
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Daniel José Ferreira Novais

Programmer Profiling through
Code Analysis

December 2016

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Daniel José Ferreira Novais

Programmer Profiling through
Code Analysis

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
Professor Pedro Rangel Henriques
Professor Maria João Varanda

December 2016

A G R A D E C I M E N T O S

Um agradecimento:

• Aos meus orientadores, Pedro Rangel Henriques e Maria João Varanda, pelo acom-
panhamento contínuo ao longo deste ano, por uma orientação inigualável, e por todas
as contribuições que permitiram a realização deste projeto.

• À professora Paula, ao professor Creissac, aos seus alunos e a todos os colegas que
dispensaram do seu tempo para contribuir para este projeto.

• Aos meus pais e amigos, por tornarem isto possível.

i

A B S T R A C T

This document serves as a Master’s dissertation on a degree in Software Engineering, in
the area of Language Engineering.

The main goal of this work is to infer the profile of a programmer, through the analysis
of his source code. After such analysis the programmer shall be placed on a scale that
characterizes him on his language abilities.

There are several potential applications for such profiling, namely, the evaluation of a
programmer’s skills and proficiency on a given language, or the continuous evaluation of a
student’s progress on a programming course. Throughout the course of this project, and as
a proof of concept, a tool that allows the automatic profiling of a Java programmer should
be developed.

ii

R E S U M O

Este documento refere-se a uma dissertação do Mestrado em Engenharia Informática, na
área da Engenharia de Linguagens.

O principal objetivo desta dissertação é inferir o perfil de um programador através da
análise do seu código fonte. Após a análise, o programador será automaticamente colocado
numa escala que o caracteriza quanto às suas capacidades na linguagem.

Existem várias potenciais aplicações para a perfilagem de programadores, por exemplo,
avaliar as capacidades e proficiência de um programador numa dada linguagem ou, a
avaliação continua de alunos numa disciplina de programação. Como prova de conceito,
é esperada a implementação de uma ferramenta que permita perfilar automaticamente
programadores.

iii

C O N T E N T S

1 introduction 1

1.1 Introduction 1

1.2 Objectives 3

1.3 Research Hypothesis 3

1.4 Document Structure 4

2 programmer profiling : approaches and tools 5

3 programmer profiling : challenges and our proposal 7

3.1 Early Decisions 7

3.2 What are programmer profiles? 7

3.3 How can we extract this information? 10

3.4 Which data is relevant for extraction? 10

3.5 How does that data correlate with programmer profiles? 11

3.5.1 A practical example 12

3.6 How to automatically assign a profile to a programmer? 15

3.7 System Architecture 16

4 development decisions and implementation 18

4.1 Early Decisions 18

4.1.1 AnTLR 18

4.1.2 PMD 19

4.1.3 Metrics 20

4.1.4 Enhancing the Profiles 26

4.2 Implementation 26

4.2.1 Setting up 26

4.2.2 Attribute Grammar vs Visitor Pattern 27

4.2.3 Fixing up the Grammar 28

4.2.4 Early Metrics Extracted 30

4.2.5 Preliminary PMD Integration 30

4.2.6 Solutions Input 31

4.2.7 PP Analyser 32

4.2.8 PMD Analyser 33

4.2.9 Projects Comparison 34

4.2.10 Score Calculator 34

4.2.11 Profile Inferrer 38

4.2.12 Log Generator 38

iv

Contents v

4.2.13 Results Plotter 38

4.2.14 General Profile Inferer 39

5 case studies and experiments 42

5.1 Experiment setup 42

5.1.1 Development Phase Setup 42

5.1.2 Post-Development Setup 44

5.2 Results 44

5.2.1 Development Phase Results 44

5.2.2 Post-Development Results 53

6 conclusion 59

6.1 Working Plan 59

6.2 Outcomes 60

6.3 Final Remarks 61

6.4 Future Work 62

6.4.1 Theory 62

6.4.2 Algorithms 64

6.4.3 Tool 64

6.5 End Note 65

a final profile inferences 68

b pmd rules 71

L I S T O F F I G U R E S

Figure 1 PP Block Diagram 17

Figure 2 Correspondence between scores and profiles 27

Figure 3 PP Plot for Numbers Challenge 39

Figure 4 Final System Architecure 41

Figure 5 Profile inference made for Exercise P1 49

Figure 6 Profile inference made for Exercise P2 52

Figure 7 Profile inference made with all four exercises combined 56

Figure 8 Possible future implementation of correlation between scores and
profiles 63

Figure 9 Profile inference made for Exercise P1 68

Figure 10 Profile inference made for Exercise P2 69

Figure 11 Profile inference made for Exercise A1 69

Figure 12 Profile inference made for Exercise S1 70

vi

L I S T O F TA B L E S

Table 1 Proposed correlation 12

Table 2 PP-Analysis of two solutions 14

Table 3 Comparing to standard solution 15

Table 4 Ratios obtained for a small example 37

Table 5 Metric score calculated for a small example 37

Table 6 Resulted increase in groups for a small example 37

Table 7 P1 Metrics extracted 48

Table 8 Final Results of Profile Inference using PP tool 55

Table 9 Basic PMD Ruleset - I 71

Table 10 Basic PMD Ruleset - II 72

Table 11 Basic PMD Ruleset - III 73

Table 12 Braces PMD Ruleset 74

Table 13 Code Size PMD Ruleset - I 75

Table 14 Code Size PMD Ruleset - II 76

Table 15 Comments PMD Ruleset 77

Table 16 Controversial PMD Ruleset - I 78

Table 17 Controversial PMD Ruleset - II 79

Table 18 Controversial PMD Ruleset - III 80

Table 19 Design PMD Ruleset - I 81

Table 20 Design PMD Ruleset - II 82

Table 21 Design PMD Ruleset - III 83

Table 22 Design PMD Ruleset - IV 84

Table 23 Design PMD Ruleset - V 85

Table 24 Design PMD Ruleset - VI 86

Table 25 Design PMD Ruleset - VII 87

Table 26 Empty PMD Ruleset 88

Table 27 Optimization PMD Ruleset - I 89

Table 28 Optimization PMD Ruleset - II 90

Table 29 Unnecessary PMD Ruleset 91

Table 30 Unused Code PMD Ruleset 92

vii

L I S T O F L I S T I N G S

3.1 "Examples of programs corresponding to different Profile Levels" 9

3.2 "Teacher Solution" . 12

3.3 "Advanced Programmer Solution" . 13

4.1 "Metrics rules excerpt" . 35

4.2 "Excerpt of results JSON File" . 39

5.1 List of exercises given to students . 42

5.2 "Solution to P1 made by S" . 45

5.3 "Solution to P1 made by Z" . 45

5.4 "Solution to P2 made by A" . 49

5.5 "Solution to P2 made by P" . 50

5.6 "Solution to P2 made by Z" . 51

viii

1

I N T R O D U C T I O N

1.1 introduction

Proficiency on a programming language can be compared to proficiency on a natural lan-
guage (Poss, 2014). Using, for example, the Common European Framework of Reference for
Languages: Learning, Teaching, Assessment (CEFR) method1 it is possible to classify individu-
als based on their proficiency on a given foreign language. Similarly, it may be possible to
create a set of metrics and techniques that allow the profiling of programmers based both
on proficiency and abilities on a programming language.

The motivation to explore this rather recent topic is to be able to classify programmers
knowledge on a given language, regardless of matters like time required to solve a problem
or actual performance of the program (runtime). This has several real-life applications, for
instance, classify students on their language proficiency to help teachers grade them or just
generally find out how advance a class is. It could be also useful to discover where a given
student is lacking knowledge on, and that way create a more personalized teaching experi-
ence. Another area that has potential for this topic is the business fields. Employers could
apply these techniques to help select candidates or just generally evaluate their employees’
knowledge.

The inspiration behind this dissertation came mainly from the paper Profile-driven Source
Code Exploration (Pietriková and Chodarev, 2015), which explores techniques aiming the
evaluation of Java programmers’ abilities through the static analysis of their source code.
Static code analysis may be defined as the act of analysing source-code without actually
executing it, as opposed to dynamic code analysis, which is done on executing programs.
It’s usually performed with the goal of finding bugs and vulnerabilities, or ensure confor-
mance to coding guidelines. For the present thesis, static analysis will be used to extract
metrics from source-code related with language usage practices.

1 http://www.coe.int/t/dg4/linguistic/cadre1_en.asp

1

http://www.coe.int/t/dg4/linguistic/cadre1_en.asp

1.1. Introduction 2

Building on the referred paper, the goal is to further explore the discussed techniques
and introduce new ones to improve that evaluation, with the ultimate goal of creating a
tool that automatically profiles a programmer.

There are several approaches that could be taken towards solving this profiling problem:

• Statically analyse a Java programmer’s source code and extract a selection of metrics
that can either be compared to a standard solution (considered ideal by the one willing
to obtain the profiles) as Pietriková and Chodarev (2015) explored;

• Analyse several solutions to the same problem made by different programmers, and
extract the same selection of metrics described above, that can then be compared
among themselves and infer who performed better on each metric and globally;

• Use machine learning techniques, subjected to a classification model in order to assign
the appropriate profile. In this approach, the attributes or metrics that will allow us
to infer a profile based on sets of previously classified programs can be extracted
through data-mining techniques, as Kagdi et al. (2007) explored.

The first approach will always require the existence of an ideal solution to compare to.
This would only allow to look at the profiles through one point of view. There may be more
than one correct way to solve a given problem and this approach would only consider one
solution as the correct one. The third approach requires the availability of huge collections
of programs assigned to each class. The second approach, comparison of several solutions
among themselves, should be the preferred approach because a standard solution is not
required and it’s much better to compare a set of programmers on a given context (e.g.
classroom or job interview).

The programmers will be classified generically as for their language proficiency or skill,
for example, as novice, advanced or expert. Other relevant details are also expected to be
provided, such as the classification of a programmer on his code readability (indentation,
use of comments, descriptive identifiers), defensive programming, among others.

Below are some source-code elements that can be analysed to extract the relevant metrics
to appraise the code writer’s proficiency:

• Statements and Declarations

• Repetitive patterns

• Lines (code lines, empty lines, comment lines)

• Indentation

1.2. Objectives 3

• Identifiers

• Good practices

Code with errors will not be taken into consideration for the profiling. That is, only
correct programs producing the desired output should be used for profiling.

To build the system previously discussed we intend to develop a metric extractor pro-
gram, to evaluate the set of parameters that we chose for the profiling process. However
this process will be complemented with the use of a tool, called PMD2, that extracts infor-
mation of the use of good Java programming practices. PMD is a source code analyser that
finds common programming flaws like unused variables, empty catch-blocks, unnecessary
object creation, and so forth. For these reasons it is a tool that may prove to be very useful.

This topic is challenging and relevant, however it is very recent and requires much more
research in order to be possible to produce accurate results.

1.2 objectives

This master thesis has the following objectives:

• to study static analysis concepts and how to adapt them to extract important features
to characterize a programmer;

• to discuss and define possible programmer’s profiles, to set up some metrics adequate
to characterize these profiles defining the respective values range;

• to implement a tool based on source code analysis to evaluate the metrics selected in
order to infer the profile, testing it exhaustively;

• to explore other approaches to improve the tool effectiveness.

As a final result, it is expected to have a program that can be easily used by software
engineers.

1.3 research hypothesis

The research hypothesis is that it is possible to infer the profile of a programmer applying
source code analysis techniques.

2 https://pmd.github.io/

https://pmd.github.io/

1.4. Document Structure 4

1.4 document structure

This document is divided in six chapters.

Chapter 1, Introduction, gives some motivation on the subject, explains succinctly what
is the goal of the thesis and how it may be achieved.

Chapter 2, Approaches and Tools, explores the current state of the art of the subject, as well
as how previous associated work relates to this thesis.

Chapter 3, Challenges and our Proposal, discusses in detail what are the challenges that this
dissertation will face and the proposed solutions.

Chapter 4, Development Decisions and Implementation, focuses on the implementation as-
pect, namely what were the decisions made on the beginning of the development phase as
well as a detailed explanation on the reasoning behind the full process.

Chapter 5, Case Studies and Experiments, describes all the experiments done and tries to
justify all results obtained using common knowledge on this subject.

Finally, Chapter 6 gives some conclusions on the work done so far, and lays the founda-
tion of possible future work that could expand this first experiment even further.

2

P R O G R A M M E R P R O F I L I N G : A P P R O A C H E S A N D T O O L S

The present chapter will focus mainly on studies directly related to the subject of this
project. Other researched work on the field is explored in other chapters of this report.

As previously mentioned, the main motivation for this dissertation came from the study
of Pietriková and Chodarev (2015). These authors propose a method for profiling program-
mers through the static analysis of their source code. They classify knowledge profiles in
two types: subject and object profile. The subject profile represents the capacity that a pro-
grammer has to solve some programming task, and it’s related with his general knowledge
on a given language. The object profile refers to the actual knowledge necessary to handle
those tasks. It can be viewed as a target or a model to follow. The profile is generated by
counting language constructs and then comparing the numbers to the ones of previously
developed optimal solutions for the given tasks. Through that comparison it’s possible to
find gaps in language knowledge. The authors agree that the tool is promising, but there
is still a lot of work that can be done on the subject. To compare programs against models
or ideal solutions, by counting language constructs is a common feature between this work
and our project. Despite that, in this work, the object profile is optional. The subject profile
can be inferred analysing the source code, using as base the language grammar. Consider-
ing the language syntax, a set of metrics are extracted from the source code. This can be
done to conclude about the complexity of a program or to perform some statistics when
analysing a set of programs of one programmer. In our case, we are not concerned with
the complexity level of the programs but we analyse the way each programmer solves a
concrete problem. So, almost all metrics that we extract only make sense when compared
with a standard solution.

In another paper, Truong et al. (2004) suggest a different approach. Their goal is the
development of a tool, to be used throughout a Java course, that helps students learning the
language. Their tool provides two types of analysis: Software engineering metrics analysis
and structural similarity analysis. The former checks the students programs for common
poor programming practices and logic errors. The latter provides a tool for comparing
students’ solutions to simple problems with model solutions (usually created by the course

5

6

teacher). Despite having several limitations, teachers have been giving this tool a positive
feedback. As stated before, this thesis will be taking a similar approach to this software
engineering metrics. However, the tool mentioned above was only used on an academic
context while the purpose of this project is to develop a tool that can also be applied in
another contexts.

Flowers et al. (2004) and Jackson et al. (2005) discuss a tool developed by them, Gauntlet,
that allows beginner students understanding Java syntax errors made while taking their
Java courses. This tool identifies the most common errors and displays them to students in
a friendlier way than the Java compiler. Expresso tool (Hristova et al., 2003) is also a reference
on Java syntax, semantic and logic error identification. Both tools have been proven to be
very useful to novice Java learners but since they focus mainly on error handling, they will
not be very useful for this project.

Hanam et al. (2014) explain how static analysis tools (e.g. FindBugs) can output a lot of
false positives (called unactionable alerts) and they discuss ways to, using machine learning
techniques, reduce the amount of those false positive so a programmer can concentrate
more on the real bugs (called actionable alerts). This study could be very useful to this
work in the case of exploring machine learning and data mining techniques on the analysis.

Granger and Rayson (1998) worked on a project that intended to automatically profile
essays written in English. The subjects were both native and non-native English speakers
(French speakers learning English). Their approach of counting usage of words (articles,
determiners, pronouns, propositions, adverbs, nouns and verbs) and then compare the
word frequency of non-native to native English speakers is very similar to the intents of
this project. The tool they produced concluded that "the essays produced by French learners
display practically none of the features typical of academic writing and most of those typical of
speech".

Shabtai et al. (2010) proposed the use of Machine Learning techniques in the classifi-
cation of Android applications, trough static analysis of features present in the android
application compiled files (APKs). Using the traditional training and testing methodology,
they tried several known ML algorithms to discover which worked best for classifying An-
droid apps. Although they intended to detect possible malicious applications, in the end
they only managed to differentiate regular applications from games. Nonetheless, the re-
sults were very good, achieving a 0.918 accuracy rate using a Boosted Bayesian Networks
classifier.

3

P R O G R A M M E R P R O F I L I N G : C H A L L E N G E S A N D O U R P R O P O S A L

In this chapter, the challenges faced throughout this project will be explained in the form
of questions and answers. Here, a detailed explanation regarding our choices can be found,
as well as the motivation behind those decisions.

3.1 early decisions

At the early stages of this dissertation some important decisions had to be made. The first
step was to choose the programming language to be analysed. Of all the possible languages
that could be used to accomplish this project, Java was the most obvious choice. Besides the
fact that it’s a language the author is quite familiar with, it’s one of the most widespread
languages both in the academic and professional contexts and there is a lot of available
information about what are the best programming practices. It was also decided to only
evaluate Java 7 (an leave out Java 8) since, at the moment of this project, it wasn’t still very
widespread and its construct would add another layer of complexity.

As we have seen in some cases of Chapter 2, Java compiler errors and warnings can be
quite hard to properly diagnose. Due to that, syntactic or semantic problems detected by
the compiler will not be considered, meaning that this work will not tackle techniques of
dynamic analysis. Code with errors may still be analysed, but the errors will not be taken
into consideration for the profiling.

Another very important decision is that all programs analysed will be assumed to exe-
cute the proposed task, but once again, no dynamic analysis will be done to verify that.

3.2 what are programmer profiles?

Programmer profiling is an attempt to place a programmer on a scale by inferring his
profile. As Poss (2014) stated, we can compare proficiency on a programming language with

7

3.2. What are programmer profiles? 8

proficiency on a natural language, and like the Common European Framework of Reference for
Languages: Learning, Teaching, Assessment (CEFR) has a method1 of classifying individuals
based on their proficiency on a given foreign language, it is believed that the same can be
done for a programming language.

The CEFR defines foreign language proficiency at six levels: A1, A2, B1, B2, C1 and
C2 (A1 meaning the least proficient and C2 the most proficient). A similar method for
classifying programmers was considered at first, but due to the fact that the levels were not
very descriptive, a more self-described scale was preferred.

Sutcliffe (2013) presents a classification for programmer categorization: naive, novice,
skilled and expert. A similar scale was agreed upon, with what it’s believed to be a good
starting point for the profile definition:

NOVICE

• Is not familiar with all the language constructs

• Does not show language readability concerns

• Does not follow the good programming practices 2

ADVANCED BEGINNER

• Shows variety in the use of instructions and data-structures

• Begins to show readability concerns

• Writes programs in a safely3 manner

PROFICIENT

• Is familiar with all the language constructs

• Follows the good programming practices

• Shows readability and code-quality concerns

EXPERT

• Masters all the language constructs

• Focuses on producing effective code without readability concerns

1 http://www.coe.int/t/dg4/linguistic/cadre1_en.asp
2 According to McConnell (2004), the best coding practices are a set of informal rules that the software develop-

ment community has learned over time which can help improve the quality of software.
3 e.g. writes if (cond==false) instead of if (!cond) as is done by people that have more self-confidence and usually

have a less explicit programming style.

http://www.coe.int/t/dg4/linguistic/cadre1_en.asp

3.2. What are programmer profiles? 9

The example seen in Listing 3.1 could be a bit exaggerated but may help shed some
light on what is meant by the previous scale. Each one of the following methods has the
same objective: calculating the sum of the values of an integer array, in Java. Each method
has features of what may be expected from each profile previously defined. It’s hard to
represent all 4 classifications on such a small example, so the Advanced Beginner profile
was left out.

int novice (int[] list) {

int a=list.length;

int b;int c= 0;

for (b=0;b<a;b++) {

c=c+list[b];}

return c;

}

//Sums all the elements of an array

int proficient (int[] list) {

int len = list.length;

int i, sum = 0;

for (i = 0; i < len; i++) {

sum += list[i];

}

return sum;

}

int expert (int[] list) {

int s = 0;

for (int i : list) s += i;

return s;

}

Listing 3.1: "Examples of programs corresponding to different Profile Levels"

The Novice has little or no concern with code readability. He will also show lack of
knowledge of language features. In the example we can see that by the way he spaces his
code, writes several statements in one line or gives no meaning in variable naming. He also
shows lack of advanced knowledge on assignment operators (he could have used the add
and assignment operator, +=).

The Expert, much like the Novice, shows no concern for language readability, but unlike
the latter, he has more language knowledge. That means that the Expert has a different kind
of bad readability. The code can be well organized but the programming style is usually

3.3. How can we extract this information? 10

more compact and not so explicit. As an example of language knowledge, the Expert uses
the extended for loop, making his method smaller in lines of code.

Finally, the Proficient will display skills and knowledge, much like the Expert program-
mer, while keeping concern with code readability and appearance. The code will feature
advanced language constructs while maintaining readability. His code will be clear and
organized, variable naming has meaning and code will have comments for better under-
standing.

3.3 how can we extract this information?

Since the goal is to classify programmers automatically, that classification can only be car-
ried through the analysis of the programmers’ source code. Since the interest is in language
usage, in various aspects, static code analysis was the selected technique to perform the ex-
traction of the data to be analysed.

The two main aspects of code that were of interest to this project are the language knowl-
edge and the readability of code.

3.4 which data is relevant for extraction?

On the early stages of this project it was yet not very clear which data would be most useful
to the profiling, so on an early development phase a wide range of data was considered to
be extracted from the source-code. That data can be seen in the list below and, from here
on, will be regarded as metrics.

1. Class hierarchy

2. Class and method names and sizes

3. Variable names and types used

4. Number of files, classes, methods, statements

5. Number of lines code and comment

6. Usage of Control Flow Statements (if, while, for, etc)

7. Usage of Advanced Java Operators (e.g. Bitshift, Bitwise, etc)

8. Indentation and spacing of code

9. Other relevant Java Constructs

3.5. How does that data correlate with programmer profiles? 11

Metrics 1, 3, 4, 6 and 7 show a tendency to be used to infer the skill and language knowl-
edge, and that way know if a solution was that of a programmer with more or less expertise
in Java. Metrics 2, 3, 5 and 8 shift more towards concerns with code understandability and
readability.

One thing that’s clear is that one easy way to spot Novice programmers is to look for the
newbie mistakes or bad practices they commit. Instead of implementing features that search
for those mistakes, a very useful source code analyser was found, that will be very useful
in the detection of those bad practices (this topic will be further explored in Chapter 4).

Finally, the context in which a program is written should be taken into consideration
in the profiling process. For example, a teacher that writes code in a safely manner while
teaching novices may prioritize code efficiency in personal projects.

3.5 how does that data correlate with programmer profiles?

Correlating metrics with profiles has proved to be a challenging task. After much consid-
eration, we came up with a proposal, presented below, that we think to be as accurate as
possible.

To classify the abilities of a programmer regarding his knowledge about a language and
the way he uses it, we considered two profiling perspectives, or group of characteristics:
language Skill and language Readability.

• Skill is defined as the language knowledge and the ability to apply that knowledge
in a efficient manner.

• Readability is defined as the aesthetics, clarity and general concern with the under-
standability of code.

Of the extracted metrics, some show a tendency towards classifying Skill while others
towards classifying Readability. Here’s a breakdown of where each metric may fall:

SKILL

• Number of statements

• Control flow statements (If, While, For, etc)

• Advanced Java Operators

• Number and datatypes used

• Some PMD 4 Violations (e.g. Optimization, Design and Controversial rulesets)

4 More on this in Subsection 4.1.2

3.5. How does that data correlate with programmer profiles? 12

READABILITY

• Number of methods, classes and files

• Total number and ratio of code, comments and empty lines

• Some PMD Violations (e.g. Basic, Code Size and Braces rulesets)

These two groups contain enough information to obtain a profile of a programmer, re-
garding a given task. Then, for each group, and according to the score obtained by the
programmer, Table 1 gives a general idea of how programmers can be profiled. (+) means
a positive score, while (-) means a negative one.

Profile Skill Readability

Novice - -
Advanced Beginner - +
Expert + -
Proficient + +

Table 1.: Proposed correlation

What constitutes a lower and a higher score for each group must be defined. For every
programmer, the goal is to compare each metric value among all solutions to identify those
who performed better or worse on that metric, and then, assemble a mathematical formula
which allows to combine the metrics’ results into a grade for each of the two groups. Taking
those two grades and resorting to Table 1 we can easily infer the programmer’s profile in
regards to the subject problem.

3.5.1 A practical example

The exercise "Read a given number of integers to an array, count how many are even" was
proposed to two programmers. An object oriented programming (OOP) teacher and an
advanced Java programmer (MsC student). Below we can see both their solutions:

package ex1_arrays;

import java.util.Scanner;

/**

* Escreva um algoritmo que leia e mostre um vetor de n elementos

* inteiros e mostre quantos valores pares existem no vector.

*

* @author Paula

*/

3.5. How does that data correlate with programmer profiles? 13

public class Ex1_Arrays {

public static void main(String [] args) {

Scanner in = new Scanner(System.in);

int cont = 0, N;

N = in.nextInt ();

int vec[] = new int[N];

for (int i = 0; i < N; i++) {

vec[i] = in.nextInt ();

}

for (int i = 0; i < N; i++) {

if (vec[i] % 2 == 0) {

cont = cont + 1;

}

}

System.out.println(cont);

}

}

Listing 3.2: "Teacher Solution"

import java.util.Scanner;

public class Even {

public static void main(String [] args) {

Scanner in = new Scanner(System.in);

int n = in.nextInt ();

int[] numbers = new int[n];

int result = 0;

for (int i = 0; i < n; i++) {

int input = in.nextInt ();

numbers[i] = input;

result += (input & 1) == 0 ? 1 : 0;

}

System.out.println(result);

}

}

Listing 3.3: "Advanced Programmer Solution"

3.5. How does that data correlate with programmer profiles? 14

After running both solutions through a first implementation of a metrics extractor created,
the results shown in Table 2 were obtained.

Metric Teacher Expert

Total Number Of Files 1 1

Number Of Classes 1 1

Number Of Methods 1 1

Number Of Statements 6 3

Lines of Code 17 (48,6%) 12 (75%)
Lines of Comment 3 (8.3%) 0

Empty Lines 10 (28.6%) 1 (6.3%)
Total Number Of Lines 35 16

Control Flow Statements {FOR=2, IF=1} {FOR=1, IIF=1}
Not So Common CFSs 0 1

Variety of CFSs 2 2

Number of CFSs 3 2

Not So Common Operators {} {BIT_AND=1}
Number of NSCOs 0 1

Variable Declarations {Scanner=1, int[]=1, int=4} {Scanner=1, int[]=1, int=4}
Number Of Declarations 6 6

Number Of Types 3 3

Relevant Expressions {SYSOUT=1} {SYSOUT=1}

Table 2.: PP-Analysis of two solutions

For this example, we will consider the OOP’s teacher solution to the problem, a standard
solution, to help to understand how we can compare two sets metrics extracted from two
solutions.

In Table 3 we compare the metrics of the advanced student solution with the ones of
the teacher solution solution. In this table, for each analysed metric, the advanced pro-
grammer gets 1, 0 or -1 whether his result on that metric is better, the same level or worst
when compared to the standard solution, respectively. In this case the programmer got +3

points in skill -6 in readability when comparing to a proficient solution, making him an
Expert according to Table 1. As a general rule of thumb, for the readability group, more
is better. Of course the score was obtained in a very naive way. As mentioned previously,
a mathematical formula which takes into consideration the importance of the metrics and
how they relate with the groups we have defined, is expected to be developed to make this
classification as precise a possible.

Another problem that is yet to be tackled is how to automatically compare some complex
metrics like control flow statements (CFSs) and variable declarations, but we already know

3.6. How to automatically assign a profile to a programmer? 15

that it will be important to classify CFS and the datatypes as common (or not so common)
in order to evaluate the programming language knowledge level.

Metric Name Skill Readability

Number Of Files X 0

Number Of Classes X 0

Number Of Methods X 0

Number Of Statements +1 X
Number Of Lines of Code X -1
% Code X -1
Number Of Lines of Comment X -1
% Comment X -1
Number Of Empty Lines X -1
% Empty X 0

Total Number Of Lines X -1
Control Flow Statements +1 X
Variable Declaration 0 X
Total Number Of Declarations 0 X
Total Number Of Types 0 X
Advanced Operators +1 X
PMD N/A N/A
Total +3 -6

(+1) - better than the standard solution
(0) - same level as the standard solution
(-1) - worst than the standard solution
(X) - metric no related to this group
PMD results were not considered in this example

Table 3.: Comparing to standard solution

The goal for the Programmer Profiler, and especially the Profile Inference Engine is to be
able to automatically make that classification and that way infer the profile of the program-
mer.

3.6 how to automatically assign a profile to a programmer?

As stated previously, the goal is to calculate scores (Skill and Readability) for the solutions
that programmers implement, and then, devise an algorithm that infers the profile of pro-
grammers based on those scores.

One of the objectives of the final tool is not to make it dependant on standard (or model)
solutions, that are then used to compare with the solutions we want to analyse. The goal is

3.7. System Architecture 16

to make a profile inference that only makes sense in the subset of the programs currently
being analysed. That means that, the profiles that are inferred to the programmers could
vary if we alter the solutions that are being analysed alongside.

3.7 system architecture

Figure 1 shows the block diagram that represents the expected final implementation of the
system, as it was envisioned in the early stages of this project. The tool will be named
Programmer Profiler (PP).

The programmer’s Java source code is loaded as PP input. Then, the code goes through
two static analysis processes: the analyser implemented (PP-Analyser) using AnTLR with
the goal of extracting a set of metrics and the PMD-Analyser, an analyser that resorts to the
PMD Tool to find a set of predefined metrics regarding poor coding practices.

Both analysis’ outcomes will feed two other modules: A Metrics Visualizer (a generator
of HTML pages 5) which will allow us to make a manual assessment of the source code
to infer the programmer’s profile; and a Profile Inference Engine whose goal is to make the
profile assignment an automatic process.

Making the profiling an automatic assignment will be the most interesting, challenging
and complex part of this project. The goal is not to assign a absolute value that characterizes
a programmer’s proficiency on the Java language, but instead to give a general classification
in regards to a resolution of a given problem or task.

5 http://www4.di.uminho.pt/ gepl/PP/

3.7. System Architecture 17

Figure 1.: PP Block Diagram

4

D E V E L O P M E N T D E C I S I O N S A N D I M P L E M E N TAT I O N

The following sections will discuss the development phase of the project. At first, the early
decisions that had to be made are described, followed by the tools used. Then, the chapter
continues with a description of the implementation phase.

4.1 early decisions

To path to solve the Programmer Profiler problem was still quite unexplored. Taken that,
the implementation component had to be present from the beginning so we knew we were
travelling down the right path.

Firstly, it was decided that an appropriate name for the tool, proposed in this thesis,
would be Programmer Profiler (PP). Another one of the first steps was to analyse simple Java
source-files, so it was decided that the appropriate tool for that would be AnTLRv4, mainly
because of the familiarity of the authors with the tool and the fact that there are already
Java grammars freely available.

4.1.1 AnTLR

As taken from the website1:

ANTLR (ANother Tool for Language Recognition) is a powerful parser genera-
tor for reading, processing, executing, or translating structured text (...). From a
grammar, ANTLR generates a parser that can build and walk parse trees.

Nowadays, AnTLR is one of the most used Compiler Generators in the world in both
professional and academic environments. By using only a Java grammar, AnTLR will gen-
erate a parser that will recognize any syntactically correct Java source file. This allows us
to work with the information that a source file contains in any desired way. Additionally,

1 http://www.antlr.org/

18

http://www.antlr.org/

4.1. Early Decisions 19

AnTLR is also used to extract, with more or less ease, any kind of needed metric from the
Java files.

On the other hand, as mentioned on the previous chapter, instead of implementing fea-
tures that search for poor Java practices and novice programming mistakes, PMD, a very
useful source code analyser, was selected. The book, The definitive ANTLR 4 reference (Parr,
2013) appears to be a very useful resource for the development of this tool.

4.1.2 PMD

PMD2 is a source code analyser. It finds common programming flaws like unused variables,
empty catch-blocks, unnecessary object creation, and so forth.

PMD was selected among other similar tools mainly due to its large support in many
aspects of the Java language (bad practices, code smells, etc). It’s an open-source tool and
it has a good API to work with.

PMD executes a thorough analysis over source-code (since it supports several languages)
and reports back with the violations found. Violations are predefined rules that are trig-
gered when source is analysed using this tool. The rules are grouped in rulesets of related
flaws.

PMD looks for dozens of poor programming practices, nonconformity to conventions
and security guidelines.

Listing 4.1.2 depicts some of the main PMD that may be the most useful to our goals:

UNUSED CODE

The Unused Code Ruleset contains a collection of rules that find unused code

OPTIMIZATION

These rules deal with different optimizations that generally apply to performance best
practices

BASIC

The Basic Ruleset contains a collection of good practices which everyone should follow

DESIGN

The Design Ruleset contains a collection of rules that find questionable designs

CODE SIZE

The Code Size Ruleset contains a collection of rules that find code size related prob-
lems

2 https://pmd.github.io/

https://pmd.github.io/

4.1. Early Decisions 20

NAMING

The Naming Ruleset contains a collection of rules about names - too long, too short,
and so forth

BRACES

The Braces Ruleset contains a collection of braces rules

Detailed information on all rules our tool detects can be found in Appendix B.

4.1.3 Metrics

After some testing and experimenting, we’ve created a set of metrics that we consider
appropriate for programmer profiling. The range of metrics extracted is quite large, and
it’s obvious that not all metrics should have the same weight towards inferring the profile
of programmers. Considering that, each metric has an associated priority (or weight) that
directly relates to the impact that metric will have towards inferring the profiles. Currently,
for each solution to a exercise, the metrics being extracted by the ProgramerProfiler Tool are
the following:

Code Size Metrics

These metrics are related with code size. We believe code size is mainly related with read-
ability concerns. A greater number of methods, lines of comment, and empty lines shows
that the programmer has a concern with the understandability of code. Although not be-
ing so obvious, we also believe that a greater number of lines of code also shows that the
programmer wanted to make the code as comprehensible as possible.

Another metric worth mentioning is the Percentage of Lines of Code, where we consider
that a lower percentage will imply higher readability. In terms of percentage, all code is
divided into lines of code, comment, and empty lines. So a lower percentage of lines of code
will mean a higher percentage of comments and empty lines, which benefices readability.

Of all these metrics, the only one we believe differs from all the other is the Number of
Statements. By statement we mean the smallest standalone element of the Java language,
that expresses some action to be carried out. We believe that the number of statements is
closely related to the skill of a programmer, meaning that if a programmer can implement a
equivalent algorithm as another, using fewer statements, than we can assume, heuristically,
that programmer has higher language knowledge and, therefore, higher skill.

4.1. Early Decisions 21

Below is our proposal of the metrics and how we believe these metrics may affect the
groups we previously defined, skill and readability.

NUMBER OF CLASSES

• Affects: Readability and Skill

• How: More classes implies +R (more Readability) and +S (more Skill)

• Priority: 2

• Description: Total number of classes

NUMBER OF METHODS

• Affects: Readability and Skill

• How: More methods implies +R and +S

• Priority: 2

• Description: Total number of methods

NUMBER OF STATEMENTS

• Affects: Skill

• How: Less statements implies +S

• Priority: 8

• Description: Total number of statements

NUMBER OF LINES OF CODE (LOC)

• Affects: Readability

• How: More lines of code implies +R

• Priority: 5

• Description: Total number of lines of code

• Also Known as: LOC

PERCENTAGE OF LINES OF CODE

• Affects: Readability

• How: Lower percentage of lines of code implies +R

• Priority: 5

• Description: Percentage of LOC in total number of lines

• Also Known as: %LOC

NUMBER OF LINES OF COMMENT

4.1. Early Decisions 22

• Affects: Readability

• How: More lines of comment implies +R

• Priority: 3

• Description: Total number of lines of comment

• Also Known as: LOCom

PERCENTAGE OF LINES OF COMMENT

• Affects: Readability

• How: Higher percentage of lines of comment implies +R

• Priority: 3

• Description: Percentage of LOCom in total number of lines

• Also Known as: %LOCom

NUMBER OF EMPTY LINES

• Affects: Readability

• How: More empty implies +R

• Priority: 3

• Description: Total number of empty lines

• Also Known as: Blank lines

PERCENTAGE OF EMPTY LINES

• Affects: Readability

• How: Higher percentage of empty lines implies +R

• Priority: 3

• Description: Percentage of empty lines in total number of lines

Control Flow Statements Metrics

Control flow statements (CFS) are the heart of the algorithms. These are statements whose
execution results in a choice being made as to which of two or more paths should be
followed. the control flow statements we consider are: if-statements (if-then and if-then-
else), while-statements (while and do-while), for-statements (for and enhanced for), switch-
statements and inline-if-statements (also know as the ternary operator).

4.1. Early Decisions 23

Usually, programmers either opt for using more CFSs and make their algorithm more
explicit and easier to understand or for using less CFS making it less explicit and harder
to comprehend. One thing that we can all agree is that creating an alternate, much more
implicit, algorithm is something that not every programmer can do. Reducing the size and
execution time of the program by cutting on the use of controls is a task only for those
more skillful and expert. As an example we can imagine a programmer which does all
tasks inside a loop statement and another that has to use two or more to accomplish the
same thing.

Almost all CFSs are interchangeable. For-loops can be replaced with while-loops, switch-
statements can be replaced with nested if-statements and so on. Variety on the use of CFSs
will show that the programmer knows the language and what controls are better for each
situation.

Finally, there are some CFS that we consider not so common and, therefore, show lan-
guage knowledge. Those are the do-while-loop, the enhanced-for-loop and the inline-if-
condition. Using these will increase the skill points.

TOTAL NUMBER OF CONTROL FLOW STATEMENTS

• Affects: Skill and Readability

• How: Less CFSs implies +S and more CFSs implies +R

• Priority: 5

• Description: Total number of Control Flow Statements

• Also Known as: CFS

VARIETY OF CONTROL FLOW STATEMENTS

• Affects: Skill

• How: More variety of CFS implies +S

• Priority: 4

• Description: Variety of CFS used

TOTAL NUMBER OF NOT SO COMMON CFSS

• Affects: Skill

• How: More Not So Common CFS implies +S

• Priority: 6

• Description: Total number of Not So Common CFS

• Also Known as: NSCCFS

4.1. Early Decisions 24

Not So Common Operators Metrics

Java is a very vast language with numerous operators. Some of them are very specific and
most programmers don’t even know about them. When correctly applied these can reduce
the code size and even improve the program’s performance. These operators are:

SHIFT (’<<’, ’>>’ and ’>>>’)

BIT_AND (’&’), BIT_OR (’|’)

CARET (’^’)

ONE_ADD_SUB (’++’ and ’--’), ADD_ASSIGN (’+=’), SUB_ASSIGN (’-=’)

MULT_ASSIGN (’*=’), DIV_ASSIGN (’/=’), AND_ASSIGN (’&=’)

OR_ASSIGN (’|=’), XOR_ASSIGN (’^=’), RSHIFT_ASSIGN (’>>=’)

URSHIFT_ASSIGN (’>>>=’), LSHIFT_ASSIGN (’<<=’), MOD_ASSIGN (’%=’).

We consider the usage of these operators as an indication of skill.

VARIETY OF NOT SO COMMON OPERATORS

• Affects: Skill

• How: More variety of NSCO implies +S

• Priority: 5

• Description: Variety of Not So Common Operators used

• Also Known as: NSCO

Variable Declaration Metrics

Similarly to the case of the Control Flow Statements, while using variables a programmer
can reuse non-needed variables to reduce the size of the code and memory used by the
system. But just like in the example above, this will cause the code to become harder to
understand (this requires the variables to be given more generic names, for example).

Also, like in the case of the Not So Common Operators, there are a lot of types available
for the programmer to use, and sometimes there are some more appropriate then others.
For instance, an expert programmer should know when it’s best to use float or double.

TOTAL NUMBER OF DECLARATIONS

• Affects: Skill and Readability

• How: Lower number of Declarations implies +S and -R

• Priority: 5 for the first and 3 for the second

• Description: Total number of variables declared

4.1. Early Decisions 25

TOTAL NUMBER OF TYPES

• Affects: Skill

• How: More variety of types implies +S

• Priority: 4

• Description: Variety of types used

Other Relevant Expressions Metrics

This metric was created to hold other important language features that fore some reason
or another didn’t fit in the other descriptions. So far, the only metric being analysed is
the Readability Related Relevant Expressions on which the main output methods are being
considered.

System.out and System.err methods can be very helpful in understanding code (mainly
when accompanied by some kind of message or debug information). For that reason they
are being considered as readability-increasing. In the future other methods or constructs
could be added to this section.

TOTAL NUMBER OF READABILITY RELEVANT EXPRESSIONS

• Affects: Readability

• How: Higher number of Relevant Expressions implies +R

• Priority:3

• Description: Total number of readability-related Relevant Expressions

• Also Known as: RE

PMD Violations Metrics

Lastly we have the PMD Violations Metrics. These metrics are very important because they
allow us to detect problems in code that otherwise would be very hard to catch, as seen
in subsection 4.1.2, PMD is devided into rulesets, and each ruleset into rules. When these
rules are detected in source-code they are referred as violations. Each rule also as assigned
a priority (or weight).

Our approach was to assign each PMD rule to one of our previously defined Groups
(Skill and Readability) whether that rule as an influence on that given group. Some rules
can affect both Readability and Skill. Than we measure the number of detected violations
to punish the programmers in that Group to which that rule belongs to.

The rules, descriptions, priorities and groups can be consulted in Appendix B.

4.2. Implementation 26

4.1.4 Enhancing the Profiles

As we’ve seen in Chapter 3, the idea behind the inference of profile is to calculate a Skill
and Readability scores, and combining those values, assign a profile to the programmer.

As time progressed, our idea of the profiles shifted a bit from the original idea that we
saw in Table 1. We decided that the Experts should be the ones with maximum focus on
Skill, the Proficients on Readability and the Advanced Beginners should be divided also
more precisely divided. A new profile was also created. The final version of the profiles is
the following:

• Novice (N): Low Skill and Low Readability

• Advanced Beginner R (AB-R): Low Skill and Average Readability

• Advanced Beginner S (AB-S): Average Skill and Low Readability

• Advanced Beginner + (AB +): Average Skill and Average Readability

• Proficient (P): Low-to-Average Skill and High Readability

• Expert (E): High Skill and Low-to-Average Readability

• Master (M): High Skill and High Readability

Keep in mind that the definition of the groups (Readability and Skill) is not the common
meaning of the word. Saying that an Expert has low Readability means only that he scored
a low value on our axis of Readability (based on the metrics we’ve seen in the previous
section) when comparing to other solutions to the same problem.

Figure 2 visually shows how we envision the profiles.

4.2 implementation

The following sections discuss the implementation process of PP and the reasoning behind
the decisions made.

4.2.1 Setting up

The first step of the implementation was setting up AnTLRv4. The Integrated Development
Environment chosen was IntelliJ IDEA3, a very powerful and modern Java IDE. IntelliJ IDEA

3 https://www.jetbrains.com/idea/

https://www.jetbrains.com/idea/

4.2. Implementation 27

Figure 2.: Correspondence between scores and profiles

has available an AnTLRv4 plug-in, so setting it up was straightforward. The plugin4 of-
fers all features present in ANTLRWorks5, a grammar development environment, with the
advantage of already being integrated in the IDE used to create the PP tool. It is also
maintained by the developers of AnTLR themselves.

Then, a Java grammar for AnTLRv4 was needed. Among the several available, the one
chosen6 was provided by the creator of AnTLR himself.

4.2.2 Attribute Grammar vs Visitor Pattern

When we first began testing static code analysis, the most immediate solution was to add
attributes to the productions of the grammar, with the purpose of counting the occurrences
of the language constructs.

Soon enough it was obvious that, despite being a possible solution, this approach would
not be viable. That’s due to the fact that with the amount of metrics needed, the resulting
grammar would become unreadable and very hard to maintain.

4 https://github.com/antlr/intellij-plugin-v4
5 http://tunnelvisionlabs.com/products/demo/antlrworks
6 https://github.com/antlr/grammars-v4/tree/master/java

https://github.com/antlr/intellij-plugin-v4
http://tunnelvisionlabs.com/products/demo/antlrworks
https://github.com/antlr/grammars-v4/tree/master/java

4.2. Implementation 28

Given that, the solution was to implement a visitor design pattern. In short, a visitor
class is defined, which implements a method for each production of the grammar. When the
Abstract Syntax Tree (AST) is being traversed by the visitor, each node calls its respective
method. That method can then be overridden to extract any kind of information. For
example, the method visitIfStatement:

@Override

public Object visitIfStatement(JavaParser.IfStatementContext ctx) {

incr(JConstruct.IF);

return super.visitIfStatement(ctx);

}

is called whenever an if-statement is found. The incr method increments the if-statement
counter.

AnTLR generates automatically the BaseVisitor, which can then be implemented in our
classes.

4.2.3 Fixing up the Grammar

Almost all metrics needed to be extracted are of numeric kind, meaning, the number of
occurrences of given language constructs. That means that the goal of the metrics is, for
example, to know how many if-statements a solution implements.

The way the original Java grammar was implemented, had many of these Java constructs
defined as terminals:

statement

: block

| ASSERT expression (’:’ expression)? ’;’

| ’if’ parExpression statement (’else’ statement)?

| ’for’ ’(’ forControl ’)’ statement

| ’while’ parExpression statement

| ’do’ statement ’while’ parExpression ’;’

| ’try’ block (catchClause+ finallyBlock? | finallyBlock)

| ’try’ resourceSpecification block catchClause* finallyBlock?

| ’switch ’ parExpression ’{’ switchBlockStatementGroup* switchLabel* ’}’

| ’synchronized ’ parExpression block

| ’return ’ expression? ’;’

| ’throw’ expression ’;’

| ’break’ Identifier? ’;’

| ’continue ’ Identifier? ’;’

| ’;’

4.2. Implementation 29

| statementExpression ’;’

| Identifier ’:’ statement

;

The problem with this, is that we can only implement a visitor for the statement production
rule. In this way, when that visitor is triggered by a construct, such as, a if, while or switch
statement, we couldn’t know exactly which one triggered it. To know that, we would have
to manually compare the beginning of the expressions to the constructs we were looking
for. That would make the visitors very big and ugly methods.

The solution was to separate the desired constructs into different production rules. This
means changing the original grammar a bit:

statement

: statementBlock

| ASSERT expression (’:’ expression)? ’;’

| ifStatement

| forStatement

| whileStatement

| doWhileStatement

| ’try’ block (catchClause+ finallyBlock? | finallyBlock)

| ’try’ resourceSpecification block catchClause* finallyBlock?

| switchStatement

| ’synchronized ’ parExpression block

| returnStatement

| ’throw’ expression ’;’

| breakStatement

| continueStatement

| ’;’

| statementExpression ’;’

| Identifier ’:’ statement

;

statementBlock

: block

;

ifStatement

: ’if’ parExpression statement (’else’ statement)?

;

forStatement

: ’for’ ’(’ forControl ’)’ statement

;

4.2. Implementation 30

With these changes, we could define a visitor for each metric being extracted, as we saw
above.

4.2.4 Early Metrics Extracted

As said in 3.3, the first metrics to be extracted were:

• Class hierarchy

• Class and method names and sizes

• Variable names and types

• Number of classes, methods, statements

• Control Flow Statements (if, while, for, etc)

Other metrics that look for poor practices usually adopted by beginner programmers
(e.g. several returns in one method or leaving empty catch-blocks) were also implemented.
However, after discovering PMD (which does that and much more), those implementations
were discarded.

4.2.5 Preliminary PMD Integration

The integration of PMD was quite straightforward. First we imported the JAR file with the
PMD solution. Then, to run the tool we just have to pass arguments: a folder to examine,
the rulesets to analyse and the desired format to output the result. Below is presented an
example of a violation detected by PMD in XML format:

<violation beginline="274" endline="276" begincolumn="33" endcolumn="33" rule="

CollapsibleIfStatements" ruleset="Basic" package="(...)" class="IMC" method="

MT" externalInfoUrl="https: //pmd.github.io/pmd -5.4.0/pmd -java/rules/java/basic

.html#CollapsibleIfStatements" priority="3">These nested if statements could

be combined </violation >

In this example of a violation we can see that it was detected a fault of type CollapsibleIf-
Statements, which belongs to the Basic ruleset. As the description explains this violation
means: These nested if statements could be combined. We can also see in which file, line and
column the violation was detected.

4.2. Implementation 31

All the information that the PMD provides has a lot of potential aiming at classifying
programmers by analysing their code. But in order to achieve that we must give some
meaning to the PMD data. As previously mentioned PMD violations refer to bad practices
and possible code-smells, so we can generalise those violations to mistakes done by pro-
grammers (although some of them may be nothing more than conventions that have really
no impact in quality of code).

The goal is to penalize the programmers by the amount and type of PMD violations
found in their code. To do that a CSV file was created that has almost all possible PMD
violations and, for each, a priority (or weight) and a group (remember Skill and Readability)
to which the violation is more related too. Below we can see some violations as example:

"Code Size","ExcessiveMethodLength","When methods are excessively long this

usually indicates that the method is doing more than itsname/signature might

suggest. They also become challenging for others to digest since excessive

scrolling causes readers to lose focus.Try to reduce the method length by

creating helper methods and removing any copy/pasted code.","3","R"

"Braces","ForLoopsMustUseBraces","Avoid using ’for’ statements without using

curly braces. If the code formatting or indentation is lost then it becomes

difficult to separate the code being controlled from the rest.","3","R"

"Design","SimplifyBooleanReturns","Avoid unnecessary if-then -else statements when

returning a boolean. The result of the conditional test can be returned

instead.","3","S"

"Empty Code","EmptyIfStmt","Empty If Statement finds instances where a condition

is checked but nothing is done about it.","3","B"

"Basic","ExtendsObject","No need to explicitly extend Object.","4","S"

The last two values of each entry are the priority (1-5) and the group (S, R and B, for Skill,
Readability and Both). The priority was assigned by the developers of PMD themselves.
The group to which they are more relevant was assigned by the authors of this work. Later
this information will be used to help calculating a score to the solution of a given problem.

4.2.6 Solutions Input

In order to properly analyse the files that contain the various solutions provided by different
programmers to the same problem, they must be previously carefully prepared. For each
problem to be analysed a folder must be created. The name of that folder will be the name

4.2. Implementation 32

of the problem. That folder will be organized in subfolders, each containing the solution to
that given problem. The name of each subfolder will be the name of the person that solved
it. Each folder must contain the file (or files) needed to solve the exercise. The name of
those files is not relevant.

A folder with the base solution must be created and given separately as input, in order
to differentiate it from all the others.

The first step of the PP process will be to cycle through all the folders of the problem
and retrieve the paths of the Java files, and link them to the programmer that created that
solution. After that we are ready to start the PP analysis.

4.2.7 PP Analyser

The PP Analyser is the class responsible for extracting all metrics from the Java source code.
The process starts by receiving the paths of Java files. Then using the Lexer and Parser,

generated from the Java grammar using AnTLR, the Parse Trees (also known as Concrete
Syntax Trees) will be generated for each file, according to the following code snippet:

public ParseTree generateParseTree (String filePath) throws IOException {

ANTLRInputStream input;

input = new ANTLRInputStream(new FileInputStream(filePath));

JavaLexer lexer = new JavaLexer(input);

CommonTokenStream tokens = new CommonTokenStream(lexer);

JavaParser parser = new JavaParser(tokens);

ParseTree tree = parser.compilationUnit ();

return tree;

}

With all the Parse Trees generated we can begin extracting the metrics. As it was previ-
ously mentioned, this project will implement the visitor design pattern to traverse the trees
in order to extract the metrics. For each set of related metrics a class with the purpose of
extracting those metrics was created. Each class implements the JavaBaseVisior, generated
with AnTLR from the grammar, that will allow us to use the visitor methods.

A visitor is a method generated, that is triggered when a given production of the gram-
mar is visited. For example, in the grammar we have a production:

localVariableDeclaration

: variableModifier* type variableDeclarators

;

4.2. Implementation 33

Implementing the BaseVisitor we will be able to override the method:

@Override

public Object visitLocalVariableDeclaration(JavaParser.

LocalVariableDeclarationContext ctx) {

int count = ctx.getChild (1).getChildCount ();

String type = ctx.getChild (0).getText ();

for (int i = 0; i < count; i++) {

ParseTree c = ctx.getChild (1).getChild(i);

insertVar(c, true , type);

}

return super.visitLocalVariableDeclaration(ctx);

}

This method will be called whenever that production is visited in the Parse Tree. In this
case, information about local variable declaration is retrieved (name and type).

This is done for almost all metrics, and the following classes were created:

• CFSExtractor: for Control-flow statements related metrics

• VariableExtractor: for Variable declaration related metrics

• CounterExtractor: for counting classes, methods and statements

• NSCOExtractor: For uncommon and advanced java constructs

• REExtractor: For other relevant metrics

The only exception are the metrics related to code and comments lines, that use a sepa-
rated tool for its extraction.

Almost all the metrics are of numeric kind (most of them are counters). After the ex-
traction, all metrics are stored in a specially created class that holds all the metrics for
a given solution. Adequate data-structures were chosen so that the data could be easily
manipulated.

4.2.8 PMD Analyser

The PMD Analyser is the class responsible for extracting all the violations detected in the
source code by the PMD tool.

For each problem to be analysed, we run the PMD tool with a set of previously chosen
rulesets; as output we chose the CSV file format. The CSV file produced for each program
analysed will be placed in the corresponding directory, according to the structure explained
above.

4.2. Implementation 34

The first approach was to extract this data using XPath queries on the XML files, but
due to the way the information was structured on the files, that proved to be rather difficult
(would require very complex queries). An approach similar to the early metrics extraction
was adopted, meaning that the PMD data was structured in Java classes.

Instead, the CSV output files are analysed with a CSVReader tool and their contents are
stored on a defined PMDRule class. The final goal is to have a list of all violations detected
on a file, separated by problem and by type.

4.2.9 Projects Comparison

In the ProjectsComparison class we assemble all data collected so far (both PP and PMD
Analysis). Firstly an auxiliary file containing all existing PMD violations and all information
related is loaded. That way we can link all violations detected with important data, such
as, the priority, group or a description of the violation.

The second feature of this class is the generation of an HTML file with all information
collected by the analysis. That page is composed of tables where we can see all the results
extracted both from PP and PMD. The main goal of that page is to enable a manual assess-
ment of the results. This feature proved to be very useful in a first project stage while we
were trying ways to automate the profile calculation.

4.2.10 Score Calculator

The ScoreCalculator class is the heart of the Programmer Profiler Tool. Its job is to analyse
all information that was previously extracted using PP and PMD Analysis, and calculate a
numeric score value for each programmer’s solution.

As described in Chapter 3, each metric has an effect on one or both groups (Skill and
Readability), and that effect can either be positive or negative. For example, the NumberOf-
Statements metric has the effect "lower is better" on the Skill group. If that metric value is
low when comparing to other solutions that effect will be positive, otherwise there will be
a negative effect. In other words, a positive effect will lead to a greater increment of the
Skill group numeric score, while a negative will cause the opposite.

The first step of the ScoreCalculator is to load the PP Analyser metric rules. For that, a
JSON file was created that contains all the information about how the metrics influence the
score of a solution. Each JSON object contains:

• The name of the method that extracts the referred metric

4.2. Implementation 35

• Whether it’s a high(+) or low(-) value that affects the group

• The group being affected (and if it’s positively or negatively)

• The priority (or weight) of that metric

[

{

"methodname": "getNumberOfMethods",

"_this" : "+",

"implies" : "+R",

"priority": 2

},

{

"methodname": "getNumberOfMethods",

"_this" : "+",

"implies" : "+S",

"priority": 2

},

{

"methodname": "getNumberOfStatements",

"_this" : "-",

"implies" : "+S",

"priority": 8

}

]

Listing 4.1: "Metrics rules excerpt"

Listing 4.1 shows a small excerpt of the referred JSON file. As seen in Section 4.1.3, the way
we should interpret this should be:

• For the metric NumberOfMethods, a high value will imply an increase in the Readabil-
ity score with a weight of 2.

• For the metric NumberOfMethods, a high value will imply an increase in the Skill score
with a weight of 2.

• For the metric NumberOfStatements, a low value will imply an increase in the Skill
score with a weight of 8.

After all this metric data is loaded to the system, the actual score calculation process can
begin. The following paragraphs try to demonstrate the algorithm behind this calculation
for a set of solutions of a given programming challenge.

4.2. Implementation 36

First we start by setting everyone’s base skill and readability scores to zero. Then, for
each metric, we calculate which solution has the best result. The best result is the lowest
(or highest) value obtained by comparing all the results of a given metric. The lowest or
the highest value is chosen depending on the _this field of the metrics file that we saw in
Listing 4.1. For instance, for the NumberOfMethods we calculate the highest result obtained
by all solutions, as opposed to the NumberOfStatements, where we pick the lowest.

After that, and still for each metric, by comparing all other solutions to the best one, a
ratio is calculated for each solution. The best solution will always get a ratio of 1. All other
solutions will have lower values depending on how distant those values are from the best
one. Usually that value falls in the range [0-1] but it can be below zero if that metric is very
deviated from the best one.

As explained before, each metric also has a priority (or relevance) field, which gives us
an idea of how important that metric is for inferring the profile. The low relevance metrics
have a priority of around 1 to 3 while the high profile ones have a priority of 5 to 8.

Recall that each solution starts with a score of zero in both Skill and Readability. For each
metric processed, that value is updated with the value obtained using the formula I * P * R,
where:

• I is the impact of the metric (1 for positive and -1 for negative). This can be found in
the implies field of the metrics JSON file

• P is the priority (or weight) of the metric. Between 1 and 8.

• R is the ratio for the result calculated in that metric. Usually between 0 and 1, but
could be less than 0 if the metrics’ results are to deviated from the average values.

As we can perceive through the formula, if the impact is positive, the best results for the
given metric will yield a greater increment of the group score that metric affects. A not so
good result, will cause a smaller increase. The reverse applies to a negative impact. Best
results cause low decrease of the score, while worst results cause a greater decrease. In the
rare situation where a metric has a ratio below zero that means that even if the impact is
positive it will result in a decrease of that group score.

Tables 4, 5 and 6 depict a small fictitious example using the metrics from Listing 4.1.
Table 4 starts by calculating the ratio for each metric, by comparison among all solutions.
Table 5 applies the formula I * P * R that we saw before. The result of this formula will be
used to update the group scores as we can see in Table 6.

4.2. Implementation 37

Statements # Methods NoS Ratio NoM +R Ratio NoM +S Ratio
Ex1 5 1 1 0.5 0.5
Ex2 8 1 0.625 0.5 0.5
Ex3 10 2 0.5 1 1

Ex4 7 1 0.714... 0.5 0.5
Ex5 8 1 0.625 0.5 0.5

Table 4.: Ratios obtained for a small example

NoS NoM +R NoM +S
Ex1 1 * 8 * 1 = 8 1 * 2 * 0.5 = 1 1 * 2 * 0.5 = 1

Ex2 1 * 8 * 0.625 = 5 1 * 2 * 0.5 = 1 1 * 2 * 0.5 = 1

Ex3 1 * 8 * 0.5 = 4 1 * 2 * 1 = 2 1 * 2 * 0.5 =1

Ex4 1 * 8 * 0.714 = 5.7... 1 * 2 * 0.5 = 1 1 * 2 * 0.5 = 1

Ex5 1 * 8 * 0.625 = 5 1 * 2 * 0.5 = 1 1 * 2 * 0.5 = 1

Table 5.: Metric score calculated for a small example

Skill Readability
Ex1 +9 +1

Ex2 +6 +1

Ex3 +5 +2

Ex4 +6.7... +1

Ex5 +6 +1

Table 6.: Resulted increase in groups for a small example

4.2. Implementation 38

After calculating Skill and Readability scores for the PP metrics it’s time to update the
scores with the PMD results. The process is quite similar. Currently we are only considering
the number of PMD violations detected (and not their weight). So, for each PMD violation
detected, a unit (1) is deducted from the corresponding group score (remember that each
violation is connected to a group, or both).

When this process ends, each solution has two value scores assigned to them, one for
each group.

4.2.11 Profile Inferrer

The ProfileInferrer class is responsible for the mapping of the results obtained in both
groups (Readability and Skill) to the profiles.

As we’ve seen in Figure 2, the idea is to have the pair (skill,readability) plotted onto a
graph and then divide the graph into proportionally sized areas. To each area, there will
be an assigned profile. The lowest and highest values obtained in both skill and readability
groups will define the outer boundaries of the plot and then, the plot is divided in a grid
3x3, where each cell has the same area. Each cell as a profile associated, and all solution
that fall on a given area will be assigned that profile.

4.2.12 Log Generator

Log information was very helpful throughout the development of all the algorithms for the
profile inference. The information provided by logging allowed an easier debugging when
developing all the algorithms.

Every time the PP is run, a log file is created with all the numbers and calculations
done in order to infer the profile. The LogGenerator class is responsible for the creation of
such file. While all the classes of the PP are being executed a StringBuffer is storing a lot of
relevant information that is, in the end, written to a file.

4.2.13 Results Plotter

Lastly, the ResultsPlotter class uses the JavaFx 7 library to create a graph with all the scores
obtained and the profile inference in action.

This plot shows the results achieved in the groups, by every solution, and also which
profile was assigned. This was very helpful in the development phase, and will certainly be

7 http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html

http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html

4.2. Implementation 39

Figure 3.: PP Plot for Numbers Challenge

in the production phase, because it allows us to visually understand how the programmers
performed in both skill and readability categories. We can see if there are any solutions
very deviated from the usual, and also to see if a solution got very close or far from another
profile.

Each profile has a color assigned, and mouse-clicking a solution will open the folder
containing the source files for that implementation.

4.2.14 General Profile Inferer

For each set of solutions for a given exercise being evaluated, a JSON file is generated with
the results obtained on the profiling. For each solution, the JSON file contains the name of
the programmer and the Skill/Readability scores obtained by them.

[

{

"name": "Student1",

"skill": 22.8,

"readability": 12.8

},

{

"name": "Student2",

"skill": 22.9,

4.2. Implementation 40

"readability": 19.2

},

...

]

Listing 4.2: "Excerpt of results JSON File"

This file contains the necessary information to generate the results plot, as seen in sub-
section 4.2.13.

In a scenario where a teacher is evaluating his students using our PP Tool by giving
them several problems to solve, for each exercise that the tool analyses a file like this will
be generated. After evaluating several exercises made by the same students, the goal is
to generate a more precise profile inference (by combining the results obtained on each
exercise).

By normalising the results obtained by the students and averaging the scores of all exer-
cises each student solved we are finally able to more precisely profile a programmer, and
accomplish the hypothesis of this thesis.

Figure 4 shows the final system architecture implemented. As you can see, it’s divided
in two modules. The first one is responsible for calculating the scores and inferring the
programmer’s profile for several solutions to the same problem. Of course, inferring a
profile based on a single exercise may not be very accurate. The goal of the second module
is to, using the scores calculated by the first module for several exercises, infer a much more
reliable profile for the programmers that solve those exercises.

4.2. Implementation 41

Figure 4.: Final System Architecure

5

C A S E S T U D I E S A N D E X P E R I M E N T S

5.1 experiment setup

5.1.1 Development Phase Setup

Ever since the early stages of this project, development and experiment have been walking
hand in hand. When the first draft of the tool was up and running a small amount of
exercises were used to begin tests and reach early conclusions.

Professors of object-oriented courses (that used the Java language in their classes) sup-
plied some basic to medium difficulty exercises. We then requested several students to
solve those exercises. The students were mainly Master’s students of Computer Science
(CS) that already had completed the course and had a good amount of experience in Java.
A few were still novices in the language. For each exercise we also had a solution made by
the course professor.

Listing 5.1 shows the four exercises proposed for students to solve.

P1) Write a Java program that reads a non -defined amount of positive integers (

number 0 will terminate the input phase). Compute and print the amount of even

numbers , odd numbers , and the average (real number) of the even numbers.

For example , given:

1

2

12

7

15

0

The output should be:

2

3

7.0

42

5.1. Experiment setup 43

P2) Write a Java program that , given two ages (integers , M and N) reads N ages

and outputs all ages greater than M, and the average (real number) of all ages

.

For example , given:

20 //-> M

5 //-> N

15

20

21

40

5

The output should be:

21

40

20.2

A1) Write a Java program that , given and integer N greater than 0, reads to a

vector (unidimensional array) N integers and in the end prints the amount of

even numbers in that array.

For example , given:

10 //-> N

1

2

12

7

5

20

3

5

8

10

The output should be:

5

S1) Write a Java program that , given two string , counts the occurrences of a

string in another.

For example , given:

"BABABABA"

"BAB"

The output should be:

3

Listing 5.1: List of exercises given to students

On this first phase of the experiment, there were a total of 10 participants, but not all
of them solved all four exercises. Here is a list of all participants, and their previous
background in Java (we shall refer to them by their initials):

5.2. Results 44

• P: OOP Professor

• D, G, V, Z, B, E: Master’s students in CS with solid Java knowledge

• A, S: Under-graduated CS students still taking OOP course

And below is a list of the participants and the exercises they solved:

• Exercise P1: P, A, D, G, V, Z, S

• Exercise P2: P, A, D, B, E, J, Z

• Exercise A1: P, A, E, G, S, Z

• Exercise S1: P, A, D, V

5.1.2 Post-Development Setup

Later on, as the development was on its final phase, a larger and more complete experiment
was conducted. After reaching out to a OOP teacher at Minho University, we agreed that
he would propose the previously mentioned exercises to his students.

This experiment was conducted at the end of the course and the goal was to infer the
profile of most of the students that took that OOP course.

We had 70 student submitting their solutions to the proposed exercises, and adding the
10 that we already had, made a total of about 80 solutions for each one of the four exercises.

5.2 results

In this section we will reenact the first experiment conducted. We will take a look at some
solutions of the problems stated before and make a manual assessment, explaining how
our tool will interpret these solutions in order to infer a profile.

5.2.1 Development Phase Results

This smaller experiment had the main goal of working on a manual assessment of the
profiles, in order to shape the PP tool that was being developed alongside.

The careful inspection of the solutions made by the (mainly advanced) students and the
teacher, helped us to understand the familiarity these programmers already had with the
language and the paradigm, and also identify different styles of programming.

5.2. Results 45

Case Study 1

Taking, for instance, two solutions of the P1 exercise seen in Listings 5.2 and 5.3.

1 import static java.lang.System.out;

2 import java.util.Scanner;

3

4 public class P1_S {

5

6 public static void main(String [] args) {

7 int nEven = 0, nOdd = 0, sum = 0;

8

9 while(true){

10 out.println("Insert a number:");

11 Scanner input = new Scanner(System.in);

12 int num = input.nextInt ();

13

14 if(num == 0) break;

15 if(num%2 == 0) {

16 nEven ++;

17 soma += num;

18 }

19 else nOdd ++;

20 }

21

22 double average = 0;

23 if (nEven != 0) average = sum / nEven;

24

25 out.println("Even: " + nEven);

26 out.println("Odd: " + nOdd);

27 out.println("Even Average: " + average);

28 }

29 }

Listing 5.2: "Solution to P1 made by S"

1 import java.util.Scanner;

2 public class P1_Z {

3 public static void main(String [] args) {

4 Scanner in = new Scanner(System.in);

5 int value = in.nextInt (), evens = 0, odds = 0;

6 double evensSum = 0;

7 /*I’m assuming the input is viable , i.e. all input numbers are positive

integers */

8 while(value != 0){

9 if((value & 1) == 0){

10 evens ++;

11 evensSum += value;

5.2. Results 46

12 } else odds ++;

13 value = in.nextInt ();

14 }

15 System.out.println(evens + "\n" + odds);

16 System.out.println(evens >0?evensSum/evens:evensSum);

17 }

18 }

Listing 5.3: "Solution to P1 made by Z"

Looking at the structures of both solutions, we can see they are both divided in the
same way. Inside the main method, the first lines are used for variable declaration and
initializations. Then we have the main cycle, where numbers are inputted and the variables
are updated. Finally, in the last lines we have our results output.

One thing we can easily observe is the size of both solutions, in regards to the number of
lines. The first solution has 61% more lines of code than the second one. A closer inspection
shows us that S had the concern of leaving empty lines between some code instructions,
while Z didn’t leave a single one.

This is one of the most clear signs of concern for readability. Empty lines and indentation
are probably most important things when creating readable code. Although it was not
possible to implement the verification of correct usage of indentation (tabs or spaces) the
usage of empty lines was, and it will weight for the readability grade.

Regarding the use of variables, S declares a total of 4 ints, 2 Scanners and 1 double while
Z only needs 3 ints, 1 Scanner and 1 double.

The number of required variables reflects the capacity that the programmer has in reusing
variables. Therefore, less number of needed variable declaration reflects a higher skill in the
language. Of course that has the fallback of generally making the code less understandable
(the same variable has different purposes), so there is a loss in readability as well.

That takes us to the main loop. S makes the mistake of reinitializing a Scanner and a int
in every cycle iteration, that is a violation that is detected by the PMD tool. Z on the other
hand reuses his variables.

Another bad practice detected by PMD on S’s solution is the use of a while(true) cycle.
This is generally regarded as an avoidable practice, because it then forces the programmer
to explicitly end the cycle using, as is seen in this case, a break condition. Z avoids this by
simply reading the numbers in the cycle’s test and checking if the number is equal to zero.

5.2. Results 47

As explained in the previous chapter, detected PMD violations are "punished" in the skill
or readability grades. Each violation is related to one of the groups. In this case, both
violations punish the skill group.

The parity check was also made differently in the two solutions. While S compares with
the traditional (and easier to understand) way of if(n % 2 == 0), Z used the more advanced
approach of if((n & 1) == 0). The bitwise AND operation, used with the & character,
takes two binary representations and performs the logical AND operation on each pair of
the corresponding bits, by multiplying them. Using this method we only have to check if
the last bit of a binary representation of an integer is 1 or 0 (1 means the number is odd
and 0 means the number is even). This is much more efficient than using the % operator,
especially for large numbers.

The bitwise and bitshift operators allow programmers to perform bit-level operations and
have a very high potential to those who know to use them. These operators are considered
advanced, so their usage will increase the skill level of a programmer when detected by PP.

Finally, we can see that in the first solution, S has to declare one last variable, use another
if-condition, and call one final println method just to compute and output the average of
the even numbers. Z on the other hand does everything in a single line, using the ternary
operator (also know as inline if).

All these extra statements used by S will have a negative effect on S’s Skill (or a positive
effect on Z’s). After all, Z did the same in less statements. The usage of the ternary if
condition is considered an advanced operator that also benefits Skill.

Wrapping up the analysis, we can see that Z shows greater language knowledge and
skill, but not much concern for readability. S is less skillful and programs in a more novice
way. As you can see in Figure 5, using only these small examples, S was classified as
Advanced Beginner with a readability focus, obtianing a (S,R) score of (20.9, 15.9). Z was clas-
sified as Expert with a score of (32.2, 10.7). This complies to their programming background,
which was stated previously.

Table 7 contains all metrics that were extracted from this problem solutions. The focus
of attention should be the columns of the two programmers we are analysing (S and Z) but
the others should not be disregard, since the results are obtained by comparing all solutions
among each other.

In this table, if we pay enough attention (refer to Subsection 4.1.3), we are able to see all
the characteristics and differences that were mentioned above.

5.2. Results 48

A
D

G
S

V
Z

P

Fi
le

s
1

1
1

1
1

1
1

C
la

ss
es

1
1

1
1

1
1

1

M
et

ho
ds

1
1

1
1

2
1

1

St
at

em
en

ts
7

7
9

9
6

6
1
0

LO
C

1
7

1
9

1
7

19
1
9

16
2
4

%
LO

C
7
3
,9

6
7
,9

5
4
,8

65
,5

6
5
,5

84
,2

7
0
,6

LO
C

om
0

3
1

0
0

1
1

%
LO

C
om

0
1
0
,7

3
,2

0
0

5,
3

2
,9

Em
pt

y
Li

ne
s

2
5

1
0

6
5

0
5

%
Em

pt
y

8
,7

1
7
,9

3
2
,3

20
,7

1
7
,2

0
1
4
,7

To
ta

lL
in

es
2
3

2
8

3
1

29
2
9

19
3
4

C
FS

s
{I

F=
2
,F

O
R

=1
}

{D
O

W
H

IL
E=

1
,

IF
=2

}
{I

F=
1
,

W
H

IL
E=

1
}

{I
F=

3,
W

H
IL

E=
1}

{I
F=

1
,

W
H

IL
E=

1
}

{I
IF

=1
,

IF
=1

,
W

H
IL

E=
1}

{D
O

W
H

IL
E=

2
,

IF
=1

,
W

H
IL

E=
1
}

N
SC

C
FS

s
0

1
0

0
0

1
2

C
FS

V
ar

ie
ty

2
2

2
2

2
3

3

C
FS

To
ta

l
3

3
2

4
2

3
4

N
SC

O
s

{A
D

D
_A

SS
IG

N
=1

,
O

N
E_

A
D

D
_S

U
B=

3
}

{B
IT

_A
N

D
=1

,
A

D
D

_A
SS

IG
N

=1
,

O
N

E_
A

D
D

_S
U

B=
2
}

{A
D

D
_A

SS
IG

N
=1

,
O

N
E_

A
D

D
_S

U
B=

2
}

{A
D

D
_A

SS
IG

N
=1

,
O

N
E_

A
D

D
_S

U
B

=2
}

{B
IT

_A
N

D
=1

,
A

D
D

_A
SS

IG
N

=1
,

O
N

E_
A

D
D

_S
U

B=
2
}

{B
IT

_A
N

D
=1

,
A

D
D

_A
SS

IG
N

=1
,

O
N

E_
A

D
D

_S
U

B
=2

}
{}

N
SC

O
s

V
ar

ie
ty

2
3

2
2

3
3

0

V
ar

D
ec

l
{fl

oa
t=

1
,

in
t=

4
}

{S
ca

nn
er

=1
,

in
t=

4
}

{S
ca

nn
er

=1
,

flo
at

=1
,

in
t=

4
}

{S
ca

nn
er

=1
,

do
ub

le
=1

,
in

t=
4}

{S
ca

nn
er

=1
,

in
t=

4
}

{S
ca

nn
er

=1
,

do
ub

le
=1

,
in

t=
3}

{S
ca

nn
er

=1
,

flo
at

=1
,

in
t=

4
}

To
ta

lD
ec

ls
5

5
6

6
5

5
6

D
ec

lV
ar

ie
ty

2
2

3
3

2
3

3

O
th

er
{S

Y
SE

R
R

=1
,

SY
SO

U
T=

3
}

{S
Y

SO
U

T=
2
}

{S
Y

SO
U

T=
1
}

{S
Y

SO
U

T
=4

}
{S

Y
SO

U
T=

3
}

{S
Y

SO
U

T
=3

}
{S

Y
SO

U
T

=5
}

Sk
ill

PM
D

3
4

4
6

4
4

4

R
ea

d
PM

D
6

4
3

4
2

4
3

Ta
bl

e
7

.:
P1

M
et

ri
cs

ex
tr

ac
te

d

5.2. Results 49

Figure 5.: Profile inference made for Exercise P1

Case Study 2

In Listings 5.4, 5.5 and 5.6 we can take a look at another set of solutions, for a different
problem. In this case it was problem P2 (read N ages and print all above M, and also their
average) and we will analyse three solutions.

1 import static java.lang.System.out;

2 import static java.lang.System.err;

3 import java.util.Scanner;

4

5 public class P2_A {

6 public static void main(String args []){

7 int m = Integer.parseInt(args [0]),n=Integer.parseInt(args [1]),i,aux;

8 float average =0.0f;

9 String in; String [] nums;

10 Scanner input = new Scanner(System.in);

11 if (m <= 0 || n <=0) {

12 System.err.println("Both numbers have to be positive.");

13 return;

14 }

15 System.out.println("Insert the ages separated by spaces.");

16 in = input.nextLine ();

17 nums=in.split(" ");

5.2. Results 50

18 if (nums.length !=n) {

19 System.err.println("You must insert "+n+" ages.");

20 return;

21 }

22 System.out.printf("Ages above %d:\n",m);

23 for(i=0;i<n;i++) {

24 aux=Integer.parseInt(nums[i]);

25 if (aux >m) System.out.println(aux);

26 average +=aux;

27 }

28 System.out.println("Average: "+average/n);

29 }

30 }

Listing 5.4: "Solution to P2 made by A"

1 import java.util.Scanner;

2 public class P2_P {

3

4 public static void main(String [] args) {

5 Scanner read = new Scanner(System.in);

6 int n, m, age;

7 int total =0;

8 float average;

9

10 do {

11 System.out.println("Insert the number for comparing");

12 m = read.nextInt ();

13 } while (m <=0);

14

15 do {

16 System.out.println("Insert the number of ages");

17 n = read.nextInt ();

18 } while (n <= 0);

19

20 //Read the age values

21 for (int i = 0; i < n; i++) {

22 age = read.nextInt ();

23

24 if (age > m) {

25 System.out.println(age);

26 }

27

28 total=total+age;

29 }

30

31 //The division result must be casted to float!

5.2. Results 51

32 average =(float)total/n;

33 System.out.println(average);

34 }

35 }

Listing 5.5: "Solution to P2 made by P"

1 import java.util.Scanner;

2

3 public class P2_Z {

4

5 public static void main(String [] args) {

6 Scanner in = new Scanner(System.in);

7 int threshold = in.nextInt (), i, ages = i = in.nextInt (), age , sum = 0;

8 while(i > 0){

9 sum += age = in.nextInt ();

10 if(age > threshold)System.out.println(age);

11 i--;

12 }

13 // Double or float , according to the desired decimal digits precision

14 System.out.println(ages > 0 ? (double) sum/ages : 0.0);

15 }

16 }

Listing 5.6: "Solution to P2 made by Z"

Once again we can start by looking at the sizes of the three solutions. Z’s solution is
clearly the shortest one, which starts to prove his tendency to write concise and effective
code. A and P on the other hand, wrote more extensive programs. But a closer look will
reveal that, apart from the number of lines, their two solutions do not relate much.

There is a clear lack of readability in A’s code. That is mainly due to the lack of empty
lines in key zones of the program. P’s implementation, with 68% of lines of code looks
much cleaner in contrast to the 80% of A.

In regards to the use of control-flow statements, Z was once again the most economical,
using only an if-condition, an iff-condition and a while-loop. P used three loops and a
if-condition and A required 1 loop and 3 if-conditions.

This will make Z benefit once again from skill points.

The most remarkable differences among these three projects came, in fact, from the PMD
analysis. In regards to skill-related violations, P and Z had the same number of violations
(4). A on the other had 6, so it will impact the skill result.

5.2. Results 52

As for readability-related violations, A had 2 more violations than P, which will have a
big impact on the readability-level also. Those extra violations were:

• LocalVariableCouldBeFinal (Skill)

• OnlyOneReturn (Skill and Readability)

• PrematureDeclaration (Skill)

• IfStmtsMustUseBraces (Readability)

All these factors combined, made the following profile inference for these three solu-
tions: A was classified as Novice, Z was classified as Expert, once again, and P, the OOP
teacher was classified as Proficient. Like before, these classifications agree with what is
known about the programmers and also to the manual assessment made.

Figure 6.: Profile inference made for Exercise P2

Figure 6 shows an overall compare of several solutions to exercise P2. We can see A in
the bottom-left corner with a (22, 15.8) score, Z in the bottom-right corner with a (31.6, 17.3)
score, and finally P in the top-middle area with a (28.4, 28.1) score.

5.2. Results 53

5.2.2 Post-Development Results

The second experiment conducted, consisted on the analysis of several dozens of solutions
to the problems aforementioned, made by students ending the course of Object-Oriented
Programming at Minho University. From here on, these students shall be referred as Std1 to
Std69.

To that set of solutions we also added the ones we already had and used, throughout the
development of the PP Tool.

Despite wanting to make the experiment as untampered as possible, some solutions
had to be modified or even discarded. The main reason for changing files was that some
students made all four exercises on the same file, and our tool requires each solution to be
on each own file. The main reasons to discard some solutions was due to the fact that some
students didn’t understand the problem and their solution was not correct. Programs that
used Java 8 constructs were also discarded because it’s not supported by our tool.

After setting up all the solutions in the correct folder structure, they were all analysed
using the PP Tool. The solutions were analysed and the results obtained for each exercise
can be seen in the plots of Appendix A. The plot in Figure 7 shows the final profile inference
for the four exercises combined.

Table 8 depicts all the profile inferences that were automatically calculated by the PP
Tool. The first column identifies the programmer that solved the exercises. The follow-
ing four columns represent the profile that was inferred to each programmer, by exercise
(Listing 5.1). The final column displays the final profile inference by combining all results
obtained from the exercises, as seen in Subsection 4.2.14.

P1 P2 A1 S1 Final
P P E P P P
D E AB + - AB + AB +
G AB + - AB + - -
V E - E AB-R E
Z E E E - E
A AB-S AB-R AB-R AB-R N
S AB-R - AB + - -
M AB-R - E AB + AB +
F E AB + AB + AB-R AB-S
J - E - - -

5.2. Results 54

Std1 - - - P -
Std2 AB-R AB-S - AB-R N
Std3 P P P P P
Std4 P - P P P
Std5 AB + AB-S AB-S AB + AB-S
Std6 AB + AB-R AB + AB + AB-R
Std7 - M P - -
Std8 AB + AB-S AB + N N
Std9 P P P P P
Std10 AB-R AB + AB + E AB +
Std11 E AB-S - AB-S AB-S
Std12 E AB-S AB-S AB-S AB-S
Std13 AB + P AB + AB + AB +
Std14 P AB + M AB + P
Std15 E AB + AB + AB + AB +
Std16 P P P E P
Std17 AB + AB-R AB-R AB + AB-R
Std18 AB-S AB-S AB-S AB-S AB-S
Std19 AB + AB + AB + P AB +
Std20 AB + E AB + E E
Std21 AB + AB + AB + AB + AB +
Std22 AB-R E AB-S AB-S AB-S
Std23 AB + AB + AB + E E
Std24 AB + P P P P
Std25 AB + AB-S AB-S AB + AB +
Std26 P AB + P P P
Std27 AB + AB-S AB-S AB + AB +
Std28 AB + AB + AB-S E E
Std29 E AB-R AB-S AB-S AB-S
Std30 P P P P P
Std31 AB + E AB + E E
Std32 E AB + AB + AB + AB +
Std33 AB + P P P P
Std34 P P P AB + P
Std35 - - AB + AB + -
Std36 P P P P P
Std37 AB + - - N -

5.2. Results 55

Std38 AB + P AB + AB + AB +
Std39 AB + - P AB + AB +
Std40 AB + E AB + AB-S AB +
Std41 AB-R AB-S E AB-S AB-S
Std42 P P P P P
Std43 AB + AB + AB + E AB +
Std44 E AB + AB + AB + AB +
Std45 AB + AB + AB + AB + AB +
Std46 P AB + AB + P P
Std47 AB-S AB-S AB + AB-S AB-S
Std48 AB-S E AB-S AB-S AB-S
Std49 AB + AB + P P AB +
Std50 P AB + AB + AB + AB +
Std51 AB-S E AB-S E E
Std52 P E P AB + P
Std53 AB-R AB-S AB-S AB-R N
Std54 P AB + AB + AB-S AB +
Std55 P AB + AB + AB + AB +
Std56 AB-S P AB + AB + AB +
Std57 AB-S AB-R - AB + AB-R
Std58 - P P P P
Std59 N AB-S E AB-S AB-S
Std60 AB-S AB-S AB-S E AB-S
Std61 P E P E AB +
Std62 E AB-S AB-S E E
Std63 AB-S - AB-S AB-S AB-S
Std64 AB-S AB-S AB-S AB + AB-S
Std65 P M P P P
Std66 AB-S P AB + AB + AB-R
Std67 AB + P P P P
Std68 AB + AB-R AB-R AB-R AB-R
Std69 N AB-S AB-S AB-S AB-S

Table 8.: Final Results of Profile Inference using PP tool

5.2. Results 56

Figure 7.: Profile inference made with all four exercises combined

Looking at the final results on Table 8, in the majority of cases there seems to be a cor-
relation between the profiles inferred in most of the exercises and the final profile inferred
for all exercises combined. The most recurrent profile in the exercises seems to be the one
inferred for that programmer.

The profiles calculated for the exercises (columns P1, P2, A1, and S1 of Table 8) were
not directly used to infer the final profile for the given programmer. These profiles just act
as "syntactic sugar" to increase the perception of how the programmer performed on those
exercises. Only the raw numbers calculated in 4.2.10 were used to infer the final profile.

This explains the odd case of student A, who got profiled as Advanced Beginner in all
individual exercises, but ended with Novice as the final profile. This means that, probably,
although being classified with AB in all four exercises, the actual Skill and Readability
values obtained were pretty low (probably near the boundaries of the Novice profile) which
caused this profile to be inferred for student A. A manual assessment of the results obtained
on each problem proves that assumption.

5.2. Results 57

Another interesting result to analyse is the case of student F. The exercises profiles were
quite diverse with E, AB+, AB+ and AB-R as the exercises profiles and the final profile
being AB-S. If we look again at Figure 2, we can see that the profile AB+ occupies an
average position on the plot (right in the middle). Profiles E and AB-R could cancel out,
but that wouldn’t explain the final AB-S profile inferred for F. The answer is that the Expert
profile was very low in Readability, pulling what could be a final AB+ profile to an AB-S. A
similar case to this one is student Std66.

Also regarding student A, notice that while in 5.2.1 A was profiled as Novice, in the gen-
eral experiment for exercise P2 the profile inferred was Advanced Beginner R. That’s due
to the fact that in the first experiment there were only 6 solutions, and most of them were of
experienced Java programmers. Later, in the second experiment, most of the solutions were
of students of the same level of A, so in lack of better words, the standards were lowered,
making the scores increase.

Here’s the distribution of profiles assigned to the OOP students (Std1 - Std69), after
completing the course.

• Novice: 3 (4.6%)

• Advanced Beginner (Readability): 5 (7.7%)

• Advanced Beginner (Skill): 14 (21.5%)

• Advanced Beginner (Both): 20 (30.8%)

• Proficient: 17 (26.2%)

• Expert: 6 (9.2%)

• Master: 0 (0%)

Looking at Figure 7 one thing easy to notice is that, unlike the inferences made for the
exercises, we can see here clusters forming around the profile zones. This shows that
programmers (mostly students in this case) tend to fall towards a profile when comparing
several of their solutions.

Most of students were placed in the Average-to-High profiles, which is expected since
these exercises were solved at the end of the year. The OOP professor was mainly proficient,
which was also expected of him. The more advanced Java programmers were classified as
Advanced Beginner + and Expert.

As a final step of this experiment, there was the intention of collecting the grades ob-
tained on the OOP course by the students whose code we analysed. Comparing the grade

5.2. Results 58

obtained by each student to the inferred profiles would be very useful to validate the results
that the students obtained on the PP Tool. Unfortunately, that was not possible to do.

Nevertheless, we can compare the profiles obtained with the grades attributed in the
course in a general way.

For this we collected the grades of the students that were taking this year’s OOP course
for the first time and have passed it (grades between 10 and 20).

• 10-12: 19 (20%)

• 13-15: 50 (52.6%)

• 16-18: 26 (27.4%)

• 19-20: 0 (0%)

The results obtained seem to be consistent with the grades attributed to the students.
Most of the students fell on the average grades (13-15) and on the average profiles (Ad-
vanced Beginner). In the list bellow we aggregate the profiles to better illustrate this.

• N: 3 (4.6%)

• AB: 39 (60%)

• P/E: 23 (35.4%)

• M: 0 (0%)

Also, the manual assessments done on, not only students but also experienced Java pro-
grammers, seem to agree to the results obtained in the experiment.

6

C O N C L U S I O N

In the beginning of this dissertation, it was presented a proposal to develop a system (called
Programmer Profiler Tool) that allowed the profiling of a programmer through the static
analysis of his source code. The hypothesis is that such profile inference is possible.

Currently, there is a working implementation that can be used to infer the profile of a
programmer, thus proving the research hypothesis.

6.1 working plan

To accomplish this master project, an iterative methodology based on literature revision,
solution proposal, implementation, testing and experimentation was followed. The working
plan followed to carry out this approach, was composed by the following steps:

1. Bibliographic search;

2. Reading and synthesis of the bibliography selected;

3. Definition of a set of profiles and selection of metrics that characterize them; identifi-
cation of ways to extract data and evaluate those metrics, and a set of deduction rules
to build the profile;

4. Development of a tool, based on AnTLR, that implements the metrics evaluation and
the profiling; Integration of the PMD tool to improve such analysis;

5. Testing of the developed tool

6. Experimentation of the tool with real life examples to prove its effectiveness on the
programmer profiling problem;

All proposed steps were successfully completed.

59

6.2. Outcomes 60

The PP Tool is open-source and is freely available on a GitHub repository1. It was
developed in Java, with the IntelliJ IDEA IDE and the following support software:

• AnTLR v4.5.2

• PMD Tool v5.4.1

• AnTLR v4 grammar plugin for IntelliJ IDEA v1.8.1

• PMD plugin for IntelliJ IDEA v1.8

• Apache Commons IO v2.4

• Apache Commons Lang v3.4

• Google GSON v2.6.2

• OpenCSV v3.7

6.2 outcomes

This dissertation’s research hypothesis was whether it was possible to infer the profile of a
programmer through the analysis of his source code. We proved that research hypothesis
by means of demonstration.

The developed tool, Programmer Profiler Tool, takes as input a set of correct solutions
to a given programming problem, written in Java, by different programmers.

It uses static analysis to extract a set of metrics that we think are indicators of the coding
style and capabilities of a programmer. It also uses an external tool, PMD, that detects bad
coding practices and code smells, on source code.

Each one of the possible metrics and bad practices are already linked to one of two
groups, Skill and Readability, and can have a positive or negative effect on the two groups.
The Skill group is related to language knowledge and ability of creating effective code.
The Readability group relates more to understandability of code, and coding style related
practices.

By comparing all results among each other, and applying previously defined rules of how
the metrics and defects affect the groups, a numeric score is calculated for each group and
for each programmer. Each one of these rules, applies the results of an extracted metric (or
PMD violation) to either increase or decrease the score of the two groups (S and R), thus
reaching a final value for each group.

1 https://github.com/danielnovais92/ProgrammerProfiler/

https://github.com/danielnovais92/ProgrammerProfiler/

6.3. Final Remarks 61

By applying the described method to several exercises, a set of scores is calculated for
each programmer, and by combining those scores a final score is calculated, for each group,
that portraits how the programmer performed in comparison to the solutions of other pro-
grammers.

The final scores are then mapped to a set of previously defined programmer profiles, and
thus the profile is inferred for each one of programmers.

The results are then displayed in a plot, to better interpret how each programmer per-
formed on the different exercises as well as on the global scope.

All the profiles inferred on the tests performed agreed to expectations based on the
subjects background and known capabilities as seen on Chapter 5, which leads us to state
that the PP Tool can correctly infer the profile of Java programmers, whether the analysed
subjects are beginner or more advanced Java programmers.

As part of this work there was also written a paper (Novais et al., 2016), that was pub-
lished on the 2016 edition of SLATE 2 (Symposium on Languages, Applications and Technologies).
The article covered Chapters 1, 2 and 3 of this dissertation. The rest of the work developed
will be published on an upcoming paper.

6.3 final remarks

There are some issues that need to be addressed about the profiling and the PP Tool itself.

The first and most important is that, like any other profiling tool, the PP Tool is suscepti-
ble to error, and no result should be taken as absolute. The tool, although functional, is still
in a very beta phase, and is very prone to exploits that could interfere the profile results.
An example of this is that, although the tool works under the assumption that the exercises
are correctly solved (from an input/output standpoint), a programmer with knowledge of
the mechanisms used by the PP tool could devise a solution to an exercise that may trick
the tool and infer him a higher profile.

Another limitation of the tool, is scalability of the exercises analysed. The PP tool works
well with small exercises (that can be solved in a few methods), but if we try to scale this
to bigger and more robust projects, the tool will most likely fail. That’s because with larger
projects, the frequency of certain language constructs or usage of programming styles, stops
making sense due to software design choices being more relevant. For example, larger

2 http://slate-conf.org/2016/home

6.4. Future Work 62

Java programs will likely use the OOP paradigm, which largely increases the methods
declaration with, for instance, the getters and setters.

Another issue worth mentioning, is that the profiles do not intend to reflect the full
extensive capabilities of a programmer. Although the profiles we infer are also the adjectives
we use to classify programmers, it’s important to establish that, with the small number of
exercises analysed by the tool, the final profiles are a reflection of the set of capabilities
that a programmer must have to solve the exercises analysed. Other knowledge that the
programmer may have will, obviously, not be considered.

Despite that, the profiles inferred strongly correlate to what was expected of the program-
mers (at least to the ones whose background was familiar) which leads us to believe that
the tool tends to be correct. After all, in most fields, the subject evaluation is usually made
targeting only a subset of the knowledge involved.

For example, a skillful programmer could opt to make a more extensive solution because
he knows that in the end, the compiler will optimize is code to have the same efficiency of
a less intuitive but more effective version.

Finally, the context in which a program is written should be also taken into consid-
eration. For instance, a teacher that writes code in a safely and extensive manner while
teaching students, may prioritize code efficiency in personal projects.

6.4 future work

Although the general idea was not new, much of the work developed during this disser-
tation (the theory, the algorithms and the tool) was a new approach to the programmer
profiling problem. Because of that, it’s understandable that many ideas were not possible
to explore due to time restrictions.

Those ideas, that could help improve the work done so far are left here as possible future
work for someone that has interest in taking the PP Tool to the next level.

6.4.1 Theory

In this section, the work that probably could be improved is the scale used to infer the
profile of the programmer based on the skill and readability values.

Inference Plot Areas

A closer look at Figure 2 will reveal some potential flaws. The most obvious is that there
are areas in the plot that are very close to four different profiles, and looking only at profile

6.4. Future Work 63

inference could give a biased idea of the profile that was inferred for a given programmer.
The most obvious cases of this are the area where the profiles AB+, P, E and M meet up. A
mere Skill or Readability point could dictate the difference between an Advanced Beginner
or Master profile inference. The similar happens between the N, AB-R, AB-S and AB+
profiles.

Figure 8.: Possible future implementation of correlation between scores and profiles

A proposed solution for this problem is shown in Figure 8. Here we reduce the zones
where several areas meet up, which could lead to less biased profiles. Another advantage
of using a plot like this is that it’s overall more just. For example, in the current version
of the implementation (seen in Figure 2), programmers with very low Skill and very high
Readability are classified as Proficient. That’s not very fair and does not agree at all with out
initial profile definition (Section 3.2) where we say that Proficient still show a lot of language
knowledge (although focusing more on code readability). This new solution would make it
harder to reach the top profiles (Proficient, Expert and Master) and would also remove the
profile Advanced Beginner +, which is not a very useful after all.

On a implementation point of view, this solution would require a more complex mapping
from the scores to the profile that the one in the current implementation, due to the curves
the profiles have on the plot.

6.4. Future Work 64

6.4.2 Algorithms

Regarding the algorithms used for the profile inference, the biggest issue with them is that
they are a little too heuristic. By that we mean that they resort to simple mathematical tech-
niques like averaging, inverting and normalising values in order to make the calculations
that will later be used to infer the profiles.

A suggestion for future work is to investigate existing techniques for profiling that could
probably make better calculations with the metrics used by our tool.

6.4.3 Tool

Regarding the tool itself, it’s where we find more room for improvements.

Language Support

The first point to address is the lack of Java8 support. One of its main new features are
the lambda expressions. These expressions facilitate the programming in the functional
paradigm, and make code a lot cleaner and easier to understand. Adding support to Java8

would help on the differentiation of Novice and Advanced programmers. Besides being
quite a new feature of Java it’s also something that, at least for now, is usually not taught
in beginner Java courses.

Skill Metrics

Besides the lambda expressions there are other programming features that influence the
Skill scores and currently are not being identified by the PP Tool. The main one is defensive
programming.

Defensing programming is intended to create robust software by design. That usually
means programming for every scenario that an application could possible undergo. In
the context of the small examples we analysed in this dissertation, we can find defensive
programming in the validation of the inputs passed by the user, usually in if or while
conditions. Doing these validations will cause a reduction on skill-related metrics because
it will increase the global number of control flow statements (and statements in general).
So, in short, the programmer will be penalized for using something that should increase
his score. As possible future work, there could be an investigation on techniques that help
identify the use of defensive programming to properly reward the programmers.

6.5. End Note 65

Readability Metrics

The Readability group is clearly the most problematic.The metrics that relate to this group
can sometimes be misleading. Indentation is probably the most important aspect of read-
able code, but the PP Tool does not take that into consideration. Adding that support would
make the tool much better at classifying code in terms of Readability. Another feature that
could be added is the analysis of variable, method and class naming. For example, using
full words as variable names is much more meaningful than just using letters.

Weighted Exercises

Lastly, a feature that could also help the PP Tool is attributing weights to exercises. That
would mean that some exercises could be more important (or harder do solve) than others
and make an improved final score when combining the scores the programmers got in each
exercise to infer the final profile.

6.5 end note

This last section concludes the dissertation. We hope this was an interesting and pleas-
ant reading, and that this dissertation helps continuing the research on the programmer
profiling subject, which is still taking its first steps in a exponential growing world of pro-
grammers.

B I B L I O G R A P H Y

Thomas Flowers, Curtis Carver, James Jackson, et al. Empowering students and building
confidence in novice programmers through gauntlet. In Frontiers in Education, 2004. FIE
2004. 34th Annual, pages T3H–10. IEEE, 2004.

Sylviane Granger and Paul Rayson. Automatic profiling of learner texts. Learner English on
computer, pages 119–131, 1998.

Quinn Hanam, Lin Tan, Reid Holmes, and Patrick Lam. Finding patterns in static analysis
alerts: improving actionable alert ranking. In Proceedings of the 11th Working Conference on
Mining Software Repositories, pages 152–161. ACM, 2014.

Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. Identifying and correct-
ing java programming errors for introductory computer science students. ACM SIGCSE
Bulletin, 35(1):153–156, 2003.

James Jackson, Michael Cobb, and Curtis Carver. Identifying top java errors for novice
programmers. In Frontiers in Education, 2005. FIE’05. Proceedings 35th Annual Conference,
pages T4C–T4C. IEEE, 2005.

Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic. A survey and taxonomy of
approaches for mining software repositories in the context of software evolution. Journal
of Software Maintenance and Evolution: Research and Practice, 19(2):77–131, 2007.

Steve McConnell. Code complete. Pearson Education, 2004.

Daniel Novais, Maria João Pereira, and Pedro Rangel Henriques. Profile detection through
source code static analysis. In 5th Symposium on Languages, Applications and Technologies
(SLATE’16), volume 51, pages 1–13. OASICS, 2016.

Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

Emília Pietriková and Sergej Chodarev. Profile-driven source code exploration. In Com-
puter Science and Information Systems (FedCSIS), 2015 Federated Conference on, pages 929–934.
IEEE, 2015.

Raphael ‘kena’ Poss. How good are you at programming?—a CEFR-like approach to mea-
sure programming proficiency. July 2014. URL http://science.raphael.poss.name/

programming-levels.html.

66

http://science.raphael.poss.name/programming-levels.html
http://science.raphael.poss.name/programming-levels.html

Bibliography 67

Asaf Shabtai, Yuval Fledel, and Yuval Elovici. Automated static code analysis for classifying
android applications using machine learning. In Computational Intelligence and Security
(CIS), 2010 International Conference on, pages 329–333. IEEE, 2010.

Alistair Sutcliffe. Human-computer interface design. Springer, 2013.

Nghi Truong, Paul Roe, and Peter Bancroft. Static analysis of students’ java programs. In
Proceedings of the Sixth Australasian Conference on Computing Education-Volume 30, pages
317–325. Australian Computer Society, Inc., 2004.

A
F I N A L P R O F I L E I N F E R E N C E S

The following figures contain the final results obtained by the developed PP Tool. Four
exercises were distributed to several dozens of programmers (most of them were students
learning OOP) the their solutions were analysed by the tool producing this results. For
more information, see Chapter 5.

Figure 9.: Profile inference made for Exercise P1

68

69

Figure 10.: Profile inference made for Exercise P2

Figure 11.: Profile inference made for Exercise A1

70

Figure 12.: Profile inference made for Exercise S1

B
P M D R U L E S

The following tables depict all the Java PMD rules that are relevant for the PP Tool. This
is integral information obtained from the PMD website1. This is directly related to Subsec-
tion 4.1.2.

Rule Description Priority Group
Jumbled Incrementer Avoid jumbled loop incre-

menters - its usually a mistake,
and is confusing even if inten-
tional.

3 B

ForLoop Should Be WhileLoop Some for loops can be simplified
to while loops, this makes them
more concise.

3 R

Override Both Equals AndHash
code

Override both public boolean
Object.equals(Object other), and
public int Object.hashCode(), or
override neither. Even if you are
inheriting a hashCode() from a
parent class, consider implement-
ing hashCode and explicitly del-
egating to your superclass.

3 S

Double Checked Locking Partially created objects can be
returned by the Double Checked
Locking pattern when used in
Java.An optimizing JRE may as-
sign a reference to the baz vari-
able before it creates the object
thereference is intended to point
to.

1 S

Return From Finally Block Avoid returning from a finally
block, this can discard excep-
tions.

3 S

Table 9.: Basic PMD Ruleset - I

1 https://pmd.github.io/pmd-5.5.1/pmd-java/rules/index.html

71

https://pmd.github.io/pmd-5.5.1/pmd-java/rules/index.html

72

Unconditional IfStatement Do not use ’if’ statements whose condi-
tionals are always true or always false.

3 S

Boolean Instantiation Avoid instantiating Boolean
objects; you can reference
Boolean.TRUE, Boolean.FALSE, or
call Boolean.valueOf() instead.

2 S

Collapsible IfStatements Sometimes two consecutive ’if’ state-
ments can be consolidated by separat-
ing their conditions with a boolean
short-circuit operator.

3 B

Class Cast Exception With ToArray When deriving an array of a specific
class from your Collection, one should
provide an array ofthe same class as the
parameter of the toArray() method. Do-
ing otherwise you will will resultin a
ClassCastException.

3 S

Avoid Decimal Literals In BigDecimal
Constructor

One might assume that the result
of ’new BigDecimal(0.1)” is exactly
equal to 0.1, but it is actuallye-
qual to .10000000000000000555111

123125782702118158340454101562

3 S

Misplaced Null Check The null check here is misplaced. If the
variable is null a NullPointerException
will be thrown.Either the check is use-
less (the variable will never be ’null’) or
it is incorrect.

3 S

Avoid Thread Group Avoid using java.lang.ThreadGroup; al-
though it is intended to be used in a
threaded environmentit contains meth-
ods that are not thread-safe.

3 S

Broken Null Check The null check is broken since it will
throw a NullPointerException itself.It
is likely that you used || instead of &&
or vice versa.

2 S

BigInteger Instantiation Don’t create instances of already
existing BigInteger (BigInteger.ZERO,
BigInteger.ONE) andfor Java 1.5 on-
wards, BigInteger.TEN and BigDecimal
(BigDecimal.ZERO, BigDecimal.ONE,
BigDecimal.TEN)

3 S

Avoid Using Octal Values Integer literals should not start with
zero since this denotes that the rest
of literal will beinterpreted as an octal
value.

3 S

Avoid Using Hard Coded IP Application with hard-coded IP ad-
dresses can become impossible to de-
ploy in some cases.Externalizing IP
adresses is preferable.

3 S

Table 10.: Basic PMD Ruleset - II

73

Check Result Set Always check the return values of nav-
igation methods (next, previous, first,
last) of a ResultSet.If the value return is
’false’, it should be handled properly.

3 S

Avoid Multiple Unary Operators The use of multiple unary operators
may be problematic, and/or confus-
ing.Ensure that the intended usage is
not a bug, or consider simplifying the
expression.

2 B

Extends Object No need to explicitly extend Object. 4 S
Check Skip Result The skip() method may skip a smaller

number of bytes than requested. Check
the returned value to find out if it was
the case or not.

3 S

Avoid Branching Statement As Last In
Loop

Using a branching statement as the last
part of a loop may be a bug, and/or is
confusing.Ensure that the usage is not
a bug, or consider using another ap-
proach.

2 B

Dont Call Thread Run Explicitly calling Thread.run() method
will execute in the caller’s thread of
control. Instead, call Thread.start() for
the intended behavior.

4 S

Dont Use Float Type For Loop Indices Don’t use floating point for loop in-
dices. If you must use floating point,
use doubleunless you’re certain that
float provides enough precision and
you have a compellingperformance
need (space or time).

3 S

Simplified Ternary Look for ternary operators with the
form condition ? literalBoolean : fooor
condition ? foo : literalBoolean.These
expressions can be simplified re-
spectively tocondition || foo when
the literalBoolean is true!condition
&& foo when the literalBoolean is
falseor!condition || foo when the lit-
eralBoolean is truecondition && foo
when the literalBoolean is false

3 S

Table 11.: Basic PMD Ruleset - III

74

Rule Description Priority Group
IfStmts Must Use Braces Avoid using if statements with-

out using braces to surround the
code block. If the code format-
ting or indentation is lost then it
becomes difficult to separate the
code being controlled from the
rest.

3 R

WhileLoops Must Use Braces Avoid using while statements
without using braces to surround
the code block. If the code
formatting or indentation is lost
then it becomes difficult to sep-
arate the code being controlled
from the rest.

3 R

IfElse Stmts Must Use Braces Avoid using if..else statements
without using surrounding
braces. If the code formatting
or indentation is lost then it
becomes difficult to separate the
code being controlled from the
rest.

3 R

ForLoops Must Use Braces Avoid using ’for’ statements
without using curly braces. If
the code formatting or indenta-
tion is lost then it becomes dif-
ficult to separate the code being
controlled from the rest.

3 R

Table 12.: Braces PMD Ruleset

75

Rule Description Priority Group
NPath Complexity The NPath complexity of a

method is the number of acyclic
execution paths through that
method.A threshold of 200 is
generally considered the point
where measures should be taken
to reduce complexity and in-
crease readability.

3 S

Excessive Method Length When methods are excessively
long this usually indicates that
the method is doing more than
its name/signature might sug-
gest. They also become challeng-
ing for others to digest since ex-
cessive scrolling causes readers
to lose focus.Try to reduce the
method length by creating helper
methods and removing any copy-
/pasted code.

3 R

Excessive Parameter List Methods with numerous param-
eters are a challenge to maintain,
especially if most of them share
the same datatype. These situa-
tions usually denote the need for
new objects to wrap the numer-
ous parameters.

3 R

Excessive Class Length Excessive class file lengths are
usually indications that the class
may be burdened with excessive
responsibilities that could be pro-
vided by external classes or func-
tions. In breaking these meth-
ods apart the code becomes more
manageable and ripe for reuse.

3 R

Cyclomatic Complexity Complexity directly affects main-
tenance costs is determined by
the number of decision points
in a method plus one for the
method entry. The decision
points include ’if’, ’while’, ’for’,
and ’case labels’ calls. Gener-
ally, numbers ranging from 1-4
denote low complexity, 5-7 de-
note moderate complexity, 8-10

denotehigh complexity, and 11+
is very high complexity.

3 B

Table 13.: Code Size PMD Ruleset - I

76

Std Cyclomatic Complexity Complexity directly affects mainte-
nance costs is determined by the num-
ber of decision points in a method plus
one for the method entry. The decision
points include ’if’, ’while’, ’for’, and
’case labels’ calls. Generally, numbers
ranging from 1-4 denote low complex-
ity, 5-7 denote moderate complexity, 8-
10 denotehigh complexity, and 11+ is
very high complexity.

3 B

Modified Cyclomatic Complexity Complexity directly affects mainte-
nance costs is determined by the num-
ber of decision points in a method plus
one for the method entry. The decision
points include ’if’, ’while’, ’for’, and
’case labels’ calls. Generally, numbers
ranging from 1-4 denote low complex-
ity, 5-7 denote moderate complexity, 8-
10 denotehigh complexity, and 11+ is
very high complexity.

3 B

Excessive Public Count Classes with large numbers of public
methods and attributes require dispro-
portionate testing effortssince combina-
tional side effects grow rapidly and in-
crease risk.

3 R

Too Many Fields Classes that have too many fields can
become unwieldy and could be re-
designed to have fewer fields,possibly
through grouping related fields in new
objects. For example, a class with indi-
vidual city/state/zip fields could park
them within a single Address field.

3 R

Ncss Method Count This rule uses the NCSS algorithm to
determine the number of linesof code
for a given method. NCSS ignores com-
ments, and counts actual statements.

3 R

Ncss Type Count This rule uses the NCSS algorithm to
determine the number of linesof code
for a given type. NCSS ignores com-
ments, and counts actual statements.

3 R

Ncss Constructor Count This rule uses the NCSS algorithm
to determine the number of lines of
code for a given constructor. NCSS
ignores comments, and counts actual
statements.

3 R

Too Many Methods A class with too many methods is prob-
ably a good suspect for refactoring, in
order to reduce its complexity and find
a way tohave more fine grained objects.

3 B

Table 14.: Code Size PMD Ruleset - II

77

Rule Description Priority Group
Comment Required Denotes whether comments are

required (or unwanted) for spe-
cific language elements.

3 R

Comment Size Determines whether the dimen-
sions of non-header comments
found are within the specified
limits.

3 R

Comment Content A rule for the politically correct.
We don’t want to offend anyone.

3 R

Comment Default Access Modi-
fier

To avoid mistakes if we want that
a Method, Field or Nested class
have a default access modifier we
must add a comment at the be-
ginning of the Method, Field or
Nested class. By default the com-
ment must be /* default */, if
you want another, you have to
provide a regex.

1 R

Table 15.: Comments PMD Ruleset

78

Rule Description Priority Group
Unnecessary Constructor This rule detects when a con-

structor is not necessary; i.e.,
when there is only one construc-
tor,its public, has an empty body,
and takes no arguments.

3 S

Null Assignment Assigning a ’null’ to a variable
(outside of its declaration) is usu-
ally bad form. Sometimes, this
typeof assignment is an indica-
tion that the programmer doesn’t
completely understand what is
going on in the code. NOTE:
This sort of assignment may used
in some cases to dereference ob-
jects and encourage garbage col-
lection.

3 S

Only One Return A method should have only one
exit point, and that should be the
last statement in the method.

3 B

Assignment In Operand Avoid assignments in operands;
this can make code more compli-
cated and harder to read.

3 R

At Least One Constructor Each class should declare at least
one constructor.

3 S

Dont Import Sun Avoid importing anything from
the ’sun.*’ packages. These pack-
ages are not portable and are
likely to change.

4 S

Suspicious Octal Escape A suspicious octal escape se-
quence was found inside a String
literal.

3 S

Call Super In Constructor It is a good practice to call super()
in a constructor. If super() is
not called but another construc-
tor (such as an overloaded con-
structor) is called, this rule will
not report it.

3 S

Unnecessary Parentheses Sometimes expressions are
wrapped in unnecessary paren-
theses, making them look like
function calls.

3 R

Default Package Use explicit scoping instead of
accidental usage of default pack-
age private level.The rule al-
lows methods and fields an-
notated with Guava’s @Visible-
ForTesting.

3 S

Table 16.: Controversial PMD Ruleset - I

79

Dataflow Anomaly Analysis The dataflow analysis tracks local defi-
nitions, undefinitions and references to
variables on different paths on the data
flow.From those informations there can
be found various problems.1. UR -
Anomaly: There is a reference to a vari-
able that was not defined before. This
is a bug and leads to an error.2. DU -
Anomaly: A recently defined variable
is undefined. These anomalies may
appear in normal source text.3. DD -
Anomaly: A recently defined variable
is redefined. This is ominous but don’t
have to be a bug.

5 S

Avoid Final Local Variable Avoid using final local variables, turn
them into fields.

3 S

Avoid Using Short Type Java uses the ’short’ type to reduce
memory usage, not to optimize calcu-
lation. In fact, the JVM does not have
any arithmetic capabilities for the short
type: the JVM must convert the short
into an int, do the proper calculation
and convert the int back to a short.
Thus any storage gains found through
use of the ’short’ type may be offset by
adverse impacts on performance.

1 S

Avoid Using Volatile Use of the keyword ’volatile’ is gen-
erally used to fine tune a Java appli-
cation, and therefore, requiresa good
expertise of the Java Memory Model.
Moreover, its range of action is some-
what misknown. Therefore,the volatile
keyword should not be used for main-
tenance purpose and portability.

2 S

Avoid Using Native Code Unnecessary reliance on Java Native In-
terface (JNI) calls directly reduces ap-
plication portability and increases the
maintenance burden.

2 S

Avoid Accessibility Alteration Methods such as getDeclaredConstruc-
tors(), getDeclaredConstructor(Class[])
and setAccessible(),as the interface
PrivilegedAction, allows for the run-
time alteration of variable, class,
ormethod visibility, even if they are pri-
vate. This violates the principle of en-
capsulation.

3 S

Table 17.: Controversial PMD Ruleset - II

80

Do Not Call Garbage Collection Explic-
itly

Calls to System.gc(), Run-
time.getRuntime().gc(), and Sys-
tem.runFinalization() are not ad-
vised. Code should have thesame
behavior whether the garbage col-
lection is disabled using the option
-Xdisableexplicitgc or not.Moreover,
’modern’ jvms do a very good job
handling garbage collections. If mem-
ory usage issues unrelated to memory
leaks develop within an application,
it should be dealt with JVM options
rather than within the code itself.

2 S

One Declaration Per Line Java allows the use of several vari-
ables declaration of the same type on
one line. However, itcan lead to quite
messy code. This rule looks for several
declarations on the same line.

3 R

Avoid Prefixing Method Parameters Prefixing parameters by ’in’ or ’out’
pollutes the name of the parameters
and reduces code readability.To indi-
cate whether or not a parameter will be
modify in a method, its better to docu-
ment methodbehavior with Javadoc.

4 R

Avoid Literals In IfCondition Avoid using hard-coded literals in con-
ditional statements. By declaring them
as static variablesor private members
with descriptive names maintainability
is enhanced. By default, the literals ’-
1’ and ’0’ are ignored.More exceptions
can be defined with the property ’ig-
noreMagicNumbers’.

3 B

Use Object For Clearer API When you write a public method, you
should be thinking in terms of an API.
If your method is public, it means other
class will use it, therefore, you want
(or need) to offer a comprehensive and
evolutive API. If you pass a lot of in-
formation as a simple series of Strings,
you may think of using an Object to
represent all those information.

3 B

Use Concurrent HashMap Since Java5 brought a new implemen-
tation of the Map designed for multi-
threaded access, you can perform effi-
cient map reads without blocking other
threads.

3 S

Table 18.: Controversial PMD Ruleset - III

81

Rule Description Priority Group
Use Utility Class For classes that only have static

methods, consider making them
utility classes. Note that this
doesn’t apply to abstract classes,
since their subclasses maywell in-
clude non-static methods. Also,
if you want this class to be a
utility class,remember to add a
private constructor to prevent in-
stantiation.(Note, that this use
was known before PMD 5.1.0 as
UseSingleton)

3 S

Simplify Boolean Returns Avoid unnecessary if-then-else
statements when returning a
boolean. The result ofthe con-
ditional test can be returned in-
stead.

3 S

Simplify Boolean Expressions Avoid unnecessary comparisons
in boolean expressions, they
serve no purpose and impacts
readability.

3 B

SwitchStmts Should Have De-
fault

All switch statements should in-
clude a default option to catch
any unspecified values.

3 S

Avoid Deeply Nested IfStmts Avoid creating deeply nested if-
then statements since they are
harder to read and error-prone to
maintain.

3 B

Avoid Reassigning Parameters Reassigning values to incoming
parameters is not recommended.
Use temporary local variables in-
stead.

2 B

Switch Density A high ratio of statements to la-
bels in a switch statement im-
plies that the switch statement
is overloaded. Consider moving
the statements into new methods
or creating subclasses based on
the switch variable.

3 R

Constructor Calls Overridable
Method

Calling overridable methods dur-
ing construction poses a risk of
invoking methods on an incom-
pletely constructed object and
can be difficult to debug.It may
leave the sub-class unable to con-
struct its superclass or forced
to replicate the construction pro-
cess completely within itself, los-
ing the ability to call super().

1 S

Table 19.: Design PMD Ruleset - I

82

Accessor Class Generation Instantiation by way of private con-
structors from outside of the construc-
tor’s class often causes the generation
of an accessor. A factory method,
or non-privatization of the constructor
can eliminate this situation. The gen-
erated class file is actually an interface.
It gives the accessing class the ability
to invoke a new hidden package scope
constructor that takes the interface as a
supplementary parameter. This turns a
private constructor effectively into one
with package scope, and is challenging
to discern.

3 S

Final Field Could Be Static If a final field is assigned to a compile-
time constant, it could be made static,
thus saving overhead in each object at
runtime.

3 S

Close Resource Ensure that resources (like Connection,
Statement, and ResultSet objects) are al-
ways closed after use.

3 S

Non Static Initializer A non-static initializer block will be
called any time a constructor is in-
voked (just prior to invoking the con-
structor). While this is a valid language
construct, it is rarely used and is con-
fusing.

3 B

Default Label Not Last In SwitchStmt By convention, the default label should
be the last label in a switch statement.

3 B

Non Case Label In Switch Statement A non-case label (e.g. a named break/-
continue label) was present in a switch
statement.This legal, but confusing. It
is easy to mix up the case labels and
the non-case labels.

3 R

Optimizable ToArray Call Calls to a collection’s toArray() method
should specify target arrays sized to
match the size of thecollection. Initial
arrays that are too small are discarded
in favour of new ones that have to be
createdthat are the proper size.

3 S

Bad Comparison Avoid equality comparisons with Dou-
ble.NaN. Due to the implicit lack of
representationprecision when compar-
ing floating point numbers these are
likely to cause logic errors.

3 S

Equals Null Tests for null should not use the
equals() method. The ’==’ operator
should be used instead.

1 S

Table 20.: Design PMD Ruleset - II

83

Confusing Ternary Avoid negation within an ’if’ expres-
sion with an ’else’ clause. For exam-
ple, rephrase: if (x != y) diff(); else
same();as: if (x == y) same(); else
diff();Most ’if (x != y)” cases without
an ’else’ are often return cases, so con-
sistent use of this rule makes the code
easier to read. Also, this resolves trivial
ordering problems, suchas ’does the er-
ror case go first?” or ’does the common
case go first?’.

3 R

Instantiation To Get Class Avoid instantiating an object just to call
getClass() on it; use the .class public
member instead.

4 S

Idempotent Operations Avoid idempotent operations - they
have no effect.

3 B

Simple Date Format Needs Locale Be sure to specify a Locale when creat-
ing SimpleDateFormat instances to en-
sure that locale-appropriateformatting
is used.

3 S

Immutable Field Identifies private fields whose values
never change once they are initialized
either in the declaration of the field or
by a constructor. This helps in con-
verting existing classes to becoming im-
mutable ones.

3 B

Use Locale With Case Conversions When doing
String.toLowerCase()/toUpperCase()
conversions, use Locales to avoids
problems with languages thathave
unusual conventions, i.e. Turkish.

3 S

Avoid Protected Field In Final Class Do not use protected fields in fi-
nal classes since they cannot be sub-
classed.Clarify your intent by using pri-
vate or package access modifiers in-
stead.

3 S

Assignment To Non Final Static Identifies a possible unsafe usage of a
static field.

3 S

Missing Static Method In Non Instanti-
atable Class

A class that has private constructors
and does not have any static methods
or fields cannot be used.

3 S

Avoid Synchronized At Method Level Method-level synchronization can
cause problems when new code is
added to the method. Block-level syn-
chronization helps to ensure that only
the code that needs synchronization
gets it.

3 S

Missing Break In Switch Switch statements without break or re-
turn statements for each case option-
may indicate problematic behaviour.
Empty cases are ignored as these indi-
cate an intentional fall-through.

3 S

Table 21.: Design PMD Ruleset - III

84

Use Notify All Instead Of Notify Thread.notify() awakens a thread mon-
itoring the object. If more than one
thread is monitoring, then onlyone is
chosen. The thread chosen is arbitrary;
thus its usually safer to call notifyAll()
instead.

3 S

Avoid Instanceof Checks In Catch-
Clause

Each caught exception type should be
handled in its own catch clause.

3 B

Abstract Class Without Abstract
Method

The abstract class does not contain any
abstract methods. An abstract class
suggests an incomplete implementa-
tion, which is to be completed by sub-
classes implementing theabstract meth-
ods. If the class is intended to be used
as a base class only (not to be instan-
tiateddirectly) a protected constructor
can be provided prevent direct instan-
tiation.

3 B

Simplify Conditional No need to check for null before an
instanceof; the instanceof keyword re-
turns false when given a null argu-
ment.

3 S

Compare Objects With Equals Use equals() to compare object refer-
ences; avoid comparing them with ==.

3 S

Position Literals First In Comparisons Position literals first in comparisons, if
the second argument is null then Null-
PointerExceptions can be avoided, they
will just return false.

3 S

Position Litera ls First In Case Insensi-
tive Comparisons

Position literals first in comparisons, if
the second argument is null then Null-
PointerExceptions can be avoided, they
will just return false.

3 S

Unnecessary Local Before Return Avoid the creation of unnecessary local
variables

3 S

Non Thread Safe Singleton Non-thread safe singletons can result
in bad state changes. Eliminate static
singletons if possible by instantiating
the object directly. Staticsingletons
are usually not needed as only a sin-
gle instance exists anyway.Other pos-
sible fixes are to synchronize the en-
tire method or to use an initialize-on-
demand holder class (do not use the
double-check idiom).

3 S

Single Method Singleton Some classes contain overloaded
getInstance. The problem with over-
loaded getInstance methodsis that the
instance created using the overloaded
method is not cached and so, for each
call and new objects will be created for
every invocation.

2 S

Table 22.: Design PMD Ruleset - IV

85

Singleton Class Returning New In-
stance

Some classes contain overloaded
getInstance. The problem with over-
loaded getInstance methodsis that the
instance created using the overloaded
method is not cached and so, for each
call and new objects will be created for
every invocation.

2 S

Uncommented Empty Method Body Uncommented Empty Method Body
finds instances where a method body
does not containstatements, but there
is no comment. By explicitly comment-
ing empty method bodiesit is easier to
distinguish between intentional (com-
mented) and unintentionalempty meth-
ods.

3 R

Uncommented Empty Constructor Uncommented Empty Constructor
finds instances where a constructor
does notcontain statements, but there
is no comment. By explicitly com-
menting empty constructors it is easier
to distinguish between intentional
(commented)and unintentional empty
constructors.

3 R

Avoid Constants Interface An interface should be used only to
characterize the external behaviour of
an implementing class using an in-
terface as a container of constants is
a poor usage pattern and not recom-
mended.

3 S

Unsynchronized Static Date Formatter SimpleDateFormat instances are not
synchronized. Sun recommends us-
ing separate format instances for each
thread. If multiple threads must access
a static formatter, the formatter must
be synchronized either on method or
block level.

3 S

Preserve Stack Trace Throwing a new exception from a catch
block without passing the original ex-
ception into the new exception will
cause the original stack trace to be lost
making it difficult to debug effectively.

3 S

Use Collection Is Empty The isEmpty() method on
java.util.Collection is provided to
determine if a collection has any
elements.Comparing the value of size()
to 0 does not convey intent as well as
the isEmpty() method.

3 S

Class With Only Private Constructors
Should Be Final

A class with only private constructors
should be final, unless the private con-
structor is invoked by a inner class.

1 S

Table 23.: Design PMD Ruleset - V

86

Empty Method In Abstract Class
Should Be Abstract

Empty methods in an abstract class
should be tagged as abstract. This
helps to remove their inappropriate us-
age by developers who should be im-
plementing their own versions in the
concrete subclasses.

1 S

Singular Field Fields whose scopes are limited to just
single methods do not rely on the con-
taining object to provide them to other
methods. They may be better imple-
mented as local variables within those
methods.

3 S

Return Empty Array Rather Than Null For any method that returns an array,
it is a better to return an empty array
rather than a null reference. This re-
moves the need for null checking all re-
sults and avoids inadvertentNullPoint-
erExceptions.

1 S

Abstract Class Without Any Method If an abstract class does not provides
any methods, it may be acting as a sim-
ple data container that is not meant to
be instantiated. In this case, it is proba-
bly better to use a private or protected
constructor in order to prevent instanti-
ation than make the class misleadingly
abstract.

1 S

Too Few Branches For A SwitchState-
ment

Switch statements are indented to be
used to support complex branching be-
haviour. Using a switch for only a few
cases is ill-advised, since switches are
not as easy to understand as if-then
statements. In these cases use theif-
then statement to increase code read-
ability.

3 R

Logic Inversion Use opposite operator instead of negat-
ing the whole expression with a logic
complement operator.

3 B

Use Varargs Java 5 introduced the varargs param-
eter declaration for methods and con-
structors. This syntactic sugar pro-
vides flexibility for users of these meth-
ods and constructors, allowing them to
avoid having to deal with the creation
of an array.

4 S

Field Declarations Should Be At Start
Of Class

Fields should be declared at the top of
the class, before any method declara-
tions, constructors, initializers or inner
classes.

3 B

Table 24.: Design PMD Ruleset - VI

87

God Class The God Class rule detects the God
Class design flaw using metrics. God
classes do too many things, are very
big and overly complex. They should
be split apart to be more object-
oriented.

3 B

Avoid Protected Method In Final Class
Not Extending

Do not use protected methods in most
final classes since they cannot be sub-
classed. This should only be allowed
in final classes that extend other classes
with protected methods (whose visibil-
ity cannot be reduced). Clarify your in-
tent by using private or package access
modifiers instead.

3 S

Table 25.: Design PMD Ruleset - VII

88

Rule Description Priority Group
Empty Catch Block Empty Catch Block finds in-

stances where an exception is
caught, but nothing is done. In
most circumstances, this swal-
lows an exception which should
either be acted on or reported.

3 B

Empty IfStmt Empty If Statement finds in-
stances where a condition is
checked but nothing is done
about it.

3 B

Empty WhileStmt Empty While Statement finds all
instances where a while state-
ment does nothing. If it is a tim-
ing loop, then you should use
Thread.sleep() for it; if it is a
while loop that does a lot in
the exit expression, rewrite it to
make it clearer.

3 B

Empty Try Block Avoid empty try blocks - what’s
the point?

3 B

Empty Finally Block Empty finally blocks serve no
purpose and should be removed.

3 B

Empty Switch Statements Empty switch statements serve
no purpose and should be re-
moved.

3 B

Empty Synchronized Block Empty synchronized blocks
serve no purpose and should be
removed.

3 B

Empty Statement Not In Loop An empty statement (or a semi-
colon by itself) that is not used
as the sole body of a ‘for’ or
‘while’ loop is probably a bug.
It could also be a double semi-
colon, which has no purpose and
should be removed.

3 B

Empty Initializer Empty initializers serve no pur-
pose and should be removed.

3 B

Empty Statement Block Empty block statements serve no
purpose and should be removed.

3 B

Empty Static Initializer An empty static initializer serve
no purpose and should be re-
moved.

3 B

Table 26.: Empty PMD Ruleset

89

Rule Description Priority Group
Local Variable Could Be Final A local variable assigned only

once can be declared final
3 S

Method Argument Could Be Fi-
nal

A method argument that is never
re-assigned within the method
can be declared final

3 S

Avoid Instantiating Objects In
Loops

New objects created within loops
should be checked to see if they
can created outside them and
reused

3 S

Use ArrayList Instead Of Vector ArrayList is a much better Collec-
tion implementation than Vector
if thread-safe operation is not re-
quired

3 S

Simplify StartsWith Since it passes in a lit-
eral of length 1, calls to
(string).startsWith can be rewrit-
ten using (string).charAt(0) at
the expense of some readability

3 R

Use StringBuffer For String Ap-
pends

The use of the ’+=’ operator
for appending strings causes the
JVM to create and use an internal
StringBuffer.If a non-trivial num-
ber of these concatenations are
being used then the explicit use
of a StringBuilder or threadsafe
StringBuffer is recommended to
avoid this.

3 S

Use Arrays As List The java.util.Arrays class has a
’asList’ method that should be
used when you want to create a
new List froman array of objects.
It is faster than executing a loop
to copy all the elements of the ar-
ray one by one.

3 S

Avoid ArrayLoops Instead of manually copying
data between two arrays, use
the efficient System.arraycopy
method instead.

3 S

Unnecessary Wrapper Object
Creation

Most wrapper classes provide
static conversion methods that
avoid the need to create inter-
mediate objectsjust to create the
primitive forms. Using these
avoids the cost of creating ob-
jects that also need to be garbage-
collected later.

3 S

Table 27.: Optimization PMD Ruleset - I

90

Add Empty String The conversion of literals to strings by
concatenating them with empty strings
is inefficient.It is much better to use one
of the type-specific toString() methods
instead.

3 S

Redundant Field Initializer Java will initialize fields with known
default values so any explicit initializa-
tion of those same defaultsis redundant
and results in a larger class file (ap-
proximately three additional bytecode
instructions per field).

3 S

Premature Declaration Checks for variables that are defined
before they might be used. A reference
is deemed to be premature if it is cre-
ated right before a block of code that
doesn’t use it that also has the ability
to return or throw an exception.

3 S

Table 28.: Optimization PMD Ruleset - II

91

Rule Description Priority Group
Unnecessary Conversion Tempo-
rary

Avoid the use temporary objects
when converting primitives to
Strings. Use the static conversion
method son the wrapper classes
instead.

3 S

Unnecessary Return Avoid the use of unnecessary re-
turn statements.

3 B

Unnecessary Final Modifier When a class has the final modi-
fier, all the methods are automat-
ically final and do not need to be
tagged as such.

3 S

Useless Overriding Method The overriding method merely
calls the same method defined in
a superclass.

3 B

Useless Operation On Im-
mutable

An operation on an Immutable
object (String, BigDecimal or Big-
Integer) won’t change the object
itself since the result of the oper-
ation is a new object. Therefore,
ignoring the operation result is
an error.

3 S

Unused Null Check In Equals After checking an object refer-
ence for null, you should invoke
equals() on that object rather
than passing it to another object
equals() method.

3 S

Useless Parentheses Useless parentheses should be re-
moved.

4 R

Useless Qualified This Look for qualified this usages in
the same class.

3 S

Table 29.: Unnecessary PMD Ruleset

92

Rule Description Priority Group
Unused Private Field Detects when a private field is de-

clared and/or assigned a value,
but not used

3 S

Unused Local Variable Detects when a local variable is
declared and/or assigned, but
not used

3 S

Unused Private Method Unused Private Method detects
when a private method is de-
clared but is unused

3 S

Unused Formal Parameter Avoid passing parameters to
methods or constructors without
actually referencing them in the
method body

3 S

Unused Modifier Fields in interfaces are automati-
cally public static final, and meth-
ods are public abstract.Classes
or interfaces nested in an inter-
face are automatically public and
static (all nested interfaces are au-
tomatically static).For historical
reasons, modifiers which are im-
plied by the context are accepted
by the compiler, but are superflu-
ous

3 S

Table 30.: Unused Code PMD Ruleset

	1 Introduction
	1.1 Introduction
	1.2 Objectives
	1.3 Research Hypothesis
	1.4 Document Structure

	2 Programmer Profiling: approaches and tools
	3 Programmer Profiling: challenges and our proposal
	3.1 Early Decisions
	3.2 What are programmer profiles?
	3.3 How can we extract this information?
	3.4 Which data is relevant for extraction?
	3.5 How does that data correlate with programmer profiles?
	3.5.1 A practical example

	3.6 How to automatically assign a profile to a programmer?
	3.7 System Architecture

	4 Development Decisions and Implementation
	4.1 Early Decisions
	4.1.1 AnTLR
	4.1.2 PMD
	4.1.3 Metrics
	4.1.4 Enhancing the Profiles

	4.2 Implementation
	4.2.1 Setting up
	4.2.2 Attribute Grammar vs Visitor Pattern
	4.2.3 Fixing up the Grammar
	4.2.4 Early Metrics Extracted
	4.2.5 Preliminary PMD Integration
	4.2.6 Solutions Input
	4.2.7 PP Analyser
	4.2.8 PMD Analyser
	4.2.9 Projects Comparison
	4.2.10 Score Calculator
	4.2.11 Profile Inferrer
	4.2.12 Log Generator
	4.2.13 Results Plotter
	4.2.14 General Profile Inferer

	5 Case Studies and Experiments
	5.1 Experiment setup
	5.1.1 Development Phase Setup
	5.1.2 Post-Development Setup

	5.2 Results
	5.2.1 Development Phase Results
	5.2.2 Post-Development Results

	6 Conclusion
	6.1 Working Plan
	6.2 Outcomes
	6.3 Final Remarks
	6.4 Future Work
	6.4.1 Theory
	6.4.2 Algorithms
	6.4.3 Tool

	6.5 End Note

	A Final Profile Inferences
	B PMD Rules

