
Parallel Progressive Precomputed Radiance Transfer
Luís Paulo Santos∗

Departamento de Informática
Universidade do Minho

Portugal

Sérgio Valentim†

Escola Superior de Artes e Design
Instituto Politécnico de Leiria

Portugal

António Ramires Fernandes‡

Departamento de Informática
Universidade do Minho

Portugal

(a) 24 directions (b) 96 directions (c) 1536 directions

Figure 1: Stanford bunny lit with the Eucaliptus Grove HDR cross for different numbers of directions

Abstract

Precomputed Radiance Transport (PRT) was introduced as a tech-
nique to enable interactive navigation and distant environmental
real time relighting of rigid scenes. Evaluating radiance transport is,
however, a computationally very demanding task, which precludes
PRT’s utilization during the model design phase, since the user must
wait for long periods of time before being able to light and navigate
within the model. This paper proposes and validates an approach
to provide visual feedback to the user as soon as possible, within
PRT context. By resorting to parallel processing and progressive
refinement, the user is quickly presented with a lower lighting res-
olution of the virtual model. This is then progressively refined by
incrementally increasing the number of incident directions taken
into account on transport computations. PRT is, however, a com-
plex algorithm that requires frequent collective communications of
huge volumes of data, thus constraining the maximum achievable
speedup on a parallel system. This issue is analysed and an alterna-
tive workload distribution is proposed and evaluated on a 12 node
dual processor cluster. The final solution ensures a good resource
utilization rate, reducing response times from dozens of seconds to
a few hundred milliseconds.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism; D.1.3 [Soft-
ware]: Programming Techniques—Concurrent Programming – Par-
allel Programming

Keywords: parallel computing, progressive refinement, precom-
puted radiance transfer

∗e-mail: psantos@di.uminho.pt
†e-mail: sergio.valentim@esad.ipleiria.pt
‡e-mail: arf@di.uminho.pt

1 Introduction

The ability to visualize a virtual world with physically based global
illumination and dynamically changing view point, geometry and
lighting is a major challenge for the computer graphics research
community. Sloan et al. [Sloan et al. 2002] introduced Precom-
puted Radiance Transport (PRT) as a technique to achieve interac-
tive changing view point and low frequency distant environmental
real time relighting of rigid scenes for light transport effects that
terminate on diffuse or glossy surfaces. The main idea behind PRT
is that, if the set of possible lighting directions remains fixed, then
light transport can be precomputed for static geometry, indepen-
dently of the actual radiance values of the light sources. A trans-
port function that converts arbitrary incident into exitant radiance is
evaluated over sample points (e.g., vertices on a polygonal model)
and stored as a transport matrix for later usage on rendering time.
Rendering is later performed by computing the dot product of the
transport function with the vector L of the actual values of incident
radiance. By using appropriate compression and acceleration tech-
niques interactive frame rates can be achieved [Sloan et al. 2002;
Green 2003; Ng et al. 2003; Ng et al. 2004; deVore 1998; Stollnitz
et al. 1995; Sloan et al. 2003]. PRT has been extended to allow
all-frequency lighting effects [Ng et al. 2003; Ng et al. 2004; Liu
et al. 2004; Wang et al. 2004], extended BRDFs [Wang et al. 2005],
local light sources [Kristensen et al. 2005] and locally deformable
geometry [Sloan et al. 2005].

Once the transport matrix is available, high quality navigation and



relighting is possible at interactive rates. But evaluating transport is
a computationally very demanding task, whose time complexity is
linear with the number of sampling points and incident directions.
This huge computation times preclude PRT’s utilization during the
model design phase, since the user must wait for long periods of
time before being able to light and navigate within the model. This
paper’s main contribution is the proposal and validation of an ap-
proach to provide visual feedback to the user as soon as possible,
within PRT context.

Parallel processing is an obvious solution: by decomposing the
transport computation workload and distributing it among several
computing nodes, execution times are reduced. However, PRT is a
multipass algorithm that requires collective communication of huge
volumes of data between passes; this results on low computation to
communication ratios, that limit the number of parallel resources
that can be used efficiently, thus limiting the maximum achievable
speedup. We study this problem and propose alternative distribu-
tions of workload among the processing nodes in order to maximise
speedup.

The user’s waiting time is further reduced by resorting to progres-
sive refinement. Intermediate solutions of increasing quality are
computed by incrementally increasing the number of incident light-
ing directions. The user is quickly presented with a lower lighting
resolution of the virtual model, which is then progressively refined,
as illustrated in figure 1. The combination of parallel processing
with progressive refinement reduces response times from dozens of
seconds to a few hundred milliseconds.

This paper starts by presenting PRT theoretical framework. It then
proceeds to discuss and evaluate parallel solutions; progressive re-
finement is analysed on section 4. Section 5 concludes and presents
some ideas for future work.

2 Precomputed Radiance Transfer

The rendering equation [Kajiya 1986] models light distribution
within an environment with no participating media and allows the
computation of the exitant radiance at a point x along direction w0,
L′(x,w0), as given by

L′(x,w0) =
∫

Ω
fr(x,w,w0)(w ·Nx)L(x,w)δw

where fr(x,w,w0) is the Bidirectional Reflectance Distribution
Function (BRDF), (w ·Nx) is the cosine of the normalised incident
direction w and the normal of the surface at x, Nx, and L(x,w) is
the incident radiance at x along w. On purely diffuse environments,
such as those considered on this paper, the exitant radiance does not
depend on the viewing direction w0 and the BRDF is independent
of both w0 and w. The previous equation can be rewritten as

L′(x) =
∫

Ω

ρ(x)
π

(w ·Nx)L(x,w)δw

where ρ(x) is the surface albedo at x. Let

T (x,w) =
ρ(x)

π
(w ·Nx) (1)

be the diffuse transport operator. The rendering equation can thus
be rewritten as

L′(x) =
∫

Ω
T (x,w)L(x,w)δw (2)

The main idea behind Precomputed Radiance Transfer (PRT) con-
sists on separating light transport from incident radiance. For sta-
tic geometry, T (x,w) can be precomputed for all relevant x and w,
while exitant radiance is then parameterised by incident radiance,
which is only known at rendering time. If the set of relevant inci-
dent directions is discretised, then by applying numerical quadra-
ture equation 2 can be converted onto a summation

L′(x) = ∑
w

T (x,w)L(x,w) (3)

Let T (x) denote the transport vector for point x with transport coef-
ficients for all directions w and L(x) be the incident radiance vector;
equation 3 can be written in vector notation as

L′(x) = T (x)L(x)

If the incident radiance is an high dynamic range environment map
surrounding the geometric model and if it represents infinitely dis-
tant light sources, then L(x) is constant for all surface points x and is
denoted by L. The objects’ surface can be densely sampled to create
transport vectors that map arbitrary incident lighting into exitant ra-
diance. At rendering time, these transport vectors are applied to the
actual vector L producing scalar exitant radiance for each sampled
point. On a polygonal model T (x) is precomputed for each vertex,
resulting on a transport matrix T , which has as many rows as ver-
tices on the model and as many columns as the number of incident
directions. Rendering an image for an arbitrary view point consists
on evaluating L′ = T L, which is the dot product between T (x) and L
for each vertex. If this evaluation is efficient the user might navigate
within the model at interactive rates and have dynamic lighting. The
size of T might prevent an interactive frame rate, but there are com-
pression techniques, such as linear approximations using an ortho-
normal spherical harmonics base [Sloan et al. 2002; Green 2003],
non-linear approximations using an orthonormal wavelet base [Ng
et al. 2003; Ng et al. 2004; deVore 1998; Stollnitz et al. 1995] and
clustered principal components [Sloan et al. 2003] that reduce its
size and the number of floating point operations required to com-
pute the dot products. Rendering may also be speeded up by using
well known techniques such as view-frustum and occlusion culling,
that reduce the number of vectors that have to be processed for each
frame. These will not be discussed here, since this paper focuses on
T ’s precomputation.

The definition of the transport operator depends on the actual illu-
mination model being used. For diffuse shadowed direct lighting
(hereby denoted as DS), the visibility operator, V (x,w), must be
added to equation 1:

TDS(x,w) =
ρ(x)

π
V (x,w)(w ·Nx) (4)

V (x,w) yields 0 if a ray from x in direction w intersects an object in
the scene (meaning that the corresponding light source is occluded),
and 1 otherwise. Exitant radiance is thus given by L′DS = TDS L.

To include diffuse interreflections (denoted as IR) the transport op-
erator becomes recursive. Incident radiance on x along a direction
w where an object is intersected depends on the radiance that ob-
ject reflects towards x. The transport operator for a single level of
interreflections and for each direction w incident on x is given by

∀w′ , TIR1(x,w
′)+ =

ρ(x)
π

(1−V (x,w))(w ·Nx)TDS(x′,w′) (5)

where x′ is the point visible from x along w and w′ iterates all direc-
tions incident on x′. TIR for an arbitrary number n of interreflections
can be recursively evaluated using the Neumann series expansion of



the transport equation [Jensen 2001; Dutré et al. 2003]:

TIR = TDS +TIR1 +T 2
IR1

+T 3
IR1

+ · · ·= TDS +
n

∑
m=1

T m
IR1

(6)

An interpretation of this series is that it sums terms representing
radiance reflected 1,2,3, · · · times. Exitant radiance for the diffuse
interreflected model can thus be computed as L′IR = TIR L

2.1 Algorithm

To compute diffuse interreflected transport we use a breadth first
algorithm similar to the one proposed by Sloan at al. [Sloan et al.
2002]. This is a multi-pass algorithm; transport values from the
previous pass, TIRb−1 , are reused to compute TIRb , by interpolat-
ing across the triangle’s surface. On the algorithm description pre-
sented below b denotes a pass index, with b = 0 being the direct
shadowed pass, denoted by DS pass, and b > 0 corresponding to
successive interreflection passes, each denoted by IRb pass. The
intersections matrix I is computed by ray tracing on this first pass
and stores which triangle is visible for all x and for each direction
w. All TIRb are initialized to 0 and the final result is accumulated
onto TIR. All vertices and all directions are evaluated on each step.

1. DS pass – Compute visibility and direct shadowed transport
and store it, respectively, on I and TIR0 :

TIR0(x,w) =
ρ(x)

π
V (x,w)(w ·Nx)

2. DS pass – Accumulate on TIR

TIR(x,w) = TIR0(x,w)

3. IRb pass – Increment the pass index b

4. IRb pass – For each pair (x,w) if a triangle’s intersection is
registered on I(x,w):

(a) compute TIRb(x) by interpolating from that triangle’s
vertices using the appropriate rows of TIRb−1 ; this in-
terpolation has to be done for the set of all incident di-
rections w′

(b) Multiply TIRb(x,w
′) by x’s BRDF and the appropriate

cosine for the set of all incident directions:

∀w′ : TIRb(x,w
′)∗=

ρ(x)
π

(w ·Nx)

5. IRb pass –Accumulate on TIR

TIR(x,w)+ = TIRb(x,w)

6. IRb pass –For additional passes go back to step 3. Repeat
adding light bounces until energy variation falls below a pre-
specified threshold or a given number of bounces is achieved

2.2 Results

The above algorithm has been implemented as a multithreaded pro-
gram. Experiments were run on a single machine with two 3.2 GHz
Intel Xeon processors and 2 GBytes of memory. Two different size
geometric models, based on the Stanford bunny, were used: the

small model has 17730 vertices and the large one has 76920 ver-
tices. Due to the huge memory footprint of the intersections and
transport matrices (see table 1) the number of incident directions
that could be simulated was upper bounded to 1536 and 384 for
the smaller and larger models, respectively. All experiments were
run with 4 threads and 2 levels of diffuse interreflections (or light
bounces). Precomputation times are presented in seconds (table 1)
for the diffuse shadowed pass (DS), the interreflections passes (IR)
and total time.

Model #directions Matrix size DS IR Total
96 19,5 MB 14,1 1,2 15,3

Small bunny 384 77,9 MB 55,8 16,1 71,9
1536 331,6 MB 221,5 141,5 363,0

Large bunny 96 84,5 MB 264,8 8,0 272,8
384 338,0 MB 1055,1 64,1 1119,2

Table 1: Single node multithreaded version: Precomputation times
(in seconds) and memory requirements for each matrix

3 Parallel PreComputed Radiance Trans-
fer

Transport precomputation times are large for medium size models
and a significant number of lighting directions. This precludes its
utilization on the design stage, where a change to the model requires
transport to be reevaluated from the scratch. Parallel computing is
thus an obvious approach to reduce computation times.

3.1 Parallel Decomposition and Organization

The workload associated with computing transport can be decom-
posed along two independent dimensions: the vertices and the in-
cident directions. The former corresponds to a decomposition of
the transport matrix into rows, having different processors compute
different rows of T , while the latter corresponds to a decomposition
into columns. In fact, for each pass, the computation of each ele-
ment T (x,w) is completely independent of any other element of the
matrix; this can thus be the finest grain used on the parallel system.
We selected a decomposition along the vertices dimension, because
there are more vertices than directions thus providing a larger de-
gree of parallelism to distribute tasks amongst the parallel system
nodes. Tasks consist of subsets of vertices and are distributed to the
nodes by the master node on a demand driven approach. An adap-
tive task partitioning strategy is applied within each pass, the few
first tasks being larger than the last ones to increase the probabil-
ity of proper load balancing, as suggested by Freisleben [Freisleben
et al. 1997]. Plachetka [Plachetka 2004] proposes a formal model
to compute tasks’s sizes for a factoring task partitioning strategy,
which could be applied if some statistics were known, such as task
assignment latency and tasks’ minimum and maximum execution
times. For the current work we simplify task partitioning by apply-
ing Freisleben’s adaptive strategy.

The algorithm, however, is decomposed onto multiple passes, and
each pass can not start while the former has not finished completely
(figure 2). The first pass corresponds to diffuse shadowed (DS)
computations and evaluates both visibility and DS transport, stored
respectively onto the I and TIR0 matrix. Subsequent passes evalu-
ate diffuse interreflections; these use the I matrix to look up which
triangle is visible from each vertex along each direction, and the



Figure 2: Parallel algorithm communication and data dependency
patterns.

transport matrix from the previous pass, TIRb−1 , in order to interpo-
late transport. The master must thus aggregate the results from all
nodes and:

• broadcast I at the end of the DS pass;

• broadcast TIRb−1 at the beginning of each IR pass;

• accumulate TIRb on the final result matrix TIR.

Since the matrices can be of considerable size (depending on the
number of vertices and incident directions – table 1), collective
communication operations and synchronisation at the end of each
pass represent a significant overhead. The size of I and T is the
same, since the former contains both the visible triangle identifier
and the barycentric coordinates of intersection, while the latter con-
tains transport coefficients for the three channels R, G and B. Ar-
guably, the intersection matrix broadcast could be avoided if the set
of vertices processed by each node on each pass was kept constant;
however, the workload associated with the DS and the IR passes
is very different (visibility and interpolation computations, respec-
tively) and this would result on considerable load imbalances. The
transport matrix must be broadcast, since each node requires the
transport values from the previous iteration not for the vertices it is

evaluating, but for those that are visible along each direction; these
were probably computed on a different node. Besides the signif-
icant collective communications overheads, the sheer size of the
matrices to broadcast may, and will for medium complexity data
sets, exceed the maximum message size allowed by the underlying
message passing middleware being used (MPICH 1.2.7 in our par-
ticular settings). To overcome this problem broadcasted messages
are first compressed at the master node and later uncompressed at
worker nodes using the standard compression library zlib.

3.2 Results

Experiments were run on a distributed cluster with 12 nodes, each
with two 3.2 GHz Intel Xeon processors and 2 GB of memory.
Nodes are interconnected using fully switched Gigabit Ethernet.
All results presented on this paper correspond to a simulation of
2 levels of diffuse interreflections and 4 threads per node. On these
experiments the master node acts only as a system controller; it does
not compute any transport values, but is, nevertheless, taken into
account to compute speedup. Figure 3 presents the execution times
and speedups for the five data sets. The execution time is decom-
posed onto time spent on the DS and IR passes. The times for one
node correspond to the multithreaded version presented on the pre-
vious section. The overall execution time decreases with the num-
ber of processors, as expected, but the speedup is too low; the larger
geometric model presents better speedups, confirming that increas-
ing the problem size allows a more efficient utilization of a larger
number of resources, as predicted by Gustafson’s Law [Gustafson
1988]. This rapid decrease in efficiency is due to the broadcasts and
consequent poor performance of the parallel IR passes.

Figure 4 presents the DS and IR passes times separately for three
data sets, with adapted time axis scales to allow a better percep-
tion of the respective scalability. It can be seen that the DS pass
scales quite well, while the time required to compute interreflec-
tions increases in most cases. For both models and 96 directions IR
times increased with the number of nodes, suggesting that exploit-
ing parallelism is not a good option due to the low computation to
communication ratio. However, for 384 directions and more than 3
nodes IR times decrease slightly with the number of nodes (at least
up to 12): the larger workload associated with this data set increases
the computation to communication ratio, justifying the parallel ap-
proach and overcoming the communication overheads associated
with the broadcasts.

3.3 Reorganizing IR Calculations

The realization that IR passes are not good candidates for dis-
tributed memory parallel processing suggests that this component
could be computed on the master rather than on the slave nodes. We
modified our implementation such that the DS pass is done on the
slaves, its results are aggregated on the master and then this node
performs all IR passes, using a multithreaded implementation. No
broadcasts are required since all threads share the same global data
memory address space; the threads are required to synchronise at
the end of each pass, but this overhead is minimal if the workload
is well balanced among the threads. However, with this approach
the master is required to maintain in memory two complete trans-
port matrices on each IR pass: TIRb−1 and TIRb ; these huge memory
requirements restrict the size of tractable data sets: the small model
can only be processed with up to 384 directions and the larger one
with 96.

Figure 5 presents the results obtained with this approach. For
the data sets corresponding to 96 directions (figures 5(a) and 5(c))



(a) Small bunny - 96 directions

(b) Small bunny - 384 directions

(c) Small bunny - 1536 directions

(d) Large bunny - 96 directions

(e) Large bunny - 384 directions

Figure 3: Results for parallel implementation.

there is a significant improvement in execution time. The simula-
tion with 384 incident light directions got worst performance; the
IR passes execution times increased for the same number of nodes,
when compared to the previous version. This was expected, since it
was already shown (see figure 4(b)) that above a certain workload
exploiting parallelism for IR passes might result on a performance
improvement.

Table 1 shows that with 384 directions IR amounts to 22,4% of total
execution time, while for 96 directions it represents only 7,8% and
2,9% for the small and large models, respectively. This suggests

(a) DS pass

(b) IR passes

Figure 4: Separate DS and IR passes computing times

that there is a threshold above which the parallel approach to the
diffuse interreflections passes is more efficient than the single node
approach. This threshold depends not only on the number of ver-
tices and the number of directions taken into account on the simu-
lation, but on the characteristics of the geometrical model itself. An
open space model, for example, is bound to have less object light
interreflections than a closed space one, since rays have less prob-
ability of intersecting another object; the workload associated with
IR passes is thus related to the ratio of occluded to non-occluded di-
rections. This ratio is related to the sparsity of the I matrix, which
may be used as a parameter on a decision making model. Neverthe-
less, making this decision may still prove to be a challenge, since
the relative times of each component are known only after execu-
tion. However, these results indicate that this approach is effective
up to a certain number of incident directions.

The main drawback of this workload distribution is the poor utiliza-
tion of resources. During the DS phase the slave nodes are busy and
the master only distributes tasks and collects results; on the other
hand, during the IR phase all the slaves are idle and the master is
busy computing diffuse interreflections. Some form of computation
overlap between these two stages is required in order to increase re-
source utilization.

4 Progressive PreComputed Radiance
Transfer

The main goal of the current work is to provide visual feedback to
the user as soon as possible. Even though parallel processing re-
duces transport computation times significantly, these are still large
for geometrical models of medium complexity, preventing the uti-
lization of this technique during the modelling stage. Precomputa-



(a) Small bunny - 96 directions

(b) Small bunny - 384 directions

(c) Large bunny - 96 directions

Figure 5: Results for parallel DS and multithreaded IR.

tion times are a function of the number of incident directions con-
sidered on the simulation. Faster visual feedback might be given to
the user if transport is initially computed for a reduced number of
directions and these are then increased progressively. The user will
be quickly presented with a poor quality solution, which is then pro-
gressively refined as higher resolution transport matrices become
available. Figure 1 illustrates this concept for the Stanford bunny
with 24, 96 and 1536 directions. The bunny’s shadow smoothness
and shading quality increase with the number of directions as does
the precomputation time.

4.1 Algorithm

Two versions of the progressive transport computation program
have been developed: one with all passes running in parallel on
the slaves, the other with the IR passes running on the master. The
former is just a small extension of the application presented in sec-
tion 3.1: an outer loop is added with the number of directions being
progressively increased and ranging from 6, 24, 96, 384 up to the
maximum user defined value. Intersections information from previ-
ous refinement steps is reused in order to avoid tracing rays repeat-
edly along the same directions. For example, on the first refinement
step 6 directions are traced per vertex; on the next step only 18 ad-
ditional rays must be traced per vertex, the information regarding
the remaining 6 being reused.

The second progressive version has the DS passes running on the
slaves and the IR passes running on the master. The main insight
here is that interreflections’ computations for progressive refine-
ment step r, running on the master, may be overlapped with visibil-
ity calculations for refinement step r + 1, which run on the slaves.

Figure 6: Progressive algorithm communication and data depen-
dency patterns.

As illustrated in figure 6, as soon as the master receives the DS pass
results from the slaves, it can:

• start IR passes locally, using a multithreaded architecture;

• broadcast the aggregated intersections information to the
slaves;

• distribute tasks regarding the DS pass of the next refinement
step.

Since the number of directions evaluated on each refinement step
grows exponentially with r (d = 2r ∗6), the master will always fin-
ish the IR passes for the current step before the slaves finish com-
puting the additional visibility information (this is true for a rea-
sonable number of IR passes). Consequently, the master may make
TIR for step r available to the renderer and then start receiving the
slaves’ results for step r + 1. Computation of DS and IR passes
is thus overlapped, and all nodes are kept busy most of the time.
Broadcasting the intersection matrix to the slaves between refine-
ment steps still represents an overhead, but this avoids reevaluating
visibility for directions that have been processed previously.

4.2 Results

Figure 7 presents time diagrams for both versions and both geomet-
rical models, obtained using 12 nodes. Light gray blocks represent
time spent by the slaves computing visibility and diffuse shadowed
transport, while black blocks represent time spent on the master
computing interreflections. Whenever a black block finishes, a par-
ticular refinement step is complete, meaning that the corresponding



transport matrix can be made available to the renderer; these time
instants are labelled with the time elapsed since execution began.
Data series labelled with V1 correspond to the all parallel versions,
i.e., DS and IR passes running on the slaves; V2 corresponds to
evaluating IR passes on the master and overlapping with the next
refinement step DS pass. These results are also presented on ta-
ble 2.

(a) Small bunny

(b) Large bunny

Figure 7: Time diagram for progressive versions and 12 nodes (V1
- all parallel; V2 - IR passes on the master).

Time for TIR

Model 6 24 96 384
Small bunny V1 1237 3256 7539 24301

V2 456 1407 5566 26496
Large bunny V1 8519 20244 50869 —

V2 2377 9397 35478 —

Table 2: Transport computation times (msec) for progressive refine-
ment with 12 nodes

Analysis of these time diagrams allows the following conclusions:

• for up to 96 directions V2 provides intermediate solutions
much faster than V1. Overlapping evaluation of the DS and IR
passes enables a more effective use of the available resources
and avoids communication overheads associated with broad-
casting intermediate transport matrices between successive IR
passes;

• for the last refinement step, with the small model and 384
directions, V1 finishes faster than V2. The reasons for this
result were discussed in sections 3.2 and 3.3: for this data
set the all parallel version is more effective than processing
all the diffuse interreflections on the master. Note, however,
that faster feedback is still achieved by V2 for the previous
refinement steps;

• it is quite clear from these diagrams that resources are not well
exploited on the last refinement step. The master processes all
the workload, while the many slaves remain idle.

The above remarks suggest that V2 performs better and gives faster
feedback to the renderer, but above a given threshold a hybrid ver-
sion should be used, where the last refinement step is performed by
the slaves, not by the master. This would avoid having the slaves
idle at the end of the computation, while the master struggles to
evaluate the final transport matrix. Predicting this threshold remains
an unsolved problem, since, as already stated, the relative timings
of each component are only known after execution. Nevertheless,
the overall trend suggests that a medium size data set would benefit
from this approach.

5 Conclusion

This paper proposes progressive parallel Precomputed Radiance
Transfer (PRT) as a means of providing fast visual feedback to users
within a model design stage.

PRT is a multipass algorithm, where two different stages can be
identified: the visibility and direct shadowed stage (DS) and the in-
terreflections evaluation stage (IR). Evaluating IR on a distributed
memory parallel system requires collective communication of huge
volumes of data, which results on a low computation to commu-
nication ratio that limits the system’s efficiency. To overcome this
limitation a parallel version of PRT with DS computations assigned
to slave nodes and IR computations performed on a master node
has been developed and evaluated; results have shown that this ap-
proach outperforms an all parallel approach, up to a certain thresh-
old related to workload size. Characterising this threshold would be
useful for deciding which approach to follow for a given data set.
This remains an open problem, since the relative time weights of
the DS and IR stages are known only after execution; the sparsity
of the intersections’ matrix, I, is probably a good indicator of the
relative workload of the IR passes and could be used as a criterium
to predict this threshold. Parallel processing is, nevertheless, able to
reduce computation times up to a significant degree of parallelism.

In order to provide even shorter response times a progressive refine-
ment approach to PRT has been proposed: the number of incident
lighting directions considered on transport computation is increased
incrementally, providing the user with solutions of increasing qual-
ity as time flows. The parallel progressive refinement application is
essentially a loop of the original non-progressive parallel program.
This loop allows overlapping IR computations on the master node
for refinement step r with DS computations on the slaves for refine-
ment step r + 1. This solution proved to result on a good resource
utilization rate, reducing response times from dozens of seconds to
a few hundred milliseconds, which was this work’s original goal.

There are two main issues associated with the proposed progressive
parallel PRT system, which remain to be solved.

Above a certain workload size IR passes are more effective if per-
formed in parallel by the slave nodes than if performed on a single
node. This is specially significant for the last refinement step, since
the slaves remain idle while the master struggles to finish its task.
Predicting whether this last step should be performed by the master
or by the remaining nodes would allow even shorter response times.

The whole algorithm is very memory consuming; this is specially
true when a single node computes all IR passes, since it has to keep
two complete transport matrices in memory, TIRb−1 and TIRb , corre-
sponding to two consecutive light bounces. Memory requirements
limit the size of the data sets than can be handled efficiently. A



reorganization of the data structures is required in order to reduce
memory consumption, thus enabling processing of more complex
geometrical models and/or a larger number of incident directions.

Acknowledgements

The hardware used for all experiments belongs to "SEARCH - SEr-
vices and Advanced Research Computing with HTC/HPC clusters",
a project partially funded by the Portuguese Fundação para a Ciên-
cia e Tecnologia.

References

DEVORE, R. 1998. Nonlinear Approximation. Acta Numerica 7,
51–150.

DUTRÉ, P., BEKAERT, P., AND BALA, K. 2003. Advanced Global
Illumination. AK Peters.

FREISLEBEN, B., HARTMANN, D., AND KIELMANN, T. 1997.
Parallel raytracing: a case study on partitioning and scheduling
on workstation clusters. In Hawaii Int. Conf. on System Sciences,
IEEE Computer Society Press, vol. 1, 596–605.

GREEN, R. 2003. Spherical Harmonic Lighting: The Gritty De-
tails. Tech. rep., Sony Computer Entertainment America, Janu-
ary.

GUSTAFSON, J. 1988. Reevaluating Amdahl’s Law. Communica-
tions of the ACM (May), 532–533.

JENSEN, H. W. 2001. Realistic Image Synthesis Using Photon
Mapping. AK Peters.

KAJIYA, J. 1986. The Rendering Equation. In ACM SIGGRAPH,
vol. 20, 143–150.

KRISTENSEN, A. W., AKENINE-MOLLER, T., AND JENSEN,
H. W. 2005. Precomputed Local Radiance Transfer for Real-
Time Lighting Design. ACM Transactions on Graphics (SIG-
GRAPH’2005) (July), 1208–1215.

LIU, X., SLOAN, P.-P., SHUM, H.-Y., AND SNYDER, J. 2004.
All-Frequency Precomputed Radiance Transfer for Glossy Ob-
jects. In Eurographics Symposium on Rendering, EG Press.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2003.
All-Frequency Shadows Using Non-Linear Wavelet Light-
ing Approximation. ACM Transactions on Graphics (SIG-
GRAPH’2003) 22, 3 (July), 376–381.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2004. Triple
Product Wavelet Integrals for All-Frequency Relighting. ACM
Transactions on Graphics (SIGGRAPH’2004) (July).

PLACHETKA, T. 2004. Tuning of algorithms for independent task
placement in the context of demand-driven parallel ray tracing.
In 5th Eurographics Parallel Graphics and Visualization, 101–
109.

SLOAN, P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed
Radiance Transfer for Real-Time Rendering in Dynamic, Low-
Frequency Lighting Environments. In SIGGRAPH’2002, 527–
536.

SLOAN, P., HALL, J., HART, J., AND SNYDER, J. 2003. Clustered
Principal Components for Precomputed Radiance Transfer. In
SIGGRAPH’2003, 382–391.

SLOAN, P.-P., LUNA, B., AND SNYDER, J. 2005. Local, De-
formable Precomputed Radiance Transfer. ACM Transactions
on Graphics (SIGGRAPH’2005) (July), 1216–1224.

STOLLNITZ, E., DEROSE, T., AND SALESIN, D. 1995. Wavelets
for Computer Graphics: A Primer, Part 1. IEEE Computer
Graphics and Applications 15, 3 (May), 76–84.

WANG, R., TRAN, J., AND LUEBKE, D. 2004. All-Frequency Re-
lighting of Non-Diffuse Objects using Separable BRDF Approx-
imation. In Eurographics Symposium on Rendering, EG Press.

WANG, R., TRAN, J., AND LUEBKE, D. 2005. All-Frequency
Interactive Relighting of Translucent Objects with Single and
Multiple Scattering. ACM Transactions on Graphics (SIG-
GRAPH’2005) (July), 1202–1207.


