
UNIVERSITY OF MINHO

MASTER THESIS

Distributed Databases
Synchronization in Named Data

Delay Tolerant Networks

Author:

Chong Liu

Supervisors:
Professor Joaquim Macedo

Professor António Duarte Costa

A thesis submitted in fulfillment of the requirements
for the degree of Master of Computer Networks and Telematic Service

in the

Department of Informatics

October 26, 2016

http://www.uminho.pt
http://algoritmi.uminho.pt/member-profile/joaquim-melo-henriques-macedo/0001090/
http://algoritmi.uminho.pt/member-profile/antonio-luis-duarte-costa/0001698/
http://marco.uminho.pt/merstel/

iii

Declaration of Authorship
I, Chong Liu, declare that this thesis titled, “Distributed Databases Synchro-
nization in Named Data Delay Tolerant Networks” and the work presented
in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a
research degree at this University.

• Where any part of this thesis has previously been submitted for
a degree or any other qualification at this University or any other
institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

v

“Thanks to my solid academic training, today I can write hundreds of words on
virtually any topic without possessing a shred of information, which is how I got a
good job in journalism.”

Dave Barry

vii

UNIVERSITY OF MINHO

Abstract

Department of Informatics

Master of Computer Networks and Telematic Service

Distributed Databases Synchronization in Named Data Delay Tolerant
Networks

by Chong Liu

Delay Tolerant Network (DTN) is a small regional network designed
to provide better communications when the end-to-end connection is not
always possible. DTN is well known for intermittent connections and long
delays. Nodes store data packets in the buffers and forward later when the
connection is restored. Recently, Named Data Networking (NDN) has been
drawing wide attention as a Future Internet architecture. This architecture
shifts the emphasis from host to content and pays little attention to where
is the content. Routing in NDN is based on the name of the content.
Named Data-Delay Tolerant (ND-DT) network is an integration of DTN
and NDN. It takes the advantages of both architectures by applying named
data approach in DTN scenarios. In ND-DT network, distributed databases
are maintained by a group of fixed or moving nodes. Data inconsistency
always exists because of the intermittent connections and long delays.
However, data synchronization solutions can minimize this inconsistency,
helping to reduce the data access delay.

ChronoSync is a well-known NDN state synchronization protocol.
Data synchronization in ND-DT networks are challenging because of the
intermittent connections and the nodes’ mobility. Moreover, the connection
between nodes is not assured, which may make synchronization to fail. In
this work, it is assumed that there is at least one path between each pair of
database nodes.

The aim of this work is to improve the recovery process of ChronoSync
in order to enhance its adaptability to ND-DT network scenarios. For this
goal, ChronoSync and our improved solution were implemented and tested
on an ND-DT network simulator.

The results show that our improved ChronoSync is more adaptable to
ND-DT networks. The improved ChronoSync consumes less time to finish
synchronization tasks in all the scenarios. What’s more, in three database
scenarios, IChronoSync decreasing about 83% of the synchronization time
while Chronosync decreases 62% when changed from sparse network to
dense network. What’s more, improved ChronoSync generates 27% fewer
data packets, which can increase the probability of other network nodes
getting connected.

HTTP://WWW.UMINHO.PT
http://faculty.university.com
http://marco.uminho.pt/merstel/

ix

Acknowledgements
This dissertation would not have been completed without the great

support I have received from so many people during the two years of my
Master study. I wish to offer my most heartfelt thanks to the following
people.

First, I would like to express my deepest appreciation to my supervisors,
Professor Joaquim Macedo and Professor António Duarte Costa. Thank
you for the continuous advice and encouragement that allowed me to
pursue research on this interesting topic. Thank you for spending a lot
of time to discuss the research issues with me and give me suggestions on
research directions, approaches and writing skills. Things would not go so
smoothly without you.

Then I would like to thank Professor Alexandre Santos who gives me
a lot of help during my Master study in University of Minho, Portugal. I
would like to acknowledge the Department of Informatics where I learned
computer networks for two years. I benefit greatly from the courses I took.
I would like to thank my friends and my colleagues in Lab Room 307 who
helped and colored my life in Portugal. We spent a lot of happy times
together.

Finally, I would like to thank my parents, my sister for their unwavering
support and understanding. Thank you for your constant encouragement
and for tolerating all the days I spent in Portugal instead of spending time
with you. I could never have finished a Master without your support and
encouragement.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Objectives . 2
1.2 Main Contribution . 3
1.3 Structure of This Dissertation 3

2 Delay Tolerant and Named Data Networks 5
2.1 Delay Tolerant Network . 5

2.1.1 Concept of DTN . 5
2.1.2 DTN Architecture . 6
2.1.3 Characteristics of DTN 7
2.1.4 Custody Transfer . 8
2.1.5 Movement Models . 8
2.1.6 Routing Protocols in DTN 9

2.2 Named Data Network . 10
2.2.1 NDN Architecture . 10
2.2.2 Forwarding Strategy 12

3 File Synchronization 13
3.1 Set Reconciliation . 13

3.1.1 Log-based Reconciliation 14
3.1.2 Exact Method . 14
3.1.3 Set Reconciliation with High Probability 15

3.2 File Synchronization . 19

4 Synchronization on NDN and DTN 21
4.1 ChronoSync Protocol and ChronoShare 21
4.2 Prioritized Data Synchronization for DTN 23

4.2.1 CPI Synchronization Algorithm 23
4.2.2 Protocol: Priority CPI (P-CPI) 24

4.3 A Cooperative Caching Approach in DTN 24
4.3.1 NCL Selection Method 24
4.3.2 Caching Scheme . 25
4.3.3 Cache Replacement . 25

5 Improving ChronoSync in ND-DT Network 27
5.1 Simulation Platform . 27

5.1.1 ICONE Components 27
5.1.2 Event Generator . 28

xii

5.1.3 Movement Model . 28
5.1.4 NDN Reports . 28
5.1.5 NDN Router . 29
5.1.6 PIFP Protocol . 29
5.1.7 Network Face . 30

5.2 Impletementing ChronoSync in ND-DT Network 30
5.2.1 An Overview of ChronoSync in ND-DT Network . . 30
5.2.2 Naming Rules . 32
5.2.3 Outstanding Interest Handing Process 33
5.2.4 Recovery Interest Packet Handing Process 34
5.2.5 Data Packet Handing Process 34
5.2.6 Application Data Fetching 34
5.2.7 Implementation of ChronoSync in ICONE Simulator 35
5.2.8 Disadvantages of ChronoSync 35

5.3 An Improvement of ChronoSync 36
5.3.1 An Overview of improved ChronoSync 36
5.3.2 Naming Rule . 37
5.3.3 Outstanding Interest Handing Process 37
5.3.4 Something New Interest Handing Process 37

6 Analysis and Discussion of the Simulation Results 39
6.1 Configuration . 39
6.2 Simulation Scenarios . 40
6.3 Simulation Results . 41
6.4 Discussion of Results . 44

7 Conclusion and Future Work 47
7.1 Conclusion . 47
7.2 Future Work . 48

A Default Settings for Simulation 49

Bibliography 55

xiii

List of Figures

2.1 Structure of DTN Nodes [4] 6
2.2 Architecture of Delay Tolerant Network [4] 7
2.3 Custody Transfer in Delay Tolerant Network [4] 8
2.4 Packets in Named Data Architecture [15] 11
2.5 Interest and Data Packets Forwarding Processing in Named

Data Networks [18] . 12

3.1 An Example of Bloom Filter 16
3.2 An Example of Merkly Tree 17

4.1 An Overview of ChronoSync [30] 22
4.2 ChronoShare Entities [31] . 23
4.3 A Cooperative Caching Scheme in DTN [33] 25

5.1 Information Centric ONE (ICONE) Framework [3] 28
5.2 NDN Routing Classes in Information Centric ONE (ICONE)

[3] . 29
5.3 Synchronization Model in ND-DT Netwotk 30
5.4 Structure of ChronoSync Based Application 31
5.5 An Example of Digest Tree Structure [30] 32
5.6 ChronoSync Flow Diagram in ND-DT Network 36

6.1 Time to Synchronize in Dense and Sparse Scenarios 43
6.2 Interest and Satisfy Packets Created in Dense Scenario 44
6.3 Time to Synchronize when Database Nodes Increases 45

xv

List of Tables

5.1 Naming Rules used in ICONE 33
5.2 An Example of Something New Interest (SNI) in Improved

ChronoSync . 37

6.1 Summary of ICONE Configuration used in all Scenarios . . 40
6.2 Summary of Simulation Scenarios 41

xvii

List of Pseudocode

Pseudocode 1. ChronoSync Interest Handing Process 34
Pseudocode 2. Data Packet Handing Process . 35
Pseudocode 3. Something New Interest Packet Handing Process 37

xix

List of Abbreviations

CDNs Content Data Networks
DP Delivery Predictability
DTN Delay Tolerant Network
FIB Forwarding Information Base
ICN Information Centric Network
ICONE Information Centric ONE
NCLs Network Central Locations
ND-DT Name Data-Delay Tolerant
NDN Name Data Network
ONE Opportunistic Network Environment
PIFP Probabilistic Interes Forwarding Protocol
PIT Pending Interest Table
RW Random Walk
RWP Random WayPoint
SNI Something New Interest
TTL Time To Live

1

Chapter 1

Introduction

Delay Tolerant Network (DTN) is consensually considered a good architec-
ture to support intermittent connections, significant delays and disruptions
for end-to-end communications. The network infrastructure is usually
not available in DTNs. The DTN devices, such as cell phones or PDAs,
are equipped with wireless network interfaces and move irregularly. The
mobility of devices makes the end-to-end path and network topology to
change frequently. DTNs can transport data in two different ways: 1) over
a wireless (or wired) network interface, 2) by the user move from location to
location with the data stored in the device [1]. DTN supports a store-carry-
and-forward strategy. Data units can be stored temporarily during the
disconnection time and delivered later to the “next hop” when the network
is reconnected.

Named Data Network (NDN) is one of most promising Information
Centric Networking (ICN) architecture, shifting the emphasis from end-
host to content. NDN model is totally different from TCP/IP based
network. It concerns more about content and pays little attention to where
is the content. It defines a special naming scheme and uses a prefix-
matching method to search the content in the network. NDN consumers
focus on the content which they are interested in, and broadcast their
interest information to the entire network. NDN offers content storage
functionality by two different components, named Content Store (cache
content) and Repository (persistent content). NDN gives good support for
mobility because there is no relationship between the content name and the
content location.

Named Data Delay Tolerant (ND-DT) networks have emerged to meet
the requirement of future networks: 1) data transportation depends on
the content name rather than on the IP addresses of the hosts; 2) future
networks must support delay tolerance and network disruption. ND-
DT network is an integration of DTN and NDN architecture and takes
the advantages offered by both architectures. It combines connectivity
resilience (e.g. through store-carry-and-forward) and information resilience
(e.g. through caching and replication) [2] from both architecture. ND-DT
network uses Named Data on top of Delay Tolerant Network and applies
named data approach in DTN scenarios.

Distributed Database is a logically connected database, consisting a plu-
rality of physically dispersed computers connected by networks. Contents
are stored on those computers and managed by a distributed database
management system. As a result, the database will work as if all contents
were stored on the same computer. The management system synchronizes
all the data periodically to ensure that multiple users access the same data.

2 Chapter 1. Introduction

The update and/or delete operations must be reflected automatically in
everywhere.

In an ND-DT network, the distributed database could be maintained by
moving devices. In most cases, these devices have limited storage space
and movement unpredictability. Most of the traditional distributed data
replication and synchronization algorithms are focused on fixed topology
and they are not suitable for this mobile situation. Nowadays, many
popular applications, such as Dropbox and Google Drive, synchronize data
with a centralized solution. Every change on the database should first
upload to a central server and then the server distributes the change to the
other nodes of the distributed databases. This centralized solution supports
mobility but wastes bandwidth. Therefore, traditional data replication
and synchronization algorithms mentioned above are not suitable for this
new kind of network. Effective algorithms and solutions, which consider
storage space and node mobility, are desperately demanded. This work is
dedicated to finding new algorithms and solutions in order to benefit the
ND-DT networks.

1.1 Objectives

In several scenarios, it’s not possible to keep permanent connections
between network users. These users (nodes) may move irregularly, which
makes network topology unstable and complex. The irregular mobility of
nodes introduces opportunistic connections and long delays, which makes
the data transmission and information sharing more difficult. Several
applications in this kinds of network are based on distributed files or
databases that are maintained by various network nodes.

The lack of network infrastructure, decentralized data collection, li-
mited resources (for example, bandwidth, energy, and storage capacity),
geographic dispersion and high mobility of nodes make the centralized
solution not suitable in such scenarios.

To overcome the mentioned problems, data sharing schemes of DTN
are used. DTNs enable the transmission of data between nodes with an
opportunistic contact. This achievement is supported by persistent storage
of received packets, which can be delivered later to the destination node (or
to a node closer to the destination).

However, the network applications paradigm is changing nowadays.
Applications are more concerned with the data itself and do not care about
the data location. So, if there is in-network stored named data, it can be
accessed quicker without the need of original server(s) or even the use
of Content Data Networks (CDNs). One of most promising Information
Centric Networking (ICN) architecture is the NDN.

So, using Named Data on top of Delay Tolerant Networks seems to be a
fruitful research direction. Nodes exchange information using intermittent
connections and a set of mobile nodes (moving vehicles or walking pedes-
trian) maintains the database. Still, the existing solutions and algorithms
are not suitable for this type of network. Therefore, algorithms and
techniques for data replication, synchronization, and consistency checking
in Named Data/Delay Tolerant Networks are needed.

1.2. Main Contribution 3

This work aims to find solutions and algorithms that work well in ND-
DT networks, as well as to evaluate solutions and algorithms for replica-
tion, synchronization, and consistency of these distributed databases. To
accomplish this goal, it is required to implement and validate the solutions
and algorithms on an ND-DT network simulator.

1.2 Main Contribution

The dissertation’s main contribution is to implement an NDN state syn-
chronization protocol, ChronoSync, for ND-DT networkN scenarios, and
improve it to be more adapted to such scenarios.

ND-DT network nodes move uncertainty, which makes the network
topology change frequently. Therefore, there is no sure of a path between
a pair of database nodes. Data synchronization will fail when there is no
path between the database nodes. To implement ChronoSync in ND-DT
network, we assumed that there is at least one path between each pair of
database nodes.

Finally, we implement ChronoSync and our improved version in an
ND-DT network simulator (ICONE [3]). The results show that our im-
proved ChronoSync is more suitable for ND-DT networks. It consumes
less time to finish synchronization tasks, especially in sparse networks.
Improved ChronoSync generates fewer packets, which increases the prob-
ability to have more network nodes synchronized.

1.3 Structure of This Dissertation

The organization of this dissertation is as follows. Chapter 2 provides basic
background on DTN and NDN architectures. Chapter 3 explains set recon-
ciliation and the file synchronization methods, respectively. Chapter 4 in-
troduces several new techniques related to strategies of data reconciliation
within DTN and NDN networks, which makes a further understanding
of the related research concerning about our work. Chapter 5 provides a
description of ChronoSync and improved ChronoSync in ND-DT network.
Chapter 6 shows and discusses the simulation results. Finally, Chapter 7
concludes this dissertation and presents recommendations for future work.

In more detail, the organization of the thesis is as follows:
In Chapter 2, we present the background knowledge of DTN including

the concept of DTN, the architecture of DTN, the characteristics of DTN,
the special custody-based transfer manner, the movement models and the
routing protocols. Then, NDN is explained, namely the NDN architecture
and its forwarding strategy.

In Chapter 3, we begin by explaining the problem of set reconciliation.
Then we categorize the approaches into three groups. The first group is the
Log-based Reconciliation with prior context. The second group is related
to exact methods that always returns the correct set difference and the third
group includes methods with high success probability, which means that
the results have a small chance of incorrection. Then, popular methods
of each group are described. In Approximate Reconciliation Tree method,
we provide an in-depth explanation of Merkly Tree, which is used in
ChronoSync along with Log-based method. We also consider the problem

4 Chapter 1. Introduction

of file synchronization. We discuss current well-known file synchronization
strategies, such as Rsync.

In Chapter 4, we explain a group of synchronization solutions in detail.
We explain ChronoSync protocol and ChronoShare in NDN, Prioritized
Data Synchronization solution in DTN and a cooperative caching approach,
which give a new solution to synchronization.

In Chapter 5, we begin with an explanation of the ND-DT network
simulator. Then, we explain the implement of ChronoSync in ND-DT
networks. Afterwards, we describe how to improve ChronoSync in order
to make it more suitable for ND-DT networks.

In Chapter 6, we first present the rationale of experiments to do and the
parameters used in simulations. Then we present the simulator parameters
used in all simulation scenarios. After that, different simulation scenarios
for sparse and dense networks and also for few and large database nodes
are provided. Finally, simulation results using synchronization time and
synchronization related packets are presented, analyzed and discussed.

In Chapter 7, we conclude the dissertation and discuss a set of directions
for future work.

5

Chapter 2

Delay Tolerant and Named
Data Networks

This chapter introduces the fundamental knowledge and the basic support
for this work. In particular, it presents the architecture of Delay Tolerant
Networks and Named Data Networks.

2.1 Delay Tolerant Network

Nowadays, the networks we usually explore are based on the following
assumptions [4]: 1) There is an end to end paths between the source and
destination when nodes communicate with each other; 2) The maximum
round-trip time between nodes is not too long (sending and receiving data
in milliseconds, not in hours or days); 3) There is relatively little data loss
or corruption on each link. However, there is a class of network that does
not meet the above assumptions, such as the civilian networks on Earth,
the wireless military battlefield, and other space networks. These networks
usually experienced very long delays, long periods of link disconnection,
high error rates, and large data-rate asymmetries. Repair the existing
link problems in these kinds of networks are not easy, while constructing
network-specific proxies (which provide access from this kind of network
to the Internet) is also not a good idea [5]. Therefore, the existing network
architecture and protocols are not suitable for this kind of networks. Under
this circumstance, researchers have proposed a new type of network named
Delay Tolerant Network (DTN).

2.1.1 Concept of DTN

Delay Tolerant Network (DTN) is a small regional network which tolerates
intermittent connections and long delays. It was proposed by Kevin Fall
[4] in 2002 and it was initially developed for interplanetary use. Needless
to say, data transmissions between planets experience long delays and the
connections between them are intermittent. However, other networks, such
as wireless sensor networks, meet the same constraints as the interplanetary
networks. Nowadays, DTN is used in diverse fields, such as military, public
service and safety, environmental monitoring, personal use, engineering,
and scientific research. There is currently many applications for DTNs.

A DTN node is an entity with a "Bundle" layer over the low-layer
communication protocols. The structure is shown in Figure 2.1. A node
may be a host, router, or gateway acting as a source, destination, or
forwarder node. A source or destination node sends or receives bundles to

6 Chapter 2. Delay Tolerant and Named Data Networks

FIGURE 2.1: Structure of DTN Nodes [4]

or from another node, but it does not forward bundles received from other
nodes. A forwarding node can forward bundles between two or more other
nodes. There are two kinds of forwarding nodes: routing equivalent nodes
and gateway equivalent nodes. The routing equivalent nodes forwards
bundles between two or more other nodes, each of which implements
the same lower-layer protocols. The gateway equivalent nodes forwards
bundles between two or more other nodes, each of which implements
different lower-layer protocols. A DTN node could be a pedestrian, a bus,
a taxi or a train, each of which could have a different mobility pattern
due to its own characteristic. Every DTN node has persistent storage to
deal with the long delays. If the node operates over long-delay links, it
stores the content in its persistent storage until links are available. To
enhance the reliability of the transfer, the node may optionally support
custody transfers, which is typically advisable in DTNs. Custody transfer
is discussed in section 2.1.4.

“Contact” is a way of message dissemination in DTN networks. DTN
nodes communicating with each other during the contact time. There
are two kinds of popular contacts in DTN: Opportunistic Contact and
Scheduled Contact. During the opportunistic contact time, the sender and
receiver communicate with each other at an unscheduled time. In real
life, people often use this type of contact to communicate one another.
This kind of contact is considered unexpected. A Scheduled Contact is an
agreement to establish a contact at a certain time for a given duration [6].
For examples, a bus will pass a specific place at a certain time. In this way,
we could predict and arrange the future communication according to this
time schedule.

2.1.2 DTN Architecture

The traditional TCP/IP network architecture has five layers (including
Physical layer, Data-linking layer, Network layer, Transport layer, and
Application layer). DTN adds a bundle layer between the transport
layer and the application layer. The architecture of DTN network is
shown in Figure 2.2. The Bundle layer has two functions: 1) sends data

2.1. Delay Tolerant Network 7

FIGURE 2.2: Architecture of Delay Tolerant Network [4]

to its application layer; 2) store and forward data between the various
network nodes. With this mechanism, DTN can tolerate high latency and
disconnection during data delivery.

The Bundle protocol is a new communication protocol on top of lower
layer protocols, which ties the lower-layer protocols together. The bundle
protocol agent stores and forwards bundle between nodes. In the same
way, application programs can communicate with each other whether they
use the same lower-layer protocols or not. The Bundle protocol works well
on intermittent links, unlike other communication protocols, such as TCP.

2.1.3 Characteristics of DTN

DTN is a special network that has its own characteristics. DTN networks
often suffer low transmission rates, asymmetric data rates, and very long
delays. Connections may be intermittent suddenly during end-to-end
communications. In some extreme cases, there may be no return channel
at all.

In the traditional networks, queuing time often dominant the transmis-
sion and propagation delay. If the next-hop neighbors are not reachable, the
routers discard the packet. So the queuing time rarely exceeds a second.
But for DTN networks, the disconnection is common and the queuing
time could be extremely large. In addition, due to the limited transfer
opportunity, retransmissions can be even hard to achieve. Therefore, the
message may be stored in the router for a long time. DTN networks use
store-carry and forwards strategy to perform message exchanging.

DTN nodes usually work in special places (e.g. without power systems).
In many cases, the lifetime of DTN node is limited, and the power is also a
parameter. Nodes can stop working at any time, the duty cycle is usually
lowered to increase network lifetime.

8 Chapter 2. Delay Tolerant and Named Data Networks

FIGURE 2.3: Custody Transfer in Delay Tolerant Network
[4]

2.1.4 Custody Transfer

Custody transfer is a mechanism to enhance the reliability in DTN net-
works. It transfers the responsibility for reliable delivery towards the
ultimate destination node [7]. Nodes holding a message with custody are
called custodians. Usually, there is only a single custodian for a message.
However, a message has more than one custodian may still exist in some
circumstances. This type of custody is called joint custody.

The process of custody transfer is shown in Figure 2.3. When the
current custodian sends a message to the next custodian, it requests a
custody transfer and starts a time-to-acknowledge retransmission timer. If
the node accepts custody, it returns an acknowledgment to the sender. If
no acknowledgment is returned before the sender’s time-to-acknowledge
expires, the sender retransmits the message. A custodian must store
the message until either another node accepts custody or its time-to-live
expired.

2.1.5 Movement Models

A movement model should simulate the movements of real mobile nodes.
Nodes change their speed and direction in reasonable time slots. In order
to evaluate the performance of routing protocols in an ad-hoc network, it
is better to use a movement model that accurately represents the mobile
nodes. In the following, we will describe four movement models frequently
used.

Random Walk is a simple mobility model described by Einstein in
1926. In this model, nodes wander away randomly with independent
speed and direction. The direction and speed are selected randomly at the
end of each movement [8]. Random Walk is an extremely unpredictable
model and it is also one of the most popular and useful models for
evaluating communication performance in DTN networks. Random Walk
is a memoryless model knowing nothing about its past locations and speed
values.

2.1. Delay Tolerant Network 9

The Random Waypoint model is similar to the Random Walk model.
Nodes choose a destination and a walking speed randomly, but pause
times are added when the direction or speed is changed. After arriving
the destination, the node pauses for a specific time and then it walks again.

The Map-Based Movement model is a derivative of the Random Walk
model. Nodes move to random directions following the map roads.
Shortest Path Map-based Movement is an improvement of Map-Based
Movement model. It calculates shortest paths from the current location to a
randomly selected destination by using Dijkstra’s shortest path algorithm.

Working Day Movement model simulates the everyday life of ordinary
people. People go to work in the morning, spend their daytime at the
workplace, and go back home at evenings. There are three main activities
in Working Day Movement model: being at home, working, and some
evening activity with friends. Every node assigns a position on the map as
its home location. After wake up, nodes leave their homes and use different
transport methods to travel to work [9]. Then, they spent the day working
at the desk or having a meeting in the office. After the work, they may go
shopping, take part in different activities or walk on the street. Finally, they
return home.

2.1.6 Routing Protocols in DTN

DTN is a network with long delay and intermittent connection. The
storage capacity and energy of nodes are limited. Nodes have very
little information about the network state and have little opportunities to
transmit the information. Routing in such environments is a very difficult
task. For this reason, the traditional routing algorithms are not suitable for
DTNs.

In Direct Deliver protocol, the source nodes deliver message itself. The
source node constantly keeps the message until the destination is in the
proximity or directly reachable [10]. By using the Direct Deliver protocol,
the nodes require seldom transmission knowledge. The message is only
related to the destination node. There is only one hop to deliver the
message.

First Contact routes data based on the first available contact. Nodes
deliver the message through a set of intermediate nodes, then the interme-
diate node delivers the message to the destination nodes. A node forwards
the message to nodes who never carried the message before.

Epidemic Routing algorithm is a flooding algorithm. Each node for-
wards a copy of packets to all encounter nodes that do not have these
packets. Epidemic Routing algorithm guarantee the delivery ratio but
waste a lot of resources. When two nodes meet, they first exchange the
summary of their message repository. Then, each node transmits messages
that the other node does not have [11].

Spray and Wait protocol makes a tradeoff between Epidemic protocol
and Direct Deliver protocol. It performs significantly fewer transmissions
than Epidemic protocol and achieves better deliver delay than Direct
Deliver protocol. It consists of two phases: spray phase and wait phase.
In spray phase, it spreads messages in a similar way as Epidemic routing. L
copies of each message are spread to L distinct “relays”. The spread can be
done by the source node or by other nodes that receive this message copy.

10 Chapter 2. Delay Tolerant and Named Data Networks

If the destination node is found at spray phase, the delivery is finished.
Otherwise, it starts the wait phase. The L nodes carrying the message copy
perform a direct transmission in the wait phase. [12].

MaxProp [13] is a scheduling message transport protocol. It maintains a
queue ordered by the delivery probability of a future transitive path to the
destination. The delivery probability is calculated by historical data and
several complementary mechanisms, including acknowledgments, a head-
start for new packets, and lists of previous intermediaries. MaxProp assigns
a higher number to new packets and uses a list of previous intermediaries
to prevent repeated data transfer.

The Prophet approach is a protocol based on delivery predictability
metric. It uses a predicted value to describe the successful transfer
probability between nodes. When two nodes meet each other, they
exchange the value of the metrics for different known destinations and
update their transmission predictive value. Nodes only forward the packet
to the nodes that have higher values [14].

2.2 Named Data Network

Nowadays, the Internet has changed every aspect of people’s lives. How-
ever, it also facing many challenges. For instance, IP address exhaustion,
security problems, insufficient bandwidth and so on.

Moreover, the applications nowadays are more concerned about content
and pay little attention to where are the contents. Under this circumstance,
NDNarchitecture has been proposed. It changed the end-to-end Internet
paradigm to a new content-centric model. Therefore, NDN requires new
forwarding strategies and routing protocols.

2.2.1 NDN Architecture

NDN is an entirely new architecture based on our understanding of
problems and limitations of current Internet. The network communication
is driven by the consumer forwarding interests. It has new packet format,
content-centric naming system, useful in-network storage, and forwarding
strategies.

Packet carries data names rather than destination or source addresses.
There are two types of packets in NDN: Interest packet and Data packet.
Their structure is shown in Figure 2.4. Interest packet consists of three
parts: Content Name, Selector, and Nonce. Every interest packet has a
Name and a Nonce parts. Name is a string that responsible for routing and
Nonce is a random number used to detect and discard duplicate packets.
Data packet consists of four parts: Content Name, Signature, Signature
Info and Data. Content Name is a unique identification decided by the
content publisher. Usually, people use an easy understanding string for
Content Name. Content Name does not need to be globally unique, though
retrieving data requires some kind of global uniqueness. Names are used
for local communication and may be heavily based on the local context. So,
only local routing is required to find the corresponding data.

Consumers request content by broadcasting their interest over all the
available connections. Any node who hears the Interest and has the

2.2. Named Data Network 11

FIGURE 2.4: Packets in Named Data Architecture [15]

data, can response with a Data packet. Data packet is transmitted only
in response to an Interest and consumers that Interest [16]. Note that
neither Interest packets nor Data packets carry any host or interface address
information.

NDN naming system[17] is the most important part of NDN architec-
ture. NDN names are transparent to the network. Router does not know the
specific meaning of the name, which makes names of content independent
from the network. NDN use a hierarchical naming structure to express
the relationship between various contents, which is similar to IP address.
IP uses this prefix matching to resolve <network, subnet, host > hierarchy
structure of IP address, which exhibits a high efficiency in practice. This
structure has the ability to find the address quickly. The design of NDN
structure retains the prefix-matching principle, using the longest prefix
match when carrying out a Data packet matching. An interest request is
satisfied when the name of Interest packet is a prefix of the Data packet.

The operation of an NDN node is very similar to an IP node. Both of
them responsible for storing, forwarding and routing packets. NDN node
consists of three parts: Content Store (CS), Pending Interest Table (PIT) and
Forwarding Information Base (FIB).

The CS is used to store data, which similar to the buffer of an IP router
but use a different data replacement policy. IP router forgets a packet after
forwarding since each packet belongs to a single connection. In NDN, the
packet is potentially useful to many consumers and also can be shared with
other consumers. Therefore, contents are stored in node after the transfer,
which improves the performance of upstream bandwidth and downstream
latency. Data packets can stay in CS for a very long time if the node has a
larger storage capacity.

PIT is used to record the Interest name and the arrival interface that have
been forwarded but are still waiting for the matching Data. The structure of
PIT is <Content Name, interface list>. An Interest packet is not forward if
the router received the same interest requests from multiple different nodes.
Only the corresponding interface is added to the list and the appropriate
data is sent to all interfaces in the table when data is returned.

Forwarding Information Base (FIB) is used to forward Interest packets
to potential Data sources. Its mechanisms are almost the same as the FIB of

12 Chapter 2. Delay Tolerant and Named Data Networks

FIGURE 2.5: Interest and Data Packets Forwarding
Processing in Named Data Networks [18]

IP router. But NDN FIB allows forwarding Interest packets through a list of
outgoing interfaces rather than one and supports parallel queries.

2.2.2 Forwarding Strategy

The information is stored in CS, PIT and FIB tables. These tables are all
indexed by the content name. The interface used to forward an Interest is
determined by a strategic module, which makes the forwarding decisions
adaptive to the network conditions. When a node receives a packet from
an interface, it will query according to the largest prefix match based on
the content name, and then operates as shown in Figure 2.5, and explained
next:

1. Query CS table. When it receives an Interest packet from an interface,
the router first checks whether there is a matching in its CS table. If a match
is found, it forwards a copy of packet through the coming interface, and
drop the Interest packet. Otherwise, continue with step 2.

2. Query PIT. If the name is in PIT, the node adds the coming interface
to PIT interface list and also drops the Interest packet. When a Data packet
is returned, the router looks up in the PIT and sends the Data packet to
all interfaces from which this Interest packet was received. Afterwards, it
stores this Data packet in the CS table. Otherwise, it continues with step 3.

3. Query FIB table: If there is a match in FIB, the router forwards the
Interest packet according to the information in FIB, as well as the router’s
adaptive forwarding strategy. Otherwise, continue with step 4.

4. If there is no match in the three tables, the router discards the Interest
packet, since the router cannot handle this Interest packet.[18]

13

Chapter 3

File Synchronization

In many distributed systems, common data is always shared among users
and each user updated its local data independently. These isolated updates
always bring database inconsistency. File synchronization method could
efficiently solve this problem. File synchronization is a process that keeps
two or more locations’ files update. It uses in many situations such as file
system backup and replications, cooperative work, website mirroring and
chatting room. The significant problem in this update process is finding
the outdated version of file effectively, which could solve the theoretical set
reconciliation problem. Therefore, in this chapter, we will explore the set
reconciliation and file synchronization more in-depth, and this will provide
a solid foundation for our proposed synchronization method in Chapter 5.

Section 3.1 covers a group of popular set reconciliation methods includ-
ing exact method and high probability method. Section 3.2 covers the file
synchronization problems.

3.1 Set Reconciliation

Set reconciliation is a significant problem in file synchronization. In this
section, we will dig down a little deeper in the set reconciliation problem
involving various methods disposing of this problem. We separated the
methods into three groups based on prior context and on the precision of
the result.

For the method with prior context, we introduce a common method-
Log-based Reconciliation. The second group covers two exact methods
(Naïve Approach, Characteristic Polynomials), and the third group de-
scribes three methods with high probability (Bloom Filter, Approximate
Reconciliation Trees, Invertible Bloom Lookup Tables).

Set reconciliation is a process to obtain the union of distributed data
sets. The primary procedure in the set reconciliation process is to get the
different elements through data transmission. These data sets could be
two or a plurality of data sets. To simplify the description, we starting the
problem by a simple set reconciliation model in the case of two data sets.
Imagine that we have two distributed data sets SA and SB . The first step
of set reconciliation is to get the datasets difference respectively (elements
exclusively in SA and elements exclusively in SB). The second step is to
transmit (SA − SB) to set SB and (SB − SA) to SA.

14 Chapter 3. File Synchronization

3.1.1 Log-based Reconciliation

Log-based reconciliation is an efficient technique in data set reconciliation.
Each user on this distributed system recorded its local updates in log
containing the isolated operations [19]. The local machine computes a new
consistent state among these logs from different users. A simple example
below introduces this Log-based reconciliation in detail.

Suppose there are two users UA and UB . Each of them has a large
collection of content on local machine. The synchronization between them
can simply achieve by exchanging the lists of all their content (which is
called Naïve Approach that we will describe in section 3.1.2). Since UA and
UB could have a lot of same content, the size of data be transferred would
be extremely large than the difference. To improve this situation, an often-
used alternative is to maintain an update time-stamped log together with
a record of the last communicated time [20]. When two users conduct the
synchronization, they just need to exchange all of the updates since last
communication. Obviously, Log-based data reconciliation requires prior
context.

The operations of logs are the input of the reconciliation process. Some
of the operations are non-conflicting operations. This means that the
order of the operation is independent and we do not need to consider the
sequence of these operations. When conducting this kind of reconciliation,
we just combine the isolated operation. A set of isolated updates may
contain conflicting operations as well. So, the updates to the same object
must be executed in the same sequence. This brings much complexity to
the set reconciliation.

Logs have more specific disadvantages as well. The log will be updated
when there is a change in user data. This will add much overhead to
the system, which is not worth if the reconciliation progress is carried
out frequently. Furthermore, some items would appear multiple times
in logs due to the frequent write of the "hot" content. This problem can
be avoided by using Hash table. However, the system would increase
more overheads on reconciliation. Moreover, users may receive the same
update information from different users, which will lead to redundant
communication. Finally, logs require stable storage and synchronized time,
which are often unavailable on networking devices.

3.1.2 Exact Method

The exact method needs no prior context and always returns the correct
set difference. Here we mentioned two methods: Naïve Approach and
Characteristic Polynomial Set Reconciliation.

• Naïve Approach

Naïve approach may be the simplest method appear in our mind
when determining the set difference. Users exchange a list of all
contents stored in is local machine. The list contains identifiers for
all elements in their sets. Set reconciliation carried out by scanning
the lists and removing the common elements. This requirements of
message exchange size is O(|SA| + |SB|) and computation time is
O(|SA| · |SB|). The computation time could be decreased to O(|SA| +
|SB|) if each party sent its list in sorted order. This could achieve by

3.1. Set Reconciliation 15

inserting all of the set elements into a hash table. That means to insert
one list into a hash table, then querying the table with elements of the
second list.

• Characteristic Polynomials

Characteristic polynomials set reconciliation [21] is discovered by
Minsky, Trachtenberg, and Zippel. They use characteristic polyno-
mials to represent data sets.

Assume that the data sets are integer numbers from set S = {x1, x2, . . . ,
xn} and the characteristic polynomials is Ps(Z) =

∏n
i=1(Z−xi). Those

elements that make the Ps(Z) equals 0 are considered to be elements
of S. Finally, we observe the difference between the two data sets by
a rational function: P(sA)(Z)

P(sB)(Z)=4P(sA)(Z)

4P(sB)(Z) . This function cancels out the
same elements and leaves the differences elements in synchronizing
sets.

3.1.3 Set Reconciliation with High Probability

The methods describe in section 3.1.2 find all elements of set difference
providing perfect accuracy. However, there are some error tolerant ap-
plications need not find all the different elements. In this section, we
will introduce some approximate reconciliation methods, which trade-off
accuracy with transmission size and computation time. They determine a
large portion of difference with little communication overhead.

• Bloom Filter

In many daily applications, we often needed to determine whether
a data is a member of the data set. For example, when we enter
a word to a dictionary application, the spelling mistake is checked
automatically. This checking process is to find whether the entered
word is in the defined word collection. This kind of problems could
be easily solved by hash table when the data set is small. However,
shortcomings of hash tables are exposed with the increase of data size.
Query time increasing as the table grows. Large space was used to
store data. Under these circumstances, Bloom filter can be used.

Bloom filter [22] is a space-efficient probabilistic data structure pro-
posed by Burton Howard Bloom in 1970. It is a good solution to
determine whether a data is an element of a large given data set.
Bloom filter receives widespread attention since it was proposed. It
needs very little spatial complexity than hash table when solving the
same problem. Bloom filter is widely used in dictionaries, databases
and web cache sharing [23]. Elements in Bloom filter can be inserted
and lookup, but not allow to delete the existing elements.

Bloom filter consists of an m bits array and k random independent
hash functions. The functions are used to determine k positions in
the array. In order to express a set S = {x1, x2, . . . xn} with n items,
Bloom filter uses an m bit array and k independent random hash
functions h1, h2, . . . hk. Each of the hash function maps to a position
in {0, 1, . . .m − 1}. The array is initialized 0. When inserting an
arbitrary element x1 to the Bloom filter, we apply the k hash functions

16 Chapter 3. File Synchronization

FIGURE 3.1: An Example of Bloom Filter

respectively and set those k positions to 1. Every position could be
set only once. So, if many elements point the same position to 1,
only the first setting works. Looking in bloom filter carried out a
similar process as the insert. k functions were calculated and the
corresponding positions were checked when querying an element.
If there is at least one position is 0, we consider that the element is
not in data set. This looking up may result in small false positives.
The probability of a false positive depends on the number of bits
used per item n/m and the number of hash functions k. The false
positive following equation: f = (1 − e−kn/m)k. We could not delete
elements from Bloom filter. This problem can solve by a transformed
Bloom filter named countable Bloom filter [24]. An array of n counters
was used to track the number of elements currently hashed to these
locations. The deletion could be safely done by decrementing the
relevant counters.

Now we give a simple example to explain the false positive of Bloom
filter clearly. Assuming that k = 3, element A set bit 1, 4, 8, element
B set bit 4, 6, 10, and element C set bit 2, 6, 8. Set S = A,B. After
inserting A,B the Bloom filter shows in Figure 3.1. A true will get,
if C is queried in the Bloom filter. We will consider that C is in set
S. Obviously, this is a false in the query. The hash table will fail in
queries whether we delete element A or element B.

Bloom filter reconciliation is calculated as flows: insert all SA ele-
ments into a Bloom filter FA, and then send FA to SB . SB looks each
of its elements in FA. Set SB considers SA already has this key when
the element is found. Even though sometimes the key does not really
exist in SA. After the calculation, SB sends these elements which exist
in SB but not found in FA to SA. Generally, set up the Bloom filter
require O(|SA|) and find the difference need O(|SB|).

• Approximate Reconciliation Trees

Approximate Reconciliation Trees [25] [26] is an extension of Bloom
filter approach. It uses Bloom filter on top of a tree structure, which
has a similar spirit of the Merkle tree. The structure of Merkle tree and
a prefix tree structure will introduce first in this section. After that, we
will involve the construction process of Approximate Reconciliation
Trees.

Merkle Trees [27] is a data structure widely used in comparison and
validation process since proposed by Ralph Merkle in 1979. It is a
tree with values stored in leaf nodes. The value of non-leaf nodes is
obtained by applying the same hash function to the corresponding
values storing in their children. There is a small chance of a false

3.1. Set Reconciliation 17

FIGURE 3.2: An Example of Merkly Tree

positive due to the hashing. Figure 3.2 shows an example of Merkle
tree.

Actually, we could do set reconciliation only with Merkly tree. The
process is similar to other tree reconciliation method. SetA constructs
its Merkly tree TA and send it to set B. Set B creates a similar tree TB
but with its own data set. The two data sets were considered identical
if the root of TA matches of that TB . Otherwise, set B recursively
traverses the children nodes of both trees.

Approximate Reconciliation Trees also learn from another prefix tree
structure. Set A constructs a binary tree of depth log u, where u is the
number of elements in the universe U. The root corresponds to whole
set SA and the children are subsets of SA in each half of U . That means
the left child is SA ∩ [0, u/2− 1] and the right child is SA ∩ [u/2, u) The
remaining nodes use the same construction methods. Similarly, set B
creates a tree with the keys in set SB .

Set A sends its tree to set B. Set B compares the two trees. There
is no difference between the two sets if the root sets are the same.
Otherwise, set B recursively considers the children of the root of both
trees. Finally, set B will find all keys in SB − SA at its leaf nodes. This
kind of tree structure is unsuitable when the universe is large. So, we
can hash each element initially before inserting it into the tree. Each
internal node in the tree represents a subset of the elements.

Approximate Reconciliation Trees combining the sprite of Merkly tree
with the prefix tree. The same hash function (such as exclusive-or)
was used to get the internal nodes. The value of these nodes is the
hash of its children nodes. The checking of two nodes could be done
using associated values. This checking process will be finished in
constant time. In order to save the transmission time, set A inserted
the leaf nodes and internal nodes into two Bloom filter and sent them

18 Chapter 3. File Synchronization

to set B. This may cause a small mistake when computing elements in
SB − SA as describe in Bloom filter.

This Approximate Reconciliation Trees method allows a faster search
when the difference is small. It has the advantage of Merkly tree and
Bloom Filter, but still has the common weakness of tree-based search
strategies. An incorrect pruning from false positive could lead to large
difference. The result will be totally different if there is a false positive
when checking the root of Approximate Reconciliation Trees.

• Invertible Bloom Lookup Table

Invertible Bloom Lookup Table [28] is a randomized data structure
that stores a set of key-value pairs. Unlike Bloom filters, IBLTs support
both a lookup operation (given a key, return a value) and a listing
operation that lists out all the stored key-value pairs.

IBLT consists of a table with m cells and k random hash functions
h1, h2, . . . , hk. The hash functions are used to determine the position
of key-value among m cells. That is to say, each of the function maps
the key-value to a cell. Each cell has a keySum field (which is the sum
of all keys mapped to this cell), a valueSum field (that is the sum of all
values mapped to this cell), and a Count field (that counts the number
of keys mapped to this cell). All these fields are initially 0 and can be
updated by operations supported by IBLT.

There are three main operations in IBLTs: insert, delete, and listing.
To insert a x to the cell, we first compute h1(x), h2(x), . . . , hk(x) to
determine which cells to insert. After that, we add the key to keySum
and value to valueSum (add operation could be executed in many
ways, we use exclusive-or as an example) and increment the count.
The delete operation performs a reverse operation to insert. The
listing operation is a little complex. We first go through the cells
whose count field equals to 1 and add these cells to a queue. Then,
a cell of the queue is popped to get the value stored in keysum and
valuesum. Since the count field is 1, the values in two fields are the
original values we inserted. We add the value to the retrieved set and
perform a delete operation to the IBLT. Repeat this process for the
IBLT until every cell has a count value 0. However, there is a small
probability that no cell has a count equals 1. In this situation, the
lookup operation will respond with “not found”.

Before set reconciliation, set A creates an IBLT TA containing all the
elements from SA and send to set B. Set B creates a similar IBLT
TB containing all the elements from SB . As for conciliation, set B
subtracts TA from TB to get a final IBLT Tc. The subtract operation
is done by going through each of the cells in turn, compute the
value from both IBLTs (For example, exclusive-or the value in the
corresponding cell). After the computation, the value in the count
field is subtracted. The value in Tc will correspond exactly to the set
difference, and we can just use a listing operation to retrieve them.
Then, a listing operation on Tc will be performed to find the difference
of both sets. If a element k is in both SA and SB , then k’s contribution
to the relevant cell of Tc (will be exclusive-ored twice, once for TA, and

3.2. File Synchronization 19

once for TB), and k’s contribution to count will be 0 (+1 for it being in
TA, and -1 for TB). Therefor, Tc will not have the element k.

The element in SA − SB will be compute once (exclusive-ored once)
for each corresponding cell in Tc (added to TA but not to TB), and will
contribute +1 to count. Any key in SB − SA will be execute a similar
operation with the contribute -1 in count (added to TB but not to TA).

3.2 File Synchronization

File synchronization plays a very important role in many network situa-
tions. As we all know, bandwidth is a bottleneck of network affecting the
performance of the network seriously. Good synchronization solution can
decrease data transmitted effectively, and bring very large benefit to the
network bandwidth. In this section, we will describe a famous single-round
remote file synchronization protocol-rsync [29].

Rsync is an effective protocol used to update file by sending only the
differences in data set. The main idea of rsync is to split a file into blocks
and compute these blocks using a hash function. At the beginning of the
synchronization, set A and B agree on the block size and split their file
according to the negotiation. After the splits, set A and B compute the
hash for each block. Synchronization begin by set A sends its hashes to
set B. After receiving those hashes, set B compare its own hash with the
corresponding hashes from set A. If a match is found, it returns A with
an acknowledgment of that match. Otherwise, send the corresponding
block. To ensure the file is correct, set B send a longer hash corresponding
to the file block (for example 128-bit MD5) to set A. Set A compute the
new block and compare with the longer hash. If the computed and the
longer hash does not match, we considered an error has happened during
the transmission. Set A send a request to set B asking a retransmission of
the block. RSync is a capable synchronization solution without sending the
whole file across the network.

21

Chapter 4

Synchronization on NDN and
DTN

To have a deeper and better understanding of the key technologies in
data replication and synchronization for the used network scenarios, we
analyze the state-of-the-art for synchronization in Delay Tolerant and
Named Data networks, focused in the past five years. We will discuss
and describe in detail a group of typical algorithms and solution including
ChronoSync, ChronoShare, Prioritized Data Synchronization for DTN, and
CPI synchronization algorithm.

4.1 ChronoSync Protocol and ChronoShare

ChronoSync protocol is an effective and robust protocol to synchronize the
state of distributed database in Named Data Network [30]. It encodes
the state of a dataset into a crypto digest form, named state digest. Each
database node broadcasts Interest packets with the state digest calculated by
its own knowledge.

The Interest packet recipients compare the difference of incoming In-
terest’s state digest and the local maintained state digest: 1) If they are the
same, it indicates that dataset is identical; 2) If the state digest is the same
as one of the previous locally state digest, they respond with the Data
packet containing the changes; 3) if the state is unknown, it indicates that
new data is generated or there are some problems in the network (e.g.
network partitions). Then the receivers use a state reconciliation method
to determine the differences.

When the recipient receives an unknown state digest, it sends out a
recovery Interest with the unknown state digest. Those who produce or
recognize the unknown state digest reply with recent dataset status. After
receiving the recovery reply, the recipient compares with its local state
digest and updates the state if it is more recent.

Many NDN applications implement ChronoSync protocol to main-
tain dataset synchronization. Core ChronoSync-based application compo-
nents are shown in Figure 4.1, which provides a detailed explanation of
ChronoSync. There are two main interdependent components: ChronoSync
module and Application Logic module. The ChronoSync module is
responsible for the dataset state synchronization and the Application Logic
module is used to fetch the change content.

Current messages are maintained in the form of a digest tree. The state
digest is kept at the root of digest tree, while the history of dataset state
changes is stored in the form of a digest log.

22 Chapter 4. Synchronization on NDN and DTN

FIGURE 4.1: An Overview of ChronoSync [30]

ChronoSync module sends out a synchronize Interest with its current
state digest to discover dataset changes. Once received a synchronize
Interest, the ChronoSync module checks the dataset change with the help
of the digest tree and digest log. If the received state digest is the same as its
own state digest, it considers the two datasets are the same. If the receiver
finds the same digest in its digest log, then it replies a synchronize Data
packet, meaning that it contains the changes. If there is no match in both
digest tree and digest log, it will use a recovery Interests to discover the
differences. Finally, it updates the state once the recovery Data packets are
received.

After discovering the difference between the datasets, ChronoSync
module notifies the application logic module to deal with the dataset
change. The application itself decides whether to fetch the chang messages.
Or it may fetch a part of the important message firstly.

ChronoShare is an important NDN distributed file sharing application
using ChronoSync protocol. Like any other NDN application, ChronoShare
delivers packets according to the names, and the routing information is
contained in Interest and Data packets. However, ChronoShare also has
some special aspects. It chooses an action-based approach to synchronize
file changes and treats the user operations as streams of actions. Each
action records what changes have been made and where the modifications
happened.

The typical ChronoShare scenario is the use of shared folder, as shown
in Figure 4.2. Each shared folder consists of a set of files. These files were
created locally or fetched from others user device through actions. Each
user device has a local file manager to detect file changes and notifies to
ChronoShare. After receiving information from a manager, ChronoShare
updates the knowledge of actions at local areas and then synchronizes the
actions to other user devices through ChronoSync. Other users fetch all

4.2. Prioritized Data Synchronization for DTN 23

FIGURE 4.2: ChronoShare Entities [31]

the actions and have a consistent up-to-date view of the shared folder.
Finally, the users fetch the missing information by applying these actions
to their own folder. Users can decide whether or when to fetch the changed
information. In this respect, ChronoShare is agnostic to the network
infrastructure support and it is mobile-friendly[31].

4.2 Prioritized Data Synchronization for DTN

Due to the intermittent connections in DTNs, data transmission often
suffers long delays. Replicate and store copies on several nodes is a good
way to speed up the data delivery and ensure the reliability. In spite of
reduction of data transmission delay, data replication uses a lot of storage
resources. This Prioritized Data Synchronization method enables two
nodes to exchange a subset of its differing packets, which offers a tradeoff
between them. Packets with the highest priority would be transmitted first.
It is based on the previous CPISyn approach for the reconciliation of two
remote prioritized data sets in DTNs.

4.2.1 CPI Synchronization Algorithm

The CPISync algorithm is a mathematic solution to solve the reconciling
problem of two remote sets. It focuses on the differences of datasets rather
than the entire data. The difference between two data sets is calculated
using the Characteristic Polynomials set reconciliation method.

The process of CPISync is described as follows:

• Host A and host B evaluate their characteristic polynomials on m
samples respectively.

• Host A sends its evaluations to host B.

• Host B evaluate the difference by 4P(sA)(Z)

4P(sB)(Z) (which has been described
in section 3,1.2) getting4SA and4SB .

• Host B sends4SB back to Host A.

24 Chapter 4. Synchronization on NDN and DTN

4.2.2 Protocol: Priority CPI (P-CPI)

In the case of large datasets, the difference of two datasets maybe larger
than m. Priority-based CPI (P-CPI) is used to support efficient prioritized
data synchronization in DTNs. It partitions recursively the space of all
possible numbers until the partition succeed with a prescribed bound m.
Data split first is assigned to high priority. Then, synchronization is run
according to this priority. This method guarantees that the limited network
bandwidth is used first for data entries with high priority[32].

4.3 A Cooperative Caching Approach in DTN

Caching among multiple nodes is a good technique for file share and could
reduce the data delay in DTN. This cooperative caching strategy is an
effective caching approach in DTN. It enables sharing and coordination of
cached data among multiples nodes. It caches data at a set of Network
Central Locations (NCLs) intentionally. NCLs correspond to a group of
nodes that is easily accessed by other nodes in the network. The central
nodes of NCLs are prioritized for caching data. Nodes that are close to the
central node will be used first when central node’s buffer is full. The NCLs
selection is based on the probabilistic of data transport delay and caching
overhead. NCLs coordinate multiple caching nodes to optimize the tradeoff
between data accessibility and caching overhead [33].

4.3.1 NCL Selection Method

It is assumed that the contact time of two nodes in DTN form a Poisson
process and the inter-contact time is exponentially distributed. A r-hop
opportunistic path PAB = (VP , EP) between node A and node B consists
of a set of nodes set VP = {A,N1, N2..., Nr−1, B} ∈ V and a set of edge
set EP = {e1, e2, . . . , er} ∈ EP with edge weights {λ1, λ2, ..., λr}. Path
weight pAB(T) is the probability of data transmitted from A to B within
time T opportunistically. inter-contact time between node k to node k+1 is
Xk. So, the total time needed to transmit data from A to B through path
PAB is Y =

∑r
k=1Xk. The probability density function (PDF) of node

k to node k+1 is pXk(x) = λke
−λkx. So, the PDF of total transmit time

through path PAB is pY (x) =
∑r
k=1C

r
kpXk(x) [33], where the coefficients

is Crk =
∏r
s=1,s 6=k

λs
λs−λk . The path weight is pAB(T) =

∫ T
0 pY (x)dx =∑r

k=1C
r
k(1−e−λkT). The data transmission delay between nodesA andB is

measured by the path weight. Each pair of nodes only maintains the shorter
opportunistic path information. As for the average probability in Time T,
this cooperative caching approach uses a metricCi = 1

N−|Nc|
∑
jεV \Nc

pij(T)

(where i indicates node i, N is the total number of nodes, NC is the central
nodes set).

In each NCL node, there is a central node that has the highest metric.
After the selection of central node, the network administrator notifies each
node about the central node’s information. This central nodes selected
approach is based on the nodes popularity in the network, rather than their
computation or storage capabilities.

4.3. A Cooperative Caching Approach in DTN 25

FIGURE 4.3: A Cooperative Caching Scheme in DTN [33]

4.3.2 Caching Scheme

The basic idea of the cooperative caching scheme is intentionally caching
data at a set of NCLs. As shown in Figure 4.3, the stars represent the
central node of NCLs. The source node sends a data copy to each NCL
central node when it generates new data. Central node is prioritized to
cache data in this scheme. Other nodes (e.g. node A) near central node
start to catch data after central node’s buffer is full. This data push phase
is automatically executed according to the buffer conditions of nodes. A
requester multicasts the query to all central nodes when it requests the data.
Central nodes will reply data to the requester, if the requested content is in
their buffers. Otherwise, they will forward the request to other caching
nodes. After received the query, caching nodes will reply with the data
to the requester. Obviously, this caching scheme will return multiple data
copies to the requester. The number of copies is an important metric,
since it controls the trade-off between data accessibility and transmission
overhead.

4.3.3 Cache Replacement

Cache Replacement is used to adjust data cache locations dynamically.
Unlike traditional cache replacement strategies (such as LRU), this cache
replacement strategy dynamically calculates data utility and places popular
data nearer to the central nodes of NCLs. The popularity of data is
estimated based on the past requests.

27

Chapter 5

Improving ChronoSync in
ND-DT Network

ChronoSync, described in Chapter 4 is an effective protocol that imple-
ments state synchronization in Named Data Network. Since our ND-DT
network uses the same data structure as NDN, it is possible to solve the
synchronization problem in Named Data Delay Tolerant Network.

In this Chapter, we will make a deep study of ChronoSync protocol,
focusing on it’s adaptability to ND-DT scenarios. This study will identify
some aspects in which ChronoSync can be improved.

Section 5.1 gives a detailed introduction of ICONE simulation platform.
Section 5.2 covers the implementation of ChronoSync in ND-DT network
including the naming rules and the processing of packets. Section 5.3
introduces the Improved ChronoSync (IChronoSync) and explains its im-
plementation on an ND-DT network simulator.

5.1 Simulation Platform

Information Centric ONE (ICONE) is a modified version of ONE simulator
written in Java.

ONE is a well-known simulator specifically designed for evaluating
DTN routing and application protocols [34]. It allows users to simulate
various scenarios with different synthetic movement models and observes
node’s interaction process conveniently in the simulator’s GUI. Users
could easily get simulation data through the report modules and also
simulate different scenarios by modifying the frequency, duration and other
properties of the nodes in the setting files.

However, ONE only supports node-to-node communications. It has to
know the IP addresses of source and destination node and does not support
NDN simulations. To meet the NDN requirements, ICONE simulator was
designed. ICONE retains the good features of ONE simulator and makes
some important changes to satisfy the NDN communication requirements.

5.1.1 ICONE Components

ICONE changes the communication mode of ONE because source and
destination addresses are no longer important for NDNs. The messages
must carry the name of the data and forwarding strategies must change
from address to content name matching. Nodes must include CS, PIT, and
FIB components. The architecture of ICONE is shown in Figure 5.1. It is
similar to ONE but has some unique components highlighted in green.

28 Chapter 5. Improving ChronoSync in ND-DT Network

FIGURE 5.1: Information Centric ONE (ICONE) Frame-
work [3]

5.1.2 Event Generator

NDNMessage was defined with a common set of fields including Content-
Name, MessageType and Time To Live (TTL). Messages will be discarded
when its lifetime exceeds the TTL. Two types of messages are defined in
ICONE: Interest packet and Data packet. Interest packets play an important
role in NDN communications. Consumers express their interest in a specific
content by multicasting an Interest packet. The content name is on the
ContentName field. Nodes who have the content in its CS and received
the Interest message will reply a Data packet.

The event generator also called Message generator was also redesigned
in ICONE. All events are generated according to a set of input parameters
and stored in a trace file. A trace file is a simple text file that can be saved
and loaded. Message generator modules are normal Java classes that can
create requests number, request size and time intervals between sessions.
The data size can also be configured with a minimum and a maximum
value.

5.1.3 Movement Model

Movement Model specifies the node mobile capabilities and defines the
rules of nodes movement. It is the same with the ONE simulator. Three
types of movement models are implemented in ICONE: random move-
ment, map-constrained random movement and human behavior based
movement. They are detailed in Section 2.1.5.

5.1.4 NDN Reports

Report module is an important component in ONE simulator to get the
results after the simulation run. It records connections, messages, and
movement-related events by calling for the related object methods. It can

5.1. Simulation Platform 29

FIGURE 5.2: NDN Routing Classes in Information Centric
ONE (ICONE) [3]

either write information about the event into a output report file or create a
summary when the simulation is done.

ICONE implemented a number of new report models to register NDN
communication metrics, such as the number of Interest packets generated,
sent and satisfied by all nodes in the network, the number of Data packets
sent, the number of satisfied Interest at the local node, the hops from
provider to consumers, and so on.

5.1.5 NDN Router

NDN Router implements an abstraction of the basic components of NDN:
PIT, FIB, and CS. PIT and CS components provide create, delete and check
methods for PIT and CS entries. The createPITEntry method is invocated,
when a new Interest packet arrives. The deletePITEntry method is invocated
when the Interest is satisfied or lifetime exceeds the TTL. Both PIT and
CS components provide updating functionality in PIT and CS table. FIB
component has more updates when nodes exchange routing information
[35].

Figure 5.2 shows the architecture of NDN routing classes in the Routing
folder. From the architecture, we can view the dependencies between
modules. NDNRouter is a new class extended from the ActiveRouter, which
allows to deal with connection and transportation issues during running
time. NDNRouter also provides message-forwarding strategy, and handles
new NDN protocols.

5.1.6 PIFP Protocol

Probabilistic Interest Forwarding Protocol(PIFP) is a routing strategy for
Interest packet forwarding. It is derived from Prophet DTN protocol
[3]. PIFP provides a way to find the best node to send messages. This
protocol designed a new metric Delivery Predictability (DP) to evaluate the
possibility of encounters between nodes and content. DP is a combination
of frequency and freshness. Frequency describes how many times one

30 Chapter 5. Improving ChronoSync in ND-DT Network

FIGURE 5.3: Synchronization Model in ND-DT Netwotk

node meet with a specific content. Freshness reflects how many time this
information is updated. Nodes who carry Interest packets should forward
them to nodes with higher DP. This protocol is implemented in a PIFP class.
PIFP extends NDNRouter and uses all its data structures and functions.

5.1.7 Network Face

Node ID is used as the network faces in ICONE. When a node receives an
Interest packet, it records the requesting node ID and uses the ID as the
incoming face.

5.2 Impletementing ChronoSync in ND-DT Network

This section details the implementation of ChronoSync on three aspects:
Naming, Packet Handling Process, and its implementation on ICONE
simulator.

5.2.1 An Overview of ChronoSync in ND-DT Network

The main function of ChronoSync is to discover the database state change
in NDN. A detailed description was provided in Chapter 4. Here we only
focus on its specific implementation in ND-DT networks.

ND-DT network’s biggest feature is the intermittent connection. Nodes
carry data while moving in the network and transmit to other nodes when
they have connections established. Unlike wired NDN, data transmission
can only occur when there is a connection. An important issue is that syn-
chronization process may not occur immediately after a database change.
Database node should wait for a connection with other nodes. Therefore,
there is a possibility that data exchange will never occur if the node does
not contact other nodes at all. In such case, the synchronization will fail.

In order to implements ChronoSync protocol in ND-DT network, we
make the following assumptions: database nodes are not isolated. There is
at least one node that connects the database node and sends its messages
to the network. This means that there is at least one path between two

5.2. Impletementing ChronoSync in ND-DT Network 31

FIGURE 5.4: Structure of ChronoSync Based Application

database nodes. The data model is shown in Figure 5.3. Nodes Alice,Bob
and Ted are database nodes with large storage space. Nodes A,B,C are
relay nodes (there could be a lot of relay nodes in the network, we only
depicted three). Alice’s messages always arrive at Bob and Ted. The same
happens with Ted and Bob.

Figure 5.4 shows the structure of our ChronoSync based application
in ND-DT network. NDN layer is mainly used for data transmission in
ND-DT network. Above the NDN layer, we designed a ChronoSync layer,
which implements the ChronoSync protocol. It is independent of data
forwarding and transmitting method used in NDN layer. After finding out
the differences between the Database state, the application layer decides
whether to fetch the missing message from other Database nodes.

There are two main components in the ChronoSync layer : Digest Tree
and Digest Log. Digest Tree is used to compute the current database
state, while Digest Log records the database change of each synchronizing
process or data generate process.

ChronoSync uses a Merkly Digest Tree to record the current database
state. Merkly Tree was introduced in Chapter 3. The database state is
encrypted using SHA-256 and stored in the root of Digest Tree. A union
of the subsets of data generated by all producers represents the state of the
application database. To simplify the writing, ChronoSync assumes that
the producer generates data in sequence. As a result, we could use its name
prefix and the latest application data’s sequence to represent the state of
each producer. An example of database Merkly Tree structure is shown
in Figure 5.5. Each branch of the tree represents a state of a producer. The
name prefix and the latest sequence of the producer are stored in leafs of the
tree. Then, it is recursively applied the SHA-256 hash function to all child
nodes. The whole database state is at the root of the tree. The digest stored
in the root is called state digest. ChronoSync uses the Log Tree to record
the change database state digest and what kind of changes was made in the
database.

32 Chapter 5. Improving ChronoSync in ND-DT Network

FIGURE 5.5: An Example of Digest Tree Structure [30]

5.2.2 Naming Rules

Naming rules take an import role in Information Centric Network (ICN)
because both the forward decision and routing depend on names. By using
the name of the data packet, a router could figure out where to forward
the packet and which process to deal with this packet. To better implement
ChronoSync in ICONE, we integrate the naming rule of ChronoSync with
ICONE rule. We keep the philosophy of ChronoSync and only change a
format. Table 5.1 shows our new naming rules used in the implementation.
There is three type of naming rules used in ChronoSync: application data
names, synchronization data names and recovery synchronization data
names.

• ChronoSync Interest and ChronoSync Data

Outstanding Interest and ChronoSync Data are used to do the general
synchronization process in ChronoSync. ChronoSync Outstanding
Interest packet is used to broadcast the current database state and
drives the synchronization process. These packets start with the
broadcast prefix "NDNBroadcast". "Sync-ChronoSync" indicates the
application that generates this packet. The last part is the digest of
these database nodes. As for the response of Outstanding Interest,
ChronoSync Data uses a similar rule but with request Interest Digest
at the last part of the name.

• Recovery Interest and Recovery Data

Recovery Interest and Recovery Data is used to set the unknown
Interest Digest. Similar to Outstanding Interest and ChronoSync Data,
the name starts with "NDNBroadcast". It is followed by "Recovery-
ChronoSync", which predicts the recovery process of ChronoSync. The
last part is the received unknown digest .

• Application Data

Application Data is the real content generated by producers. The
first part identifies the synchronization group and the second part
indicates which application generates this content. The third part is
the name of the producer and the last part is the sequence number,

5.2. Impletementing ChronoSync in ND-DT Network 33

TABLE 5.1: Naming Rules used in ICONE

Type of Packet Examples

ChronoSync Interest NDNBroadcast/Sync-ChronoSync/
a1234as. . . .

ChronoSync Data NDNBroadcast/Sync-ChronoSync/
a1234as. . . .

Recovery Interest NDNBroadcast/Recovery-ChronoSync/
a1234as. . .

Recovery Data NDNBroadcast/Recovery-ChronoSync/
al234as. . .

Application Data DBGroup1001/ProduceApplication/
Alice/01

which indicates how many pieces of content were generated by this
producer.

5.2.3 Outstanding Interest Handing Process

Outstanding Interest Handing Process is an important part of the syn-
chronization. The process is shown in Pseudocode 1. ND-DT network is
a consumer-driven model network, the synchronization begins with the
Outstanding Interest generated by every distributed database node. Each
node multicast an Outstanding Interest carrying its current database digest.
When a database node receives the Outstanding Interest packet, it compares
with its own state digest. The following situations may occur:

• The state digest in Outstanding Interest packet is the same with its
current database digest

In this situation, we can conclude that the two database state are the
same. There is no need to do synchronization. But the face from
which the Interest is coming is added to the PIT. This record will help
on sending ChronoSync Data packet when there is a local database
change.

• The state digest in Outstanding Interest packet is a prior digest

The data digest is not the same as the current digest but there is a
match in the log. It means that this database node has a new database
state. It should send a synchronization message to the Outstand
Interest source node. This node will respond with a ChronoSync Data
packet carrying the database changes.

• The state digest in Outstanding Interest packet is an unknown
digest

It means that the database node which the Outstanding Interest come
from has a new state. So, the node that receives the Interest sends a
recovery packet to request the database changes.

34 Chapter 5. Improving ChronoSync in ND-DT Network

Pseudocode 1. ChronoSync Interest Handing Process

1: all database node which received an Outstanding Interest packet
2: Compare with its own database state digest
3: if the digests are the same then
4: Add source Face to the corresponding PIT
5: else if finds a match in its log then
6: Responds with a ChronoSync Data packet
7: else if unknown digest then
8: Send a Recovery Interest with the received digest

5.2.4 Recovery Interest Packet Handing Process

When a database node receives a recovery Interest packet, it checks its CS
(Content Store) or Log Tree. If there is a match, a recovery Data packet with
the state of the current database is sent as the response to this Interest. If
the node does not recognize the digest carried in recovery Interest, it just
ignores.

5.2.5 Data Packet Handing Process

The Data Packet Handing Process is shown in Pseudocode 2. When a
database node receives a distinct Data packet, it first checks whether the
packet is requested by itself. If not, it stores the Data packet in its CS.
Otherwise, it sends the Data packet to ChronoSync layer. The ChronoSync
layer recomputes the database digest and puts the changes in its Log
Tree. After that, ChronoSync notifies the application logic model about the
database change and leaves the decision on what to do to the application
layer. Finally, the node generates a new Outstanding Interest. If a recovery
packet is received, it compares the database state with its own database.
Updates the digest tree and adds an item to the digest log, if it is not an
out-of-date packet. After the change, it also notifies the application logic
model about the database change and sends a new Outstanding Interest.

5.2.6 Application Data Fetching

After the ChronoSync process, all database nodes have the same database
state. ChronoSync leaves the decision of how to deal with the change to the
application. The application could fetch the entire missing data message
or fetch a part of the data. Of course, the application could also ignore the
Database change. In the ND-DT network, fetching the entire database is
not a good decision, since the opportunity for data exchange is precious.
Nodes could exchange messages only when there is a connection between
them. During the disconnection time, nodes store the content temporary.
The nodes carry content during the move and forward it when they reach
a node closer to the destination. So this network is not suitable to fetch the
entire database content when the network is large.

5.2. Impletementing ChronoSync in ND-DT Network 35

Pseudocode 2. Data Packet Handing Process in ChronoSync

1: all database nodes received Data Packet
2: If data packet was requested by this database node then
3: If it is ChronoSync Data Packet then
4: Change Local Digest Tree; Change log
5: Notify application layer about the change;
6: Generate new Outstanding Interest;
7: else if it is Recover Data Packet
8: if not repeat content packet then
9: Change Local Digest Tree; Change log;
10: Notify application layer about the change;
11: Generate new Outstanding Interest;
12: else delete packet;

5.2.7 Implementation of ChronoSync in ICONE Simulator

This section introduces the implementation of ChronoSync protocol in
ICONE simulator. The most important part of implementation is the
message reception process, which shown in Figure 5.6.

When a node receives a message, it checks the type of packet. After that,
it handles the message according to the packet processing.

When an Interest packet is received, the message reception process first
checks in CS component whether there is a match. If so, the node answers
with the corresponding Data packet. Otherwise, it checks whether there is
a ChonoSync layer installed on the node. If so, the NDN layer sends the
message to the ChronoSync layer.

When the node receives a Data packet, it checks its PIT to find whether
this packet was requested by this node. If there is a ChronoSync application
installed and Data packet was requested by this node, then it sends the Data
packet to the application layer. Otherwise, the normal execution of Data
packet is done.

5.2.8 Disadvantages of ChronoSync

ChronoSync uses a recovery process that brings back the missing informa-
tion during network partitions periods.

The Outstanding Interest only brings the encrypted digest. A database
node only knows that the database has changed when it receiving an
unknown Interest packet. It has no idea of the change has been made. To get
the specific change of database, the node must send a recovery packet and
wait for recovery reply brings the change back. Node needs to wait a period
if time to get the database change. Since ND-DT network is characterized
by disconnections and long delays, network partitions and reconciliations
often occur in a short period of time. Therefore, a database node needs to
perform the recovery process frequently. Due to network delay, the node
needs to wait more time to get the database change.

36 Chapter 5. Improving ChronoSync in ND-DT Network

FIGURE 5.6: ChronoSync Flow Diagram in ND-DT
Network

5.3 An Improvement of ChronoSync

5.3.1 An Overview of improved ChronoSync

To better suit the frequent network partition in ND-DT networks, we
improved ChronoSync protocol. The recovery process is replaced with a
more active interaction. A database node will inform others when there is
database change caused by the local machine. Other database nodes just
ignore the packet and wait for the notification when an unknown Interest
packet is received.

Three components are used in the IChronoSync: Digest Tree, log of
changes and log of newly generated data. The function of Digest Tree
and log of changes is the same as ChronoSync. Digest Tree is used to
store current database state and the log of changes is responsible for
recording the change of database. The log of newly generated data is a new
component used to record the content generated by local database node.

There are three type of Interest packets in IChronoSync : Outstanding
Interest, Application Data Interest, and Something New Interest. Outstand-
ing Interest and Application Data Interest were introduced in the previous
chapter. Something New Interest is used to inform other synchronization
members about the new data.

5.3. An Improvement of ChronoSync 37

TABLE 5.2: An Example of Something New Interest (SNI)
in Improved ChronoSync

Type of Packet Examples

Something New Interest NDNBroadcast/somethingnew/ Alice

Pseudocode 3. Something New Interest Packet Handing Process
in Improved ChronoSync

1: all database nodes received Something New Interest Packet
2: if not out-of-date Something New Interest then
3: Compare the state in Interest packet with its own state
4: if state of Interest packet is the same or a previous one;
5: Ignore this Interest
6: else
7: Change digest tree; Change log;
8: Notifies application layer about the change
9: Satisfy Outstanding Interest
10: Sending synchronization Data Packet
11: Sending new Outstanding Interest
12: else
13: delete packet

5.3.2 Naming Rule

The Outstanding Interest and application Interest use the same naming rule
as ChronoSync. The Something New Interest packet was added in this
improved solution. An example of its naming rule is shown in Table 5.2.
"NDNBroadcast" is the multicast domain and"Somethingnew" indicates the
type of this packet. "Alice" identifies the producer of this packet.

5.3.3 Outstanding Interest Handing Process

Outstanding Interest Handing Process is the same as ChronoSync when
receiving the same digest and a prior digest. The IChronosync just ignores
the Interest when an unknown Outstanding Interest is received. It leaves the
recovery process to the Something New process.

5.3.4 Something New Interest Handing Process

The process of receiving Something New Interest is shown in Pseudocode 3.
When the database node receives a Something New Interest, it first checks
and deletes the out-of-date Something New Interest. This could assure that
every node only keeps one Something New Interest for each producer. Then
the node checks if it is a database node. If so, changes the database
according to the state carrying in this packet. Otherwise, it only does the
normal forwarding of Interests.

39

Chapter 6

Analysis and Discussion of the
Simulation Results

This chapter compares the IChronoSync protocol with ChronoSync proto-
col. They are evaluated and tested through three simulation scenarios. To
make the results simple and understandable, tables and figures along with
detailed analysis will be used in this chapter.

Section 6.1 describes the settings used in all simulation scenarios.
Section 6.2 gives a detailed description of the three different simulation
scenarios. Section 6.3 covers the corresponding results and analysis, and
Section 6.4 discusses the results.

6.1 Configuration

To understand the characteristics and tradeoffs of ChronoSync protocol
and IChronoSync protocol, we conducted a number of simulation-based
experiments using ICONE simulator, which was introduced in Chapter
5. The experiments are divided into three different scenarios. For each
concrete scenario, the same configuration parameters were used for both
protocols. All simulation scenarios correspond to the map of Helsinki,
Finland with streets, pavements, and roads. The simulation area is 4500m
x 3400m. The PIFP was used as the data transport protocol, which is
a Probabilistic Interest Forwarding Protocol used in ND-DT network. A
summary of the common settings is shown in Table 6.1.

The simulation scenario consists of groups of nodes that can be cars,
pedestrians, and trams. Nodes move according to a Movement Model
established in the configurations files. In our scenarios, pedestrians and
cars move according to Shortest Path Map-Based Movement Model, while
trams are forced to move according to predefined tracks. The speed
of movement is set as follows: pedestrians move with a random speed
selected from 0.5 to 1.5 m per second, cars and trams move with a random
speed from 2.7 to 13.9 m per second and 10 to 30 m per second, respectively.
All nodes use wireless interfaces, both Bluetooth interface and high speed
interface were selected in these scenarios. There are two kinds of interfaces
available in ICONE: simple interface and high speed interface. A simple
interface has a transmission rate of 200 kbps within 10 meters while a
high-speed interface has a rate of 10 Mbps in 100 meters. We set simple
interfaces for pedestrians, cars and high-speed interfaces for trams. The
storage space is an important parameter in our synchronization solutions.
Usually, database nodes have a larger storage space than transmission
nodes. Generally, the larger store space the better. Since our ND-DT

40 Chapter 6. Analysis and Discussion of the Simulation Results

TABLE 6.1: Summary of ICONE Configuration used in all
Scenarios

Parameter Value X

Simulation Time 96400s (Near a day 26,6h)
Simulation Areas 4500 m*3400 m
Movement Model Pedestrians: Shortest Path Map-based Movement Model

Cars: Shortest Path Map-based Movement Model
Tram: Map-based Movement Model

Speed of Node Pedestrians: 0.5 to 1.5 (m/s)
Cars: 2.7 to 13.9 (m/s)
Tram: 10 to 30 (m/s)

Messages TTL 8 hour
Radio Interface Bluetooth and highspeed Interface
Transmission Range Pedestrians and cars: 10m

Tram: 100 m
Transmission Rate Simple Interface: 200kbps

High Speed Interface: 10Mbps
Storage Space Database node: 400MB

Transmission Nodes: 100MB
Database Nodes Stationary Pedestrian

network is a small region network, a small database storage space is
enough. So, the storage space of database nodes is set to 400 MB and
transmission nodes is set to 100 MB.

6.2 Simulation Scenarios

In order to study the impact of network density on the two synchronization
protocols, we implemented two simple simulation scenarios with three
database nodes and a group of pedestrians, cars and trams moving in
simulation area. Then, a scenario with 20 database nodes and a group
of pedestrians, cars and trams were used to test the performance of
synchronization when adding database nodes. In these scenarios, database
nodes are fixed in a specific location (chosen manually). Moving nodes are
only responsible for data transmission and do not need to synchronize. A
summary of the three scenarios is presented in Table 6.2.

The dense scenario consists of two groups of pedestrians (each one has
thirty-nine nodes), one group of cars (thirty-eight nodes) and two groups
of trams (each has two nodes). The total number of nodes is 120.

The number of nodes used in sparse network scenario was reduced to
40. It consists of two groups of pedestrians (each has fifteen nodes), one
group of cars (eight nodes) and two groups of trams (one for each).

Regarding the scenario of increasing database nodes, we tested with 20
database nodes in the dense network.

Before the simulation starting, there is no content in the database nodes,
and the digest is null. Database nodes generate Outstanding Interest when
the simulation begins. Database nodes generate content over a period of

6.3. Simulation Results 41

TABLE 6.2: Summary of Simulation Scenarios

Scenarios Number of Nodes

Dense Scenario Database Nodes: 3
Pedestrians: 39*2
Cars: 38*1
Trams: 2*2

Sparse Scenario Database Nodes: 3
Pedestrians: 15*2
Cars: 8*1
Trams: 1*2

20 database nodes Scenario Database Nodes: 20
Pedestrians: 39*2
Cars: 38*1
Trams: 2*2

time. After 11500 seconds the database nodes stop the data generation. The
network achieves its first steady state. At 24400 seconds, one of the database
nodes starts generating content. After a while, the other two databases
begin to generate content. They end content generation at 53380s, which
brings the second steady state. After 67300 seconds, the database nodes
continue the content generation.

For each of the scenario described above, we run 20 simulations with
different seeds and used the arithmetic average as the final result.

The dense and sparse scenarios were selected to evaluate the perfor-
mance of ChronoSync and IChronoSync in such conditions. The third
scenario is used to test the performance of both protocols when increasing
the number of database nodes.

6.3 Simulation Results

This section shows the results obtained in the three scenarios. After that,
the impact of network density and database nodes number is analysed.

The evaluation metric is often critical when evaluating the performance
of protocols. An evaluation metric may be naturally appropriated for one
case, but not for the others. For example, the latency time is important for
real-time networks but not for DTNs. An appropriate evaluation metrics
will help to clarify the network performance. In the following, we will
describe the metrics used in evaluating IChronoSync and ChronoSync.

• Time to Synchronization

Time to synchronization is one of the most important criteria to
measure the performance of synchronization protocols. It can directly
affect the communication performance of the entire network.

• Number of Generated Outstanding Interests

Number of Generated Outstanding Interest is the total number of
Outstanding Interest packet generated by all database nodes. This

42 Chapter 6. Analysis and Discussion of the Simulation Results

kind of packet is only generated when there is a state change in the
network database. Therefore, we could consider that the distributed
database achieves a stable state when this metric keeps unchanged for
a long time period.

• Number of Satisfied Outstanding Interests

Number of Satisfied Outstanding Interests is the total number of
satisfied database synchronization Interests.

There are two kinds of situations: 1) Interest satisfied by receiving
ChronoSync Data packets (which means database changed by another
database node); 2) Interest satisfied by local application data (which
means there is new content generated by the local database node).

• Number of Generated Recovery Interest

Number of Generated Recovery Interest is the total number of recov-
ery Interest packet generated by all database nodes. This kind of
packet is only generated when database node receives an unknown
Interest packet.

• Number of Satisfied Recovery Interests

Number of Satisfied Recovery Interests is the total number of recovery
Interests satisfied. This metric represents how many times the
database changes are caused by the recovery process.

• Number of Generated Something New Interests

Number of Generated Something New Interest is the total number
of Something New Interest packet generated by all database nodes.
This kind of packet is only generated when the local database node
generates new content.

• Number of Satisfied Something New Interests

Number of Satisfied Something New Interests is the total number of
satisfied Something New Interests. This metric indicates the number
of times the database changed by receiving Something New Interest
packets.

To evaluate the impact of network density on the data synchronization,
two different scenarios have been created, which were detailed in section
6.2.

Figure 6.1 shows the synchronization time in both sparse and density
scenarios. For each scenario, twenty simulations were run. The bar graph
shows the average synchronization time and the vertical line is the 95%
confidence interval.

Firstly, we figure out that, the sparse network needs more time to finish
synchronization in both scenarios. This is easily understood because nodes
have more connection opportunities in the dense network. Therefore, the
data transmit chance is greater when compared with sparse networks.

Secondly, IChronoSync consume less time to finish synchronization in
all the scenarios. What’s more, IChronoSync decreasing about 83% of the
synchronization time while Chronosync decrease 62% when the simulation
changed from sprase network to dense network. Therefore, IChronoSync

6.3. Simulation Results 43

FIGURE 6.1: Time to Synchronize in Dense and Sparse
Scenarios

has a better performance especially in dense network. This is mainly due
to the fact that IChronoSync decreases the interaction time of the recovery
process by using only one interaction with the database to finish the state
synchronization. However, ChronoSync needs to request and wait for the
reply from other database nodes when conducting recovery. Since data
exchange opportunity is precious in ND-DT network, this change brings
great improvement in the performance.

The total number of packets generated and satisfied in the dense
scenario is shown in Figure 6.2. We can figure out that the number of
Outstanding Interest Satisfy (Data packet received in figure) plus the
Recovery Interest Satisfy (recovery Data packet received or Something New
Interest received in IChronoSync) is approximately equal to the Number of
Outstanding Interest Created. Sometimes Number of Outstanding Interest
Created may be a little bigger than the sum. This occurs when the recovery
process (or Something New process) is working. One recovery Data packet
(Something New Interest packets) can carry several changes in a single
packet.

The results have shown that IChronoSync generates 27% fewer packets
than ChronoSync. In Chronosync, any database node that receives an
unknown database digest generates a recovery packet. In our improved
solution, only the nodes who cause database change generate packet. Due
to the intermittent connection and the long delay of ND-DT network, nodes
request recovery synchronization frequently. Therefore, our IChronoSync
has a better performance in the aspect of saving bandwidth.

Figure 6.3 shows the result of synchronization time with 20 database
nodes. Apparently, both ChronoSync and IChronoSync need more time
to finish the synchronization. In the first and second simulation tests, the
additional time require to finish the database synchronization was lower
with the improved solution than with ChronoSync. For instance in the first
test, ChronoSync require additional average time of 20000 to 15000 seconds
to finish synchronization, but the improved solution require only 3000

44 Chapter 6. Analysis and Discussion of the Simulation Results

(a) ChronoSync (b) Improved ChronoSync

FIGURE 6.2: Interest and Satisfy Packets Created in Dense
Scenario

seconds. In the third synchronization test, our improved solution required
five hundred seconds more, but still finished the synchronization first than
ChronoSync. However, the confidence interval significantly increased in
both protocols. This means that there is a large dispersity in the results.
It’s not difficult to understand why this occured. ND-DT network nodes
move randomly and packet transmission between database nodes become
complex. Some database nodes may become out of manage during the
synchronization time. Each result shown in figure 6.3 is the time when all
database nodes finish the synchronization. Therefore, the results present
some discrepancies.

6.4 Discussion of Results

In this section, the IChronoSync protocol is evaluated and compared with
the ChronoSync from the simulation results.

IChronoSync needs less time to finish the synchronization in both dense
and sparse scenarios. It has a better performance especially in dense
scenario. This is mainly due to the characteristics of ND-DT networks.
ND-DT network is well-known for intermittent connections, unexpected
mobility and long transmission delays.

Nodes may be divided into different groups due to the intermittent
connections and synchronize respectively. Nodes from different groups
do not recognize each other’s digest. Moreover, the long delays and out
of order transmission can also cause other New Outstanding Interest arrive
first than Data packet. This two situations cause the Recovery (Chronosync)
Something New (IChronosync) process working.

IChronosync can finish data synchronization by using only one Some-
thing New interaction. It could be more useful when there is few commu-
nication opportunity. Therefore, The IChronoSync consumes less time to
finish synchronization tasks in all scenarios. What’s more, in three database
scenarios, IChronoSync decreasing about 83% of the synchronization time
while Chronosync decreases 62% when changed from sparse network to

6.4. Discussion of Results 45

FIGURE 6.3: Time to Synchronize when Database Nodes
Increases

dense network. In IChronoSync, only the database nodes that generate
content creates a Something New Interest packet. Therefore, IChronoSync
create 27% fewer packets than ChronoSync. This characteristic helps to save
the bandwidth, making it avaiable to often communications packets.

Therefore, we conclude that IChronoSync is more suitable for dis-
tributed database synchronization in ND-DT networks than ChronoSync.

47

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The distributed database synchronization problem is always a hot research
topic in computer networks since it could minimize data inconsistency and
help improve data accessibility.

This work contributed to improve the database synchronization in ND-
DT networks.

ND-DT network is a new and promising future network architecture.
It integrates the current popular Delay Tolerant Network (DTN) with the
Named Data Network (NDN) by using Named Data on top of DTN, that
is to say, it implements DTN scenarios in Named Data Network. Just like
DTN, ND-DT network may suffer intermittent connections and long delays
during communications.

Data inconsistency always exists in ND-DT networks. Therefore, the
database synchronization becomes particularly important. The distributed
databases in ND-DT network are maintained by a group of fixed and
moving nodes. In our experiments, databases are supported in fixed nodes.

We reviewed the set reconciliation and file synchronization problems,
which provided the theoretical concepts for distributed database syn-
chronization. A few set reconciliation methods, including Log-based,
Naïve Approach, Characteristic Polynomial, Bloom Filters, Approximate
Reconciliation Trees, and Invertible Bloom Lookup Table methods were
explained.

Then, we analyzed several existing file synchronization algorithms and
solutions on the Internet and solutions for NDN and DTN. We selected a
popular and interesting protocol (ChronoSync) in NDN and implemented
this protocol in our ND-DT network. Finally, we made some improvements
on ChronoSync to adapt better to ND-DT networks.

To evaluate ChronoSync and Improved ChronoSync protocols, we
implemented them in ICONE, an ND-DTN simulator, and tested them
in different scenarios. We first evaluated their performance in dense
and sparse networks, and then we increased the database nodes. For
each scenario, we run twenty times simulation with different seeds and
calculated the average results and corresponding confidence intervals.

The result of three database nodes shows that the improved ChronoSync
consumes less time to finish synchronization task in all scenarios. What’s
more, IChronoSync decreasing about 83% of the synchronization time
while ChronoSync decrease 62% when simulation changed from sparse
network to dense network. Therefore, IChronoSync performs better even
in the dense network. What’s more, the improved solution generates

48 Chapter 7. Conclusion and Future Work

27% fewer packets than ChronoSync. Although the confidence interval
increased significantly in both protocols when increasing the Database
nodes to twenty, the improved ChronoSync still require less time to finish
synchronization. Therefore, improved ChronoSync performs better than
ChronoSync.

7.2 Future Work

This work can only be viewed as the beginning of a research on distributed
database synchronization in ND-DT network. Many works could be done
in the future.

As referred in Chapter 5, the synchronize Interests packets are sent to all
nodes that meet this message, while the mobility of ND-DT network nodes
always has some regular rules. For example, cars must drive on roads, and
tram can only move on the rails.

The storage capacity of nodes is limited and the data transmission
opportunities are quite precious in ND-DT networks. Besides, redundant
data transmission wastes the power and storage space of node. In the next,
we can improve synchronization process by multicasting Interest packet to
a group of nodes, and not to the entire network.

We can also migrate the implemented algorithms to devices such
as mobile phones, laptop, desktop and servers and use them in a real
prototype application.

49

Appendix A

Default Settings for Simulation

#
Default settings for the simulation
#
Scenario.name = Scenario.name = default_scenario
Scenario.simulateConnections = true
Scenario.updateInterval = 0.1
21600s == 6h
43200s == 12h
86400s == 1d
172800s == 2d
259200s == 3d
345600s == 4d
Scenario.endTime = 97200
Define 8 different node groups
Scenario.nrofHostGroups = 8
NDNRouter.secondsInTimeUnit = 30
NDNRouter.sizeHigh = 350
NDNRouter.sizeLow = 250
#
Interface-specific settings:
type : which interface class the interface belongs to
For different types, the sub-parameters are interface-specific
For SimpleBroadcastInterface, the parameters are:
transmitSpeed : transmit speed of the interface (bytes per second)
transmitRange : range of the interface (meters)
"Bluetooth" interface for all nodes
btInterface.type = SimpleBroadcastInterface
Transmit speed of 2 Mbps = 250kBps
btInterface.transmitSpeed = 250k
btInterface.transmitRange = 10
High speed, long range, interface for group 4
highspeedInterface.type = SimpleBroadcastInterface
highspeedInterface.transmitSpeed = 10M
highspeedInterface.transmitRange = 100
Group-specific settings:
groupID : Group’s identifier. Used as the prefix of host names
nrofHosts: number of hosts in the group
movementModel: movement model of the hosts (valid class name
from movement package)

50 Appendix A. Default Settings for Simulation

waitTime: minimum and maximum wait times (seconds) after
reaching destination
speed: minimum and maximum speeds (m/s) when moving on a path
bufferSize: size of the message buffer (bytes)
router: router used to route messages (valid class name from routing
package)
activeTimes: Time intervals when the nodes in the group are active
(start1, end1, start2, end2, ...)
msgTtl : TTL (minutes) of the messages created by this host group,
default=infinite
Group and movement model specific settings
pois: Points Of Interest indexes and probabilities (poiIndex1, poiProb1,
poiIndex2, poiProb2, ...)
for ShortestPathMapBasedMovement
okMaps : which map nodes are OK for the group (map file indexes),
default=all
for all MapBasedMovent models
routeFile: route’s file path - for MapRouteMovement
routeType: route’s type - for MapRouteMovement
Common settings for all groups
Group.movementModel = ShortestPathMapBasedMovement
Group.router = PIFP
Group.bufferSize = 50M
Group.waitTime = 0, 120
All nodes have the bluetooth interface
Group.nrofInterfaces = 1
Group.interface1 = btInterface
Walking speeds
Group.speed = 0.5, 1.5
Message TTL of 300 minutes (5 hours)
Group.msgTtl = 500
Group.initialEnergy = 10000
Group.scanEnergy = 0.1
Group.transmitEnergy = 0.2
Group.scanResponseEnergy = 0.1
Group.baseEnergy = 0.01
EnergyLevelReport.granularity = 1.0
Group.nrofHosts = 6
#
group1 group2 group3 are database nodes
Group1.groupID = p
Group1.bufferSize = 400M
Group1.nrofHosts = 1
Group1.SynGroupID=DBGroup1001
Group1.nrofApplications = 1
Group1.application1 = ChronoSyncImprove
ChronoSyncImprove.type=ChronoSyncImprove
Group1.movementModel = StationaryMovement
#Dababase1’s Location
Group1.nodeLocation = 1295,705
Group1.nrofInterfaces = 1

Appendix A. Default Settings for Simulation 51

Group1.interface1 = btInterface
Group2.groupID = p
Group2.bufferSize = 400M
Group2.nrofHosts = 1
Group2.SynGroupID=DBGroup1001
Group2.nrofApplications = 1
Group2.application1 = ChronoSyncImprove
ChronoSyncImprove.type=ChronoSyncImprove
Group2.movementModel = StationaryMovement
#Dababase2’s Location
Group2.nodeLocation = 3074,385
Group2.nrofInterfaces = 1
Group2.interface1 = btInterface
Group3.groupID = p
Group3.bufferSize = 400M
Group3.nrofHosts = 1
Group3.SynGroupID=DBGroup1001
Group3.nrofApplications = 1
Group3.application1 = ChronoSyncImprove
ChronoSyncImprove.type=ChronoSyncImprove
Group3.movementModel = StationaryMovement
#Dababase1’s Location
Group3.nodeLocation = 2308,1862
Group3.nrofInterfaces = 1
Group3.interface1 = btInterface
group4 specific settings
#group4 (pedestrians) specific settings
Group4.groupID = p
Group4.nrofHosts = 39
Group4.bufferSize = 400M
Group4.SynGroupID=DBGroup1002
Group4.okMaps = 1
Group4.movementModel=ShortestPathMapBasedMovement
#group5 (pedestrians) specific settings
Group5.groupID = p
Group5.nrofHosts = 39
Group5.bufferSize = 400M
Group5.SynGroupID=DBGroup1002
Group5.okMaps = 1
Group5.movementModel=ShortestPathMapBasedMovement
#group6 tram’s specific settings
Group6.groupID = t
Group6.bufferSize = 100M
Group6.SynGroupID=DBGroup1002
Group6.movementModel = MapRouteMovement
Group6.routeFile = data/tram4.wkt
Group6.routeType = 2
Group6.waitTime = 10, 30
Group6.speed = 3, 5
Group6.nrofInterfaces = 2
Group6.interface1 = btInterface

52 Appendix A. Default Settings for Simulation

Group6.interface2 = highspeedInterface
Group6.nrofHosts = 2
Group6.initialEnergy = 15000
#group7 tram’s specific settings
Group7.groupID = t
Group7.bufferSize = 100M
Group7.SynGroupID=DBGroup1002
Group7.movementModel = MapRouteMovement
Group7.routeFile = data/tram10.wkt
Group7.routeType = 2
Group7.waitTime = 10, 30
Group7.speed = 3, 5
Group7.nrofHosts = 2
Group7.initialEnergy = 15000
#group8 car’s specific settings
Group8.groupID = c
cars can drive only on roads
Group6.okMaps = 1
10-50 km/h
Group8.speed = 2.7, 13.9
Group8.bufferSize = 50M
Group8.SynGroupID=DBGroup1002
Group8.nrofHosts = 38
#
Message creation parameters
How many event generators
Events.nrof = 1
Events1.class = ExternalEventsQueue
Events1.filePath = ChronoSyncmessage.txt
Events1.prefix = [A]
#
Movement model settings
seed for movement models’ pseudo random number generator
(default = 0)
MovementModel.rngSeed = 1
World’s size for Movement Models without implicit size (width,

height;
meters)
MovementModel.worldSize = 4500, 3400
How long time to move hosts in the world before real simulation
MovementModel.warmup = 1000
MovementModel seeds used in batch Model
MovementModel.rngSeed = [1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20]
#
Map based movement -movement model specific settings
MapBasedMovement.nrofMapFiles = 4
MapBasedMovement.mapFile1 = data/roads.wkt
MapBasedMovement.mapFile2 = data/main_roads.wkt
MapBasedMovement.mapFile3 = data/pedestrian_paths.wkt
MapBasedMovement.mapFile4 = data/shops.wkt
Reports - all report names have to be valid report classes

Appendix A. Default Settings for Simulation 53

#
how many reports to load
Report.nrofReports = 1
length of the warm up period (simulated seconds)
Report.warmup = 0
default directory of reports (can be overridden per Report with output
setting)
Report.reportDir = reports/
Report classes to load
Report.report1 = NamedDataReport
Default settings for some routers settings
Optimization settings – these affect the speed of the simulation
see World class for details.
Optimization.cellSizeMult = 5
Optimization.randomizeUpdateOrder = true
GUI settings
GUI underlay image settings
GUI.UnderlayImage.fileName = data/helsinki_underlay.png
Image offset in pixels (x, y)
GUI.UnderlayImage.offset = 64, 20
Scaling factor for the image
GUI.UnderlayImage.scale = 4.75
Image rotation (radians)
GUI.UnderlayImage.rotate = -0.015
how many events to show in the log panel (default = 30)
GUI.EventLogPanel.nrofEvents = 100

55

Bibliography

[1] Augustin Chaintreau et al. “Impact of human mobility on oppor-
tunistic forwarding algorithms”. In: IEEE Transactions on Mobile Com-
puting 6.6 (2007), pp. 606–620.

[2] Gareth Tyson, John Bigham, and Eliane Bodanese. “Towards an
information-centric delay-tolerant network”. In: Computer Commu-
nications Workshops (INFOCOM WKSHPS), 2013 IEEE Conference on.
IEEE. 2013, pp. 387–392.

[3] Paulo Duarte et al. “A Probabilistic Interest Forwarding Protocol for
Named Data Delay Tolerant Networks”. In: International Conference
on Ad Hoc Networks. Springer. 2015, pp. 94–107.

[4] Forrest Warthman et al. Delay-and disruption-tolerant networks (DTNs).
A Tutorial. v. 0 Interplanetary Internet Special Interest Group. July
2012.

[5] Kevin Fall. “A delay-tolerant network architecture for challenged
internets”. In: Proceedings of the 2003 conference on Applications, tech-
nologies, architectures, and protocols for computer communications. ACM.
2003, pp. 27–34.

[6] Stephan Olariu and Michele C Weigle. Vehicular networks: from theory
to practice. Crc Press, 2009.

[7] Kevin Fall, Wei Hong, and Samuel Madden. Custody transfer for
reliable delivery in delay tolerant networks. Tech. rep. Citeseer, July 2003.

[8] Tracy Camp, Jeff Boleng, and Vanessa Davies. “A survey of mobility
models for ad hoc network research”. In: Wireless communications and
mobile computing 2.5 (2002), pp. 483–502.

[9] Frans Ekman et al. “Working day movement model”. In: Proceedings
of the 1st ACM SIGMOBILE workshop on Mobility models. ACM. 2008,
pp. 33–40.

[10] Yue Cao and Zhili Sun. “Routing in delay/disruption tolerant net-
works: A taxonomy, survey and challenges”. In: IEEE Communications
surveys & tutorials 15.2 (2013), pp. 654–677.

[11] Amin Vahdat, David Becker, et al. Epidemic routing for partially con-
nected ad hoc networks. Tech. rep. CS-200006: Duke University, Apr.
2000.

[12] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S
Raghavendra. “Spray and wait: an efficient routing scheme for in-
termittently connected mobile networks”. In: Proceedings of the 2005
ACM SIGCOMM workshop on Delay-tolerant networking. ACM. 2005,
pp. 252–259.

[13] John Burgess et al. “MaxProp: Routing for Vehicle-Based Disruption-
Tolerant Networks.” In: INFOCOM. Vol. 6. 2006, pp. 1–11.

56 BIBLIOGRAPHY

[14] Anders Lindgren, Avri Doria, and Olov Schelén. “Probabilistic rout-
ing in intermittently connected networks”. In: ACM SIGMOBILE
mobile computing and communications review 7.3 (2003), pp. 19–20.

[15] Alexander Afanasyev et al. “Named Data Networking”. In: ACM
SIGCOMM Computer Communication Review 44.3 (2014), pp. 66–73.

[16] Van Jacobson et al. “Networking named content”. In: Proceedings of
the 5th international conference on Emerging networking experiments and
technologies. ACM. 2009, pp. 1–12.

[17] Lixia Zhang et al. “Named data networking (ndn) project”. In:
Relatório Técnico NDN-0001, Xerox Palo Alto Research Center-PARC
(2010).

[18] Cheng Yi et al. “A case for stateful forwarding plane”. In: Computer
Communications 36.7 (2013), pp. 779–791.

[19] Yek Loong Chong and Youssef Hamadi. “Distributed Log-based
Reconciliation”. In: Proceedings of the 2006 conference on ECAI 2006:
17th European Conference on Artificial Intelligence August 29–September
1, 2006, Riva del Garda, Italy. IOS Press. 2006, pp. 108–112.

[20] David Eppstein et al. “What’s the difference?: efficient set reconcilia-
tion without prior context”. In: ACM SIGCOMM Computer Communi-
cation Review. Vol. 41. 4. ACM. 2011, pp. 218–229.

[21] Yaron Minsky, Ari Trachtenberg, and Richard Zippel. “Set recon-
ciliation with nearly optimal communication complexity”. In: IEEE
Transactions on Information Theory 49.9 (2003), pp. 2213–2218.

[22] Burton H Bloom. “Space/time trade-offs in hash coding with allow-
able errors”. In: Communications of the ACM 13.7 (1970), pp. 422–426.

[23] Andrei Broder and Michael Mitzenmacher. “Network applications of
bloom filters: A survey”. In: Internet mathematics 1.4 (2004), pp. 485–
509.

[24] Li Fan et al. “Summary cache: a scalable wide-area web cache sharing
protocol”. In: IEEE/ACM Transactions on Networking (TON) 8.3 (2000),
pp. 281–293.

[25] John Byers, Michael Mitzenmacher, and Jeffrey Considine. Fast ap-
proximate reconciliation of set differences. Tech. rep. Boston University
Computer Science Department, 2002.

[26] John W Byers et al. “Informed content delivery across adaptive
overlay networks”. In: IEEE/ACM Transactions on Networking (TON)
12.5 (2004), pp. 767–780.

[27] Ralph C Merkle. “Protocols for Public Key Cryptosystems.” In: IEEE
Symposium on Security and privacy. Vol. 122. 1980.

[28] Michael T Goodrich and Michael Mitzenmacher. “Invertible bloom
lookup tables”. In: Communication, Control, and Computing (Allerton),
2011 49th Annual Allerton Conference on. IEEE. 2011, pp. 792–799.

[29] Andrew Tridgell. “Efficient algorithms for sorting and synchroniza-
tion”. PhD thesis. Australian National University, Apr. 2000.

BIBLIOGRAPHY 57

[30] Zhenkai Zhu and Alexander Afanasyev. “Let’s chronosync: Decen-
tralized dataset state synchronization in named data networking”.
In: 2013 21st IEEE International Conference on Network Protocols (ICNP).
IEEE. 2013, pp. 1–10.

[31] Alexander Afanasyev et al. “The story of chronoshare, or how NDN
brought distributed secure file sharing back”. In: Mobile Ad Hoc and
Sensor Systems (MASS), 2015 IEEE 12th International Conference on.
IEEE. 2015, pp. 525–530.

[32] Jiaxi Jin et al. “Prioritized data synchronization for disruption toler-
ant networks”. In: MILCOM 2012-2012 IEEE Military Communications
Conference. IEEE. 2012, pp. 1–8.

[33] Wei Gao et al. “Supporting cooperative caching in disruption tolerant
networks”. In: Distributed Computing Systems (ICDCS), 2011 31st
International Conference on. IEEE. 2011, pp. 151–161.

[34] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. “The ONE simulator
for DTN protocol evaluation”. In: Proceedings of the 2nd interna-
tional conference on simulation tools and techniques. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering). 2009, p. 55.

[35] Paulo Alexandre Gomes Duarte. “Dados nomeados para redes toler-
antes a atrasos”. MA thesis. University of Minho, Oct. 2014.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Objectives
	Main Contribution
	Structure of This Dissertation

	Delay Tolerant and Named Data Networks
	Delay Tolerant Network
	Concept of DTN
	DTN Architecture
	Characteristics of DTN
	Custody Transfer
	Movement Models
	Routing Protocols in DTN

	Named Data Network
	NDN Architecture
	Forwarding Strategy

	 File Synchronization
	Set Reconciliation
	Log-based Reconciliation
	Exact Method
	Set Reconciliation with High Probability

	File Synchronization

	Synchronization on NDN and DTN
	ChronoSync Protocol and ChronoShare
	Prioritized Data Synchronization for DTN
	CPI Synchronization Algorithm
	Protocol: Priority CPI (P-CPI)

	A Cooperative Caching Approach in DTN
	NCL Selection Method
	Caching Scheme
	Cache Replacement

	Improving ChronoSync in ND-DT Network
	Simulation Platform
	ICONE Components
	Event Generator
	Movement Model
	NDN Reports
	NDN Router
	PIFP Protocol
	Network Face

	Impletementing ChronoSync in ND-DT Network
	An Overview of ChronoSync in ND-DT Network
	Naming Rules
	Outstanding Interest Handing Process
	Recovery Interest Packet Handing Process
	Data Packet Handing Process
	Application Data Fetching
	Implementation of ChronoSync in ICONE Simulator
	Disadvantages of ChronoSync

	An Improvement of ChronoSync
	An Overview of improved ChronoSync
	Naming Rule
	Outstanding Interest Handing Process
	Something New Interest Handing Process

	Analysis and Discussion of the Simulation Results
	Configuration
	Simulation Scenarios
	Simulation Results
	Discussion of Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Default Settings for Simulation
	Bibliography

