
U
M

in
ho

|2
01

6

Mónica Susana Dias Morais 

dezembro de 2016

New insights on the interplay between 
psychopharmacology and neuroplasticity 
in psychiatric disorders 

Universidade do Minho

Escola de Medicina

M
ón

ic
a 

Su
sa

na
 D

ia
s 

M
or

ai
s 

N
ew

 in
si

g
h

ts
 o

n
 t

h
e

 in
te

rp
la

y 
b

e
tw

e
e

n
 p

sy
ch

o
p

h
a

rm
a

co
lo

g
y 

a
n

d
 n

e
u

ro
p

la
st

ic
it

y 
in

 p
sy

ch
ia

tr
ic

 d
is

o
rd

e
rs

 

Governo da 
República Portuguesa



Tese de Doutoramento em Ciências da Saúde

Trabalho efetuado sob a orientação do
Professor Doutor João Miguel Seiça Bessa Peixoto 
Escola de Medicina, Universidade do Minho, Braga – Portugal 

e do
Professor Doutor Nuno Jorge Carvalho Sousa 
Escola de Medicina, Universidade do Minho, Braga - Portugal 

Mónica Susana Dias Morais 

dezembro de 2016

New insights on the interplay between 
psychopharmacology and neuroplasticity 
in psychiatric disorders 

Universidade do Minho

Escola de Medicina





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The work presented in this thesis was performed in the Life and Health Sciences Research Institute 

(ICVS), University of Minho. Financial support was provided by a PhD grant (SFRH/BD/88825/2012) 

from the FCT - Foundation for Science and Technology -, by FEDER funds through the Operational 

Programme Competitiveness Factors - COMPETE and National Funds through FCT under the project 

POCI-01-0145-FEDER-007038; and by the project NORTE-01-0145-FEDER-000013, supported by Norte 

Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership 

Agreement, through the European Regional Development Fund (ERDF). 

 



 

 

 

 

  



 

vii 

 

ACKNOWLEDGEMENTS 

Esta minha “caminhada” foi muito mais que um marco no meu percurso académico, pois foi marcada 

por pessoas especiais a quem gostaria de manifestar o meu agradecimento…  

 

Em primeiro lugar gostaria de apresentar um agradecimento muito especial ao meu orientador, João 

Bessa. Poderia ser esta a parte menos desafiante desta “minha/nossa” caminhada, no entanto, 

começa logo por ser difícil uma vez que se junta a minha falha de palavras com a tamanha gratidão 

que tenho por ti. Agradeço pelo exemplo, pela disponibilidade, pelo apoio, pela confiança, por todos as 

oportunidades dadas e criadas aos longos destes anos. E por fim e não menos importante por toda a 

amizade.  

 

Ao Professor Nuno Sousa, meu co-orientador, gostaria primeiro de manifestar o meu mais profundo 

respeito pelo exemplo de profissionalismo e dedicação. Obrigada pelas discussões científicas, pela 

crítica construtiva e pelos conselhos. 

 

À Luísa Pinto agradeço pela forma como me recebeste no laboratório, discussões científicas e por toda 

a amizade e disponibilidade ao longo destes anos.  

 

Gostaria ainda de demonstrar a minha gratidão à Professora Doutora Cecília Leão e ao Professor 

Doutor Jorge Pedrosa enquanto representantes da Escola e do Instituto, pelo apoio institucional ao 

longo destes anos. 

 

Aos colegas que se transformaram nos meus grandes amigos (os meus pilares)! 
 
À minha Su (Susana Monteiro) por estares comigo desde início. Como colega e depois (e agora e para 

sempre) como amiga (a melhor). Muito obrigada Su…por todo o apoio e amizade ao longo destes anos. 

Ao Silva (Nuno Silva, meu informático pessoal) tiveste sempre presente…desde o primeiro dia 

(também), e pelo dia do baptismo de a “Patricinha”. Nuno obrigado pela tua amizade e disponibilidade 

ao longo destes anos. p.s: afinal quero um vídeo! Ao Fábio Teixeira (meu Fabinho), não foi desde o 

primeiro dia, mas será para sempre. Muito obrigada por toda a tua amizade, carinho e apoio ao longo 

destes anos. 



 

viii 

 

 
Francisca Bravo, minha “Xikinha”, obrigada por toda a amizade e boa disposição. 
 

À Natália, Nataly, obrigada pela tua amizade, boa disposição e disponibilidade. 

 

À Sara Pinheiro, Filipa Pereira, Mafalda Santiago e Ana Falcão (friends forever…mesmo a distância). 

 

Ao Carlos Portugal e a Joana Pereira por toda a partilha e amizade nestes últimos tempos. 

 

Ao pessoal do laboratório: Sónia, João Costa, Dulce, Cláudia, Ashley, Rui, Teresa, Madalena, 

Margarida, Catarina, Marco, Fernanda, Ana João, Hugo Almeida, Eduardo…. (faltam muitos) 

 

Ao António, Dinis, Patrícia, Ana Rita e Joana Correia por toda a ajuda ao longo deste percurso   

 

Depois agradeço a todos aqueles que só pelo amor, influenciaram directamente o meu trabalho… 

 

Ao Bruno, agradeço por todo o teu (nosso) amor, apoio e amizade. We are strong together!   

       

Aos que sempre estiveram lá, aos meus pais. Agradeço por todo o amor, pelo carinho, pelo 

exemplo…Obrigada por estarem sempre, sem ser preciso pedir!   

 

À minha princesa, minha maninha, obrigada por tudo.     

 

A todos muito obrigada! 

 

 

 

 

 



 

ix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“The measure of intelligence is the ability to change.” 

Albert Einstein 

 



 

x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xi 

 

ABSTRACT 

It is now clear that various forms of structural plasticity, including the generation of new neurons and 

glial cells, may modify pathophysiological processes in neuropsychiatric disorders, namely in 

depression. In fact, several studies have shown decreased hippocampal neurogenesis in depressed 

patients, while treatment with different antidepressant drugs in animal models increases neurogenesis 

in this region, allowing the recovery from emotional and cognitive changes. However, these effects have 

not been described for all the available classes of antidepressant drugs. Furthermore, the neuroplastic 

effects of antidepressants in other neurogenic regions such as the hypothalamus have yet to be 

determined. Despite the importance of these drugs in the recovery from depression, a significant 

proportion of depressed patients reveal incomplete remission and develop treatment-resistant forms of 

the disorder.  The use of atypical antipsychotics in these cases has been widely used in the clinical 

setting. However, the neuroplastic effects of these drugs in depression and schizophrenia are still largely 

unknown. Taking this into consideration we aimed to explore new perspectives on the interplay between 

psychopharmacology and neuroplasticity in these psychiatric disorders. 

 

To explore the neuroplastic effects of the antidepressant Pirlindole, a MAO-A (monoamine oxidase, type 

A) inhibitor, we used the unpredictable chronic mild stress (uCMS) animal model of depression. Our 

results indicate that Pirlindole is able to reverse the behavioural effects of stress exposure, potentiating 

hippocampal adult neurogenesis and rescuing the stress-induced dendritic atrophy of granule neurons 

in the dentate gyrus of the hippocampus. These results further reinforce the notion that the modulation 

of monoaminergic neurotransmission is involved in the neuroplastic effects of currently available 

antidepressant drugs. 

 

To dissect the potential actions of antidepressants in adult neurogenesis in the hypothalamus we 

treated animals exposed to uCMS with two different classes of antidepressants: fluoxetine (a selective 

serotonin reuptake inhibitor) and imipramine (a tricyclic antidepressant). Our results demonstrate that 

chronic stress and antidepressant treatment can modulate hypothalamic neurogenesis. Moreover, we 

proved that different classes of antidepressants, with an opposite action on appetite and body weight 

gain, differentially modulate hypothalamic neurogenesis. This data indicates that in addition to the 

neuroplastic effects on the hippocampus, stress and antidepressant drugs also modulate hypothalamic 

adult neurogenesis.   
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Furthermore, we explored the role of neuroplasticity in the therapeutic actions of atypical antipsychotics 

in depression. To achieve this, we treated animals exposed to uCMS with a classical (haloperidol) and 

an atypical (clozapine) antipsychotic. Our data demonstrates that the atypical antipsychotic clozapine 

improved measures of depressive-like behavior while haloperidol had no beneficial effect, aggravating 

learned helplessness in the forced swimming test and behavior flexibility in a cognitive task.  

Importantly, an upregulation of adult neurogenesis and neuronal survival was observed in animals 

treated with clozapine while haloperidol promoted a downregulation of these processes. These results 

demonstrate that the atypical antipsychotic is able to reverse the behavioral effects of chronic stress by 

improving adult neurogenesis, cell survival and neuronal reorganization. 

 

Finally, to understand the impact of different classes of antipsychotics in the negative and cognitive 

symptoms of schizophrenia, we used a neurodevelopmental model of schizophrenia. Animals expose 

prenatally to the cytostatic agent methylazoxymethanol (MAM) presented specific cognitive deficits and 

social impairments. The classical antipsychotic haloperidol presented no beneficial effects in these 

behavioral dimensions. The atypical antipsychotic clozapine and risperidone revealed a positive effect 

on both dimensions while aripiprazole presented a significant effect in the social measure. Adult 

gliogenesis is affected in animals exposed to MAM, being modulated by the atypical antipsychotics 

used. Neurogenesis is not altered in MAM animals, with haloperidol negatively affecting this 

phenomenon. In this work, we proved that classical and atypical antipsychotics differentially modulate 

hippocampal cell genesis possibly contributing to different behavioural actions in hippocampal 

dependent functions.  

 

Together, these findings contribute to expand our knowledge on the role of psychopharmacological 

agents (including antidepressants and antipsychotics) on the modulation of different neuroplastic 

events, including cell genesis and neuronal remodelling. In the future, this knowledge may help to pave 

the way for new therapeutic interventions both in depression and schizophrenia. 

 
 

Keywords: depression; schizophrenia; neuroplasticity, neurogenesis; gliogenesis. 
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RESUMO 

É actualmente sabido que várias formas de plasticidade estrutural, incluindo a formação de novos 

neurónios e células da glia, podem modificar o processo patofisiológico em algumas doenças 

neuropsiquiátricas, nomeadamente a depressão. De facto, vários estudos têm demonstrado uma 

redução da neurogénese hipocampal em pacientes com depressão. Para além disso, o tratamento com 

diferentes fármacos, nomeadamente os antidepressivos, revelou em modelos animais, aumentar a 

neurogénese nesta região cerebral, permitindo uma recuperação na componente emocional e 

cognitiva. Contudo, estes efeitos não estão descritos para todas as classes de antidepressivos 

disponíveis. Além disso, os efeitos dos antidepressivos na neuroplasticidade em outras regiões 

neurogénicas como o hipotálamo ainda não foram determinados. Apesar da importância destes 

fármacos na recuperação da depressão, uma proporção significativa de pacientes revela remissão 

incompleta bem como formas resistentes ao tratamento da doença. Nestes casos, o uso de 

antipsicóticos atípicos tem sido amplamente utilizado no contexto clínico. No entanto, os efeitos destes 

fármacos na neuroplasticidade na depressão e esquizofrenia são ainda amplamente desconhecidos. 

Tendo isto em consideração, propusemos explorar novas perspectivas na inter-relação entre a 

psicofarmacologia e a neuroplasticidade nestas doenças psiquiátricas.  

Para determinar os efeitos do antidepressivo inibidor da MAO-A (monoamina oxidase, tipo A) Pirlindol 

na neuroplasticidade, utilizamos o modelo animal de exposição a stress crónico moderado e 

imprevisível (uCMS). Os nossos resultados indicam que o Pirlindol é capaz de reverter os efeitos 

comportamentais de exposição ao stress, potenciando o aumento na neurogénese no hipocampo 

adulto e recuperando igualmente a atrofia dendrítica induzida pelo stress em neurónios granulares no 

giro dentado do hipocampo. Estes resultados reforçam a ideia de que a modulação da 

neurotransmissão monoaminérgica está envolvida nos efeitos neuroplasticos promovida pelos 

antidepressivos. 

Para dissecar, as acções dos antidepressivos na neurogénese hipotalâmica, utilizamos o modelo 

animal de depressão uCMS e tratamento com diferentes classes de antidepressivos: fluoxetina (um 

inibidor selectivo da reabsorção de serotonina) e imipramina (um antidepressivo tricíclico). Os nossos 

resultados demonstram que o stress crónico e o tratamento com antidepressivos modulam a 

neurogénese no hipotálamo. Além disso, provou-se que diferentes classes de antidepressivos, com 

uma acção contrária no apetite e no ganho de peso corporal, modulam a neurogénese no hipotálamo 
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de uma forma diferencial. Estes resultados, indicam que, para além do hipocampo, o stress e os 

antidepressivos também modulam a neurogénese no hipotálamo adulto. 

Em seguida, exploramos o papel da neuroplasticidade nas acções terapêuticas dos antipsicóticos 

atípicos na depressão. Para isso, utilizou-se o modelo animal de depressão uCMS e tratamento com o 

antipsicótico clássico (haloperidol) e o atípico (clozapina). Os nossos dados demonstram que, o 

antipsicótico atípico clozapina melhorou o comportamento depressivo. Por outro lado, o haloperidol não 

teve qualquer efeito benéfico, agravando o desalento aprendido no teste de natação forçada e a 

flexibilidade comportamental numa tarefa cognitiva. Simultaneamente observou-se um aumento da 

neurogénese adulta e da sobrevivência neuronal em animais tratados com clozapina, enquanto que o 

haloperidol promoveu uma redução nestes processos. Estes resultados, demonstram que o 

antipsicótico atípico é capaz de reverter os efeitos comportamentais do stress crónico através da 

melhoria na neurogénese adulta, da sobrevivência celular e da reorganização neuronal. 

Por último, para compreender o impacto das diferentes classes de antipsicóticos nos sintomas 

negativos e cognitivos da esquizofrenia, utilizamos um modelo de neurodesenvolvimento desta mesma 

patologia. Os animais expostos no período pré-natal ao agente acetato de metilazoximetanol (MAM) 

apresentaram défices cognitivos e sociais. O antipsicótico clássico haloperidol não apresentou efeitos 

benéficos nestas dimensões de comportamento. Por outro lado, os antipsicóticos atípicos, clozapina e 

risperidona, apresentaram um efeito positivo em ambas as dimensões com o aripiprazol apresentando 

apenas um efeito estatístico na dimensão social. A gliogénese adulta esta afectada nos animais MAM, 

sendo esta modulada pelos antipsicóticos atípicos usados. A neurogénese não se encontra alterada 

neste modelo, sendo, no entanto, negativamente afectada pelo haloperidol. Neste trabalho, provamos 

que os antipsicóticos clássicos e atípicos modulam diferencialmente a formação de novas células no 

hipocampo, contribuindo possivelmente para diferentes acções comportamentais, em funções 

dependentes do hipocampo. 

 

Em suma, estes resultados contribuem para expandir o nosso conhecimento sobre o papel de agentes 

psicofarmacológicos (incluindo antidepressivos e antipsicóticos) na modulação de diferentes eventos 

neuroplásticos, incluindo a formação de novas células e a remodelação neuronal. No futuro, este 

conhecimento poderá ajudar na implementação de novas intervenções terapêuticas tanto na depressão 

como na esquizofrenia. 

 

Palavras-chave: depressão, esquizofrenia; neuroplasticidade; neurogénese; gliogénese 
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THESIS ORGANIZATION 

The present thesis is divided into 6 chapters. The 1st Chapter is an overall introduction to the theme. 

The chapters concerning the experimental work are presented in chapter 2, 3, 4 and 5 (in the form of 

research articles). Chapter 6 is dedicated to an overall discussion and conclusions. 

  

The 2nd Chapter is a published article in the Journal of Psychopharmacology.  

In this chapter we explore the neuroplastic effects of the antidepressant Pirlindole, a MAO-A 

(monoamine oxidase, type A) inhibitor using the unpredictable chronic mild stress (uCMS) animal 

model of depression. 

. 

The 3rd Chapter is a manuscript under preparation.  

We analysed the potential actions of antidepressants (fluoxetine and imipramine) in adult hypothalamic 

neurogenesis.  

 

The 4th Chapter is a submitted article. 

Here we explored the role of neuroplasticity in the therapeutic actions of atypical antipsychotics in 

depression. 

 

The 5th Chapter is a manuscript under preparation.  

We try to understand the impact of different classes of antipsychotics in the negative and cognitive 

symptoms of schizophrenia. 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1st CHAPTER  

Introduction 

 

  



 

 

 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 3 

1 Introduction 
 

1.1 Adult neuroplasticity 

Neuroplasticity is one of the most fascinating abilities of the mammalian brain, representing the 

capability of the central nervous system to modify and adapt in response to changes in its inputs. It 

includes different time-dependent events occurring at two different levels: functional and structural. 

Functional changes at the synaptic level are thought to be more frequent and rapid than the formation 

of new cellular components in structural plasticity (Bruel-Jungerman et al, 2007a; Bruel-Jungerman et 

al, 2007b; Sagi et al, 2012 ). The temporal dynamics of structural plasticity is largely unknown, with 

cell genesis (including neurogenesis and gliogenesis) occurring in days to weeks whereas the formation 

of new synapses and dendrites on the existing neurons develops in short periods of time  (Bruel-

Jungerman et al, 2007b).  

Synapses are specialised structures that mediate the electro-chemical communication between 

neurons. Synaptic plasticity is described as a critical process that confers environmental adaptability 

through modification of the connectivity between neurons and neuronal circuits. The best studied forms 

of synaptic plasticity are long-term potentiation (LTP) and long-term depression (LTD), which occur both 

at excitatory and inhibitory synapses throughout the brain (Markram et al, 2011; Mendez and Bacci, 

2011) and constitute the cellular basis of hippocampal-dependent learning and memory (Ge et al, 

2010). 

Neuronal remodelling comprises the growth and retraction of dendrites and axons; and also the 

formation and deletion of synapses, including dendritic spines and axonal boutons. Dendritic spines are 

specialized subcellular compartments where excitatory synapses are located. They are highly dynamic 

not only during development but also in the mature nervous system and largely heterogeneous in both 

size and shape. The morphology of dendritic spines can be generally classified into four different 

classes: mushroom shaped, thin, wide and ramified spines (Harris et al, 1992). Spine formation, 

turnover and morphology are continuously influenced by synaptic activity. Structural plasticity is 

traditionally studied using post-mortem histological samples (Lamprecht and LeDoux, 2004; Theodosis 

et al, 2008) including Golgi (a widely used technique based on metallic impregnation, introduced by 

Ramon Cajal in 1873). Essentially, it randomly labels a small number of cells in their entirety so that 

detailed information regarding dendritic branching, length, and spine density can be measured. Since 

more than 90% of excitatory synapses are formed on dendritic spines (Nimchinsky et al, 2002), 

dendritic spine numbers obtained from Golgi-stained tissue provide an indirect measure of excitatory 
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synaptic inputs. However, the quantification of the actual number of synapses can only be achieved 

using electron microscopic procedures.  

There is a clear link between this type of structural plasticity and synaptic plasticity. In fact, the volume 

of a dendritic spine correlates with the synaptic efficacy of the corresponding synapse (Knott et al, 

2006; Matsuzaki et al, 2001; Zito et al, 2009) which, in turn, is influenced by synaptic plasticity. 

Accordingly, stimuli causing LTP also cause spine enlargements (Okamoto et al, 2004; Yang et al, 

2008) while stimuli causing LTD induce spine shrinkage (Oh et al, 2013; Okamoto et al, 2004; Zhou et 

al, 2004).  

Distinct brain regions undergo different forms of plasticity, namely the hippocampus, amygdala and 

prefrontal cortex (PFC). Importantly, the plastic changes in these brain regions have been reported to be 

involved in multiple functional dimensions such as perception, emotional processing and cognition. 

 

1.1.1 Adult Neurogenesis 

During the majority of the twentieth century, the adult brain was considered as a static structure, with 

no capacity self-renewal: no neuronal cells arising de novo (Ramon y Cajal 1913). In 1965, Altan and 

Das provided the first anatomical evidence for the presence of newly generated cells in the postnatal rat 

hippocampus (Altman and Das, 1965). However, little attention was given to this finding at the time, in 

part because they were considered to lack functional relevance. In the late 1970s, the issue of adult 

neurogenesis was revisited with the study of Kaplan & Hinds (1977) showing the survival of newly born 

hippocampal cells. Additionally, these cells also appeared to receive synaptic inputs (Kaplan and Bell, 

1983) and extend axon projections to their target area (Stanfield and Trice, 1988).  

The field of adult neurogenesis was revolutionized after the introduction of bromodeoxyuridine (BrdU), a 

synthetic thymidine analogue that incorporates DNA of dividing cells during the S-phase of the cell cycle 

(Gratzner, 1982). Since then, immunocytochemistry for BrdU cell detection is commonly used to 

monitor cell proliferation, new cell survival and differentiation.  The introduction of this marker led to 

important findings in the field, namely the confirmation of adult neurogenesis in mammals, including 

the human brain (Eriksson et al, 1998). Additionally, the combination of retroviral-based lineage tracing 

(Price et al, 1987; Sanes et al, 1986) and electrophysiological studies provided the most convincing 

evidence so far that newborn neurons in the adult mammalian brain are indeed functional and 

synaptically integrated. Nevertheless, the functional significance of adult neurogenesis is still far from 

being completely explained.   

javascript:void(0);
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Adult neurogenesis is defined as a complex and multi-step process by which neural progenitor cells 

divide mitotically to produce new functional neurons in the adult brain. It has been widely accepted that 

adult neurogenesis occurs at least in two regions of the mammalian brain, namely the subependymal 

zone (SEZ) and the subgranular zone of the dentate gyrus (DG) of the hippocampus (Kempermann and 

Gage, 2000; Kempermann et al, 2015). In the SEZ, the neuroblasts generated migrate along the rostral 

migratory stream to differentiate into interneurons in the olfactory bulb (Luskin, 1993; Whitman and 

Greer, 2009). In the hippocampus, the newly formed cells migrate into the DG granule cell layer where 

they differentiate into mature neurons and integrate into the existing hippocampal circuitry (Doetsch 

and Hen, 2005; Jessberger and Kempermann, 2003; Laplagne et al, 2006; Schinder and Gage, 2004; 

van Praag et al, 2002). In rodents, the levels of neurogenesis are higher in the SEZ than in the 

hippocampus while In humans, adult neurogenesis has been conclusively demonstrated in the 

hippocampus (Eriksson et al, 1998), with no detectable adult olfactory bulb neurogenesis (Bergmann et 

al, 2012; Sanai et al, 2011). It may appear that during human evolution, hippocampal neurogenesis 

has been retained to provide adaptability to hippocampal dependent tasks; in contrast olfactory bulb 

neurogenesis has decreased with the reduced dependence on olfactionref. The hippocampus is a brain 

region with a critical role in cognitive function (learning and memory) and emotional processing 

(Fanselow and Dong, 2010; Kheirbek and Hen, 2010). Interestingly, several studies have described a 

positive correlation between the levels of neurogenesis and learning, memory and mood regulation. In 

fact, the exposure of rats to an enriched environment (Kempermann et al, 1997a; van Praag et al, 

2002) or running activity (Brown et al, 2003 ; van Praag et al, 1999; van Praag et al, 2005) was 

correlated with increased levels of hippocampal neurogenesis, leading to improved performance on a 

water-maze test of spatial memory (a test highly sensitive to hippocampal impairment).  

Besides these two classical neurogenic regions, there is evidence for adult neurogenesis in additional 

areas, including the striatum (Bedard et al, 2006) (Dayer et al, 2005 ; Ernst et al, 2014) amygdala 

(Fowler et al, 2005; Fowler et al, 2002; Gould et al, 1999), substantia nigra (Zhao et al, 2003) and 

hypothalamus (Huang et al, 1998; Kokoeva et al, 2005; Lee et al, 2012; Lee et al, 2014; Xu et al, 

2005). However, this has been difficult to replicate consistently other than in the damaged brain. 

Interestingly, from these brain areas the hypothalamus has been receiving much more attention and 

was recently described as a region with cell renewal capacity. Previous studies have shown that a 

subpopulation of tanycytes can behave as neuronal progenitors and are characterized by a distinct 
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expression of neural progenitors and stem cell markers (Goodman and Hajihosseini, 2015; Lee et al, 

2012; Robins et al, 2013). The hypothalamus is a small brain structure controlling numerous vital 

physiological functions such as sleep-wake cycles, body temperature, sexual behavior and food intake. 

In fact, distinct nuclei in the hypothalamus express different neuropeptides implicated in the regulation 

of food intake, namely the orexigenic factors agouti-related peptide (AgRP), neuropeptide Y (NPY) and 

anorexigenic factors like pro-opiomelanocortin (POMC). Despite being a brain region involved in several 

functions, the newborn hypothalamic neurons have been specifically implicated in the regulation of 

energy balance (Kokoeva et al, 2005; Lee et al, 2012; Lee et al, 2014). In the first study attributing a 

functional role for hypothalamic neurogenesis, obese mice were injected with a ciliary neurotrophic 

factor (CNTF) (a drug that induces a decrease in body weight) resulting in a strong increase in 

hypothalamic neurogenesis. Moreover, if CNTF was co-administrated with an antimitotic agent to 

suppress neurogenesis, the body weight loss effect was absent, highlighting the importance of newborn 

hypothalamic neurons in mediating the CNTF effect on body weight regulation (Kokoeva et al, 2005). 

Besides this neurotrophic factor, other growth factors such as BDNF (Pencea et al, 2001), EGF and 

bFGF (Xu et al, 2005) stimulate adult hypothalamic neurogenesis (with unknown functional 

significance). More recently, Lee and colleagues demonstrated that high-fat diet, that leads to an 

increase in body weight gain, enhances adult neurogenesis in the hypothalamic median eminence (ME). 

More interestingly, they found a significant attenuation in body weight gain after the inhibition of 

neurogenesis in these specific hypothalamic nuclei. This study highlights the role of ME neurogenesis 

on the promotion of body weight gain in a high-fat diet context (Lee et al, 2012). Based on these studies 

we can hypothesize that neurogenesis in the hypothalamus is triggered by different stimulus mainly 

involved in the modulation of appetite and energy balance control. In addition, the hypothalamic nuclei 

that respond by creating new neurons are dependent on the type of stimuli applied. Figure 1 shows a 

schematic representation of the adult neurogenesis process. 
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Figure 1 - Schematic representation of the adult neurogenic process in the subependymal zone, 

dentate gyrus of the hippocampus and arcuate and median eminence nuclei of the hypothalamus. 
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1.1.1.1 Modulating Factors: The Neurotrophins and HPA axis 
 
Adult neurogenesis is currently viewed as a highly dynamic process regulated by many intrinsic and 

extrinsic factors. Among these factors, stress (Bessa et al, 2009a; Mateus-Pinheiro et al, 2013; Morais 

et al, 2014) , age (Kuhn et al, 1996) and irradiation (Santarelli et al, 2003) are known to be negative 

regulators of this process. On the other hand, the exposure to odours (Bonzano et al, 2014), 

environmental enrichment (Kempermann et al, 1997b), learning (Anderson et al, 2011), physical 

activity (van Praag et al, 1999), seizures (Kokaia, 2011; Parent et al, 1997) and hypoxia (Zhu et al, 

2010) are  known to be positive regulators of adult neurogenesis.     

In recent years, a large number of studies have investigated the role of neurotrophins or neurotrophic 

factors in adult neurogenesis. Neurotrophins are an important class of extracellular signalling molecules 

in the brain responsible for axon targeting, neuron growth, maturation of synapses during development 

and synaptic plasticity. This family includes molecules like the nerve growth factor (NGF) (Levi-

Montalcini, 1987), brain-derived neurotrophic factor (BDNF) (Barde et al, 1982), as well as 

neurotrophins 3 (NT-3), 4 (NT-4) and 5 (NT-5) (Hohn et al, 1990). BDNF is by far the most well-studied 

factor of this family, being considered a critical regulator of adult brain plasticity. In addition, in the last 

decade, an increasing number of studies have associated neurotrophic factors with the pathophysiology 

of some neuropsychiatric disorders as well as with the mechanisms of action of drugs used for their 

treatment. Interestingly, BDNF and its receptor tropomyosin receptor kinase (TrkB) have been 

implicated in the pathophysiology of mood disorders. Indeed, BDNF has gained further interest based 

on the hypothesis that the action of antidepressant drugs may be related with their effects on 

hippocampal neurogenesis, being BDNF a central regulator of this process (D'Sa and Duman, 2002; 

Lepack et al, 2014). Support for this ‘BDNF hypothesis’ has come from a large preclinical literature 

showing that several forms of stress reduce BDNF-mediated signalling in the hippocampus, whereas 

chronic treatment with antidepressants increases BDNF (Molendijk et al, 2014). Interestingly, similar 

changes have been observed in the post-mortem hippocampus of humans with depression, as well as 

in the concentrations of serum BDNF. This has led to the proposal of a “neurotrophic hypothesis of 

depression”. However, other studies in rodents have failed to observe such changes, thus generating 

controversy around this hypothesis (Groves, 2007). 

 

Exposure to stress is one of the best-known negative regulators of adult hippocampal neurogenesis 

(Warner-Schmidt and Duman, 2006). Stress is generally defined as any stimuli that disrupt the body´s 
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internal control. However, stress is not a single entity and several different types of stressors can be 

distinguished. In other words, stress can be divided into acute or chronic, it may occur in a single 

episode or be repetitive in time, can be predictable or unpredictable and also mild or severe (Lucassen 

et al, 2014). The exposure to mild stress for a few hours can enhance cognition by facilitating synaptic 

plasticity in the hippocampus. In contrast, chronic exposure to stress can have negative effects in 

neurons due to excessive glucocorticoid exposure (McEwen and Sapolsky, 1995; Sapolsky, 1996).  

The hypothalamo-pituitary-adrenal (HPA) axis is one of the main stress response pathways, playing a 

vital role in mediating and controlling the stress response. The HPA axis activity is governed by the 

secretion of adrenocorticotrophic hormone-releasing factor (CRF) and vasopressin (AVP) from the 

hypothalamus, which in turn activate the secretion of adrenocorticotrophic hormone (ACTH) from the 

pituitary, leading to the stimulation of the secretion of the glucocorticoids (cortisol in humans and 

corticosterone in rodents) from the adrenal cortex. Corticosteroid actions in the brain are mediated by 

mineralocorticoid (MR) and glucocorticoid (GR) receptors (Reul and de Kloet, 1985). GR receptors are 

abundantly expressed throughout the brain but especially enriched in the hippocampus while MR 

receptors are found primarily in the hippocampus. Regulation occurs through negative feedback after 

glucocorticoid binding to high-affinity MR and lower affinity GR receptors (de Kloet et al, 2005). GR´s 

help to maintain glucocorticoids levels within physiological limits (Erdmann et al, 2008; Kretz et al, 

1999), and aberrant GR expression has been implicated in hypercortisolism, stress resistance, anxiety 

and depression (de Kloet et al, 2005; Ridder et al, 2005; Wei et al, 2007). The key biological parameter 

for measuring stress in an organism is the serum levels of the glucocorticoid hormone. Indeed, high 

levels of stress lead to high levels of circulating glucocorticoids and may, in the long time, lead to a 

failure of feedback mechanisms that control glucocorticoid secretion and also GR receptor expression. 

Stress has profound effects on synaptic plasticity (Christoffel et al, 2011; Popoli et al, 2002; Sandi, 

2011), with its effects being particularly well-studied in the hippocampus. Stress and glucocorticoid 

modulation of synaptic plasticity is mediated via activation of MR and GR receptors. Through these 

receptors, stress and glucocorticoids exert direct effects on neurons and glia cells (Yu et al, 2011). The 

negative effects on synaptic plasticity in the CA1 region of the hippocampus can be prevented or 

reversed by GR antagonists and monoaminergic antidepressants (Holderbach et al, 2007; Krugers et al, 

2006; Matsumoto et al, 2005). Chronic stress is also a risk factor to other diseases such as heart 

disease, high blood pressure, high cholesterol, type II diabetes and psychiatric disorders. Psychiatric 

disorders, in particular major depressive disorder (MDD), have been frequently associated with 
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hyperactivity of the HPA axis and increase levels of glucocorticoid hormones leading ultimately to an 

impaired HPA axis feedback regulation (Pariante and Lightman, 2008). For instance, a significant 

percentage of depressed patients have increased levels of cortisol in the saliva, plasma and urine, and 

increased size and activity of the pituitary and adrenal glands. Moreover, several studies have shown 

that increased levels of cortisol constitute a risk factor for MDD in risk populations (Goodyer et al, 2000; 

Harris et al, 2000). In turn, antidepressants ameliorate many of the neurobiological disturbances in 

depression, including HPA axis hyperactivity (Surget et al, 2011). Figure 2 shows a schematic 

representation of the HPA axis under physiological stress response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 - Schematic representation of the hypothalamic-pituitary-adrenal (HPA) axis regulation. 

Abbreviations: PVN – paraventricular nucleus; CRF - corticotropin releasing factor; ACTH - 

adrenocorticotropic hormone.  

 

1.2 Psychiatric Disorders 

The burden of psychiatric disorders continues to grow with significant impact on health and major 

social, human rights and economic consequences worldwide. There are different psychiatric disorders, 



 

 

 11 

with different presentations that include depression, bipolar affective disorder, schizophrenia and other 

psychoses, dementia, intellectual disabilities and developmental disorders. They have multi-factorial 

aetiologies involving complex interactions between genetic and environmental factors. Increasing 

evidence demonstrates that neuroplasticity is disrupted in mood disorders including schizophrenia and 

depression. This connection has been best explored in depression, in which structural plasticity 

alterations in the hippocampus and PFC have been critically implicated in its pathophysiology. In fact, it 

is now clear that various forms of structural plasticity, including the generation of new neurons and glial 

cells in the hippocampus as well as neuronal remodelling in key brain regions (e.g. hippocampus and 

PFC), may modify pathophysiological processes in depression (Bessa et al, 2009a; Mateus-Pinheiro et 

al, 2013; Morais et al, 2014). In line with this, treatment with different antidepressant drugs is able to 

reverse this effect, allowing the recovery from emotional and cognitive changes. 

 
1.2.1 Depression 

MDD is a highly prevalent and complex psychiatric disorder that affects multiple behavioral domains, 

presenting a wide range of symptoms, namely depressed mood, anhedonia, anxiety and cognitive 

impairments that confer a severe disability and impaired quality of life in patients (Mergl et al, 2007; 

Sheehan, 2002; Villanueva, 2013). The clinical definition and classification of depression has been 

structured in diagnostic tools such as the Diagnostic and Statistical Manual of Mental Disorders, 5th 

edition (DMS-5). According to DMS-5, patients with MDD must meet at least 5 of these symptoms 

persisting for at least 2 weeks. Between the symptoms, depressed mood and/or anhedonia (diminished 

interest or pleasure in all or almost all activities) must be present for a diagnosis. This pathology affects 

1.6 to 3.1 times more woman than men with a greater disparity found in the USA and Western Europe. 

It may appear at any age, presenting a peak of onset in early adulthood that gradually declines with age 

(American Psychiatry Association, 2013).   

Despite causing a substantial impairment in daily functioning, the mechanisms involved in the 

pathophysiology of MDD and also in the therapeutic actions of antidepressant drugs are still poorly 

understood. This can be attributed to its complex and heterogeneous nature, in which multiple genetic 

factors (heritability estimated to be approximately 35%) conferring susceptibility to the disease interact 

with environmental factors (Flint and Kendler, 2014; Saveanu and Nemeroff, 2012). Several 

hypotheses have been formulated regarding the aetiology of depression, namely: the monoamine 

hypothesis, the corticosteroid hypothesis (previously described), the cytokine hypothesis and the 

neuroplastic hypothesis (Otte et al, 2016). One of the first hypotheses described was the monoamine 



 

 

 12 

hypothesis of depression, and almost all the antidepressants available have been developed based on 

this theory. This hypothesis implicates monoamine deficiency (noradrenalin, dopamine and/or 

serotonin) as the cause of the disorder; efficient antidepressants are thought to correct these deficits 

(Delgado, 2000). This simplistic hypothesis fails to explain all aspects of the disorder since 

antidepressants are able to produce an immediate increase in the levels of monoamines while the 

therapeutic response requires weeks of continuous administration of antidepressants (Penn and Tracy, 

2012). Central monoamine function is still a focus of research, even though more complex pathways 

have been implicated in depression and antidepressant treatment. Several studies demonstrated the 

importance of the newly generated neurons and the dendritic reorganization of the pre-existing neurons 

in the adult hippocampus in the onset and also in the remission from depression (Mateus-Pinheiro et al, 

2013; Snyder et al, 2011; Surget et al, 2011).  

 

1.2.1.1 Treatment of depression 

In the 1950s, a veritable revolution took place in the fields of psychopharmacology and psychiatry, with 

the clinical introduction of the main groups of psychoactive drugs still used today. It started with the 

clinical introduction of the first two antidepressant drugs: iproniazid, a monoamine oxidase inhibitor 

(MOAI) that had been used in the treatment of tuberculosis, and imipramine, the first drug in the 

tricyclic antidepressant family. In 1987, the introduction of fluoxetine, a selective serotonin reuptake 

inhibitor (SSRI), once again revolutionized the therapy for depression, opening a way for new families of 

antidepressants. The success of the SSRIs and also serotonin-norepinephrine reuptake inhibitors 

(SNRIs) as first-choice drug was not based on the established differences in efficacy, but rather on a 

generally more favourable adverse-effect profile, such as the lack of anticholinergic and cardiac effects 

and a high therapeutic index (the ratio of lethal dose to therapeutic dose). However, the SSRIs and 

SNRIs are also not devoid of considerable tolerability issues and some patients experience common 

acute treatment adverse effects such as nausea, insomnia, headaches, dizziness, gastrointestinal 

symptoms and sexual dysfunction and long-term adverse effects including weight gain, sexual 

dysfunction and sleep disturbances (Cassano and Fava, 2004). Nevertheless, all the available 

antidepressants continue to employ the same mechanism of action, that is the modulation of 

monoaminergic neurotransmission at a synaptic level. Figure 3 shows a chronological representation on 

how the antidepressant research field has evolved along the years. 
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Figure 3 – Schematic representation of the chronology for introduction of medication for the treatment 

for the major depressive disorder. Abbreviations DARI: dopamine reuptake inhibitor, MAO: monoamine 

oxidase, MT: melatonin, SNRI serotonin-norepinephrine reuptake inhibitors, TCA: tricyclic agent, SSRI: 

selective serotonin reuptake inhibitor. Not all drugs are shown.   

 

The first clinical effective antidepressants to be used were inhibitors of the enzyme monoamine oxidase 

(MAO). They were discovered by accident when an anti-tuberculosis drug (iproniazid) was administrated 

in patients with tuberculosis and comorbid depression. MAO exists in two subtypes A and B; MAO-A 

preferentially metabolizes the monoamines serotonin and norepinephrine whereas the MAO-B form 

preferentially metabolizes trace amines such as phenethylamine. Both MAO-A and MAO-B metabolize 

dopamine and tyramine. In MAO treatment, MAO-A must be inhibited for antidepressant efficacy. In 

fact, MAO-A preferentially metabolizes the two monoamines linked to depression and consequently the 

brain levels of serotonin and norepinephrine increase after MAO-A inhibition. Inhibition of MAO-B is not 

effective as an antidepressant. When MAO-B is inhibited simultaneously with MAO-A, there is an 

increase of dopamine as well as serotonin and norepinephrine, resulting in higher antidepressant 

efficacy. MAOs are considered by many clinicians to be used in treatment-resistant depression, due to 

the required dietary restrictions and potential fatal drug interaction (Stahl, 2013). 

Tricyclic antidepressants were discovered by chance in result of an unsuccessful attempt to improve the 

antipsychotic effectiveness of phenothiazines (used in the treatment of schizophrenia). Molecular 

modifications of phenothiazines led to synthesis of imipramine, the first clinically useful tricyclic 

antidepressant. Tricyclic antidepressants act as strong inhibitors in the reuptake of both norepinephrine 

and serotonin. Some tricyclics have equal or greater potency for serotonin inhibition; others are more 

selective for norepinephrine inhibition. However, the majority block both serotonin and norepinephrine 
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reuptake to some extent. Unfortunately, the tricyclics also block histaminic, cholinergic, and alpha1-

adrenergic receptor sites, and this lack of selectivity is what accounts for the unwanted side effects 

such as weight gain, dry mouth, constipation, drowsiness, and dizziness. The major limitation 

associated to the use of tricyclics is not their efficacy but the side effects and potential death in 

overdose (Nojimoto et al, 2010) . 

Nowadays, SSRIs are the most commonly prescribed antidepressant medications worldwide. They were 

developed in response to the need for better-tolerated and safer antidepressants, retaining good clinical 

efficacy. The first SSRI, fluoxetine (Prozac) was released in 1987. Currently, there are six principal 

drugs included in this class (fluoxetine, sertraline, paroxetine, fluvoxamine, citalopram and 

escitalopram) all of them sharing the same major pharmacological mechanism (selective and potent 

inhibition of serotonin transporter). However, each of these drugs has secondary pharmacological 

targets that may account for their individual difference in terms of efficacy. Fluoxetine, for example, is 

an SSRI with 5HT2C antagonism action. Blocking serotonin action at 5HT2C receptor disinhibits the release 

of norepinephrine and dopamine (Stahl, 2013). Finally, the SNRIs combine the robust serotonin 

inhibition of the SSRI with various degrees of inhibition of the norepinephrine transporter (Stahl, 2013). 

In the table 1 is represented a summary of the different antidepressant agents and their major 

pharmacological targets. 
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Table 1 - Mechanism of action of some antidepressant agents and major pharmacological targets.  

Abbreviations: MAO: Monoamine oxidase, TCA: Tricyclic agent, SSRI: Selective serotonin reuptake  

Inhibitor, SNRI: serotonin-norepinephrine reuptake inhibitor , 5-HT: serotonin, NE: norepinephrine, AR: 

adrenergic receptor; MT: Melatonin. Adapted from (Millan et al, 2015). 

 

Over the last two decades, enormous resources (public and private, academia and industrial) have been 

dedicated to develope drugs with higher efficacy (Millan et al, 2015). However, our insufficient 

understanding of the pathophysiology of MDD combined with the lack of novel targets has constrained 

the ability to improve antidepressant therapies. As previously described, antidepressants are the first 

line for treating depression. However, drug efficacy is unsatisfactory with only one third of the patients 

presenting remission after treatment with a single drug.  The term treatment-resistant depression (TRD) 

is typically used to describe a form of MDD that has not responded adequately to antidepressant 

treatment (Fava and Davidson, 1996). In the non-remitted patients, several treatment strategies are 

adopted including changing antidepressant treatment, combining antidepressants (from the same or 

from different pharmacological classes), or augmentation strategies that consist in the addition of a 
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non-antidepressant treatment (e.g. lithium, ketamine and atypical antipsychotics). The anesthetic drug 

Ketamine (N-methyl-D-aspartate (NMDA) antagonist) was observed to induce a rapid antidepressant 

action in MDD patients (Berman et al, 2000; Melo et al, 2015) and is currently under intense study. 

Non-pharmacological treatments may also be used alone or in combination with pharmacological 

treatments. These include vagus nerve stimulation, electroconvulsive therapy, transcranial magnetic 

stimulation and deep brain stimulation. 

In fact, up to 60% of patients treated with the currently available therapies do not achieve full remission 

and evolve to treatment resistance (Blier and Blondeau, 2011; Lang and Borgwardt, 2013). Multiple 

clinical studies have previously highlighted the potential beneficial effects of atypical antipsychotics in 

treatment-resistant depression (Papakostas et al, 2007; Sagud et al, 2006; Shelton and Papakostas, 

2008). In accordance, different atypical antipsychotic drugs have received approval from the Food and 

Drug Administration (FDA) for the treatment of antidepressant-resistant forms of major depression 

(either as monotherapy or augmentation) (Papakostas et al, 2004), a fact that supports their potential 

role in the emotional domain. Studies in animals confirm this view and show that the association of an 

atypical antipsychotic and a SSRI synergistically increases the release of dopamine in prefrontal areas, 

thus improving motivation, pleasure, and appetite (Thase et al, 2007; Tohen et al, 2003). However, the 

mechanisms involved are still unclear. The possible modulation of neuroplasticity (including adult 

neurogenesis) by different classes of antipsychotics still remains to be established. 

 

1.2.2 Neuroplasticy as a target for depression 

Several hypotheses have been implicated in the pathophysiology of MDD. One of the most popular 

hypotheses is the so called “neurogenic hypothesis of depression”. This hypothesis implies that adult 

neurogenesis and other related aspects of hippocampal plasticity are involved in the pathophysiology of 

MDD and its effective treatment. In fact, several studies have described a downregulation of 

hippocampal neurogenesis under stressful conditions and an upregulation promoted by different 

antidepressant drugs (and other antidepressant treatments). Several factors have contributed to the 

popularity of this hypothesis, namely the temporal dynamics of neuroplastic mechanisms. In fact, the 

time course of maturation of newly generated neurons in the dentate gyrus parallels the delayed onset 

of therapeutic action of antidepressants (Schoenfeld and Cameron, 2015). Furthermore, this hypothesis 

is strengthened  by the evidence that other pharmacological classes such as mood stabilizers (lithium 

and valproate) enhance the proliferation of new cells and also the cell survival of the newly born cells 
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(Chen et al, 2000; Hanson et al, 2011a; Hao et al, 2004; Silva et al, 2008). Non-pharmacological 

treatments for depression, such as electroconvulsive seizure, also cause an increase in the number of 

new neurons. Other factors, such as environmental enrichment lead to increased neurogenesis, and 

interestingly displays a positive effect in stress-induced depressive and anxious behaviours (Jha et al, 

2011). Exercise is also associated with an increase of neural progenitor cells (NPCs) proliferation and 

decreased depressive and anxious behaviours (Brandt et al, 2010; Olson et al, 2006; Yi et al, 2009). In 

addition to these associative studies, others have also suggested that hippocampal neurogenesis is 

crucial for the manifestation of behavioral mood improvement (David et al, 2009; Santarelli et al, 

2003). In humans, clinical evidences support this hypothesis with a decrease in the hippocampal 

volume of MDD patients. Also non-treated MDD patients present a decrease in the proliferation 

compared with treated ones. However, some criticism has been associated with this hypothesis based 

on the possibility that other factors than decreased number of new neurons contributed for the 

hippocampal volume changes. In fact, animals exposed to chronic stress or elevated corticosterone 

concentration presented dendritic atrophy and loss of synapses (Sousa et al, 2000; Tata and Anderson, 

2010; Vyas et al, 2002) and consequently hippocampal volume reduction. Also, the reduced level of 

neurogenesis (per se) in rodents in the absence of stress does not induce depressive-like behaviour. 

However, reduced neurogenesis can precipitate depression-like symptoms in the context of stress. 

Regarding post-mortem studies, Reif and colleagues reported no differences on the number of neural 

progenitors in hippocampus (Reif et al, 2006). In contrast, a study by Boldrini et al. found a non-

significant trend towards a decrease in hippocampal NSCs in depressed patients (Boldrini et al, 2013). 

Lucassen et al., reported a significant reduction of precursor cells in non-treated depressed patients, 

comparing to age and sex-matched controls (Lucassen et al, 2010). In the future, more post-mortem 

studies should be performed to clarify the importance of this phenomenon in depression pathology. 

Considering the limitations associated with human studies, animal models have been widely used to 

test the neurogenic hypothesis of depression. A downregulation of hippocampal neurogenesis under 

stress conditions and an upregulation by antidepressants has been clearly demonstrated. Data from our 

laboratory indicates that antidepressants exert their short-term therapeutic effects by inducing neuronal 

remodelling of dendrites and synapses (faster morphological changes) in mood-regulating brain regions 

(hippocampus and PFC) rather than by stimulating neurogenesis (Bessa et al, 2009a). At long-term, the 

generated new neurons (with time to fully mature) and glial cells will have an impact on the emotional 

and cognitive deficits induced by chronic mild stress (CMS) exposure (Mateus-Pinheiro et al, 2013). In 
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fact, mammalian neurogenesis is a process taking between 4–6 weeks to produce new functional 

hippocampal neurons; correlating with the minimal time required by antidepressants to exert its action 

in depression patients. Altogether, strong evidences supports neurogenesis and other aspects of 

hippocampal plasticity as key players  involved in the pathophysiology  and treatment of depression 

(Hanson et al, 2011b; Santarelli et al, 2003; Snyder et al, 2011; Surget et al, 2011).  

 

1.3 Animal models for psychiatric disorders   

In the recent years several animal models to mimic mental disorders have been developed. These 

models have been crucial to understand the neurobiological mechanism associated with specific a 

disorder and also in the developmental of new therapeutic targets. In fact, these models mimicking 

specific pathology’s in a smaller or greater extent (one or several symptoms) reflect the key symptoms 

observed in human patients suffering from this disease. As expected, none of these models are perfect 

as none of them reproduces the full clinical picture observed in human disease. Taking this into 

account, the use of animal models in research to understand the pathological mechanisms and novel 

drug discovery requires a clear identification of which molecular components of the disease can be 

represented in a specific model. In my perspective this is the critical point: the correct identification of 

which dimensions are represented in our animal model and the molecular components altered. While 

we recognise that symptoms such as guilt, suicidality and sad mood are likely to be purely human 

features, other aspects of the depressive condition (anhedonia, behavioral despair and other 

neurovegetative changes such as alterations in sleep and appetite patterns) have been replicated in 

laboratory animals, and ameliorated with antidepressant treatment (Krishnan and Nestler, 2011; 

Nestler and Hyman, 2010). A possible model to study depression is the CMS paradigm that involves 

the exposure to varied intermittent stressors applied over a relatively prolonged time period. Sucrose 

preference test is normally used to assess the impact of this protocol in hedonic behaviour. Animals 

exposed to CMS reveal deficits in their motivation to consume a sucrose solution (1–2% of sucrose) 

measured either as total sucrose intake or as a preference against water (Willner, 2005). CMS exposure 

has also been shown to result in a number of other emotional changes that are difficult to objectively 

quantify, such as grooming deficits and changes in aggressive and sexual  behaviour. Many of these 

behavioural phenotypes are reversed by chronic antidepressant treatment (Strekalova et al, 2006). 
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1.4 Schizophrenia 

Schizophrenia is a complex neurodevelopmental psychiatric disorder of unknown aetiology involving 

gene-environment interactions that affects about 1% of the population worldwide (Owen et al, 2016a). It 

typically begins in late adolescence or early adulthood. In terms of symptomatology patients with 

schizophrenia show abnormal mental functions that have been categorized into: positive, negative and 

cognitive symptoms. Positive symptoms reflect an excess or distortion of thoughts and perceptions, 

typically characterized by the development of delusions and hallucinations. Negative symptoms include 

social withdrawal, loss of motivation, affective blunting and anhedonia, which also characterize other 

mood disorders such as major depression and account for the significant suicide rates in schizophrenic 

patients (Freedman, 2003). Cognitive symptoms involve multiple deficits in cognitive and executive 

processes. 

Although with an aetiology still unknown, epidemiology studies have shown that gestational or perinatal 

disturbances (including maternal starvation (Susser et al, 1996) and maternal infection (Brown and 

Derkits, 2010; Buka et al, 2001) increase the risk of developing schizophrenia. These studies give 

support to the neurodevelopmental theory of schizophrenia and some animal models have been 

developed to better understand the mechanism associated with this pathology: administration of 

methylazoxymethanol acetate (MAM), prenatal stress, maternal deprivation, isolation rearing, prenatal 

immune challenge and maternal malnutrition.  In the present work, the neurodevelopmental MAM 

animal model has been used to study the action of antipsychotic drugs. This model involves the 

administration of MAM to induce a neurodevelopmental disruption, which in turns produce a 

schizophrenia-like phenotype in pos-pubertal rats (Flagstad et al, 2004; Gastambide et al, 2015; Howe 

et al, 2015; Hradetzky et al, 2012; Moore et al, 2006). The mechanism by which MAM produces this 

phenotype is not clear. MAM is a cytostatic agent that interferes with mitosis and DNA methylation 

resulting in behavioural and anatomical brain abnormalities. Behavioural deficits in sensorimotor gating 

(Le Pen et al, 2006), inability to ignore irrelevant stimuli (Flagstad et al, 2005), hypersensitivity to 

amphetamine (Penschuck et al, 2006), and social withdrawal (Flagstad et al, 2004) with onset in 

adolescence (Le Pen et al, 2006) have been described. Anatomically, reduced thickness of the 

hippocampus, thalamus and several cortical regions have also been described (Moore H, 1997). 

 

Alterations in the neurotransmitters dopamine, glutamate and serotonin have also been implicated in 

the aetiology of schizophrenia. Elevated dopamine function is one of the most robust findings in 
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schizophrenia. In fact, there is a first dopamine hypothesis also described as the “original dopamine 

hypothesis” stating that an excess of dopamine subcortically is associated with the positive symptoms 

of schizophrenia. The popularity of this hypothesis was based on two observations: first, sustained 

exposure to D2 receptor agonists induces schizophrenia-like positive symptoms and second, all drugs 

with proven antipsychotic effects block D2 receptors to some degree. At the same time, the negative 

and cognitive symptoms of schizophrenia are thought to arise from a deficit of dopamine in the cortex, 

and the classical hypothesis was reformulated and termed as “revised dopamine hypothesis”. This 

hypothesis proposes a hyperactive dopamine transmission in the mesolimbic areas and hypoactive 

dopamine transmission in the prefrontal cortex in schizophrenia patients (Carlsson et al, 1999; da Silva 

Alves et al, 2008; Davis et al, 1991). For many years, the dopamine hypothesis has strongly influenced 

the pathophysiological theories of schizophrenia, and most antipsychotics appear to act, at least in part, 

through inhibition of dopamine D2 receptors in the mesolimbic frontal brain regions. However, 

nowadays it is clear that schizophrenia is more complex, with dopamine and other neurotransmitters 

playing critical role in this pathology.   

 

In the 1950´s, the serendipitous discovery of drugs with antipsychotic effects revolutionized the 

treatment and outcome of schizophrenia (Miyamoto et al, 2012). The first generation of antipsychotic 

drugs, also known as typical antipsychotics (e.g. Haloperidol), with a mechanism of action based on 

dopamine receptor D2 antagonism, proved to be effective in positive symptoms. However, besides the 

side effects of eliciting extrapyramidal symptoms (EPS), hyperprolactinemia and metabolic changes, 

these drugs also exacerbate the negative and cognitive symptoms. In contrast, the second generation of 

antipsychotics also known as atypical antipsychotics, with less potent D2 antagonism (due, in some 

cases, to the more rapid dissociation rate from the receptor (Miyamoto S, 200)) and with modulation of 

serotonin and noradrenaline receptors, maintain their effectiveness against positive symptoms, 

presenting fewer EPS and beneficial effects on cognitive functions and negative symptoms (Gallhofer et 

al, 1996). Clozapine was introduced in 1975 and is considered the first atypical antipsychotic 

developed. Clozapine produces no (or few) EPS and has shown to be effective in the management of 

positive and negative symptoms in chronic and treatment-resistant schizophrenic patients. However, 

due to the risk of agranulocytosis associated with clozapine, its prescription was restricted to refractory 

patients (Kilian et al, 1999; Rajagopal, 2005; Wong and Delva, 2007). 

This fact stimulated the development of novel generation of antipsychotics with a clinical profile similar 
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to clozapine. Several atypical antipsychotics (including risperidone, olanzapine and ziprasidone) and 

partial dopamine agonists (aripiprazole) have been created. Interestingly, clozapine remains the most 

effective agent for the treatment of refractory schizophrenia (Meltzer, 1990); but due to its potentially 

lethal agranulocytosis-inducing side effect (Kane, 1992) it is usually not considered the first-line 

treatment. However, clozapine has shown to reduce the risk of suicide in those with schizophrenia 

(Hennen and Baldessarini, 2005). Risperidone (Leysen et al, 1988), like clozapine, presents higher 

affinity for serotonin 5-HT2 receptors than dopamine D2 receptors, but they differ in other pharmacologic 

properties and side effects. Secondary side effects, such as weight gain and the metabolic syndrome, 

are normally associated with atypical antipsychotics use. Aripiprazole is a third-generation antipsychotic 

with a different mechanism of action, reducing dopaminergic neurotransmission through D2 partial 

agonism. As an atypical drug it also modulates receptors of the serotonin system: 5-HT1A partial agonist 

and serotonin 5-HT2A antagonist. Figure 4 shows a chronological representation on how the research 

field in treatment for schizophrenia has evolved along the years. In the table 2 is represented a 

summary of the different antipsychotic agents and their major pharmacological targets.  

 

 

 

 

 

 

 

 

Figure 4 – Schematic representation of the chronology for introduction of medication for the treatment 

of schizophrenia. Clozapine was withdrawn for safety reasons (agranulocytosis) then re-introduced in 

light of its unique efficacy and atypical profile. Not all drugs are shown.   
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Table 2 - Mechanism of action of some antipsychotic agents and major pharmacological targets. 

Adapted from (Millan et al, 2015). 

 

1.4.1 Neuroplasticity in Schizophrenia 

While the role of adult neurogenesis in depression is still questionable, the link between them is well 

characterized. However, in schizophrenia, this link is still an open question. In 2006, Reif and 

colleagues published a study using post-mortem brain tissue of schizophrenic patients, revealing a 

significant reduction in hippocampal neural stem cell proliferation (Reif et al, 2006). Neuronal 

abnormalities in the olfactory bulb were also reported in post-mortem patient, indicating a possible 

disturbance of cell proliferation in the SEZ (Arnold et al, 2001). In fact, the majority of the schizophrenic 

patients show defects in olfaction, and first-degree relatives of schizophrenia patients also show such 

olfactory defects (Moberg et al, 1999).  

Regarding the genetic component of this psychiatric disorder, some studies have been also developed. 
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A genetic analysis of a Scottish family with a high prevalence of schizophrenia indicated a mutation in 

the disrupted in schizophrenia 1 (DISC1) gene (Millar et al, 2000). DISC1 gene encodes for a protein 

that interacts with different protein partners to promote development and growth (Soares et al, 2011). 

The locations and time course expression of this protein suggest a role in neurogenesis and, in the 

postnatal brain (localized primarily in the hippocampus) (Austin et al, 2003; Schurov et al, 2004). 

Downregulation of DISC1 gene in mice has been correlated with impairments in cell proliferation in the 

DG of the hippocampus (Mao et al, 2009). DISC1 has been suggested as a modulator of the guidance 

in the migration of the new neurons in the DG (Namba et al, 2011) and, indeed, knockdown of DISC1 

protein in mice leads to accelerated maturation and abnormal morphology with less dendritic 

complexity of the newly generated neurons (Duan et al, 2007). These new neurons appear to be 

misplaced in circuitry and show aberrant physiological characteristics. Another gene associated to 

schizophrenia is Neuronal PAS Domain Protein 3 (NPAS3), a neuronal transcription factor known to be 

involved in a wide array of functions, including neurogenesis (Crews, 1998; Kamnasaran et al, 2003). 

Similarly, NPAS3 knockout mice show impaired neurogenesis in adulthood (Pieper et al, 2005) and 

diminished social recognition and hyperactivity (Erbel-Sieler et al, 2004). In neurodevelopmental animal 

models of schizophrenia (Phencyclidine (PCP) injection, prenatal injection of polyriboinosinic-

polyribocytidilic acid (poly (I:C)), a decrease in hippocampal cell proliferation was also observed, 

suggesting an involvement of hippocampal neurogenesis in the pathophysiology of schizophrenia. In the 

hippocampus it was shown that neurons had fewer dendritic spines and reduced dendritic arborisation. 

Evidence for reduced presynaptic markers was also reported (decrease expression of the presynaptic 

proteins synapsin and synaptophysin) (Harrison and Eastwood, 2001).  

Regarding the effects of antipsychotic medications on adult neurogenesis, the literature is not 

consensual. Previous studies have shown that haloperidol has no effect on hippocampal neurogenesis 

(Halim et al, 2004; Malberg et al, 2000). In the case of atypical antipsychotics, it was reported that 

risperidone and olanzapine increase neurogenesis in the SEZ, but not in the hippocampus (Wakade et 

al, 2002). However, another study has shown that olanzapine increases hippocampal neurogenesis 

(Kodama et al, 2004). In addition, using animal models of schizophrenia, hippocampal neurogenesis is 

recovered by atypical antipsychotics (Piontkewitz et al, 2012). Taken together, these studies suggest 

that atypical (but not classical) antipsychotics may increase hippocampal neurogenesis, which may be 

involved in the mechanisms of action of atypical drugs. These findings suggest a potential role for new 

neurons in schizophrenia, although a great deal of work is still needed to confirm or refute this 
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hypothesis. 
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OBJECTIVES 
 
It is now clear that various forms of structural plasticity, including the generation of new neurons and 

glial cells, may modify pathophysiological processes in neuropsychiatric disorders, namely in 

depression. In fact, several studies have shown decreased hippocampal neurogenesis in depressed 

patients, while treatment with different classes of antidepressant drugs in animal models increases 

neurogenesis in this region, allowing the recovery from emotional and cognitive changes. However, 

these effects have not been described for all the available classes of antidepressant drugs. Furthermore, 

the neuroplastic effects of antidepressants in other neurogenic regions such as the hypothalamus have 

yet to be determined. Despite the importance of these drugs in the recovery from depression, a 

significant proportion of depressed patients reveal incomplete remission and develop treatment-resistant 

forms of the disorder.  The use of atypical antipsychotics in these cases has been widely used in the 

clinical setting. However, the neuroplastic effects of these drugs in depression and schizophrenia are 

still largely unknown. Taking this into consideration we aimed to explore new perspectives on the 

interplay between psychopharmacology and neuroplasticity in these psychiatric disorders. More 

specifically we aim to address: 

 
1- Explore the neuroplastic effects of the MAO-A antidepressant Pirlindole in the unpredictable 

chronic mild stress (uCMS) animal model of depression; 
 

2- Dissect the actions of chronic stress and antidepressant treatment in hypothalamic 
neurogenesis in the uCMS animal model; 

 
3- Evaluate the role of neuroplasticity in the therapeutic actions of atypical antipsychotics in 

depression using the uCMS animal model; 
 

4-  Assess the neuroplastic effect of different classes of antipsychotics in the negative and 
cognitive symptoms of schizophrenia using the MAM animal model. 
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Supplementary figures and table 

 

Supplementary Figure 1. (a) Proximal and (b) distal spine densities of granule neurons in the SGZ of 
the hippocampus. Morphological classification of dendritic spines (c,d,e,f) and sholl analysis (g). Data 
represented as mean ± s.e.m 
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Abstract 

Major depression is associated with critical changes in appetite and body weight, which are differentially 

regulated by distinct classes of antidepressants. The hypothalamus is the key brain region involved in 

energy balance regulation and has been described as a novel neurogenic region. However, the possible 

modulation of hypothalamic neurogenesis by stress and antidepressant treatment is yet to be explored. 

In the present study, we aimed to address this by exploring hypothalamic neurogenesis in rats 

submitted to chronic mild stress (CMS) and treated with the antidepressants fluoxetine and imipramine. 

These analyses were performed in the arcuate (ARC) and median eminence (ME) nuclei of the 

hypothalamus, neurogenic regions that have recently been implicated in energy balance regulation. 

Additionally, the relevance of the functional phenotype of these newborn neurons was assessed by the 

co-expression with NPY, POMC and leptin receptors. At the end of treatment, the behavioural 

dimensions commonly affected in depression were assessed. During the entire experimental protocol 

body weight from each rat was collected once a week. Total food intake (during day and night period) 

was also quantified for each individual animal. 

The results revealed that stress and antidepressant treatment induced significant changes in food 

intake and body weight gain. Animals exposed to stress presented no differences in the total food intake 

but revealed significant body weight loss. Treatment with antidepressants differentially regulated these 

phenomena. While fluoxetine reduced total food intake and body weight gain, imipramine restored total 

food intake and increased body weight gain. In addition, the circadian disruption of feeding patterns in 

stressed animals was reversed by both antidepressants. Regarding the impact in the brain, the results 

revealed that stress and antidepressants differentially modulate hypothalamic neurogenesis in the ARC 

and ME nuclei. Stressed animals displayed an increase in newborn neurons in the ARC and a decrease 

in the ME. Interestingly, only imipramine was able to revert these neuroplastic effects.  

In summary, this work demonstrates that CMS and antidepressant treatment can modulate 

hypothalamic neurogenesis in two different hypothalamic nuclei involved in energy homeostasis. 

Furthermore, a differential effect in hypothalamic neurogenesis was observed with different classes of 

antidepressants.  
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Introduction 

Major depression and antidepressant treatment are associated with critical changes in appetite and 

body weight, which are typically included in the neurovegetative symptoms of depression. More 

frequently, there is a weight loss during the installation of depression and a weight gain during the 

treatment with antidepressant drugs. However, this effect is dependent on the type of antidepressant 

used (Davison, 2013; Deshmukh and Franco, 2003; Vanina et al, 2002). Fluoxetine, a serotonin 

selective reuptake inhibitor (SSRI) (Michelson et al, 1999), is associated with weight loss while 

imipramine, a tricyclic agent, is associated with weight gain. In the central nervous systems (CNS), the 

hypothalamus plays a central role in the regulation of these alterations (Kishi and Elmquist, 2005; 

Shimogori et al, 2010) and the specific hypothalamic neuronal populations express different types of 

neuropeptides, defined as anabolic and catabolic neurons, acting in a cooperative way to modulate food 

intake. The anabolic neurons co-express the orexigenic neuropeptides, agouti-related protein (AgRP) and 

neuropeptide Y (NPY) (Mercer et al, 2011), and their up-regulation promotes an increase in food intake. 

The catabolic neurons express the anorexigenic neuropeptides proopiomelanocortin (POMC) (Boston et 

al, 1997) acting to decrease food intake. The levels of expression of neuropeptides by these two 

different neuronal populations are regulated by metabolic peripheral signals including hormones (such 

as leptin and insulin) and gastrointestinal peptides (ghrelin) (Morton et al, 2006; Schwartz et al, 2000).  

Consequently, to understand the complexity of body weight regulation the interplay between the CNS 

and peripheral tissues should be considered. 

One of the theories proposes to be involved in the pathophysiology and treatment of depression is the 

“neurogenic hypothesis of depression”. This hypothesis proposes a decrease in hippocampal 

neurogenesis as a precipitant factor to depression while efficient antidepressant treatment is able to 

reverse this effect. Previous work from our team has already addressed the importance of adult 

hippocampal neurogenesis in the onset and remission from depression (Bessa et al, 2009a; Mateus-

Pinheiro et al, 2013; Morais et al, 2014). However, until now the importance of this phenomenon in the 

hypothalamic structure was not been studied. The hypothalamus was recently described as a brain 

region with cell renewal capacity, with newborn hypothalamic neurons being described as critical 

players in the regulation of energy balance (Kokoeva et al, 2005; Lee et al, 2012; Lee et al, 2014). The 

first study describing a functional role for this newly formed  hypothalamic neurons was published by 

Kokoeva et al. in 2005 (Kokoeva et al, 2005). In this study, obese mice that were infused with a ciliary 

neurotrophic factor (CNTF) (a drug that induces a decrease in body weight) displayed a strong increase 
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in hypothalamic neurogenesis. By using a co-administration of CNTF with an antimitotic drug to inhibit 

neurogenesis in obese mice they determined that the action of the drug on body weight reduction is 

compromised by neurogenesis inhibition (Kokoeva et al, 2005). More recently, Lee and colleagues 

demonstrated that high-fat diet (that leads to an increase in body weight gain) enhances adult 

neurogenesis in the hypothalamic median eminence (ME). More interestingly, they found a significant 

attenuation in body weight gain after the inhibition of neurogenesis in these specific hypothalamic 

nuclei. This study highlights the role of ME neurogenesis on the promotion of body weight gain in a 

high-fat diet context (Lee et al, 2012). Based on these studies we can appreciate that neurogenesis in 

the hypothalamus is triggered by different stimulus mainly involved on the modulation of appetite and 

energy balance control. In addition, the hypothalamic nuclei that respond by creating new neurons are 

dependent on the type of stimuli applied.  

In the present study, we aimed to explore the link between the changes in energy balance (body weight 

and food intake) in the context of depression (and antidepressant treatment) and the possible 

modulation of hypothalamic cell genesis (the formation of new neurons and astrocytes). Additionally, we 

also aimed to explore if these newborn cells exhibit a functional phenotype relevant to energy-balance 

regulation, namely if they express POMC/NPY neuropeptides and leptin receptors. These analyses were 

performed in the arcuate (ARC) and median eminence (ME) nuclei of the hypothalamus, already 

describe as neurogenic regions implicated in energy balance regulation. To address these questions an 

unpredictable chronic mild stress (uCMS) paradigm was implemented during 9 weeks to induce core 

symptoms of depressive-like behaviour in rats (Bessa et al, 2009a; Bessa et al, 2009b; Mateus-Pinheiro 

et al, 2013). During the last 3 weeks of uCMS, two different antidepressants, fluoxetine and 

imipramine, were daily administered. During the entire experimental protocol, food intake (during day 

and night period) and body weight gain were assessed once a week. At the end of treatment, animals 

were sacrificed and the brain was collected for cell genesis analysis and gene expression studies. 
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Materials and methods 

Animals 

Male Wistar rats (Charles-River Laboratories, Barcelona, Spain), weighing 300–400 g and aged 3 

months were used in this study. Animals were housed (two per cage) under standard laboratory 

conditions (12h light/ 12 h dark cycle, at 22ºC, relative humidity of 55%; free access to food and 

water). Animals were assigned to one of two main treatment groups (control and uCMS). All procedures 

were carried out in accordance with European Union Directive 86/609/EEC and NIH guidelines on 

animal care and experimentation. 

 

Unpredictable chronic mild stress protocol  

Unpredictable chronic mild stress (uCMS) was implemented based on a slightly modified protocol 

(Willner, 2005), already validated in our laboratory (Bessa et al, 2009b). Briefly, animals were random- 

and uninterruptedly exposed to a variety of mild stressors (confinement to a restricted space for 1h; 

overnight food deprivation followed by 1h of exposure to inaccessible food; overnight water deprivation 

followed by 1h of exposure to an empty bottle; overnight damp bedding; inverted light/dark cycles; 

exposure to stroboscopic lights and noise exposure) during 9 weeks. During the last 3 weeks of uCMS, 

animals were given daily injections of saline, fluoxetine and imipramine. 

 

Body weight and food intake measures 

During the entire experimental protocol body weight from each rat was collected once a week. 

Longitudinal weight gain was normalized to weight at the beginning of the experimental protocol. Total 

food intake (during day and night period) was also quantified for each animal. Total food intake was 

quantified during 24h once a week.  

 

Drugs 

The drugs used were fluoxetine (10mg/kg; Kemprotec, Middlesborough, UK) and imipramine 

(10mg/kg; Sigma-Aldrich, St Louis, MO, USA). Fluoxetine and imipramine were administered 

intraperitoneally (i.p.;1ml/kg). Compounds were dissolved in 5% DMSO in 0.9% saline. 
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Behavioural Tests  

Sucrose preference test  

To assess anhedonia, the sucrose preference test was conducted weekly during all the experimental 

procedure. Briefly, animals were allowed to habituate to the sucrose solution for 1 week before the 

uCMS protocol to establish baseline values for sucrose preference. To test sucrose preference, animals 

that were food- and water-deprived for 24h and then presented with two pre-weighed bottles containing 

2% of sucrose solution or tap water for a period of 1 h. Sucrose preference was calculated according to 

the formula: sucrose preference = [sucrose intake/(sucrose intake + water intake)] × 100, as previously 

described (Bekris et al, 2005). Anhedonia was defined as a reduction in sucrose preference relative to 

baseline levels. 

 

Forced swimming test  

Behavior despair was assessed through the forced swimming test. Twenty-four hours after a pre-test 

session (10min), rats were placed in cylinders filled with water (25°C; depth 30cm) for a period of 

5min. Test sessions were assessed using a camera connected to a video tracking system (Viewpoint); 

the system automatically calculated immobility time and latency to immobility. Behavioral despair was 

defined as an increase in time of immobility and a decrease in latency to immobility. 

 

Novelty suppressed feeding 

Anxiety-like behavior was assessed using the NSF test at the end of the uCMS protocol. Food-deprived 

(18 h) animals were placed in an open-field arena for a maximum of 10 min, where a single food pellet 

was positioned in the center, as previously described (Bessa et al, 2009b). After reaching the pellet, 

animals were individually returned to their home cage and were allowed to feed for 10 min. The latency 

to feed in the open-field arena was used as an index of anxiety-like behavior, whereas the food 

consumption in the home cage provided a measure of appetite drive.  

 
Corticosterone Levels Measurement 

For all animals, corticosterone levels were measured in blood serum using a [125I] radioimmunoassay kit 

(MP Biomedicals, Costa Mesa, CA), according to the manufacturer’s instructions. Blood sampling (tail 

venipuncture) was performed during the diurnal nadir (N, 0800–0900 hours) and diurnal zenith (Z, 

2000–2100 hours) at the end of the uCMS protocol. 
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Tissue processing and immunohistochemical analysis  

For immunofluorescence analysis, animals were anaesthetized with sodium pentobarbital (Eutasil, 60 

mg/Kg i.p.; Ceva Saúde Animal, Portugal) and perfused transcardially with 0,9% of NaCl followed by 4% 

of paraformaldehyde. Brains were following immersed in sucrose solution (30%), preserved with OCT 

compound and snap-frozen. Serial coronal sections (20 μm), extending over the entire length of the 

telencephalon, were cut on a cryostat and stored at -20ºC. The impact of uCMS and antidepressant 

treatment on hypothalamic neurogenesis was assessed by double staining using a marker to assess cell 

proliferation ki-67 (rabbit Ki-67 antibody; 1:300; Millipore) and a neuronal marker for immature and 

mature neurons Hu (mouse monoclonal anti-Hu; 1:200; Molecular Probes). Gliogenesis was assessed 

using ki-67 (rabbit Ki-67 antibody; 1:300; Millipore) and a glia cell marker (mouse GFAP Ab-6 

(ASTRO6); 1:200; NeoMarkers). Immunofluorescence to POMC (chicken polyclonal to POMC; 1:200; 

Abcam), NPY (Guinea pig polyclonal to Neuropeptide Y; 1:500; Abcam) and leptin receptor (Chicken 

polyclonal to Leptin Receptor, 1:200; Abcam) were also performed. All these analyses were performed 

using a confocal microscope (Olympus FV1000).  

 

qPCR measurements 

Total RNA was isolated from hypothalamus using Trizol reagent (Invitrogen, Carlsbad, CA, USA). 500 ng 

of total RNA was reverse-transcribed using qScript cDNA SuperMix (Quanta Biosciences, Gaithersburg, 

MD, USA). Quantitative real-time PCR analysis was used to measure the expression levels of the leptin 

receptor, proopiomelanocortin (POMC) and neuropeptide Y (NPY) mRNA transcript. The reference gene, 

hypoxanthine guanine phosphoribosyl transferase (Hprt), was used as internal standard for 

normalization. Oligonucleotide primers for leptin receptor (sense CCGCTGGGTTTGCGTATGGA and 

antisense AGACGATTTCAGCAGCCTCTCT) NPY (sense TGGACTGACCCTCGCTCTAT and antisense 

TGTCTCAGGGCTGGATCTCT), POMC (sense TCCATAGACGTGTGGAGCTG and antisense 

GACGTACTTCCGGGGATTTT) and Hprt (sense GCAGACTTTGCTTTCCTTGG and antisense 

TCCACTTTCGCTGATGACAC) were designed using the Primer3 software.  Reactions were performed in 

an Applied Biosystems 7500 Fast Real-Time PCR System (Applied Biosystems, LLC, CA, USA) using 

PerfeCTa SYBRGreen SuperMix, Low ROX (Quanta Biosciences). The relative expression was calculated 

using the DDCt method. Results are presented as fold-change of mRNA levels between the respective 

experimental groups after normalization to Hprt levels. 
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Statistical analysis  

After confirming the homogeneity of the data distribution, the appropriate statistical tests were 

performed using SPSS. Repeated measures ANOVA were used to analyze the results of sucrose 

preference test, body weight gain and food intake during day and night period. One-way ANOVA was 

used to evaluate the impact of CMS and of the treatment with the drugs in FST, NSF, corticosterone 

levels in the day and night period and the results of neurogenesis and gene expression. Differences 

between groups were then determined by Tukey’s honestly significant difference test (Tukey HSD) post 

hoc analysis. Statistical significance was accepted for P < 0.05. 
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Results 

Behavioral results 

In the present study we explored the possible role of antidepressant drugs in the modulation of 

hypothalamic neurogenesis. To tackle this question we used a well-established animal model of 

depression (the uCMS protocol) in which animals were treated with two different antidepressant drugs, 

fluoxetine and imipramine (Figure 1a). Anhedonia was assessed weekly in the SPT, performed during all 

the experimental protocol. Animals exposed to uCMS revealed a significant decrease in sucrose 

preference when compared with control animals (F1,46=52,853; P<0.0001), indicating an anhedonic 

phenotype. Chronic administration of antidepressants in the last 3 weeks of the uCMS protocol lead to 

a significant global effect reverting the depressive like phenotype (F3,44=39,693; P<0.0001) (figure 1b). 

Post-hoc analysis revealed significant differences between the animals treated with vehicle and animals 

treated with fluoxetine and imipramine (P<0.0001).     

Exposure to the uCMS protocol induced a significant increase in the immobility time in the FST 

(F1,22=27.951; P<0.0001). Antidepressant treatment reversed this phenotype (F2,33=25,916; P<0.0001) 

(Figure 1c). Exposure to chronic stress significantly increased the latency to feed in the NSF paradigm 

(F1,22=6,780; p=0,016). A significant effect of antidepressant treatment was observed (F2,33=10,131; 

P<0.0001). Both imipramine and fluoxetine normalized the anxious phenotype induced by uCMS 

protocol (P=0.001) (Figure 1e). Corticosterone levels were measured in the serum. At the 9th week of 

the protocol, control animals presented a functional circadian regulation of the corticosterone 

production (nadir vs zenith t12=-5,120; p<0.0001) whereas uCMS-exposed animals presented no 

circadian regulation (nadir vs zenith t12=0,019; p=0,985). The chronic treatment with fluoxetine and 

imipramine reverted the uCMS effects, presenting a circadian regulation of the corticosterone secretion 

(nadir vs zenith: fluoxetine: t12=-3,527; p=0,005; imipramine: t12=-4,289; p=0,001). Considering the 

difference between groups in the two different time points, basal and peak, we found a significant effect 

in the basal (F3,44=4,240; p=0,01) but not in the peak (F3,44=2,14; p=0,109). At the basal level we 

observed a difference between uCMS vs control (p=0,009) and uCMS vs imipramine (p=0,05) (Figure 

1e). 

 

Body weight and food intake 

Regarding the body weight gain during the experimental protocol before treatment, all animals 

presented an increase (figure 2a). However, uCMS animals showed a significant reduction in weight 
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gain when compared with control group (before (F1,46=26,05; p<0.0001) and after treatment 

(F3,44=97,536; p<0.0001)). During the last three weeks of the uCMS protocol, the group of animals 

treated with antidepressants presented a significant decrease in body weight gain (compared with 

uCMS animals) (p<0.0001). Comparing the body weight gain curve profile, between the two 

antidepressants used, we observed a more pronounce effect (a decrease) in fluoxetine than imipramine 

(p=0,001) group. Total food intake was also analyzed during all the experimental protocol. uCMS 

animals presented no difference in the total food intake during all the experimental protocol when 

compared with controls. Regarding the period of chronic antidepressant treatment, in the first week, 

fluoxetine and imipramine treated animals presented a significant decrease in the total food intake 

compared with uCMS (p<0.0001). This effect in the reduction of the total food intake persists in the 

second (p<0.0001) and third (p=0,001) week in the fluoxetine-treated animals. Imipramine-treated 

animals only presented differences in the first week of treatment (p=0,004), but not in the second 

(p=0,272) and third week (p=0,585) compared with uCMS animals. Comparing both treatments 

(fluoxetine versus imipramine), fluoxetine treatment elicited a more pronounce effect in the decrease of 

food intake in the first (p=0.004), second (p=0.014) and third week (p= 0.01) of treatment. We also 

measured the amount of food intake during the day and night period during all the experimental 

protocol (figure 2d). As expected, control animals presented a normal circadian rhythms of feeding 

(eating more during the night period). uCMS animals exhibited a different curve profile, showing a 

disruption in the normal pattern of feeding. This disruption in the circadian rhythms of feeding was 

visible after the 3rd week of the uCMS protocol and was maintained until the end of the study with no 

significant differences between the food intake during the night and day period (fig f) (control versus 

uCMS F1,46=413,936; p<0.0001).  At the end of the experimental protocol (3rd week of treatment), 

control animals presented a clear difference between the food intake at day and night period (t=-7,879; 

p=0,001). uCMS animals maintained the pattern of feeding behavior, presenting no differences 

between the food intake at the day and night (t=-1,967; p=0,106) period. Antidepressant treatment, 

namely fluoxetine (t=-2,595; p= 0.049) and imipramine (t=-2,425, p= 0.06), was able to restore the 

normal pattern of feeding. Regarding the effect in the day and night period in all the groups, no 

differences were observed in the day (F3,20=1,391; p=0,274). In the night an overall effect was observed 

(F3,20=7,272; p=0,002). Differences were observed between control and fluoxetine (p=0,002) and 

imipramine treated animals (p=0,019) and an non statistical difference were observed between uCMS 

and fluoxetine treatment (p=0,06). 



 

 

 65 

Impact of antidepressants on cell genesis 

The possible modulation of adult hypothalamic neurogenesis by uCMS and antidepressant treatment 

was following analyzed. Two different nuclei of the hypothalamus were studied, namely the arcuate 

(ARC) and median eminence (ME) nuclei. For that, brain sections of the different groups of animals 

containing hypothalamus were analyzed for neurogenesis and also gliogenesis (more specifically 

astrocytes). Regarding neurogenesis in the ARC nucleus of the hypothalamus (figure 3a), uCMS animals 

presented a significant increase compared with controls (F1,6=12,155; p=0,013). Regarding the effect of 

chronic treatment with antidepressants, an overall effect was observed (F2,9=15,298; p=0,001). 

Fluoxetine treated animals presented the same levels of neurogenesis compared to uCMS (p=0,597); 

the chronic treatment with imipramine lead to a significant decrease on neurogenesis in this specific 

hypothalamic nuclei compared with uCMS (p=0,006) and fluoxetine (p=0.001) treated animals (figure 

3b). Concerning neurogenesis in the ME nucleus, uCMS animals presented no differences compared 

with control group (F1,5=2,662; p=0,164) (although a tendency to a decrease was observed). Fluoxetine 

treated animals presented no differences when compared to uCMS (p=0,973) while imipramine 

induced a significant increase in the formation of new neurons in this specific nucleus (figure 3c) 

(p=0,003). 

Regarding the formation of new astrocytes, a non-significant increase was observed in the uCMS group 

(control versus uCMS animals). This effect was observed in the ARC (F1,6=4,196; p=0.086) but not in 

the ME (F1,5=3,571; p=0,117). The same effect was observed in animals treated with fluoxetine and 

imipramine (presenting no differences compared to uCMS) both in the ARC and ME nuclei. 

 

After the observation that stress and antidepressants modulate hypothalamic neurogenesis, we 

explored if these new cells express appetite-related neuropeptides (NPY and POMC) and leptin 

receptors. Considering the formation of new NPY cells (figure 4a), an increase in the percentage of cells 

that express NPY was observed in uCMS animals (compared with control) (F1,10=7,429; p=0,023). 

Antidepressant treatment modulated the gene expression of NPY (F2,14= 5,444; p=0,018); with fluoxetine 

and  imipramine treated animals presenting no differences compared with uCMS. However, a difference 

between both antidepressants was observed with imipramine treated animals presenting a decrease in 

the number of new cells expressing NPY (p=0,014). These results were only observed in the ARC 

nucleus of the hypothalamus. No new cells expressing NPY were observed in the ME nucleus of the 

hypothalamus. We also analyzed if these newly born cells express POMC. No new cells expressing 
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POMC were observed in all the different groups, in both nuclei under study (figure 4c). Additionally, we 

analyzed if this new proliferating cells expressed leptin receptors. No expression of leptin receptors was 

observed in the ARC and ME nuclei of the hypothalamus in all the different groups (figure 4d). 

 

Gene expression studies  

The mRNA expression levels of leptin receptors, NPY and POMC was measured by qPCR in the 

dissected hypothalamus. uCMS animals presented a decrease in the levels of leptin receptors 

compared with control (F1,10=5,146, p=0,049). The chronic administration of fluoxetine and imipramine 

did not induce any alteration in the levels of leptin receptors . Considering the levels of NPY, no 

differences were observed between control and uCMS (F1,10=1,893; p=0,199). Regarding the POMC 

levels, we observed a decrease after exposition to uCMS (F1,8=1,893; p=0,017). Chronic treatment with 

antidepressants (fluoxetine and imipramine) induced no alteration in its levels (figure 4f). 
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Discussion 

In the present study we show for the first time that chronic stress and antidepressant treatment 

modulate hypothalamic cell genesis and that these newly formed cells express neuropeptides 

implicated in the regulation of appetite and energy balance. We also demonstrated that different classes 

of antidepressants have a different action in the modulation of hypothalamic neurogenesis. 

 

The recent discoveries that the postnatal hypothalamus is able to produce new neurons and that this 

phenomenon is altered in response to different types of diet have opened new lines of research. In the 

present study we aimed to understand if the alterations observed in energy balance induced by the 

exposition to chronic stress as well as treatment with different antidepressants may be associated with 

variations in hypothalamic neurogenesis. To address this question we used the uCMS animal model of 

depression, and we chronically  treated these animals with two different classes of antidepressants, 

fluoxetine and imipramine (Bessa et al, 2009b). By using different behavioral paradigms, we confirmed 

the induction of a depressive-like phenotype (SPT, FST and NSF) that was reversed with the 

administration of fluoxetine and imipramine. Additionally, exposure to uCMS indiced a disruption in the 

diurnal pattern of corticosterone production, with antidepressant treatment leading to a re-

synchronization of the diurnal pattern of corticosterone secretion as previously described (Patricio et al, 

2015). 

Reduction in the body weight gain is a well-known consequence of exposure to chronic stress. In the 

present study we confirmed this effect, with uCMS animals presenting a clear decrease in the body 

weight gain comparing with control animals. Regarding the impact of antidepressants, a different curve 

profile was observed when comparing fluoxetine with imipramine treated animals. As previously 

described, fluoxetine treated animals exhibited a more pronounced effect on the reduction of the body 

weight gain compared with imipramine animals (Gutierrez et al, 2002). 

In terms of total food intake, our uCMS animals presented no differences compared with controls. 

However, some groups have also observed a decrease in food intake (Farhan et al, 2014). 

Furthermore, we have observed a disruption in the circadian rhythms of feeding, with uCMS animals 

eating the same during the day and night period. Both antidepressants were able to restore the normal 

pattern of feeding, eating the treated animals more during their active period (night period). The positive 

impact of antidepressant drugs in the normalization of the circadian rhythms of feeding could be due to 

the reestablishment of the diurnal pattern of corticosterone secretion by treatment. Again, and in 
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accordance with body weight gain data, imipramine-treated animals ate more during all the treatment 

weeks.  

Considering the impact of chronic stress on hypothalamic neurogenesis, more specifically in the ARC 

nucleus of the hypothalamus, an increase was observed (compared with the control group). In the ME, 

a decrease on neurogenesis was observed after exposition to uCMS protocol. These results showed for 

the first time a modulation of hypothalamic neurogenesis by the chronic stress. Furthermore, we 

observed the involvement of two hypothalamic nuclei, responding differently to the same stimulus. 

Regarding the impact of antidepressant drugs on the modulation of hypothalamic neurogenesis, 

fluoxetine treated animals presented the same levels of neurogenesis as uCMS. However, imipramine 

treated animals presented an opposite impact, decreasing the levels of neurogenesis in the ARC and 

increasing the levels on the ME nucleus. Interestingly, these two antidepressants have a different 

impact on food intake and body weight gain and modulate differently the hypothalamic neurogenesis 

(ARC and ME). Considering the function of these two hypothalamic nuclei, the ARC is a well-established 

nucleus that plays a crucial role in the regulation of energy balance by expressing different appetite-

related neuropeptides, namely NPY and POMC. The function of the ME nucleus is not so well 

established, however considering that ME lies outside the blood-brain barrier and consequently can 

sense more easily the alteration in the circulating peripheral signals make this nucleus particularly 

attractive. The recent paper of Lee et al. attributes also a functional role for this nucleus in the increase 

of body weight with high-fat diet context (Lee et al, 2012; Lee et al, 2014). Another important finding 

was also more recently published describing that high-fat diet enhances ME neurogenesis in females 

but not in males, suggesting a sex-specific modulation of neurogenesis in this nuclei. Additionally, they 

observed an opposite effect on neurogenesis (a decrease) in the ARC nuclei in both sexes under the 

same stimulus (high-fat diet) (Lee et al, 2014). This was an interesting finding, since the ME and ARC 

nuclei are in close contact, but can respond differently and in an opposite way to the same stimulus. In 

the present study we observed the same opposing effects, with ARC and ME nuclei responding 

differently to the same stimuli (stress and antidepressant treatment). In the future, more studies should 

be performed to understand the meaning of this different modulation. Another study was published by 

Sousa-Ferreira et al. assessing the impact of fluoxetine on cell proliferation and differentiation using 

fetal hypothalamic neuroprogenitor cells as an in vitro model. They observed an increase on cell 

proliferation (using ki-67 as a marker to assess cell proliferation), showing by this way the ability of 
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fluoxetine to modulate cell proliferation (Sousa-Ferreira et al, 2014). This in vitro data correlates with 

our in vivo study since fluoxetine is able to modulate neurogenesis.  

In the ARC nucleus of the hypothalamus, the expression of different neuropeptides (orexigenic and 

anorexigenic) involved in the modulation of food intake were also analyzed.  We found newly formed 

cells expressing these neuropeptides, highlighting the possible role of hypothalamic neurogenesis in the 

adaptation to different energy status (induced by stress and antidepressant treatment). Considering the 

observed increase in the newly NPY cells by uCMS and fluoxetine treatment, we hypothesized a 

potential compensatory mechanism to counterbalance the impact of stress and fluoxetine treatment in 

the decrease of body weight gain.  

The expression of different genes involved in energy balance control was also analyzed in the 

hypothalamus. Our data showed a modulation of leptin receptors by uCMS protocol (a decrease was 

observed). Other groups have already described a reduction in the leptin levels after uCMS and chronic 

social defeat models of depression (Lu et al, 2006). No alterations in the levels of leptin receptors were 

observed by antidepressant treatment. Regarding the gene expression levels of NPY, no differences 

were observed indicating that stress and fluoxetine treatment may act specifically in the arcuate nucleus 

of the hypothalamus. Previously, in an in vitro study using fetal hypothalamic neuroprogenitor cells, an 

increase in the mRNA levels of the orexigenic neuropeptide NPY was reported with fluoxetine treatment 

(Sousa-Ferreira et al, 2014). No differences were observed in the mRNA levels of POMC after fluoxetine 

administration. In our study we only observed a decrease the levels POMC after uCMS (that was 

maintained with antidepressant treatment). However, we should consider that we are using a more 

complex model and treating animals that present a depressive-like phenotype with antidepressants. 

 

In summary, this work demonstrated that chronic stress, as a precipitant factor for depression, can 

change hypothalamic neurogenesis in two different hypothalamic nuclei involved in the regulation of 

energy balance. Antidepressant treatment can also modulate hypothalamic neurogenesis, and the type 

of modulation induced is dependent on the class of antidepressant used. In the future, more studies 

should be performed to understand the functional implications of cell genesis in the hypothalamus to 

the behaviour control of hypothalamic function. 
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Figure 1- Behavioral effects of the uCMS and antidepressant treatment on mood and anxiety. (a) 

uCMS protocol was applied to the rats for 9 weeks; two different antidepressants (fluoxetine and 

imipramine) were administrated in the last three weeks of the uCMS protocol. (b) Sucrose Consumption 

Test was performed during all experimental protocol to evaluate anhedonia. (c) Learned helplessness 

was evaluated in the Forced Swim Test. (d) Anxiety was analysed in the Novelty Supressed Feeding (e) 

Corticosterone levels were measured in the blood. Data represented as mean + sem. #denotes the 

effect of CMS-exposure; *denotes the effect of antipsychotic compared with CMS non treated animals. 

 *,# p<0,05; **,## p<0,01;***,### p<0,001.  
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Figure 2- Effects of the uCMS and antidepressant treatment on (a) body weight gain and (b, c, d) 

appetite during the treatment period. The circadian rhythms of feeding were measured (e) during uCMS 

protocol and in (f) in the last week of treatment. Data represented as mean + sem. #denotes the effect 

of CMS-exposure; *denotes the effect of antipsychotic compared with CMS non treated animals. 

 *,# p<0,05; **,## p<0,01;***,### p<0,001.  
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Figure 3- Antidepressant treatment effects on the newly born cells. (a) Proliferative ki-67 cells in the 

hypothalamus expressing a neuronal marker (HU). (b) The percentage Ki-67 that was co-labelled with 

Hu in the ARC nucleus of the hypothalamus and (c) ME. (d) Newly formed astrocytes in the 

hypothalamus. (e) The percentage of ki-67+ cells that was co-labelled with the antibody against GFAP in 

the ARC and (f) ME. (g) Schematic representation of the neuro/gliogenesis process observed in the 

present study. Data represented as mean + sem. #denotes the effect of CMS-exposure; Data 

represented as mean + sem. #denotes the effect of CMS-exposure; *denotes the effect of antipsychotic 

compared with CMS non treated animals. *,# p<0,05; **,## p<0,01;***,### p<0,001.  
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Figure 4- Antidepressant treatment effects on the newly born cells. (a, b) Newly born cell expressing 

NPY. New cells do not express (c) POMC and (d) NPY. The gene expression levels of (e) leptin receptors 

(f) NPY and (g) POMC in the hypothalamus. Data represented as mean + sem. #denotes the effect of 

CMS-exposure; *denotes the effect of antipsychotic compared with CMS non treated animals. 

 *,# p<0,05; **,## p<0,01;***,### p<0,001.  
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Abstract 

Depression is a prevalent psychiatric disorder with an increasing impact in global public health. 

However, a large proportion of patients treated with currently available antidepressant drugs fail to 

achieve remission. Recently, antipsychotic drugs have received approval for the treatment of 

antidepressant-resistant forms of major depression. The modulation of adult neuroplasticity, namely 

hippocampal neurogenesis and neuronal remodeling, has been considered to play a key role in the 

therapeutic effects of antidepressants. However, the impact of antipsychotic drugs on these 

neuroplastic mechanisms remains largely unexplored. In this study, an unpredictable chronic mild 

stress protocol was used to induce a depressive-like phenotype in rats. In the last 3 weeks of stress 

exposure, animals were treated with two different antipsychotics: haloperidol (a classical antipsychotic) 

and clozapine (an atypical antipsychotic). We demonstrated that clozapine improved both measures of 

depressive-like behavior (behavior despair and anhedonia) while haloperidol had no significant effect in 

anhedonia and aggravated learned helplessness in the forced swimming test and behavior flexibility in a 

cognitive task.  Importantly, an upregulation of adult neurogenesis and neuronal survival was observed 

in animals treated with clozapine while haloperidol promoted a downregulation of these processes. 

Furthermore, clozapine was able to reestablish the stress-induced impairments in neuronal structure 

and gene expression in the hippocampus and prefrontal cortex. These results demonstrate the 

modulation of adult neuroplasticity by antipsychotics in an animal model of depression, revealing that 

the atypical antipsychotic drug clozapine reverts the behavioral effects of chronic stress by improving 

adult neurogenesis, cell survival and neuronal reorganization. 
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Introduction 

Major depression is a highly prevalent and complex psychiatric disorder that affects multiple behavioral 

domains, presenting a wide range of symptoms, namely depressed mood, anhedonia, anxiety and 

cognitive impairments that confer a severe disability and impaired quality of life in patients.(Mergl et al, 

2007; Sheehan, 2002; Villanueva, 2013) Strikingly, up to 60% of patients treated with the currently 

available therapies do not achieve full remission and evolve to treatment resistance.(Blier et al, 2011; 

Lang et al, 2013) Taking this into account it is essential to explore new strategies to achieve full 

remission and to prevent the recurrence of depressive episodes. Multiple clinical studies have 

previously highlighted the potential beneficial effects of atypical antipsychotics in treatment-resistant 

depression.(Papakostas et al, 2007; Sagud et al, 2006; Shelton et al, 2008) In accordance, different 

atypical antipsychotic drugs have received approval from the Food and Drug Administration (FDA) for 

the treatment of antidepressant-resistant forms of major depression (either as monotherapy or 

augmentation)(Papakostas et al, 2004), a fact that supports their potential role in the emotional 

domain. Studies in animals confirm this view and show that the association of an atypical antipsychotic 

and a selective serotonin reuptake inhibitor (SSRI) synergistically increases the release of dopamine in 

prefrontal areas, thus improving motivation, pleasure, and appetite.(Thase et al, 2007; Tohen et al, 

2003) However, until now the mechanisms by which atypical antipsychotics work in the treatment of 

this disorder remains unclear.    

Antipsychotic drugs are generally classified into classical and atypical. The mechanism of action of 

classical antipsychotics (e.g. haloperidol), is based on dopamine receptor type 2 (D2) antagonism and 

have proven to be effective in the positive symptoms of schizophrenia. However, besides eliciting 

extrapyramidal symptoms (EPS), hyperprolactinemia and metabolic changes, these drugs may 

exacerbate the negative and cognitive symptoms. In contrast, second generation antipsychotics also 

known as atypical antipsychotics, (e.g. clozapine), with less potent D2 antagonism and with modulation 

of serotonin and noradrenaline receptors, maintain their effectiveness against positive symptoms, with 

fewer EPS and with no impairments on cognitive function and negative symptoms.(Ginovart and Kapur, 

2012; Miyamoto et al, 2005)   

Adult neuroplasticity, namely hippocampal neurogenesis and neuronal morphology have been 

implicated in the action of antidepressants.(Malberg et al, 2000; Morais et al, 2014; Patricio et al, 

2015; Pittenger and Duman, 2008; Santarelli et al, 2003) This hypothesis is supported by animal and 

human studies describing a downregulation of hippocampal neurogenesis and neuronal morphological 
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complexity under stressful conditions, which is reverted by antidepressant drugs.(Morais et al, 2014; 

Sapolsky, 2004; Snyder et al, 2011; Surget et al, 2011) Furthermore, these neuroplastic changes have 

been associated with the expression of neurotrophic factors, cell adhesion molecules and synaptic 

proteins.(Bessa et al, 2009a; Duman, 2004; Opal et al, 2014; Pittenger et al, 2008) However, the 

importance of these mechanisms in the therapeutic effects of antipsychotics in depression has never 

been explored.  

In the present study, we evaluated the behavioral effects of different classes of antipsychotics in the 

chronic mild stress (CMS) animal model of depression. Rats were exposed to the CMS paradigm for 7 

weeks to induce core symptoms of depressive-like behavior.(Bessa et al, 2009a; Bessa et al, 2009b) 

During the last 3 weeks of CMS, two different antipsychotic drugs, haloperidol and clozapine, were daily 

administered.  Anhedonia was assessed using the sucrose preference test (SPT), during the 

experimental protocol. Behavior despair was evaluated with the forced swimming test (FST). Cognitive 

function was assessed by different tasks designed to assess spatial working, reference memory and 

behavioral flexibility. To explore adult neuroplasticity we examined whether stress-induced changes in 

neurogenesis at short-term(Bessa et al, 2009a; Morais et al, 2014) and long-term(Mateus-Pinheiro et 

al, 2013) are influenced by the different classes of antipsychotic drugs. Furthermore, dendritic 

arborization and complexity was analyzed in Golgi impregnated neurons in the hippocampus and 

prefrontal cortex (PFC). Finally, the expression of genes involved in neuroplasticity and in antipsychotic 

action was evaluated in these brain regions.  
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Materials and Methods 

Animals 

Male Wistar rats (n=79, Charles-River Laboratories), weighing 200–300g and with 3 months of age 

were group-housed (three per cage) under 12h light: 12h dark cycles, at 22°C, relative humidity of 55% 

and with food and water ad libitum. These animals were randomly assigned to four main experimental 

groups – a control group without stress exposure treated with saline (n=17) and four groups exposed to 

CMS and treated with either saline (n=17), haloperidol (0,05mg/kg, n=15), clozapine (2,5mg/kg, 

n=15) and fluoxetine (10mg/kg, n=15). All procedures were carried out in accordance with European 

Union Directive 86/609/EEC and NIH guidelines on animal care and experimentation. 

  

Chronic mild stress protocol 

Chronic mild stress was implemented based on a slightly modified protocol,(Willner, 2005) already 

validated in our laboratory.(Bessa et al, 2009a) Briefly, the animals were random- and uninterruptedly 

exposed to a variety of mild stressors (confinement to a restricted space for 1h; overnight food 

deprivation followed by 1h of exposure to inaccessible food; overnight water deprivation followed by 1h 

of exposure to an empty bottle; overnight damp bedding; inverted light/dark cycles; exposure to 

stroboscopic lights during 1h and noise exposure during 1h during 7 weeks. During the last 3 weeks of 

CMS, animals were given daily injections of saline, haloperidol, clozapine and fluoxetine.  

 

Drugs 

The antipsychotics used in this study were haloperidol (0,05 mg/kg; Sigma-Aldrich, St Louis, MO, USA), 

clozapine (2,5 mg/kg; Kemprotec, Middlesborough, UK) and fluoxetine (10mg/kg; Kemprotec, 

Middlesborough, UK). Compounds were dissolved in distilled water and administered intraperitoneally 

(i.p.) (1 ml/kg) during the last 3 weeks of the CMS protocol. All injections were performed at 18:00. To 

assess cell proliferation, neurogenesis and gliogenesis all animals received an injection of 

Bromodeoxyuridine (BrdU) (100mg/kg, i.p.) 24h before sacrificed. To assess cell and neuronal survival 

all the animals were injected with BrdU (50mg/kg/day, i.p) during 5 days and sacrificed 1 month later.   
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Behavioral Tests 

Sucrose preference test 

To assess anhedonia, the SPT was conducted weekly during all the experimental procedure. Briefly, 

animals were allowed to habituate to the sucrose solution for 1 week before the CMS protocol to 

establish baseline values for sucrose preference. To test sucrose preference, animals that were 

subjected to food and water deprivation for 24h and then presented with two pre-weighed bottles 

containing 2% of sucrose solution or tap water for a period of 1h. Sucrose preference was calculated 

according to the formula: sucrose preference = [sucrose intake/(sucrose intake + water intake)] × 100, 

as previously described.(Bessa et al, 2009a) Anhedonia was defined as a reduction in sucrose 

preference relative to baseline levels.   

 

Forced swimming test 

Behavior despair was assessed through the FST on the last day of exposure to CMS. Twenty-four hours 

after a pre-test session (10 min), the FST was conducted by placing rats in cylinders filled with water 

(25 °C; depth 30 cm) for a period of 5min. Test sessions were assessed using a camera connected to 

a video tracking system (Viewpoint); the system automatically calculated immobility time and latency to 

immobility. Behavior despair was defined as an increase in time of immobility and a decrease in latency 

to immobility. 

 

Morris Water Maze  

Cognitive function was evaluated in different tasks of the Morris Water Maze (MWM): spatial working, 

reference memory and behavioral flexibility. The MWM was conducted in a circular black tank 

(diameter: 170 cm; depth: 50 cm), divided in quadrants by imaginary lines, and filled with water (22°C) 

to a depth of 31 cm. During testing, a black platform (12 × 12 cm; invisible to the rats) was placed at a 

height of 30 cm. The room was dimly lit and extrinsic visual clues were glued to the walls. Data were 

collected using a video tracking system (Viewpoint).(Cerqueira et al, 2007)  

The working memory task was used to evaluate the cognitive domain that relies on the interplay 

between the hippocampal and PFC function.(Cerqueira et al, 2007) In this task the position of the 

platform is kept constant during the four trials of each day, but varies on each successive day such that 

all four quadrants are used. Rats are placed, facing the wall of the maze, at a different starting point 

(north, east, south, or west) at the beginning of each of the four daily trials. A trial is considered 
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complete when the rat escapes onto the platform; when this escape fails to occur within 120 s, the 

animal is gently guided to the platform and an escape latency of 120 s is recorded for that trial. Rats 

are allowed to spend 30s on the escape platform before being positioned at a new starting point. 

Length of the path described (distance swam) and time spent to reach the platform (escape latency) are 

recorded in the consecutive trials.    

After the working memory procedure, animals were tested in the spatial learning test, an hippocampal-

dependent task. In this task, animals were tested for three consecutive days (four trials per day, with a 

maximum of 2 min per trial). The escape platform was placed in the centre of an arbitrarily-defined 

quadrant, assigned to a specific test subject. Test sessions begun with rats being placed, facing the wall 

of the maze, in a defined start position and finished once the escape platform had been reached. This 

procedure was continued in a clock-wise fashion over the subsequent trials. The distance travelled and 

the time spent to reach the platform was recorded. When the escape platform was not reached within 2 

min, the experimenter guided the animal to the platform. At the end of each test session, animals were 

dried and allowed to rest for 30 s before being returned to the maze for the remaining test sessions of 

that day.  

After the reference memory evaluation, animals were tested in a reverse learning task (a PFC-

dependent function) in which the escape platform was positioned in a new (opposite) quadrant and rats 

were tested in a four-trial paradigm, as described above. For this task, distance and time spent 

swimming in each quadrant were recorded. The difference between distances travelled in the quadrant 

containing the newly-positioned platform (“new”) and the quadrant that previously contained the 

platform (“old”) was calculated as a measure of reversal performance. The total distance swum was 

evaluated as a measure of locomotor activity. All behaviour data analysis was performed with the 

experimenter blinded to the group under analysis. 

 

Tissue processing and immunohistochemical analysis 

Animals were deeply anaesthetized with sodium pentobarbital (20%; Eutasil, Safoni) and perfused with 

saline and rapidly decapitated. Serial coronal sections (20 μm) were cut on a cryostat and stored at -

20ºC. For the short-term analysis we evaluate the impact of antipsychotics immediately after chronic 

treatment on cell proliferation by counting the total number of BrdU+ cells (1:100, Abcam, Cambridge, 

UK) in the hippocampus using Olympus BX51 optical microscope and Newcast software (Visiopharm). 

BrdU is incorporated into DNA during the S-phase of the mitotic process, thus allowing the assessment 
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of cell proliferation. For hippocampal analysis the densities were estimated in the subgranular zone of 

the dentate gyrus. To assess the impact of these drugs on hippocampal neurogenesis and gliogenesis 

we performed a double staining for BrdU and polysialylated neuronal cell adhesion molecule (PSA-

NCAM) (for neuroblasts; 1:200; Millipore, USA) and glial fibrillary acidic protein (GFAP) (for glia; 1:200; 

Sigma-Aldrich) using a confocal microscope (Olympus FV1000). For the long-term analysis, we counted 

the number of BrdU+ cells that survived 4 weeks later after the last BrdU injection and the neuronal 

phenotype (NeuN, for mature neurons; 1:100; Chemicon, Temecula, CA, USA) of these cells. The 

schematic representation of the experimental design is described in Figure 1a. To minimize bias, each 

slide was coded to keep the experimenter blind to the experimental group.  

 

Neuronal Morphology  

Three-dimensional morphometric analysis was performed on Golgi-Cox stained material obtained from 

rats that had been transcardially perfused with 0.9% saline and further processed, as previously 

described.(Bessa et al, 2009a) For each animal, at least eight neurons (randomly selected) were 

analysed in the hippocampal dentate gyrus and PFC. For each selected neuron, dendritic branches 

were reconstructed at x1000 (oil) magnification using a motorized microscope (Axioplan 2; Carl Zeiss, 

LLC, United States) and the Neurolucida software (MBF Bioscience, Williston, VT). Three-dimensional 

analysis of the reconstructed neurons was performed using the NeuroExplorer software (MBF 

Bioscience). Measurements from individual neurons from each animal were averaged. Total dendritic 

length was compared among the experimental groups. Branching of the neurons was evaluated using 

3D Sholl analysis; for this, the number of dendritic intersections with concentric circles positioned at 

radial intervals of 20 mm was determined. To minimize bias, each slide was coded to keep the 

experimenter blind to the experimental group.  

 

Gene expression  

Total RNA was isolated from hippocampus and PFC using Trizol reagent (Invitrogen, Carlsbad, CA, 

USA). 500 ng of total RNA was reverse-transcribed using qScript cDNA SuperMix (Quanta Biosciences, 

Gaithersburg, MD, USA). Quantitative real-time PCR analysis was used to measure the expression levels 

of the neural cell adhesion molecule 1(Ncam1), synapsin 1 (Syn1) and brain-derived neurotrophic 

factor (BDNF) in the hippocampus and PFC. In the PFC we also analysed gene expression levels of 

different dopamine receptors (Drd1, Drd2 and Drd3). Target gene expression levels were normalized 
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against the housekeeping gene Beta-2-Microglobulin (B2M). Sense and antisense sequences can be 

found in Supplementary Table S1. Reactions were performed in an Applied Biosystems 7500 Fast Real-

Time PCR System (Applied Biosystems, LLC, CA, USA) using PerfeCTa SYBRGreen SuperMix, Low ROX 

(Quanta Biosciences). The relative expression was calculated using the DDCt method. Results are 

presented as fold-change of mRNA levels between the respective experimental groups after 

normalization to B2M levels.  

 

Statistical analysis 

Adequate sample size was determined a priori using G-Power software v3.1.9.2, based on results of a 

previous pilot experiment suggesting a η2p of 0.424 for the effect of treatment in the FST and 

assuming a 95% power and 5% probability of type I errors. After confirming the homogeneity of the data 

distribution, the appropriate statistical tests were performed using SPSS software. Equality of variances 

was tested with an F test. Repeated measures ANOVA was used to analyse the results of SPT, reference 

memory, working memory and sholl analysis. Paired sample t-test was used to analyse behavioral 

flexibility. One-way ANOVA was used to evaluate the impact of CMS and antipsychotic treatment in the 

FST, neuronal morphology, gene expression and immunostaining results. Differences between groups 

were then determined by Tukey’s honestly significant difference test (Tukey HSD) post hoc analysis. All 

values were calculated as means + standard error of the mean (SEM). Statistical significance was 

accepted for P < 0.05. 
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Results 

Behavioral results 

Anhedonia was assessed weekly in the sucrose preference test. Analysis of the test during the first 4 

weeks of the CMS protocol revealed a significant decrease of sucrose preference in animals exposed to 

chronic stress (F1,62=17,470; P<0.001, Figure 1b) confirming the induction of an anhedonic behavioral 

phenotype. During the last 3 weeks of the CMS protocol, a significant global effect of treatment was 

observed (F2,44=3.378; P=0.043, Figure 1b). Post-hoc analysis revealed significant differences between 

animals treated with vehicle and animals treated with clozapine (P=0.034) with no significant 

differences when compared with haloperidol-treated animals (p=0,344) (Figure 1b).  

CMS also induced increased immobility in the FST (F1,32=11,390; p=0,002, Figure 1c), a measure of 

behavioral despair, which is another hallmark symptom of depressive-like behavior. The chronic 

treatment with antipsychotics induces an overall effect (F2,44=12,249; P<0,001, Figure 1c). Treatment 

with clozapine reversed the stress-induced behavior in the immobility time (p=0,037). In haloperidol-

treated animals we observed an increase in the immobility time compared to CMS animals (p=0,037, 

Figure 1c), indicating an aggravation of the depressive-like phenotype.         

Cognitive function was assessed in the different tasks of the MWM. In the working memory task, we 

observed no differences between all the groups analysed (Figure 1d). 

The evaluation of spatial learning in the MWM also failed to reveal any significant differences between 

control and CMS animals (F1,32=0,015; p=0,902, Figure 1e). Accordingly, neither clozapine nor 

haloperidol induced changes in performance in the spatial learning task in the MWM. On the other 

hand, performance in the reverse learning task, to test behavior flexibility, was significantly impaired in 

animals exposed to CMS, as indicated by the lower percentage of distance swum in the “new” quadrant 

compared with the percentage spent in the “old” quadrant (t16=2,637; p=0,018, Figure 1f). This 

impairment was reversed by clozapine treatment with animals spending approximately the same time in 

“old” and “new” quadrant as the control group (t16=0,990; p=0,076, Figure 1f ). The chronic treatment 

with haloperidol was not able to reverse the impairment induced by CMS exposure (t14=6,484; p<0,001). 

We also treated a subset of animals with the antidepressant drug fluoxetine. As expected, fluoxetine 

treatment was able to reverse the negative effects induced by the exposition to the CMS protocol 

(Supplementary Figure S1). Additionally, we analysed the impact of antipsychotic drugs in control 

animals (Supplementary Figure S2); we found no differences between groups, indicating that the 
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chronic treatment with antipsychotics in control animals does not induce significant changes in all the 

behaviour domains analysed. 

 

Cell proliferation and differentiation 

The possible modulation of adult hippocampal neurogenesis by CMS and antipsychotic treatment was 

analyzed in two different time points –immediately after the chronic treatment (“short-term) and 4 

weeks after the cessation of chronic treatment (“long-term”). We first analyzed the short-term effects on 

hippocampal cell proliferation by determining the number of BrdU-labeled cells/area in the subgranular 

zone of the dentate gyrus (DG). The density of BrdU+ cells was significantly reduced in animals exposed 

to CMS (F1,8=11,033, p=0,011, Figure 1a, 1b). Chronic treatment with different classes of 

antipsychotics had a different impact on cell proliferation (F1,12=10,737, p=0,002, Figure 1b). Treatment 

with clozapine promoted an increase in cell proliferation (p=0,004, Figure 1b), while haloperidol had no 

effect (p=0,983, Figure 1b). To determine the cell fate of the BrdU+ cells, we co-labelled these cells with 

cell-specific markers, including PSA-NCAM and GFAP to assess neurogenesis and astrogliogenesis, 

respectively. In the case of neurogenesis, the percentage of BrdU+ cells that co-labelled with PSA-NCAM 

was significantly reduced (F1,8=9,436; p=0,015, Figure 1c, 1d) in rats exposed to CMS. Regarding the 

effect of chronic treatment with antipsychotics an overall effect was observed (F2,12=17,011; p<0,001, 

Figure 1d); with clozapine-treated animals presenting an increase (p=0,001, Figure 1d) in the levels of 

neurogenesis and with no effect in the haloperidol treated group (p=0,790, Figure 1d). Astrogliogenesis 

(which may include a small percentage of neural progenitor cells) measured by the percentage of BrdU+ 

cells co-labelled with GFAP was not significantly altered by stress exposure or administration of the 

different antipsychotic drugs (Figure 1E, 1F). 

To assess the role of CMS and antipsychotic drugs in cell survival in the DG (long-term cell analysis) we 

analysed the number of BrdU+ cells that incorporated BrdU and survived after 4 weeks. CMS animals 

presented a decrease in cell survival in the DG (F1,8=16,104; p=0,004, Figure 2g). Regarding the action 

of the different antipsychotics used we observed no effect in the haloperidol-treated group (p=0,290, 

Figure 2g) and a beneficial effect promoted by the clozapine treatment (p=0,018, Figure 2g) with an 

increase in cell survival. These results are translated in terms of neuronal survival assessed by the 

quantification of the BrdU cells that express the neuronal marker NeuN (Figure 2h). As previously 

described we found a decrease in neuronal survival in animals submitted to chronic stress (F1,8=7,684; 

p=0,024, Figure 2i). Regarding the action of the different antipsychotics used we observed an overall 
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effect of treatment (F1,12=5,338; p=0,022, Figure 2i) with an increase in neuronal survival promoted by 

clozapine (p=0,021, Figure 2i). No effect was observed in animals chronically treated with haloperidol 

(p=0,666, Figure 2i).   

 

Structural analysis 

The three-dimensional morphometric analysis of Golgi-impregnated neurons in the dentate gyrus 

revealed that exposure to CMS induced atrophy in granule neurons of the DG, with a significant 

decrease in their total dendritic length (F1,10=11,358; p=0,007, Figure 3a, 3b). Only clozapine treatment 

reversed this structural change (p=0,003, Figure 3a). Sholl analysis revealed no statistical significant 

differences between the experimental groups (Figure 3c, 3d).   

Significant dendritic atrophy in total dendritic length was also observed in pyramidal neurons in the PFC 

with CMS exposed animals presenting shorter neurons (F1,10=17,960; p=0,002, Figure 3e, 3f); this 

atrophic effect of chronic stress was reversed by treatment with clozapine (p=0,002, Figure 3e) but not 

by haloperidol (p=0,920, Figure 3e) treatment. In addition, Sholl analysis revealed less complex 

neurons in CMS-exposed animals when compared with controls (F1,10=7,871; p=0,019, Figure 3g, 3h). 

The effect of CMS was normalized by clozapine (p=0,017, Figure 3h) but not by haloperidol (p=0,233, 

Figure 3h) treatment. 

 

Gene expression studies 

We analysed the expression of different genes described to be involved in neuronal plasticity in the 

hippocampus and in the PFC. The expression of BDNF was significantly reduced in the hippocampus of 

CMS rats (F1,8=5,510, p=0,047, Figure 4a). Chronic treatment with both antipsychotics was not able to 

restore the expression of this gene to control levels (Figure 4a). We found no significant statistical 

differences in the expression of NCAM1 and SYN1 in CMS animals (Figure 4b, 4c) and the chronic 

treatment with haloperidol and clozapine did not alter their expression (Figure 4b, 4c). 

Moreover, animals exposed to CMS revealed significantly reduced levels of BDNF (F1,8=29,305; 

p=0,001, Figure 4d), NCAM1 (F1,8=17,184; p=0,003, Figure 4e) and SYN1 (F1,8=18,336; p=0,003, 

Figure 4f) in the PFC. Treatment with clozapine was able to promote an increase in the expression of 

BDNF (p=0,027, Figure 4d), NCAM1(p=0,048, Figure 4f) and SYN1(p=0,031, Figure 4g) while the 

treatment with haloperidol revealed a non-significant increase in the gene expression of BDNF (Figure 

4d). We also analysed the gene expression of different dopamine receptors in the PFC (Figure 4g, 4h 
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and 4i). We found Drd2 mRNA levels to be decreased in stressed animals (F1,8=6,512; p=0,034, Figure 

4h), with no differences in Drd1 and Drd3. Only clozapine treatment was able to restore the gene 

expression of Drd2 (p=0,019, Figure 4h).  
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Discussion 

Antipsychotic drugs have been generally classified into two distinct pharmacological classes: the 

classical and the atypical antipsychotics. The classical haloperidol acts as a D2 antagonist with high 

affinity for the receptors. Clozapine, as an atypical antipsychotic drug, exhibits lower affinity for D2 

receptors and displays multiple modulating actions, namely in serotonin and noradrenaline 

receptors.(Miyamoto et al, 2005) Herein we show that different classes of antipsychotics have different 

effects on adult neuroplasticity, namely on the process of adult hippocampal neurogenesis and 

neuronal morphology. More so, we found that only clozapine-treated animals, which presented a rescue 

in neuroplasticity, were able to recover from the depressive-like phenotype and from the cognitive 

deficits in behavioural flexibility induced by exposure to CMS. Contrarily, haloperidol-treated animals 

showed impairments in neuroplasticity, presenting important deficits in emotional and cognitive 

behaviour.  

It is now clear that various forms of structural plasticity, including the generation of new neurons and 

glial cells, may modify the pathophysiology of some neuropsychiatric disorders.(Mateus-Pinheiro et al, 

2013; Santarelli et al, 2003; Surget et al, 2011) This idea has been widely explored in depression. In 

fact, multiple studies have shown a decrease in hippocampal neurogenesis in animal models of 

depression, while treatment with different antidepressants increases neurogenesis in this 

region.(Malberg et al, 2000; Morais et al, 2014; Santarelli et al, 2003) Considering that atypical 

antipsychotics can be effective in the treatment of refractory depression,(Papakostas et al, 2007) we 

hypothesized that these drugs may also regulate neuronal plasticity, in which neurogenesis is included. 

Our data is in accordance with this hypothesis; we observed that chronic treatment with clozapine is 

able to promote an increase in neurogenesis and that this effect persists even after the end of the 

treatment, with clozapine-treated animals presenting an increased neuronal survival. In contrast, the 

number of newly-born cells and the number of surviving neurons were negatively affected by the chronic 

treatment with haloperidol. The same effect was described by Maeda and colleagues in an animal 

model of schizophrenia with impairments in adult neurogenesis.(Maeda et al, 2007) However, literature 

is not consensual regarding this topic with significant discrepancies regarding the effects of haloperidol 

in neuroplasticity.(Backhouse et al, 1982; Dawirs et al, 1998; Malberg et al, 2000; Wang et al, 2004) 

These conflicting results might be due to differences in experimental designs, drug dosages, and the 

species studied. Another possible explanation for these discrepancies is the use of control animals to 

test these drugs, in which there are no prior deficits in behavior or in the levels of 
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neurogenesis.(Wakade et al, 2002; Wang et al, 2004) Our present results clearly demonstrate an 

opposite action of these classes of antipsychotic drugs on adult neurogenesis without affecting the glial 

cell lineage.  

Previous studies from our lab have demonstrated the importance of structural changes in the 

hippocampus and PFC in the pathophysiology of depression.(Bessa et al, 2009a; Mateus-Pinheiro et al, 

2013; Patricio et al, 2015) Antidepressants drugs, independent of their mechanism of action, are able 

to restore these alterations.(Bessa et al, 2009a) Based on these observations, it became critical to 

understand the impact of antipsychotic drugs in this type of event. In the present study, animals 

exposed to CMS presented a decrease in the dendritic length in hippocampal granule neurons; 

importantly, treatment with clozapine, but not haloperidol, was able to reverse this effect. In the PFC, 

exposure to CMS induced a decrease in total dendritic length and in neuronal complexity; again, only 

clozapine was able to promote a significant recovery. Our observations are consistent with clinical data 

suggesting that the structural changes observed in schizophrenia can be attenuated by atypical 

antipsychotics.(Lieberman et al, 2005) Furthermore, previous studies have demonstrated that 

treatment with an atypical (olanzapine), but not a classical (haloperidol), antipsychotic reversed 

dopamine denervation-induced changes in dendritic length in the PFC.(Wang and Deutch, 2008) The 

present results clearly demonstrate the different impact of classic and atypical antipsychotics in 

neuronal remodelling in the hippocampus and PFC. This is in accordance with our previous study 

describing neuronal remodelling as an important neuroplastic event for the mood-improving actions of 

antidepressants.(Bessa et al, 2009a) 

In addition, we analysed the expression of neuroplasticity-related genes, such as Syn1, NCAM1 and 

BDNF in the hippocampus and PFC. We observed a decrease in the expression of these genes in the 

PFC of animals exposed to CMS, but also that chronic treatment with clozapine was able to promote a 

recovery in gene expression, thereby supporting the neuroplastic effects of this drug. Interestingly, we 

found that animals with a decrease in the expression of neuroplasticity-related genes presented deficits 

in a cognitive task depend (reversed learning task) on this brain region. We also analysed the possible 

modulation of the different dopamine receptors namely Drd1, Drd2 and Drd3 in the PFC. Indeed, CMS 

exposure induced a significant decrease in Drd2 receptor expression, while the atypical antipsychotic 

clozapine was able to reverse this effect. These results are in accordance with previous studies that 

have shown that clozapine exerts its therapeutic effects in part by increasing dopaminergic 
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neurotransmission in the PFC, while haloperidol had no significant effects on the cortical release of 

dopamine.(Youngren et al, 1999)  

Antipsychotic medications are the most commonly prescribed drugs to treat schizophrenia. In 2006, 

Reif and colleges found a significant reduction in hippocampal neural stem cell proliferation in 

schizophrenic patients.(Reif et al, 2006) Moreover, dendritic changes in frontal cortical pyramidal cells 

are amongst one of the most replicated findings in post-mortem studies of schizophrenia.(Black et al, 

2004; Broadbelt et al, 2002; Kalus et al, 2000; Kolluri et al, 2005). These studies highlight the role of 

neuroplasticity on schizophrenia. Our present results demonstrate a beneficial effect on adult 

neuroplasticity with chronic treatment with the atypical antipsychotic clozapine. This effect could be one 

of the possible mechanisms that may contribute to the action of atypical antipsychotics not only in the 

positive symptoms of schizophrenia but also in the negative and cognitive symptoms. In contrast, the 

efficacy of haloperidol treatment is mainly against the positive symptoms of schizophrenia, exacerbating 

the negative and cognitive symptoms. Interestingly, our results clearly indicate the absence of a positive 

effect on adult neuroplasticity after haloperidol treatment. Despite the diverse pharmacological profiles 

(monoamine oxidase inhibitors, tricyclic antidepressants, serotonin-selective reuptake inhibitors and 

serotonin–norepinephrine reuptake inhibitors), all antidepressant drugs result in similar behavioral and 

neuroplastic outcomes, suggesting similar mechanisms of action. In contrast, classical and atypical 

antipsychotics are strikingly different as evidenced by their actions, mechanisms, effects and side 

effects. For instance, the atypical antipsychotic clozapine has a more complex pharmacological 

lengthprofile than the classical haloperidol, presenting binding affinities for various neurotransmitter 

receptors, including several serotonin and noradrenaline receptors.(Meltzer et al, 1989) Our present 

results suggest the potential importance of serotonergic and noradrenergic system modulation in the 

beneficial effects of atypical antipsychotics on neuroplasticity that should be addressed in future 

studies. 

In conclusion, the present study demonstrates the modulation of adult neuroplasticity by antipsychotics, 

revealing that the atypical antipsychotic drug clozapine reverts the behavioral effects of chronic stress 

while improving adult neurogenesis, cell survival and neuronal reorganization. These observations may 

pave the way to new therapeutic interventions not only in treatment-resistant depression but also in 

schizophrenia. 
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Figure 1- Behavioral effects of the chronic mild stress (CMS) and antipsychotic treatment on mood 

and cognition. (a) CMS protocol was applied to the rats for 7 weeks; two different antipsychotics 

(haloperidol and clozapine) were administrated in the last three weeks of the CMS protocol. To analyse 

the impact of antipsychotics on cell proliferation we injected BrdU 24h before sacrificed (short-term 

effects). To analyse the impact on neuronal survival we injected BrdU during 5 days, the sacrifice was 

performed 4 weeks later (long-term effects). Animals used for morphological and gene expression 

analysis were sacrificed immediately after performing the behaviour analysis. (b) Sucrose Preference 

Test was performed during all experimental protocol to evaluate anhedonia. (c) Learned helplessness 

was evaluated in the Forced Swim Test. Cognition was analysed in the different tasks of the Morris 

Water Maze (d) Working Memory (e) Spatial Learning Task and (f) Behaviour Flexibility. Data 

represented as mean + sem. #denotes the effect of CMS-exposure; *denotes the effect of antipsychotic 

compared with CMS non treated animals.*p<0,05; **,##p<0,01;***p<0,001. n=15-17 animals per 

group. 
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Figure 2- Antipsychotic treatment effects on the newly born cells and neuronal survival. (a) Proliferative 

niche of BrdU-labelled cells in the subgranular zone (SGZ) obtained with optical microscope. (b) The 

density of BrdU-labelled cells in the SGZ of the dentate gyrus. (c) Niche of newly formed neurons in the 

SGZ, obtained by confocal microscopy. (d) The percentage of BrdU+ cells that were co-labelled with the 

antibody against PSA-NCAM. (e) Newly formed glial cells in the SGZ, obtained by confocal microscope. 

(f) Percentage of BrdU+ cells that were co-labelled with glial marker GFAP in the SGZ. (g) The density of 

BrdU-labelled cells in the dentate gyrus that survives after 4 weeks. (h) Newly formed neurons in the 

dentate gyrus that survives after 4 weeks. (i) The percentage of BrdU+ cells that were co-labelled with 

the antibody against NeuN. (a)-(f) short-term and (g)-(i) long-term effects of antipsychotics on neuro- and 

glio-genesis. Data represented as mean + sem. #denotes the effect of CMS-exposure; *denotes the effect 

of antipsychotic compared with CMS non treated animals.#,* p<0,05; **p<0,01;***p<0,001. n=5 animals 

per group.    
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Figure 3- Three-dimensional morphometric analysis of Golgi-impregnated neurons using computer-
assisted reconstructions of dentate gyrus and prefrontal cortex (PFC). (a) Total dendritic length of 
neurons in the dentate gyrus of the hippocampus. (b) Representative neurons of different experimental 
groups. (c) Representative sholl dendritic analysis of a dentate gyrus neuron, dendritic density was 
measured by placing a series of concentric circles, spaced at 20µm intervals centered on the soma. (d) 
Sholl analysis of dendritic distribution of neurons in the dentate gyrus. (e) Total dendritic length of 
neurons in the PFC. (f) Representative neurons of different experimental groups. (g) Representative 
sholl dendritic analysis of a PFC neuron, dendritic density was measured by placing a series of 
concentric circles, spaced at 20µm intervals centered on the soma. (h) Sholl analysis of dendritic 
distribution of neurons in the PFC. Data represented as mean + sem. #denotes the effect of CMS-
exposure; *denotes the effect of antipsychotic compared with CMS non treated animals. #,*p<0,05; 
##,**p<0,01;***p<0,001. n=6 animals per group. 
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Figure 4- Gene expression analysis of the hippocampus and prefrontal cortex (PFC) by RT-PCR. In the 

hippocampus we measure the gene expression levels of different neuroplastic markers such as (a) 

BDNF (b) Ncam1 and (c) Syn1. The same markers of neuroplasticity were measure in the PFC (d) 

BDNF (e) Ncam1 and (f) Syn1. In the PFC the levels of expression of different dopamine receptors (Dr) 

D1, D2, and D3 (g) Drd1, (h) Drd2 and (i) Drd3. Data represented as mean + sem. #denotes the effect 

of CMS-exposure; *denotes the effect of antipsychotic compared with CMS non treated animals. 
#,*p<0,05; ##,**p<0,01;###p<0,001. n=5 animals per group.     
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Supplementary figures and table 

S1 

Gene                       Sense                                                   Antisense                                         Produc size            

Drd1                                TCCTTCAAGAGGGAGACGAA                  CCACAAACACATCGAAGG                     168bp 
Drd2                                ATGTGCTGGTGTGCATGGCT                   CACCCACCACCTCCAGGTAGAC         142bp 
Drd3                                GGGGTGACTGTCCTGGTCTA                  TGGCCCTTATTGAAAACTGC                169bp 
Ncam1                             AAAGGATGGGGAACCCATAG                  TAGGTGATTTTGGGCTTTGC               195bp 

Syn1                                CACCGACTGGGCAAAATACT                  TCCGAACTTCCATGTCC                         140bp 
BDNF                             CCTGGATGCCGCAAACATGTCTAT        CGCTGTGACCCACTCGCTAAT            103bp 

B2M                                GCTTGCCATTCAGAAAACTCC                 AGGTGGGTGGAACTGAGACA              136bp             

Supplemental table S1- Sense and antisense sequences of oligonucleotide primers used in the RT-

PCR. 
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S2 

 

Supplemental Figure S2- Behavioral effects of the chronic mild stress (CMS) and fluoxetine treatment 

on mood and cognition. CMS protocol was applied to the rats for 7 weeks; fluoxetine treatment was 

administrated in the last three weeks of the CMS protocol. (a) Sucrose Preference Test was performed 

during all experimental protocol to evaluate anhedonia. (b) Learned helplessness was evaluated in the 

Forced Swim Test. Cognition was analysed in the different tasks of the Morris Water Maze (c) Working 

Memory (d) Spatial Learning Task and (e) Behaviour Flexibility. Data represented as mean + sem. 

#denotes the effect of CMS-exposure; *denotes the effect of antipsychotic compared with CMS non 

treated animals.*p<0,05; ##p<0,01. n=15-17 animals per group. 
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S3 

 

Supplemental Figure S3- Behavioral effects of the chronic treatment with antipsychotics in control 

animals on mood and cognition. Control animals were treated during three weeks (a) Sucrose 

Preference Test was performed once a week during all treatment period to evaluate anhedonia. (b) 

Learned helplessness was evaluated in the Forced Swim Test. Cognition was analysed in the different 

tasks of the Morris Water Maze (c) Working Memory (d) Spatial Learning Task and (e) Behaviour 

Flexibility. Data represented as mean + sem. n= 6 animals per group. 
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Abstract 

Schizophrenia is a complex psychiatric disorder of unknown etiology involving gene-environment 

interactions that affects about 1% of the population worldwide. In the 1950´s, the serendipitous 

discovery of drugs with antipsychotic effects revolutionized the treatment and outcome of schizophrenia. 

However, the pharmacological treatment of schizophrenia remains a challenge and the mechanisms 

involved in the therapeutic effects of antipsychotic drugs in the different behavioral dimensions of 

schizophrenia are still largely unknown. To address this question, an animal model of schizophrenia 

was used, induced by the administration of methylazoxymethanol acetate (MAM) in pregnant dams. 

Male offspring (3 months old) were subsequently treated with the classic antipsychotic drug haloperidol 

(0,05mg/kg/day), and three different atypical antipsychotics clozapine (2,5mg/kg/day), risperidone 

(0,25mg/kg/day) and aripiprazole (1mg/kg/day) for a period of five weeks. During the last two weeks 

of treatment a battery of behavior tests were used to assess mood, anxiety, cognition and social. 

Furthermore, adult hippocampal neurogenesis and gliogenesis were analysed in the brain of the 

animals after sacrifice. Our data indicates that animals exposed to MAM in utero present significant 

impairments in social interaction. The classical antipsychotic drug haloperidol had no significant effects 

on sociability but the atypical antipsychotic drugs clozapine, risperidone and aripiprazole were able to 

revert the impairment on sociability induced by MAM exposure. Furthermore, MAM animals exposed to 

MAM revealed significant impairments in recognition memory. The classical antipsychotic drug 

haloperidol had no significant cognitive effects in these animals but the atypical antipsychotic drugs 

clozapine and risperidone were able to revert the cognitive impairment induced by MAM exposure. 

Interestingly, while no significant effects were observed in adult neurogenesis, a striking downregulation 

of adult gliogenesis was observed in MAM animals. Moreover, all the atypical antipsychotic drugs used 

were able to promote an increase in gliogenesis while haloperidol revealed an opposite effect. In 

summary, using a neurodevelopmental animal model of schizophrenia we identify specific cognitive 

deficits and social impairments that are differentially modulated by antipsychotic drugs. The classical 

haloperidol presented no beneficial effects in these behavioral dimensions. On the other hand, the 

atypical clozapine and risperidone showed a positive effect on both dimensions with aripiprazole 

presenting a significant effect exclusively in social behavior. Finally, the analysis of adult neurogenesis 

and gliogenesis suggests that the formation of new GFAP cells could be implicated in these 

observations. 
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Introduction 

Schizophrenia is a complex neurodevelopmental psychiatric disorder of unknown etiology involving 

gene-environment interactions affecting about 1% of the population worldwide (Owen et al, 2016a). 

Patients with schizophrenia show abnormal mental functions that have been categorized into: positive, 

negative and cognitive symptoms. Positive symptoms reflect an excess or distortion of thoughts and 

perceptions, typically characterized by the development of delusions and hallucinations. Negative 

symptoms include social withdrawal, loss of motivation, affective blunting and anhedonia, which also 

characterize other mood disorders such as major depression and account for the significant suicide 

rates in schizophrenic patients (Freedman, 2003; Owen et al, 2016b). Cognitive symptoms involve 

multiple deficits in cognitive and executive processes.  

In the 1950´s, the serendipitous discovery of drugs with antipsychotic effects revolutionized the 

treatment and outcome of schizophrenia (Miyamoto et al, 2012). Antipsychotic drugs are generally 

classified into classical (or first generation of antipsychotics) or atypical (or second generation of 

antipsychotics). The classical antipsychotic drugs (e.g. Haloperidol) with a mechanism of action based 

in dopamine receptor D2 antagonism, proved to be effective in positive symptoms. However, besides 

the side effects of eliciting extrapyramidal symptoms (EPS), hyperprolactinemia and metabolic changes, 

these drugs exacerbate the negative and cognitive symptoms that often lead to treatment 

discontinuation and relapse of symptoms. In contrast, atypical antipsychotics, with less potent D2 

antagonism and with modulation of serotonin and noradrenaline receptors, maintain their effectiveness 

against positive symptoms, with fewer EPS and with beneficial effects on cognitive functions and 

negative symptoms (Gallhofer et al, 1996). Clozapine is usually considered to be the most effective 

atypical antipsychotic drug (Essock et al, 1996; McEvoy et al, 2006). However, considering the serious 

side effects associated with clozapine treatment (such as agranulocytosis), its prescription was 

restricted to refractory schizophrenia (Kilian et al, 1999; Rajagopal, 2005; Wong and Delva, 2007). 

Risperidone (Leysen et al, 1988), like clozapine, presents higher affinity for serotonin 5-HT2 receptors 

than dopamine D2 receptors, but they differ in other pharmacologic properties and side effects. 

Aripiprazole is also an atypical agent with a different mechanism of action, reducing dopaminergic 

neurotransmission through D2 partial agonism, being considered a third-generation antipsychotic. As an 

atypical drug it also modulates receptors of the serotonin system: 5-HT1A partial agonist and serotonin 5-

HT2A antagonist. Despite all the therapeutic benefits provided by the atypical antipsychotics, attention 

has been drawn considering the risk of developing metabolic complications and body weight gain.  
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The phenomenon of adult cell genesis has grown progressive interest based on studies that implicate 

adult neurogenesis in the etiopathology of different psychiatric disorders, including schizophrenia and 

depression (Mateus-Pinheiro et al, 2013; Morais et al, 2014). In 2006, Reif and colleges published a 

study in brain tissue of schizophrenic patients, revealing a significant reduction in hippocampal cell 

proliferation (Reif et al, 2006). Further post-mortem studies demonstrated neuronal abnormalities in the 

olfactory bulb, indicating a possible disturbance of cell proliferation in the subependymal zone (SEZ) 

(Arnold et al, 2001). In fact, the majority of the patients with schizophrenia show defects in olfaction, 

and first-degree relatives of schizophrenia patients also show such olfactory defects (Moberg et al, 

1999). Regarding the effects of antipsychotic drugs on adult cell genesis the literature is not 

consensual. Previous studies have shown that haloperidol has no effect on hippocampal neurogenesis 

(Halim et al, 2004; Malberg et al, 2000). In the case of atypical antipsychotics, it was reported that 

risperidone and olanzapine increase neurogenesis in the SEZ, but not in the hippocampus (Wakade et 

al, 2002). However, another study has shown that olanzapine increases hippocampal neurogenesis 

(Kodama et al, 2004). The hippocampus is a brain region with a critical role in cognitive function 

(learning and memory) and emotional processing (Fanselow and Dong, 2010; Kheirbek and Hen, 

2010); and several studies have described a positive role of hippocampal cell genesis in emotional and 

cognitive domains (9) (corrigir REF). Thus, the idea that atypical antipsychotics in contrast with classical 

antipsychotics potentiate adult hippocampal cell genesis is particularly attractive and may possibly be 

one of the mechanisms contributing to the action of atypical antipsychotics in the negative and cognitive 

symptoms.     

In the present study, we evaluated the behavioral effects of different classes of antipsychotics in an 

animal model of schizophrenia: methylazoxymethanol acetate (MAM) model E17. To induce this model, 

MAM was administrated to pregnant dams (Wistar rats prenatally treated at gestational day 17, 

20mg/kg). The offspring of these animals were subsequently treated in early adulthood with the classic 

antipsychotic drug haloperidol (0,05mg/kg/day), and three different atypical antipsychotics clozapine 

(2,5mg/kg/day), risperidone (0,25mg/kg/day) and aripiprazole (1mg/kg/day) for a period of five 

weeks (daily administered). During the last two weeks of treatment a battery of behavior tests to assess 

mood (forced swimming test (FST)), anxiety (elevated-plus maze test (EPM)), cognition (Morris water 

maze (MWM) and novel object recognition (NOR) test) and social interaction (three-chamber sociability 

test) were performed. To explore the role of cell genesis in this context we examined the impact of MAM 

and antipsychotics in this process. Using this integrative approach, we hope to understand the role of 
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newly born cells in the behavioral actions of antipsychotic drugs. 
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Materials and Methods 

 

Animals 

Prenatal exposure to MAM 

Pregnant females (Wistar rats) were injected with methylazoxymethanol acetate (MAM 20,0 mg/kg; 

National Cancer Institute, Midwest Research Institute, Kansas City, MO, USA) or saline at gestational 

day 17 (GD17). Only the male pups were included in this study. Subsequently, the MAM group was 

subdivided into five experimental groups treated at the age of three months for five weeks with vehicle, 

haloperidol, clozapine, risperidone or aripiprazole. 

 

Drugs 

The antipsychotics used in this study were haloperidol (0,05 mg/kg; Sigma-Aldrich, St Louis, MO, USA), 

clozapine (2,5 mg/kg; Kemprotec, Middlesborough, UK), risperidone (0,25 mg/kg;  Kemprotec, 

Middlesborough, UK) and aripiprazole (1 mg/kg; Kemprotec, Middlesborough, UK). Compounds were 

dissolved in distilled water and administered intraperitoneally (i.p.) (1 ml/kg) during 5 weeks. 

  

Behavioral Tests 

Prepulse inhibition test (PPI) 

To perform this test, the animals were placed in Plexiglas cylinders with 16 cm length and a diameter of 

9 cm The cylinders were set onto a horizontal plate equipped with a transducer that allows the 

detection of startle response in a sound attenuated chamber. This test measures the acoustic startle 

reflex, reflecting the sensorimotor gating, as the exposure to the pre-stimulus inhibits the startle 

response to a strong auditory stimulus. After an acclimatization period of five minutes with white noise 

[70dB(A)], five startle trials of 120 dB bursts of white noise were delivered, during 40 ms. The session 

consisted in the presentation of ten startle trials of 120 dB, followed by prepulse intensities of 2, 4, 8 

and 16 dB(A) above background level, respectively PP72, PP74, PP78 and PP86 with a duration of 20 

ms. The startle amplitude was measured as the mean of ten startle trials applied. PPI (in percentage) 

was calculated as follows: [100 − (Mean of all startle amplitudes on prepulse trials/Basal startle 

amplitude) x 100].  
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Mood: 

Sucrose preference test (SPT) 

To assess anhedonia, the SPT was conducted weekly during all the experimental procedure. Briefly, 

animals were allowed to habituate to the sucrose solution for 1 week before the CMS protocol to 

establish baseline values for sucrose preference. To test sucrose preference, animals that were 

subjected to food and water deprivation for 24h and then presented with two pre-weighed bottles 

containing 2% of sucrose solution or tap water for a period of 1h. Sucrose preference was calculated 

according to the formula: sucrose preference = [sucrose intake/(sucrose intake + water intake)] × 100, 

as previously described (Bessa et al, 2009). Anhedonia was defined as a reduction in sucrose 

preference relative to baseline levels.   

 

Forced swimming test (FST) 

Behavior despair was assessed through the FST. Twenty-four hours after a pre-test session (10 min), 

the FST was conducted by placing rats in cylinders filled with water (25 °C; depth 30 cm) for a period 

of 5min. Test sessions were assessed using a camera connected to a video tracking system 

(Viewpoint); the system automatically calculated immobility time and latency to immobility. Behavior 

despair was defined as an increase in time of immobility and a decrease in latency to immobility. 

 

Anxiety: 

Novelty suppressed feeding (NSF) 

To characterize anxiety-like behavior, NSF was assessed. Based on previous studies, the animals were 

deprived of food for 23 h before being placed in a novel environment for 10 min (an open-field arena; 

MedAssociates Inc.); a single food pellet was placed in the center of the arena. Upon reaching the 

pellet, animals were returned to their home cages and presented with preweighed food over a period of 

5 min. Latency to feeding in the open field was used as an index of anxiety-like behavior; the amount of 

food consumed in the home cage provided a measure of appetitive drive. 

 

Cognition: 

Morris Water Maze (MWM) 

Cognitive function was evaluated in the MWM. The MWM was conducted in a circular black tank 

(diameter: 170 cm; depth: 50 cm), divided in quadrants by imaginary lines, and filled with water (22°C) 
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to a depth of 31 cm. During testing, a black platform (12 × 12 cm; invisible to the rats) was placed at a 

height of 30 cm. The room was dimly lit and extrinsic visual clues were glued to the walls. Data were 

collected using a video tracking system (Viewpoint) (Cerqueira et al, 2007).  

The working memory task was used to evaluate the cognitive domain that relies on the interplay 

between the hippocampal and PFC function (Cerqueira et al, 2007). In this task the position of the 

platform is kept constant during the four trials of each day, but varies on each successive day such that 

all four quadrants are used. Rats are placed, facing the wall of the maze, at a different starting point 

(north, east, south, or west) at the beginning of each of the four daily trials. A trial is considered 

complete when the rat escapes onto the platform; when this escape fails to occur within 120 s, the 

animal is gently guided to the platform and an escape latency of 120 s is recorded for that trial. Rats 

are allowed to spend 30s on the escape platform before being positioned at a new starting point. 

Length of the path described (distance swam) and time spent to reach the platform (escape latency) 

are recorded in the consecutive trials. The total distance swum was evaluated as a measure of 

locomotor activity. All behaviour data analysis was performed with the experimenter blinded to the 

group under analysis. 

 

Novel object recognition (NOR) 

Cognitive function was assessed using the NOR test. Rats were first familiarized to the testing arena 

consisting of a black acrylic box (50 x 50 x 150 cm) with an open field space, for 8 minutes and with no 

objects presentation. On the following day, animals were allowed to explore two identical objects for 10 

minutes. Twenty-four hours later, animals returned to the arena for 3 minutes, in which one of the 

objects was replaced by a novel one. The familiar and novel objects differed on size, shape, texture and 

color. The NOR arena was cleaned with ethanol (10%) between trials to avoid odour cues. All sessions 

were videotaped and the time spent exploring both objects was determined manually and blindly. The 

percentage of time spent exploring the novel object was used as a measure of long-term memory 

performance. 

 

Social: 

Three chamber test 

Social behaviour was assessed using the three chamber test. This test is performed in three sessions 

within a three-chambered box. The test starts with the habituation to the empty box (5min.).  Then, rats 
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are given a choice between spending time with another rat (never-before-met) under one container and 

an empty container (10 min.; first part of the test). After this, the tested rat encounters the first intruder 

(“familiar”) as well as a new unfamiliar rat under another container (10 min.; second part of the test). 

Social interaction was determined by measuring the amount of time spends with the rat (first part of the 

test); and the time spends with the first intruder (“now-familiar”) and with the unfamiliar rat (stranger).  

 

Tissue processing and immunohistochemical analysis 

Animals were deeply anaesthetized with sodium pentobarbital (20%; Eutasil, Safoni) and perfused with 

saline and rapidly decapitated. Serial coronal sections (20 μm) were cut on a cryostat and stored at -

20ºC. We evaluate the impact of antipsychotics on neurogenesis by counting the number of Ki-67+ cells 

(#AB9260; rabbit, 1:300; Millipore) and doublecortin (DCX, goat, 1:300, Abcam) in the hippocampus 

using a confocal microscope (Olympus FV1000). 

 

Statistical analysis 

After confirming the homogeneity of the data distribution, the appropriate statistical tests were 

performed using SPSS software. Equality of variances was tested with an F test. A repeated measure 

ANOVA was used to analyse working memory. One-way ANOVA was used to evaluate the impact of CMS 

and antipsychotic treatment in the SPT, FST, NSF and immunostaining results. Differences between 

groups were then determined by Tukey’s honestly significant difference test (Tukey HSD) post hoc 

analysis. All values were calculated as means + standard error of the mean (SEM). Statistical 

significance was accepted for P < 0.05. 
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Results 

Behavioral results  

Our data indicates that animals exposed to MAM in utero present no alterations in the PPI (Figure 1b), 

SPT (Figure 1c), FST (Figure 1d) and EPM (Figure 1e). 

Cognitive function was evaluated using different tests: the MWM to assess spatial working memory and 

the NOR to assess recognition memory. In the working memory task, we observed no differences 

between all the groups analysed. In the NOR test, animals exposed to MAM in the prenatal period 

spend less time exploring a novel object revealing impairments in cognition (F1,14=10,804; p=0,006, 

Figure 2b, 2c) revealing an impairment in the ability to discriminate between an old and a novel object. 

The chronic treatment with antipsychotics induces an overall effect (F4,40=5,417; P=0,001, Figure 2b, 

2c). The classical antipsychotic drug haloperidol had no significant cognitive effects in these animals 

(p=0,823). The atypical antipsychotic drugs clozapine (p=0,017) and risperidone (p=0,003) were able 

to revert the cognitive impairments induced by MAM while the effects of aripiprazole on cognition were 

not significant (p=0,517).      

To assess social interaction we used the three chamber test. In the first part of the test we analyzed the 

time that the tested animal spends sniffing (direct interaction) a stranger rat trapped in a cage. MAM 

animals presented a decrease in the time spent with another rat (F1,27=7,168; p=0,013, Figure 3b) 

showing a deficit in social interaction. Regarding the impact of antipsychotic drugs in this behavioural 

dimension, an overall effect was observed (F4,68=9,017,p<0,001, Figure 3b). The classical antipsychotic 

drug haloperidol had no significant effects on sociability (p=0,246). In contrast, all the atypical 

antipsychotic drugs clozapine (p=0,010), risperidone (p<0,001) and aripiprazole (p=0,002) were able 

to revert the impairment on sociability induced by MAM exposure. In the second part of the test, we 

assessed the time spent with a “new” and with a “familiar” animal. Regarding the time spendt with the 

“new” animal, no differences were observed between all the groups analysed (Figure 3c). In terms of 

time spent with the “familiar” animal, MAM animals presented a decrease in the time spent interacting 

(F1,27=7,592;p=0,011; figure 3c). The classical antipsychotic drug haloperidol had no significant effects 

on this dimension (p=0,317) while the atypical antipsychotic drugs clozapine (p=0,038) and 

aripiprazole (p=0,041) were able to increase the time spent with a familiar animal. The atypical 

risperidone (p=0,482) was not able to reverse the impact on time spends with familiar animal. 
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Cell genesis  

The possible modulation of adult hippocampal cell genesis (including neurogenesis and gliogenesis) by 

MAM and antipsychotic treatment was analyzed after 5 weeks of chronic treatment. To determine the 

cell fate of the ki-67+ cells, these cells were co-labelled with cell-specific markers, including DCX and 

GFAP to assess neurogenesis and gliogenesis, respectively. In the case of neurogenesis, the percentage 

of ki-67+ cells that co-labelled with DCX was not reduced (F1,9=0,421; p=0,535, Figure 4a, b) in rats 

exposed to MAM during gestation. Regarding the effect of chronic treatment with antipsychotics, only 

haloperidol induced a significant reduction on neurogenesis (F4,29=3,101; p=0,033, Figure 4a, b). 

Gliogenesis was measured by the percentage of ki-67+ cells that co-labelled with GFAP, a method that 

may include a small percentage of neural progenitor cells. A significant reduction of gliogenesis was 

observed in MAM animals (F1,11=34.454, p<0.00,1, Figure 4c, d). Regarding the effect of chronic 

treatment with antipsychotics an overall effect was observed (F4,29=7,482, p<0.001, Figure 4c, d), with 

clozapine (p=0,009), risperidone (p=0,02) and aripiprazole (p=0,001) presenting an increase, and no 

effect induced by chronic treatment with haloperidol (p=0,930). 
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Discussion 

In the present study we use an animal model of schizophrenia, induced by the prenatal administration 

of the cytostatic agent MAM agent in day 17, to investigate the effects of different classes of 

antipsychotics in the negative and cognitive symptoms of this neuropsychiatric disorder in which 

hippocampal cell genesis has been implicated. 

 

Social deficits are present in some psychiatric disorders with particular relevance in schizophrenia. To 

determine whether MAM rats display social deficits, we tested our animal in the three-chambered 

apparatus, where the social approach of a rat toward a stranger rat (trapped in a wire cage) can be 

measured. Animals exposed to MAM presented an impairment in social interaction (measured by time 

spent sniffing) as observed by the reduced preference for exploring a stranger rat compared with the 

control group. In the second part of the test we measured the preference for social novelty and no 

differences were observed between MAM and control animals. These results indicate that MAM 

animals, as controls, display normal social novelty recognition or social anxiety. In accordance, other 

studies have already reported deficits in (IRSp53−/−) mice in the first part of the three chamber test, with 

no deficits in the second part (time spent with a “novel” animal) (Chung et al, 2015). Regarding the 

time interacting with the “familiar” animal (in the second part of the test), MAM animals revealed a 

significant impairment. We hypothesize that this behavioural phenotype may represent a correlate of 

reduced affect or emotional blunting, a common symptom in schizophrenic patients (de Leon et al, 

1993). Furthermore, chronic treatment with clozapine, risperidone and aripiprazole was able to reverse 

the impairment on sociability induced by MAM exposure. 

The NOR test is widely used to evaluate recognition memory in rodents and is based on the natural 

preference of rodents for exploring novel objects (Antunes and Biala, 2012). This cognitive test (in 

contrast with MWM) is particularly attractive because it requires no external motivation and reward 

(Silvers et al, 2007). As expected, control animals spent significantly more time exploring the novel 

objected. In contrast, MAM animals explored during the same time the old and new object with no 

ability to discriminate between them. Haloperidol treatment was not able to produce a beneficial effect 

on cognition. The atypical antipsychotic drugs clozapine and risperidone were able to reverse the 

cognitive impairments induced by MAM exposure while the effects of aripiprazole on cognition were not 

significant. Again, these data highlight the beneficial effect of some atypical in comparison with classical 

antipsychotics. 
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Considering the neuroplastic phenomena analysed, MAM animals presented a decrease in hippocampal 

gliogenesis (new GFAP cells) with no significant effects in hippocampal neurogenesis. This reduction 

could be involved in the cognitive and emotional deficits observed in these animals. In fact, normal 

recognition performance depends on the integrity of the hippocampus; and animals with reduced levels 

of cell genesis are impaired in some cognitive tasks (Jessberger et al, 2009; Mateus-Pinheiro et al, 

2013). The chronic treatment with haloperidol induced no effects on gliogenesis and a significant 

reduction in neurogenesis. In terms of behaviour, haloperidol treated animals were not able to recover 

from the cognitive and emotional deficits induced by MAM exposure. This goes in line with previous 

reports describing that haloperidol treatment acts mainly against the positive symptoms of 

schizophrenia, exacerbating in some cases the negative and cognitive symptoms.  

All the antipsychotics used in this study were not able to promote alterations on adult hippocampal 

neurogenesis; this could be attributed to the fact that MAM animals presented no deficits in this 

neuroplastic phenomenon.  On the other hand, the formation of new GFAP cells was promoted by 

clozapine, risperidone and aripiprazole treatment. These results suggest a possible role of the 

serotonergic system (modulated by the atypical drugs) in the positive effects on the formation of newly 

GFAP cells.  

 

An important dimension in social interaction is social communication, and rodents emit ultrasonic 

vocalizations under social contexts. In the future, we are planning to analyse the ultrasonic vocalizations 

emitted during the three chamber test to appreciate the emotional status of the animals during the test. 

Additionally, we are planning to study other neuroplastic phenomena beyond cell genesis namely the 

structural analysis of the DG neurons to understand if the exposition to MAM during gestation and the 

chronic treatment with antipsychotics are able to induce alterations in the dendritic length and neuronal 

complexity.        

 

In conclusion, in the present study we have demonstrated that exposition to MAM during gestation is a 

good model to study the negative and cognitive symptoms of schizophrenia. Adult neurogenesis is not 

affected in MAM animals. In contrast, the formation of new GFAP cells is decreased in these animals. 

Regarding antipsychotic action on neuro/gliogenesis, we observed a positive effect on gliogenesis 

promoted by the atypical agents. By contrast, haloperidol induces a negative effect on neurogenesis. 
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The present observations should be further explored to understand if these neuroplastic alterations are 

implicated in the behavior actions of antipsychotics. Altogether, the present data suggest adult cell 

genesis as a possible target to be addressed for further therapeutic interventions in schizophrenia.  
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Figure 1- Behavioural effects of the MAM model and antipsychotic treatment on PPI, mood (SPT, FST) 

and anxiety (NSF). (a) Schizophrenia animal model was induced by the administration of MAM in 

pregnant females at day 17 (MAM E17); four different antipsychotics (haloperidol, clozapine, 

risperidone and aripiprazole) were administrated during five weeks. (b) PPI. (c) Anhedonia was 

evaluated on Sucrose Preference Test (SPT). (d) Learned helplessness was evaluated in the Forced 

Swim Test (FST). (e) Anxiety was evaluated in the novelty supressed feeding (NSF). Data represented as 

mean + sem. 
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Figure 2- Behavioral effects of the MAM model and antipsychotic treatment on cognition (NOR). (a) 

Cognitive function was assessed using the NOR test. Rats were first familiarized to the testing arena for 

8 minutes and with no objects presentation. On the following day, animals were allowed to explore two 

identical objects for 10 minutes. Twenty-four hours later, animals returned to the arena for 3 minutes, 

in which one of the objects was replaced by a novel one. (b) Time spend exploring the novel object. (c) 

Index of discriminatio. Data represented as mean + sem. *p<0,05; **p<0,01. 
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Figure 3- Behavioral effects of the MAM model and antipsychotic treatment on social behaviour. (a) 

Social behaviour was assessed using the three chamber test. This test is performed in three sessions 

within a three-chambered box. The test starts with the habituation to the empty box (5min.).  Then, rats 

are given a choice between spending time with another rat (never-before-met) under one container and 

an empty container (10 min.). After this, the tested rat encounters the first intruder (“familiar”) as well 

as a “new” unfamiliar rat under another container (10 min.). (b) Social interaction was determined by 

measuring the amount of time spends with the rat; (c) and the time spends with the “new” animal and 

and with the “now-familiar” animal. Data represented as mean + sem. *p<0,05; **p<0,01;***p<0,001. 
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Figure 4- Effects of MAM and antipsychotic treatment on the newly born cells. (a) The percentage of ki-

67+ cells that was co-labelled with the antibody against DCX. (b) Percentage of ki-67+ cells that was co-

labelled with glial marker GFAP in the SGZ. Data represented as mean + sem. *p<0,05; 

**p<0,01;***p<0,001. 
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SECTION III – DISCUSSION AND CONCLUDING REMARKS 
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6th CHAPTER  

 Overall discussion and conclusions  
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General discussion 

Over the last 50 years, different categories of antidepressant and antipsychotic drugs have been 

fortuitously discovered (Pittenger et al, 2008) leading to a prevailing neuro-chemical hypothesis of 

depression and schizophrenia in which these disorders became considered “states” of chemical 

imbalance in the brain that were corrected by the pharmacological actions of these drugs (Lopez-Munoz 

and Alamo, 2009). Therefore, all currently available drugs to treat these disorders are “monoamine-

based therapies”. However, these drugs are far from ideal regarding their efficacy and tolerability and 

much remains to be understood regarding the pathophysiology of depression and schizophrenia. 

Increasing evidence demonstrates that more complex neuroplastic events are associated to the onset of 

depression and antidepressant treatment (Bessa et al, 2009a; Mateus-Pinheiro et al, 2013; Morais et 

al, 2014; Patricio et al, 2015). In fact, structural neuroplasticity, including dendritic remodelling and cell 

genesis is disrupted not only in depression but also in schizophrenia. In this thesis we have focused on 

structural plasticity in these two psychiatric disorders.  

 

Despite advances in our understanding of the neurobiology of major depressive disorder, no established 

mechanism can explain all the aspects of the disease. Using an animal model of depression - the 

unpredictable chronic mild stress (uCMS) model - with a clear impact on structural neuroplasticity 

(neurons with reduced dendritic complexity and length and decreased number of new cells in the 

hippocampus) we proved that monoamine oxidase subtype A (MAO-A) selective inhibition (like other 

classes of antidepressant drugs) reverses the deleterious neuroplastic effects of chronic stress in the 

hippocampus by restoring adult neurogenesis and by rescuing dendritic atrophy of granule neurons 

(Morais et al, 2014). We extended our analysis to the more recently described neurogenic region - the 

hypothalamus - showing for the first time that chronic stress and antidepressant treatment modulate 

this phenomenon. Even with major achievements on the comprehension of depression pathology, a 

great proportion of patients are still resistant to currently available antidepressant. New strategies have 

been adopted in these patients, such as the use of antipsychotics (Papakostas et al, 2007; Shelton et 

al, 2008). Exploring neuroplasticity as a possible mechanism involved in their action we found that 

atypical antipsychotics (in contrast with classical) are able to reverse depressive-like behaviour induced 

by the uCMS protocol and promote an increase in structural plasticity. 

Antipsychotics are first line to treat schizophrenia and crescent evidence indicates disrupted 

neuroplasticity in this pathology. Based on these evidences we explored the neuroplastic role of 
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antipsychotics in the negative and cognitive symptoms in an animal model of schizophrenia. Animals 

prenatally exposed to MAM presented deficits in recognition memory and social interaction. These 

behavioural changes were accompanied by significant decreases in the levels of hippocampal 

gliogenesis. Strikingly, the atypical antipsychotics were able to promote an increase on gliogenesis but 

not on neurogenesis. In this work, we demonstrate that classical and atypical antipsychotics 

differentially modulate hippocampal cell genesis possibly contributing to different behavioural actions in 

hippocampal dependent functions (chapter 4 and 5). 

 

In the first study of this thesis (chapter 2) we investigated the effects of an antidepressant (pirlindole) 

that acts through the selective inhibition of MAO-A on neuroplasticity. The potentiation of adult cell 

genesis in the dentate gyrus of the hippocampus has been extensively described as a common action 

observed in all the different classes of antidepressant drugs (Bessa et al, 2009a; Malberg et al, 2000; 

Morais et al, 2014; Sairanen et al, 2005; Santarelli et al, 2003). However, the effects of 

antidepressants in the reversal of stress-induced morphological changes of granule neurons in the 

hippocampus have only been described with tricyclics and SSRIs (Bessa et al, 2009a; Jayatissa et al, 

2006; Surget et al, 2011). Considering the importance of neuronal remodelling in the mood improving 

actions of antidepressants we explored the actions of a MAO-A inhibitor in the modulation of this 

phenomenon. In fact, several studies in patients with depression revealed significant volumetric 

reductions in specific brain regions: hippocampus and prefrontal cortex (Botteron et al, 2002; Coryell et 

al, 2005; Frodl et al, 2002; Sheline et al, 2003) while treatment with antidepressants is able to reverse 

this atrophy (Frodl et al, 2008; Sheline et al, 2003). Our data demonstrates that pirlindole (a MAO-A 

inhibitor) is able to reverse the behavioural effects of stress exposure potentiating hippocampal adult 

neurogenesis and rescuing the stress-induced dendritic atrophy of granule neurons in the dentate gyrus 

of the hippocampus (Morais et al, 2014). These results further reinforce the notion that modulation of 

monoaminergic neurotransmission is involved in the neuroplastic effects of currently available 

antidepressant drugs. However, it also highlights the fact that antidepressant treatment is not 

exclusively dependent on the ability to modulate monoamines and neuroplasticity as observed by high 

proportion of non-remitted patients.  In fact, despite the significant advance in understanding the 

neurobiology of depression no widely accepted biomarkers are available to assist diagnostics or 

treatment choice for individual patients (Labermaier et al, 2013). This could be attributed to the 

complexity of this pathology. Thus, multiple biological measures may be needed to refine our 
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understanding and ultimately extract useful information to personalize the treatment with 

antidepressants. In fact, translating these research questions from the clinical setting to preclinical 

models, from bed to bench and back, still remains a challenge.  

 

The discovery of neural stem cells in the mature adult brain opened a new chapter in the neuroscience 

field being considered an important player in neural plasticity. Adult neurogenesis is particularly well 

defined and characterized in two specific brain regions: the hippocampus and the SEZ (Ernst and 

Frisen, 2015; Ming and Song, 2011). In the second study of this thesis (chapter 3), we focused our 

attention on neuroplasticity in a distinct brain region: the hypothalamus. This region is involved in a 

variety of functions including energy balance regulation and has been recently described as a novel 

neurogenic brain region (Kokoeva et al, 2005; Lee et al, 2012; Lee et al, 2014).  Since altered feeding 

behaviour is a common symptom of depression, we explored the possibility that hypothalamic 

neurogenesis may play a role in the alterations of energy-balance and appetite observed in the onset of, 

and the recovery from depression. These analyses were performed in the arcuate and median 

eminence nuclei of the hypothalamus (hypothalamic regions implicated in energy balance regulation). 

In fact, ME nuclei was only recently discovered to be implicated in body weight regulation (Lee et al, 

2012). Our results demonstrated that uCMS and antidepressant treatment can modulate hypothalamic 

neurogenesis in these two hypothalamic nuclei involved in energy homeostasis. Furthermore, different 

classes of antidepressants, with an opposite action on body weight gain, differentially modify 

hypothalamic neurogenesis. Our present data has opened new questions, regarding the function of 

these new-born cells. In the future, we are also planning to analyse the survival of these cells.  

 

Modulation of neuroplasticity is a critical factor involved in depression pathology and antidepressant 

treatment (Pittenger et al, 2008). At short-term (immediately after chronic treatment) neuronal 

remodelling seems to be critical to the mood improving actions of antidepressants (Bessa et al, 2009a). 

However, for the sustained remission (long-term antidepressant effects) hippocampal neurogenesis is a 

critical factor (promoted at short-term) beyond neuronal remodelling (Mateus-Pinheiro et al, 2013). Our 

present data is in agreement with this hypothesis, with efficient antidepressants (reverting depressive 

phenotype) promoting neuronal remodelling and adult neurogenesis. Additionally, we have 

demonstrated that stress and antidepressants modulates adult neurogenesis not only in the 

hippocampus (a critical region involved in the mood and cognitive dimension) but also in the 
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hypothalamus, a brain region involved in the regulation of vegetative symptoms, such as appetite. 

Currently, the research on adult mammalian neurogenesis has been almost exclusively focused on the 

dentate gyrus of the hippocampus and in the SEZ of the lateral ventricles. Hypothalamic neurogenesis 

has recently emerged as a third glio/neurogenic niche in the central nervous system. This neurogenic 

niche has been regarded with some scepticism, in part due to the remaining open questions:  1) what 

are the potential sources of hypothalamic neurogenesis? Very little information is available about the 

hypothalamic neural stem cell (NSC) niche. Some experiments have demonstrated that a population of 

specialized radial glial cells called tanycytes are characterized by the expression of some neural 

progenitors and stem cell markers. Additionally, they have gliogenic and neurogenic properties (Rizzoti 

and Lovell-Badge, 2016; Rodriguez et al, 2005). However, more studies are still required regarding the 

identity and location of adult hypothalamic stem and/or progenitor cells; 2) what is the functional 

significance of the postnatal hypothalamic neurogenesis? Hypothalamic neurogenesis has been 

associated with energy balance regulation (namely regulation of appetite), in part grounded by the 

expression of different neuropeptides (implicated in appetite) by these newly born neurons. In fact, the 

expression of neuropeptide Y (NPY), proopiomelanocortin (POMC) by these newly born cells has been 

previously described (Kokoeva et al, 2005; Lee et al, 2012). However, it remains unclear if other 

functional roles are associated with these recently formed cells. The nature of this new site of adult cell 

genesis is still poorly studied and requires further investigation. Ablating adult born hypothalamic 

neurons will probably give more insight into their function. Additionally, the study of drugs that modulate 

the appetite could give us important clues to understand the mechanism implicated in the regulation of 

hypothalamic neurogenesis. Considering the hypothalamus as a complex brain structure composed by 

multiple nuclei involved in different physiological functions, more studies should also be performed to 

understand if neurogenesis can take place in other hypothalamic nuclei with consequences in other 

brain functions (Rizzoti et al, 2016).            

 

In the third study of this thesis (chapter 4), we studied the neuroplastic impact of a different class of 

drugs, the antipsychotics. Clinical studies have previously highlighted the potential beneficial effects of 

atypical antipsychotics in treatment-resistant depression (Papakostas et al, 2007; Sagud et al, 2006; 

Shelton et al, 2008). In this chapter we explored for the first time the role of antipsychotic drugs in the 

uCMS model on behaviour and neuroplasticity. Based on evidences describing the key role of 

neuroplasticity in the therapeutic actions of antidepressants, we hypothesized that atypical 
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antipsychotics may exerted their action through the modulation of these same phenomena. Our data 

demonstrates that the atypical antipsychotic clozapine improved measures of depressive-like behavior 

while haloperidol had no beneficial effect, aggravating learned helplessness in the forced swimming test 

and behavior flexibility in a cognitive task.  Importantly, an upregulation of adult neurogenesis and 

neuronal survival was observed in animals treated with clozapine while haloperidol promoted a 

downregulation of these processes. Furthermore, clozapine was able to re-establish the stress-induced 

impairments in neuronal structure in the hippocampus and prefrontal cortex. These results demonstrate 

that the atypical antipsychotic clozapine is able to reverse the behavioral effects of chronic stress by 

improving adult neurogenesis, cell survival and neuronal reorganization. 

 

Antipsychotics are primarily used in the treatment of schizophrenia. These drugs are highly effective in 

reducing the positive symptoms of schizophrenia, with negative and cognitive symptoms being more 

problematic to treat (King, 1998; Singh et al, 2010). These non-treated impairments lead to profound 

consequences in terms of ability to function in areas such as work and social relationships. In the last 

study of this thesis (chapter 5), we explored the neuroplastic effects of antipsychotic drugs in a well-

established animal model of schizophrenia. To achieve this we explored possible deficits in negative 

(mood and social behaviour) and cognitive domains (spatial memory and recognition memory) in 

animals prenatally exposed to MAM, followed by analysis of hippocampal cell genesis. Hippocampus is 

a key brain region involved in the emotional and cognitive processes (normal recognition performance 

depends on the integrity of the hippocampus) (Rubin et al, 2014). In fact, MAM animals presented 

specific deficits in cognition (recognition memory) and social behaviour. Interestingly, these animals 

presented decreased levels of gliogenesis in the hippocampus, being one of the possible factors 

contributing to the negative impact on cognitive behaviour. Regarding the action of antipsychotics, four 

different agents were used in this study: the classical haloperidol and the atypical clozapine, risperidone 

and aripiprazole. All these agents share the modulation of the levels of dopamine through distinct 

mechanisms of action: haloperidol acting as a pure antagonist of the D2 receptors, clozapine and 

risperidone presenting this same D2 antagonism combined with the modulation of the serotonergic 

system and aripiprazole acting as a D2 partial agonist with modulating effects on the serotonergic 

system. While the classical antipsychotic drug haloperidol revealed no significant cognitive effects in 

these animals, the atypical antipsychotic drugs clozapine and risperidone were able to reverse the 

cognitive impairment induced by prenatal MAM exposure while the effects of aripiprazole on cognition 
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were not significant. Our present results suggest the potential importance of serotonergic and 

noradrenergic system modulation in the beneficial effects of atypical antipsychotics in cognitive 

behaviour. We also assessed cognition using the Morris water maze (MWM).  Our MAM animals present 

no deficits in spatial memory. In fact, there is no consensual in the literature if these animals presented 

deficits in this dimension (Flagstad et al, 2005; Gastambide et al, 2015; Hazane et al, 2009). One 

possible explanation is the use of different strains of rats between studies.  Regarding social interaction, 

two different analyses were performed: (a) time spent interacting with a new animal (b) time spent with 

a “familiar” vs “new” animal. In the first part (a) the classical antipsychotic drug haloperidol had no 

significant effects on sociability. All the atypical antipsychotic drugs were able to revert the impairment 

on sociability induced by MAM exposure. Once again, the present data indicates the critical impact of 

serotonergic system (modulated by the atypical drugs) to the positive effect on sociability. In the second 

part of the test (b) we found no differences between MAM and control animals regarding the time spent 

with the “new” stranger, suggesting normal social novelty recognition or social anxiety in MAM animals. 

In terms of time spent with the “familiar” animal, control animals spend significantly more time 

interacting than MAM. We hypothesized that MAM animals display reduced affect or emotional blunting 

(a common symptom of schizophrenia) that possibly is represented in the second part of the three 

chamber test. Only clozapine and aripiprazole presented a beneficial effect in this dimension, increasing 

the time spend with the “familiar” animal. Regarding the chronic treatment with haloperidol no effects 

were observed on cognition and social behaviour. This goes in line with previous reports describing that 

haloperidol treatment acts mainly against the positive symptoms of schizophrenia, exacerbating in 

some cases the negative and cognitive symptoms (Miyamoto et al, 2005). Additionally, neurogenesis 

and gliogenesis were not modulated by haloperidol treatment.  

 

The formations of new neurons has been critically appreciated in the context of psychiatric disorders, 

with the majority of studies discarding the possible involvement of new astrocytes. However, astrocytic 

dysfunction and glial pathology have been also associated to the regulation of emotional and cognitive 

behaviour (Banasr et al, 2011). In fact, we have recently observed that imipramine treatment promotes 

the generation and differentiation of new hippocampal cells into astrocytes (Mateus-Pinheiro et al, 

2013). Additionally, our present data shows that clozapine, risperidone and aripiprazole promotes the 

formation of new GFAP cells in an animal model of schizophrenia. However, the same was not observed 
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after clozapine treatment in the uCMS model. In fact, we only observed a reduction in the formation of 

new GFAP cells in our animal model of schizophrenia, with no effects induced by the uCMS model. 

In 2006, a remarkable post-mortem study by Reif and colleagues reported that proliferating cells are 

significantly reduced in the dentate gyrus of the hippocampus in brains of schizophrenic patients (Reif 

et al, 2006), suggesting a possible involvement of adult cell genesis in the aetiology of schizophrenia. 

Interestingly, animals exposed to MAM presented alterations on gliogenesis. All the antipsychotics are 

able to promote an increase in the formation of new GFAP cells. The present results further reinforce 

the notion that astrocytes could be critical players in the aetiology and treatment of psychiatric 

disorders. However, new questions arise from these observations: “Is gliogenesis more important than 

neurogenesis in schizophrenia field?” “Is the modulation of gliogenesis implicated in the therapeutic 

effects of antipsychotics?”. The use of different animal models, with clear effects on neuroplasticity, 

could give us important clues regarding the ability to promote recovery, with or without neurogenic 

promotion. Interestingly, DISC1 knockdown mice (genetic animal model of schizophrenia) presented 

deficits in gliogenesis that are reversed by increase expression levels of DISC1 (Wang et al, 2016), 

confirming glial cell genesis as a potential target for schizophrenia.  

 

Despite the diverse pharmacological profiles (monoamine oxidase inhibitors, tricyclic antidepressants, 

serotonin-selective reuptake inhibitors and serotonin–norepinephrine reuptake inhibitors), all 

antidepressant drugs result in similar behavioral and neuroplastic outcomes, suggesting similar 

mechanisms of action. In contrast, classical and atypical antipsychotics are strikingly different as 

evidenced by their actions, mechanisms, effects and side effects. For instance, the atypical 

antipsychotic clozapine has a more complex pharmacological action than the classical haloperidol, 

presenting binding affinities for various neurotransmitter receptors, including several serotonin and 

noradrenaline receptors (Meltzer et al, 1989; Miyamoto et al, 2005). Our present results suggest the 

potential importance of serotonergic and noradrenergic system modulation in the beneficial effects of 

atypical antipsychotics on neuroplasticity that should be addressed in future studies. 

 

The oversimplification of the pathophysiology of depression as a neurochemical imbalance disorder has 

biased the research of new antidepressants for decades and currently available treatment for 

depression is often inadequate for many patients. In fact, promising hypothesis for depression and 

antidepressant treatment has failed to be applied in a number of patients, indicating that much remains 
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to be understood regarding the pathophysiology of depression. Probably, the complexity of this 

pathology needs a more careful attention in order to understand which hypothesis is more correctly 

associated to which individual patient or if different hypothesis are implicated in a specific patient. In 

the present thesis we have been particularly interested in the “neurogenic hypothesis of depression”, 

claiming that stress (as an etiological factor) decreases the production and survival of newly born cells 

and treatments with antidepressants increase them. In fact, blocking the formation of these newly born 

cells prevents the long-term beneficial effects of antidepressants in several behavioural paradigms. 

However, the precise mechanism by which newly born neurons influence the antidepressant response 

remains unclear and more studies are still required. Regarding schizophrenia, more studies should be 

performed addressing neuroplasticity as a target for antipsychotic treatment. 

 

Together, these findings contribute to expand our knowledge on the role of psychopharmacological 

agents (including antidepressants and antipsychotics) on the modulation of different neuroplastic 

events, including cell genesis and neuronal remodelling. In future, this knowledge may contribute to new 

therapeutic interventions both in depression and schizophrenia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 143 

Conclusions 

In the present thesis we showed that: 

1- Pirlindole (a MAO-A drug) is able to reverse the behavioural effects of stress exposure 

potentiating at the same time hippocampal adult neurogenesis and rescuing the stress-induced 

dendritic atrophy of granule neurons in the dentate gyrus of the hippocampus (Chapter 2); 

2- uCMS and antidepressant treatment can modulate hypothalamic neurogenesis. Different 

classes of antidepressants, with an opposite action on body weight gain, modulate differentially 

hypothalamic neurogenesis (Chapter 3). 

3- The modulation of adult neuroplasticity (adult neurogenesis, cell survival and neuronal 

reorganization) is involved in the mood improving actions of atypical antipsychotics in an animal 

model of depression (Chapter 4) 

4- Prenatal MAM exposure induces specific cognitive deficits and social impairments. The 

classical haloperidol presents no beneficial effects in these behavior dimensions. The atypical 

clozapine and risperidone have a positive effect on both dimensions with aripiprazole 

presenting only a statistic effect in the social measure. Adult gliogenesis is affected in MAM 

animals and is modulated by some atypical antipsychotics (Chapter 5).  
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