(d)

t = 24 h

t = 336 h

Figure 10. Crack positions in thin elliptical ring for mixture 90FA_10CH_12M_2·5S/H_1·0A/B_0·0HF: (a) top view of the crack position
at the initial time of crack appearance; (b) lateral view of the initial crack position; (c) top view of the crack positions at the final time of
test; (d) lateral view of the final crack positions composed of three different crack placements
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As observed, the crack originally initiated at I along the height
of the wall at a time of 24 h. Then, the cracks of II and III
appeared, but crack III ceased to propagate due to reduced
crack-driving energy. However, as a result of increased circum-
ferential tensile stress redistribution in other regions of the
mortar, cracks were propagated at I and II. However, as a
result of increased stress in II, it developed in the radial direc-
tion of the ring; possibly this was due to the presence of a
moisture gradient (Weiss and Shah, 2002). The suggested crack
may initiate at the outer surface and propagate towards the
inner one. The influence of SHPF on the crack pattern is
shown in Figures 11–13. Figures 11 and 12 indicate that the
initial crack was observed at t=30 h and t=40 h at the region
labelled as ‘I’, for the mortar with formulation of
90FA_10CH_12M_2·5S/H_1·0A/B_0·08HF and 90FA_10CH_
12M_2·5S/H_1·0A/B_0·2HF, respectively. In both cases,
the crack originally initiated at I along the height axis due to

the stress concentration. However, such a crack did extend
through the height of the wall of the mortar during the 14 d of
monitoring. Figure 12 indicates the initial crack appearance
that was observed in the thin elliptical ring specimens
with 90FA_10CH_12M_2·5S/H_1·0A/B_0·2HF that occurred
almost at the same position as those that already occurred for
the mortar with formulation of 90FA_10CH_12M_2·5S/
H_1·0A/B_0·08HF. As shown in Figure 13, there is a notable
crack on the outer circumferential surface near the principal
axis of the thin elliptical ring for the mortar with formulation
of 90FA_10CH_12M_2·5S/H_1·0A/B_0·8HF. It is interesting
to note that the crack that initiated (at a time of 72 h) was pro-
pagating through the mortar ring wall until 14 d of monitor-
ing, whereas, in the plain mortar, the initial cracks were
propagated at several regions, indicating more vividly the
cracks that eventually propagated through the mortar ring
wall. As observed, the crack for mortars with hybrid fibre at ‘I’
becomes the only crack that managed to propagate through

(a)

(b)

(c)

(d)

t = 40 h

t = 336 h

Figure 12. Crack positions in thin elliptical ring for mixture
90FA_10CH_12M_2·5S/H_1·0A/B_0·2HF: (a) top view of the crack
position at the initial time of crack appearance; (b) lateral view of
the initial crack position; (c) top view of the crack positions at the
final time of test; (d) lateral view of the final crack positions
composed of one visible crack placement

(a)

(b)

(c)

(d)

t = 30 h

t = 336 h

Figure 11. Crack positions in thin elliptical ring for the mixture
90FA_10CH_12M_2·5S/H_1·0A/B_0·08HF: (a) top view of the
crack position at the initial time of crack appearance; (b) lateral
view of the initial crack position; (c) top view of the crack
positions at the final time of test; (d) lateral view of the final crack
positions composed of one visible crack placement
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the wall of the elliptical ring specimens. The results imply that
the crack-driving energy is lower for this specimen with hybrid
fibre that requires a higher stress to cause a crack to propagate
after it is initiated.

3.3.2 Initial cracking time
The initial cracking time of mortars is given in Table 5. From
the table, the general effect of SHPF contents on the initial
cracking time is clear. Increasing the SHPF content resulted
in delaying the initial cracking time of the mortars. It is
further noticed that in the mortar with formulation of
90FA_10CH_12M_2·5S/H_1·0A/B_0·8HF, the initial crack
was visible much later than that of the mortar without fibre,
which was after 3 d. However, this lag time may necessarily
lead to alteration of the crack pattern of the specimen, as
shown in Figures 11–13. Comparing the crack pattern

observed for plain and hybrid fibre mortars indicates the clear
effect of increasing the SHPF content, and the delay of crack-
ing up to 48 h for 90FA_10CH_12M_2·5S/H_1·0A/B_0·8HF.
Furthermore, it is noticed that SHPF reduces the number of
cracks along the sample regardless of the incorporated dosage.
Of course, the modulus of elasticity of the mixtures also has a
direct influence on cracking development, as can be seen in
Figure 14.

3.3.3 Crack width
The average and ultimate crack width of the restrained ellipse
ring is presented in Figures 15 and 16. A content of SPHF as
low as 0·08% was able to reduce the average crack width by
four times when compared with non-reinforced mortars.
Increasing the content of SPHF from 0·08 to 0·8% reduced the
time of appearance of this first crack by 25 h and reduced the
average crack width by two times. Furthermore, it can be seen
that in the plain mortar, the measurement indicates a gradual
increase with age followed by a sudden and significant increase
in the width of the cracks. As the specimen dries, its shrinkage
increases with age. However, enhancing shrinkage of the
material is restrained by the central ellipse ring, resulting in an
increase of pressure, which is imposed on the central ellipse
ring by the surrounding mortar ring. As a result, compressive
stress is developed in the central ellipse ring, which becomes

(a)

(b)

(c)

(d)

t = 72 h t = 336 h

Figure 13. Crack positions in thin elliptical ring for mixture 90FA_10CH_12M_2·5S/H_1·0A/B_0·8HF: (a) top view of the crack position
at the initial time of crack appearance; (b) lateral view of the initial crack position; (c) top view of the crack positions at the final time of
test; (d) lateral view of the final crack positions composed of one visible crack placement

Table 5. Visible initial cracking time of the AACB mortars

Formulation
Visible initial

cracking time: ≈h

90FA_10CH_12M_2·5S/H_1·0A/B_0·0HF 24
90FA_10CH_12M_2·5S/H_1·0A/B_0·08HF 30
90FA_10CH_12M_2·5S/H_1·0A/B_0·2HF 40
90FA_10CH_12M_2·5S/H_1·0A/B_0·8HF 72
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greater and is reflected by the increasing crack width with age.
Simultaneously, tensile stress is developed in the mortar ring,
which also enhances with age. When the tensile stress exceeds
the tensile strength of mortar, a crack initiates and the pressure
imposed on the central ring is released, and consequently the
stress drops in the central ellipse ring. Figure 17 shows

the number of cracks observed in individual tests plotted
against the maximum crack width monitored at 14 d of testing.
It was noticed that the effect of SHPF reduced the number of
cracks to one-third. Furthermore, the presence of the hybrid
fibre indicated a significant reduction in average width crack by
more than one-quarter. The higher content of SHPF (0·8%) is
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Figure 15. Average crack width for different mortars with different hybrid fibre content
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more effective in terms of minimising crack appearance
(Figure 18).

4. Microstructure
Figure 19 shows SEM images of geopolymeric mixtures.
A strong bond is detected between the geopolymeric matrix
and the fibres, confirming results of other studies (Bhutta
et al., 2017). The presence of unreacted fly ash particles as well
as fibrous C–S–H is noticed.

5. Conclusions
No reduction of unrestrained shrinkage was observed, which
could be due to an increase in the pore volume. The results
show that hybrid short fibres reduce the restrained shrinkage
cracking tendency. A content of short hybrid fibres as low as
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Figure 17. Comparison between plain and hybrid fibre AACB mortars based on crack width and the number of cracks
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Figure 18. Relationship between average crack width and unrestrained shrinkage for AACB mortars with different hybrid fibre content
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0·08% was able to reduce the average crack width by four
times when compared with non-reinforced mortars. Increasing
the content of short hybrid fibres from 0·08 to 0·8% reduced

the time of appearance of the first crack by 25 h and reduced
the average crack width by two times.
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