Pressurized syngas bioconversion: physiological and microbial characterization

Alves JI¹, Lopes M¹, Arantes AL¹, Sousa DZ^{1,2} and Alves MM¹

¹Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.

² Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.

Syngas is composed mainly by CO, H_2 and CO_2 and its fermentation is a promising biological process to produce fuels or commodity chemicals. Experiments under increased initial syngas pressures, up to 5.2×10^5 Pa, were carried out to evaluate the effects on metabolites production and microbial communities' structure. Two strategies were applied: NB - non-adapted biomass and SB – successively syngas-fed biomass. The rise of syngas pressure from 1.2×10^5 Pa up to 5.2×10^5 Pa led to a decrease on CO and H₂ consumption rates and CH₄ production rate. Moreover, when methanogenesis was partially inhibited, propionate and butyrate were the main metabolites produced from syngas. DGGE profiles showed differences on diversity and on similarity indices (SI) with changes in pressure. Regardless the syngas pressure employed, the archaeal communities had higher SI (above 70%) than bacterial community (48% to 62%). From the Illumina sequencing analysis, it was observed that the relative abundance of bacterial communities tend to decrease (72% to 46%), and archaeal communities increased (25% to 54%) by raising the pressure of syngas from 1.2×10^5 Pa to 5.2×10^5 Pa. In the inoculum and biomass incubated at 1.2×10^5 Pa syngas, 40% of total population were from *Proteobacteria* phylum and Deltraproteobacteria class and their abundance was reduced 4-fold at 5.2×10^5 Pa. As a direct effect of high pressures of syngas, organisms belonging to Firmicutes, Synergistetes and *Thermotogae* phyla increased over 10-fold. The predominant phylotypes at 3×10^5 Pa and 5.2×10^5 Pa were related to *Methanobacterium* genus (archaea) and to *Eubacteriaceae*, Synergistaceae and Syntrophobacteraceae families (bacteria). These results showed a microbial population enrichment suggesting a high specialization for the substrate.