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a b s t r a c t

We report on CrN/MoN multilayer coatings, their structure, elemental and phase composition, residual
stresses, mechanical properties and their dependence on deposition conditions. The hardness and
toughness were considered as main parameters for improvement of the protective properties of
coatings. Multilayers with varying bilayer periods, ranging from 40 nm to 2.2 mm, were obtained by
using cathodic arc physical vapour deposition (Arc-PVD) on stainless steel substrate. The elemental
analysis was performed using wavelength-dispersive X-ray spectroscopy (WDS). The surface
morphology and cross-sections were analysed with scanning electron microscopy (SEM). The X-ray
diffraction (XRD) measurements, including grazing incidence X-ray diffraction (GIXRD), in-plane
diffraction analysis and electron backscatter diffraction (EBSD), were used for microstructure char-
acterisation. Mechanical properties of deposited films were studied by measuring hardness (H) and
Young's modulus (E) with micro-indentation, H/E and H3/E2 ratios were calculated. The dependences
of internal structure and, hence, mechanical properties, on layer thickness of films have been found.
Significant enhancement of hardness and toughness was observed with decreasing individual layer
thickness to 20 nm: H ¼ 38e42 GPa, H/E ¼ 0.11.

© 2017 Published by Elsevier B.V.
1. Introduction

It is well known that various surface modification techniques
(ion implantation, surface oxidation, ablation, protective coatings,
etc.) [1e4] are widely used nowadays to satisfy the needs of engi-
neering, industry and business, in materials with desirable prop-
erties for an acceptable price. Hard coatings are themost efficient in
providing protection from deformation and wear [5e12]. But often
hard materials may be brittle and prone to cracking, which is why
for protective coatings, it is crucial to have both high hardness and
toughness. Transition metal nitrides (TMN) are largely employed as
hard protective coatings in the cutting and forming tool industry, as
.O. Postolnyi), alexp@i.ua
they exhibit high hardness, chemical inertness and thermal sta-
bility under harsh environments (oxidation, radiation). Research
strategies are currently deployed to improve their toughness, by
synthesizing multicomponent systems [13e15] and/or tailoring
their architecture through interface control (e.g., in superlattices)
[16e18].

TiN has been the most widely studied TMN protective coating
and it's still widely used since the late 1960s [19e21]. However, it
has some limitations and hardly overcomes modern challenges.
The weak point of such coatings is the thermal stability and
oxidation resistance. Under high temperature, an oxide layer may
be formed on the surface, which develops stress in the coating, high
enough to damage or destroy the protective layers. For TiN it
happens at a temperature above 500 �C [22,23]. CrN also has similar
properties, but has higher thermal stability (more than 600 �C
[24e26]), extremely strong adhesion to metal substrate, higher
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corrosion and wear resistance. Compared to all other TMN, though
MoN is the hardest superconducting metal nitride, it has been
studiedmuch less, despite exhibiting hardness of about 28e34 GPa.
Various phases with a wide range of stoichiometry and lattice
structure have been reported [27e32]: cubic g-Mo2N1±x, tetragonal
b-Mo2N1±x, hexagonal d-MoN and metastable MoNx phase of NaCl-
B1-type cubic structure.

Improvement of mechanical properties and oxidation/wear
resistance of TMN may be gained from multilayer design of TMN
coatings, which benefit from the synergistic effect of individual
layer properties, as well as Hall-Petch strengthening. Combined
with TiN, it has been recently shown that TiN/MoN multi-layered
coatings showed successful enhancement of mechanical proper-
ties [33e38]. The aim of the present paper is to investigate the
structure, phase composition and mechanical properties of multi-
layer CrN/MoN coatings, for which reported work is limited
[39e45]. Their dependence on bilayer thickness and grain size will
be discussed, in anticipation of further significant improvement.
2. Multilayer deposition

CrN/MoNmulti-layered coatings were fabricated by cathodic arc
physical vapour deposition (Arc-PVD) on steel substrates, using
vacuum-arc unit “Bulat-6M”, designed for deposition of protective
and decorative coatings (see schematic in Fig. 1). Films were
deposited on the polished substrates of stainless steel 12X18H9T
with dimensions of 20� 20mm2 and thickness of 2 mm. Before the
deposition process, the substrate surface was cleaned and activated
by metal ion bombardment, by applying the negative potential
of �1.3 kV to the substrates for 15 min. Cleaning process was per-
formed under continuous rotation of substrate holder and arc
current Iarc of 120 and 100 A for Cr (chromium X99 rod, purity of
99%) and Mo (pure vacuum melted molybdenum rod, purity
99.99%) cathodes respectively. Then the interlayers of pure metals
were deposited during 1 min and the main process of multilayer
CrN/MoN films deposition was performed in nitrogen atmosphere,
up to 1 h. Automatic control system of substrate holder rotation
provides static position of substrates, when facing the targets
(during alternate layer deposition), and then rotation to other
evaporation source while cathodes are switched off until a new
position of substrate holder is reached.

The deposition time per layer was varied from 300 to 10 s from
sample 1 to sample 6 while other deposition conditions were
Fig. 1. Vacuum-arc deposition system for multilayer films. 1 e vacuum chamber, 2 e

vacuum pump system, 3 e nitrogen supply, 4 e substrate holder, 5 e substrates, 6 e

chromium evaporator, 7 e molybdenum evaporator, 8 e arc power supplies, 9 e

substrate power supply, 10 e automatic rotation system for substrate holder.
maintained in similar states (see Table 1). Coatings have between
12 and 354 layers each, and the thickness of single layer varies from
tens nanometres up to 1.1 mm, corresponding to total film thickness
in the range of 7.8e14.7 mm.

3. Characterisation methods

The surface morphology analysis and films cross-section ob-
servations were performed by scanning electronmicroscopy (SEM),
using JEOL JSM-7001F Schottky Emission Scanning Electron Mi-
croscope and FEI Quanta 400 FEG Environmental SEM (ESEM).
Cross-section samples were prepared by cutting of coatings and
substrates with further hot mounting into conductive epoxy resin
and, finally, by grinding and polishing.

The elemental analysis was obtained by wavelength-dispersive
X-Ray spectroscopy (WDS) using an Oxford Instruments INCA
WAVE WDS spectrometer unit attached to the above mentioned
JEOL JSM-7001F and by INCAEnegyþ software module. The WDS
scanning was performed successively by Ka1 lines for Cr, N, O ele-
ments and by La1 line for Mo using 10 kV high accelerating voltage,
probe current of 20 nA and magnification in range from �1,000
to �5,000. This technique is complementary to the energy-
dispersive spectroscopy (EDS), or can run independently. The
WDS spectrometers have significantly higher spectral resolution
and enhanced quantitative potential.

The calculation of electron beam penetration depth in thin films
was done using equation (1) [46]:

x ¼ 0:1E1:50
r

; (1)

where E0 is the energy of incident electrons in keV; r e density of
the material in g/cm3.

The X-ray diffraction (XRD) analysis was performed in Bragg-
Brentano geometry (q/2q), using Panalytical X'Pert Pro Multipur-
pose Diffractometer. The XRD patterns were acquired by exposing
samples to Cu Ka X-ray radiation, which has a characteristic
wavelength lKa1 ¼ 1.5405980 Å (mainly) and lKa2 ¼ 1.5444260 Å,
ratio of intensities Ka1/Ka2 ¼ 0.5. They were generated by PW3373/
00 (Cu LFF DK292308) X-ray tube operated at Uacc ¼ 40 kV and
Iemis ¼ 30 mA in the line focus mode with 12.0 mm length and
0.4 mmwidth. The data were collected over the range 2q ¼ 10÷95�

with the step size 2q ¼ 0.017� and the scan speed 2�/min, using the
scanning X'Celerator detector. The fixed divergence slit of 0.5� was
used together with the beam mask of 5 mm and all scans were
carried out in continuous mode. Incident and receiving soller slits
were 0.04 rad, receiving slit was 0.1�.

Complementary (q/2q) scan and additional XRD analysis in low-
angle range (GIXRD and in-plane diffraction), as well as residual
stresses measurements, were performed using high-resolution X-
ray diffractometer Rigaku SmartLab. Spectra were acquired by us-
ing various optics, scan speed and scan step, applying the parallel
beam of Cu Ka X-ray radiation with lKa1 ¼ 1.540593 Å and
Table 1
Conditions of Arc-PVD deposition for studied CrN/MoN coatings.

Sample
number

Iarc, A Ub, V p, Pa Dep. time
per layer, s

Number
of layers

MoN CrN

1 120 100 �20 0.4 300 12
2 150 25
3 80 45
4 40 88
5 20 180
6 10 354
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lKa2 ¼ 1.544414 Å generated by rotating copper anode at
Uac ¼ 45 kV and Iemis ¼ 200 mA in line focus mode with 8.0 mm
length and 0.4 mm width.

It should be noted that in contrast to the normal q/2q scanning,
where the scattering vector is perpendicular to the surface, in X-ray
analysis such as in-plane XRD, the scattering vector lies parallel to
the film surface and the diffraction can be observed from the lattice
planes normal to the samples surface. In asymmetric GIXRD, the
scattering vector is inclined to the film's surface and changes its
position continuously with changing of 2q value. Therefore,
depending on the detector position, various planes normal to the
current scattering vector in each point of timewill contribute to the
total diffraction pattern of the sample.

The evaluation of crystallites sizes was carried out using
Scherrer equation (2) [47]:

d ¼ Kl
b cos q

; (2)

where d is a mean size of the ordered (crystalline) domains, which
may be smaller or equal to the grain size, in Å; l is an X-ray
wavelength, in Å; b is a line broadening at half the maximum in-
tensity (FWHM) in radians; q is the Bragg angle, in radians;
K z 0.89 is a dimensionless shape factor depending on (hkl) Miller
indexes.

The EBSD analysis was performed using the unit of EDAX EBSD
forward scatter detector system and high resolution DigiView III
camera attached to the abovementioned FEI Quanta 400 FEG ESEM.
The grain tolerance angle of 5� was used for grains determination.
Grains at edges of scans were not included in statistics.

Calculation of residual stress was performed by sin2j method,
using asymmetric XRD 2q scans for various fixed incident u angles
and assuming zero values of 4 and c angles [48e50]. The angle j
was found by subtractingu from q. The scheme of the experiment is
shown in Fig. 2.

Out-of-plane lattice constants a⊥ were determined from d-
spacing vs sin2j plots, as well as from XRD q/2q patterns, while in-
plane lattice constants ak were deduced from in-plane XRD data.

The analysis of mechanical properties was realised by micro-
indentation for hardness and Young's modulus (elastic modulus)
measurements. The NanoTest instrument from Micro Materials
company was used. On each sample, up to 10 indentations oriented
in one line with the interval of 50 mm were made. The NanoTest
instrument has Berkovich indenter and uses the method of depth
Fig. 2. X-ray diffraction analyses: (a) conventional symmetric q/2q sc
sensing indentation with the collected data analysis performed by
supplied software using Oliver-Pharr method. The measured data
was collected in “Depth Vs Load Hysteresis” mode with an acqui-
sition process controlled by penetration depth. The maximum
penetration depthwas in the range 0.6e1.3 mm, but not deeper than
10% of coating thickness and the maximum load reached values of
583 mN.

4. Results and discussion

4.1. Multilayer structures

The multilayer structure of studied CrN/MoN coatings achieved
by SEM from the polished cross-section samples is presented in
Fig. 3. Images of samples 1 and 3 (Fig. 3 (a) and (b)) were taken in
secondary electron imaging (SEI) mode, magnification �5,000
and �15,000 respectively. Image of sample 6 (Fig. 3(c)) was made
using backscattered electron detector (BSED) in Z (atomic number)
mode, magnification is �400,000. Summarised results of bilayer
and total thickness of coatings are presented in Table 2.

Since heavier atoms with higher atomic number Z give brighter
shades of grey on SEM images, the MoN layers with greater average
Z will result in brighter layers. CrN layers, on the other hand, have
lower average atomic number, thus corresponding to darker layers.
The cross-section SEM images confirm the periodic stacking of the
MoN/CrN layers and the presence of relatively sharp interfaces,
which approves high quality of Arc-PVD deposited films. Defects
due to the substrate surface roughness or droplets in films were
easily absorbed and smoothed by multilayer structure.

The evolution of deposition rate, calculated by dividing the
value of bilayer thickness by the corresponding deposition time
(see Table 2), is shown in Fig. 4. It is seen that for coatings with
shorter layer deposition time, the real bilayer thickness starts to
be lower than predicted by deposition time control. This can be
explained by specific features of the deposition system with
automatic controller of substrate holder rotation and evaporators
power supplies. The shorter the deposition time per layer, the
more often does the substrate holder rotate and evaporators are
disabled by the controller. Meanwhile, nitrogen flows to the
chamber, the excess reactive gas causes increase of pressure and
the poisoning of the cathodes and, hence, the decreasing of the
evaporation rates. In turn, it also influences the increase of reac-
tive gas again, even at the beginning of the new layer deposition
process.
an, (b) asymmetric 2q scan with fixed position of X-ray source.



Fig. 3. SEM-images of polished cross-section samples 1 (a), 3 (b) and 6 (c) of multilayer CrN/MoN coatings.

Table 2
Total thickness and thickness of layer period measured by SEM on cross-sections.

Sample Dep. time per layer, s Bilayer thickness L, mm Total thick., mm Dep. rate, nm/s

1 300 2.26 13.5 3.8
2 150 1.18 14.7 3.9
3 80 0.60 13.6 3.8
4 40 0.25 11.1 3.2
5 20 0.12 10.8 2.9
6 10 0.044 7.8 2.2
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4.2. Elemental composition

The analysis of elemental composition (see results in Table 3)
was performed byWDS technique, which uses characteristic X-rays
of interaction volume of studied films with electron beam. The
process of data acquisition and analysis for elemental content and
structures of considered films has the features described below.

The elemental composition of coatings was measured by scan-
ning the presence of four of the most possible elements, assuming
the contribution of chromium, molybdenum, nitrogen and oxygen.

The Ka1 line of oxygen, which was used for the analysis
(EKa1(O) ¼ 0.525 keV), lies very close to the La1 line of chromium
(ELa1(Cr)¼ 0.572 keV). Because of this, chromiummay contribute to
the value of oxygen content in the film's composition. To avoid this,
the determining of background for oxygen peak acquisition was
made by shoulder on the side opposite to the chromium La1 line.

Sample 1 demonstrates the presence of only Cr and N, which
indicates that only the first top surface layer of CrN was exposed to
interaction with the electron beam. It means that the thickness of
the layers in sample 1 is much higher than the penetration depth of
the electron beam used. Based on equation (1), it is possible to
evaluate how deep into the film the electron beam goes. The
Fig. 4. Dependence of deposition rate on layer deposition time.
electron beam used in this experimentmay reach the depth of up to
0.34 or 0.54 mm for MoN or CrN films respectively. For coatings with
thin enough layers, the average value of penetration depth was
used. See the schematic illustration in Fig. 5.

In result, it was identified that in sample 1 with L ¼ 2.26 mm,
only the first layer of CrN was evaluated. The elemental composi-
tionwas almost 50% both of chromium and nitrogen, ratio Cr/N¼ 1,
which means that stoichiometric CrN film was deposited. The
elemental composition of MoN in deposited samples was evaluated
on the top layer of sample 2: Mo/N¼ 1.33. Also, assuming the same
elemental ratios as for CrN in sample 1 and MoN in sample 2, it was
estimated that integral elemental composition of sample 6 is as
follows: Cr - 24.3 at.%, Mo - 26.8 at.%, N - 45.5 at.% and O - 3.4 at.%,
which also gives the ratio Mo/Cr ¼ 1.1. When compared with the
measured values in Table 3 for sample 6 (with the thinnest layers,
where the electron beam exposed about 22 layers), they are found
to be similar, but slight decreasing of Mo fraction and (or)
increasing of Cr content (ratioMo/Cr¼ 0.9) are observed. Due to the
unbalance of interaction volumes of CrN andMoN layers in samples
3, 4 and 5 (see Fig. 5), the results of performed WDS elemental
analysis for mentioned films couldn't be considered as completely
reliable.

4.3. Morphology and microstructure

The surface morphology of CrN/MoN coatings with different
Table 3
Elemental concentration in CrN/MoN multilayer films taken by WDS.

Sample Elements, WDS, top surface

Cr, at.% Mo, at.% N, at.% O, at.%

1 48.1 0.1 50.1 1.8
2 1.1 53.0 41.0 5.0
3 1.8 50.3 43.1 4.8
4 10.2 41.6 43.5 4.7
5 25.5 16.0 56.7 1.8
6 27.6 25.1 44.8 2.5



Fig. 5. Estimated penetration depth of electron beam (accelerated voltage Uac ¼ 10 kV) into multilayer CrN/MoN coatings with various bilayer thickness.
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period thickness is presented in Fig. 6. From cross-section study
andWDS analysis, it is proved that in Fig. 6(a) the thick top layer of
sample 1 corresponds to CrN. The morphology is typical for
chromium nitrides and it is characterised by high structuring,
rocky and rough surface. The surface of sample 3 in Fig. 6(b) has
contribution almost only from MoN layer and more flat surface
was observed. Sample 6 shown in Fig. 6(c) with the thinner layers
includes combined morphology of CrN and MoN films deposited
by Arc-PVD.

Fig. 7 shows the set of XRD patterns recorded on all samples in q/
2q geometry. Four main reflections, in the range of 35e82� are
observed. The XRD lines positions of reference powders, including
cubic phases g-Mo2N and CrN, tetragonal b-Mo2N and hexagonal b-
Cr2N, are reported on the top bar. Some of them are characterised
by similar crystal structure and (or) close peak positions, which
leads to the overlapping and broadening of the experimental
resulting peaks, which renders the phase determination not
evident. However, the XRD patterns show that CrN/MoN coatings
are polycrystalline.

To distinguish between the different possible phases, additional
GIXRD and in-plane diffraction analysis were performed on the
thickest samples, sample 1 (top layer e CrN) and sample 2 (top
layer e MoN), for which only the top layer of the coating will
contribute to the XRD signal under this configuration.

Fig. 8(a) shows the comparison of GIXRD pattern, in-plane
Fig. 6. SEM-images of multilayer CrN/MoN coatin
pattern and conventional q/2q scans for sample 1. Clear re-
flections from cubic CrN phase are observed. Comparing the in-
plane and conventional q/2q XRD patterns, one can infer from the
change in Bragg peak positions that the top CrN layer is under
compressive stress.

Fig. 8(b) shows the comparison of in-plane diffraction patterns
(u ¼ 0.6�) for samples 1 (top layer is CrN) and 2 (top layer is MoN).
They clearly demonstrate similar positions of peaks, which explains
the overlapping of XRD lines on the integral pattern (Fig. 7) and
confirm the presence of cubic (NaCl type) high temperature phase
of g-Mo2N and CrN. The diffraction peaks inherent to b-Mo2N or b-
Cr2N were not detected.

Summarising all the diffraction data mentioned above, the
presence of two main phases in multilayer coatings can be inferred
in Fig. 8: g-Mo2N and CrN with cubic (structural type NaCl) crystal
lattices. They don't show any preferential crystal orientation:
crystallites with [111], [100] and [311] orientations are detected,
with a minor contribution from [220] ones. With decreasing bilayer
period, the peaks get broadened, which could be related to
reduction of crystallite size in these polycrystalline samples. The
results of crystallite size calculation are presented in Table 4.

The average crystallite size was calculated using Scherrer
equation (2). To extract information about separate peaks and to
know the full width at half maximum (FWHM) the fittings of the
XRD peaks were performed using the Crystal Impact's phase
gs surface for samples 1 (a), 3 (b) and 6 (c).



Fig. 7. XRD patterns for CrN/MoN multilayer coatings in the range 2q from 35 to 82� with specified possible phases and planes orientation indicated on the top bar. The range of
50e60� has been cut due to the absence of diffraction peaks and for a better view of the patterns.

Fig. 8. Experimental X-ray diffraction patterns: (a) - sample 1 taken in asymmetrical grazing incidence mode (1), in-plane (2) and symmetrical q/2q scans (3); (b) e samples 1 and 2,
in-plane mode, u ¼ 0.6� . Cut ranges of diffraction angle don't contain any diffraction peaks.
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identification software “Match!”. Any other factors which can
contribute to the width of a diffraction peak besides crystallite size,
such as instrumental effects, microstrain, solid solution in-
homogeneity etc. have not been taken into account. With the
reduction of layer thickness in studied CrN/MoN multilayer films
the crystallite size also decreases.

Additional information on the crystal orientation, grain size, and
their dependence on the layer thickness was gained from EBSD
analysis (see Fig. 9). Note that the colours used in Fig. 9(a) don't
denote any crystal orientation, and grains are simply coloured to
distinguish them from neighbouring grains. Fig. 9(a) shows an
example of a unique grain colour map for part of the CrN layer for
sample 1. Reconstructed ellipse shaped grains demonstrate
columnar structure and films growth. To supplement the infor-
mation about the films structure, the inverse pole figure map was
used. The inverse pole figure map is a colour coded map, where the
colour gives an indication of the crystal direction aligned with
sample normal. Fig. 9(b) demonstrates exactly the same part of the
coating as Fig. 9(a), but in inverse pole figure mode, and it is seen
that some small mis-orientation is present in grains. Neighbour
grains may have similar crystal orientations or completely different
ones.

The EBSD analysis shows the columnar growth of the depos-
ited multilayer CrN/MoN films, as well as the prevailing texture
formation. Fig. 10 presents one of the pole figures for sample 1
with the highest fibre texture in the orientation (311). These



Table 4
Calculation of crystallite and grain size for multilayer CrN/MoN coatings.

Sample number Crystallite size for selected phase and lattices orientation, nm Average grain size by EBSD, mm

CrN g-Mo2N

(111) (200) (311) (220) (111) (200) (311) (220)

1 17.2 14.3 8.9 e 6.4 11.5 8.1 e 0.16
2 14.0 13.9 8.7 e 5.6 10.4 8.0 e 0.15
3 14.5 13.5 8.4 e 5.6 9.9 8.0 e 0.14
4 14.2 12.1 8.2 e 7.4 9.3 7.4 e 0.11
5 13.7 9.9 7.7 e 9.4 9.0 7.2 e e

6 9.3 8.3 7.6 e 5.8 8.0 7.0 e e

1 (in-plane) 7.7 14.7 9.7 5.5 e e e e e

2 (in-plane) e e e e 10.4 9.0 6.5 6.3 e

Fig. 9. EBSD mapping for CrN layer of sample 1: unique grain colour map with shape ellipses boundaries (a), inverse pole figure [311] (b). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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results are also in agreement with the XRD patterns analysis,
where the high intensity of (311) texture was detected for sample
1 (see Figs. 7 and 8).

The discussed method also allows evaluation of a grain size in
coatings and to build graphs of their distribution. From Fig. 11, it is
clear that coatings with smaller layer thickness have smaller grain
size. It is seen that sample 4 (with the lowest layer thickness of all
four analysed) has the lowest fraction of the largest grains, as well
as higher values for the smallest grains size. The opposite is
Fig. 10. One of the pole figures and t
observed for sample 1 with the thicker layers. Samples 2 and 3
demonstrate gradient transition between the two described states.
The detailed information about grain size for studied samples is
shown in the last column of Table 4. The statistics were taken from
the same cross-section areas sizes with height of the total films
thickness and width of 5.3 mm. It should also be noted that the Y-
axis is presented in arbitrary units of fraction, which are not ab-
solute values, to avoid some deviations due to possible small dif-
ferences in size or range of studied zone of cross-section samples.
exture calculations for sample 1.



Fig. 11. Grain size distribution and average grain size values in CrN/MoN multilayer
coatings with different bilayer thickness.
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4.4. Evaluation of residual stresses

The residual stress was determined on samples 1 and 2, giving
access to the stress state of the topmost layers, MoN and CrN,
respectively. For each sample, several hkl reflections were recor-
ded using asymmetric XRD 2q scans and the stress was derived
using the sin2jmethod. As seen from Fig. 12, both layers are under
compressive stress, as manifested from the negative slopes of
sin2j plots. Detailed results of stress and lattice parameters
evaluation are reported in Table 5. For both CrN and g-Mo2N
phases the in-plane ak (resp. out-of-plane a⊥) lattice parameters
are lower (resp. larger) than reference values from the literature,
which is consistent with the existence of biaxial compressive
stress. The stress-free lattice parameter, a0, was calculated from
equation (3) [48]:

a0 ¼ a⊥

�
1� n

1þ n

�
þ ak

�
2n

1þ n

�
; (3)

where n is the Poisson ratio, taken 0.29 both for CrN and MoN
[42,51,52]. Larger compressive stress was found for the MoN layer
compared to CrN one (see Table 5), which may be due to higher
incorporation of nitrogen atoms in the crystal lattice and correlates
with the results of elemental composition analysis. For the same
reason the increasing of stress-free lattice parameters a0 in
Fig. 12. Sin2j plots recorded for 311 reflect
comparison to reference values aref is observed.
The stress and strain calculated for MoN layer have relatively

higher values in comparison to CrN; further, calculated lattice
parameter a0 is significantly higher than that of reference g-Mo2N,
which could be also explained by the presence of the cubic, off-
stoichiometric MoNx metastable phase. This metastable cubic
MoNx phase has a higher lattice constant than g-Mo2N, as a result
of filling of unoccupied nitrogen sites [54]. As already reported by
Linker et al. [55] and Perry et al. [56], this increase of the lattice
parameter (0.419e0.427 nm) happens with increasing nitrogen
contents (MoNx, 0.9 < x < 1.3). Nitrogen atoms in excess may
occupy the 50% vacant octahedral sites of g-Mo2N phase and
additionally they can also occupy interstitial sites, resulting in lat-
tice expansion [57]. This conclusion is also supported by the N
content (and oxygen content), which may together justify the
presence of that phase [58].

4.5. Mechanical properties

Results of measurements of mechanical properties are pre-
sented in Fig. 13. Values of hardness and elastic modulus (see
Fig. 13(a)) are shown, vis-a-vis values of bilayer thickness in
samples. It was observed that with decrease in bilayer thickness,
the hardness and Young's Modulus increase. The lowest values of
hardness and Young's Modulus, typical for pure chromium ni-
trides, correspond to the film with the thicker layers (H ¼ 25 GPa,
E ¼ 295 GPa when L ¼ 2.26 mm) and the highest e for the films
with the thinner layers (H ¼ 38 GPa, E ¼ 357 GPa when
L ¼ 44 nm). It should be noted that values of measured hardness
higher than 40 GPa were observed in some zones of three samples
4, 5 and 6 with the lowest values of bilayer thickness e up to
42.3 GPa, so the deposited films may belong to group of super-
hard coatings.

To evaluate mechanical properties of films and to predict pro-
tective features of coatings, the ratios of hardness to elastic
modulus could be used. In the past decade, it was shown that values
of ratios H/E and H3/E2 are very important parameters [10,59,60].

The ratio H/E (or H/E*, where E* ¼ E/(1 - n2)) plays a significant
role in the so-called “plasticity index”, widely recognised as a
reliable parameter of elastic behaviour of surface in contact with
external forces. It could characterise protective properties of coat-
ings in terms of cracking, abrasive wear and serve as a ranking
parameter for toughness of the deposited films.

In Fig. 13(b) the area can be divided into two zones by line H/
E ¼ 0.1. Three samples are placed in zone with higher ratio of H/
E > 0.1 (plastic area), which characterise them as coatings with
enhanced wear resistance. Fig. 13(b, left Y-axis) demonstrates the
ions of CrN (a) and g-Mo2N (b) layers.



Table 5
Results of residual stresses calculation for multilayer CrN/MoN thin films.

Phase Residual Stress s, GPa Lattice parameters, Å ε, %

Plane orientations Average a⊥ ak a0 aref [53]

111 200 220 311 222 400

CrN 7.1 4.6 5.7 5.0 6.3 3.1 5.3 4.196 4.134 4.168 4.149 1.5
g-Mo2N 8.8 4.6 8.2 5.8 e e 6.9 4.248 4.153 4.205 4.163 2.3

Fig. 13. Results of mechanical tests: hardness and Young's modulus measurements (a), dependence of H/E and H3/E2 ratios on the bilayer thickness of CrN/MoN films (b).
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dependence of ratio H/E on bilayer thickness. The thinner the layers
in coating, the higher was the ratio H/E achieved.

The ratio H3/E2 is another important parameter of mechanical
properties characterisation, which allows determination and rank
coatings in relation to plastic deformation resistance. The behav-
iour of ratio H3/E2 in terms of films bilayer thickness is described in
Fig. 13(b, right Y-axis). The observed improvement of the me-
chanical parameters, such as hardness and following H/E or H3/E2

ratios in studied multilayer films, may most likely be related to the
decrease of bilayer thickness and subsequently lower values of
crystalline/grain sizes. This leads to an increase in interface volume
and role of boundaries as pinning points in material. The Hall-Petch
strengthening with decrease of layer thickness leads to prevention
of dislocation movements and will enhance yield strength of ma-
terial and increase the hardness.

As the bilayer thickness becomes thinner, a higher number of
layers were produced. It leads also to the increasing of interlayer
interfaces, which block the propagation of cracks and dislocations,
avoid the continuity of pinholes and pores [61]. Recent work by
Daniel et al. [62] on the beneficial impact of interface design on
crack deflections have been reported in TiN coatings.
5. Conclusions

The multilayer coatings of CrN and MoN films deposited by Arc-
PVD have been studied. The focus of study was on the methods of
elemental composition and structural characterisation, mechanical
properties and their comparison. It was observed that CrN/MoN
coatings deposited by Arc-PVD are characterised by a relatively
sharp interface between layers; they have typical columnar struc-
ture growth, and prevailing crystal orientations with textures (111),
(200) and (311) of cubic g-Mo2N and CrN phases. When most of the
deposition conditions are maintained fixed and only the deposition
time per sample is changing, the coatings keep stable similar
phases and elemental composition (at least in range of the bilayer
thickness considered in the present paper), but the structure is
changing through decreasing of grains size in coatings with lower
values of layer thickness. On one hand, it leads to the increase of the
interfaces volume in CrN/MoN coatings. On the other hand, the
number of interlayer interfaces increases due to the decrease of
individual layer thickness. The mentioned changes lead to Hall-
Petch strengthening of films, and to the blocking of cracks and
dislocations propagation in multilayer CrN/MoN coatings. The
measured hardness has reached values of 42.3 GPa.

It is an important property of the studied material, which may
cause future enhancement of mechanical properties and result in
application of multilayer films as super-hard protective coatings.
Future studies will focus on the thermal stability, oxidation and
chemical resistance to expand the range of possible applications.
The observed properties and obtained results show potential of
their use for physical and mechanical property control and pre-
diction in coatings and thin films.
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