
Characterizations and representations of core and dual

core inverses in rings

Jianlong Chena, Huihui Zhua, Pedro Patŕıciob, Yulin Zhangb
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Abstract

In this paper, double commutativity and reverse order law for core inverse
are considered. Then, new characterizations of Moore-Penrose inverse are
given by one-sided invertibilities in a ring. Also, we characterize core inverse
and dual core inverse of a regular element by units in a ring R. Moreover,
their expressions are shown.
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1. Introduction

In this paper, R means an associative ring with unity 1. We say that
a ∈ R is (von Neumann) regular if there exists x ∈ R such that axa = a.
Such x is called an inner inverse of a, and is denoted by a−. Let a{1} be the
set of all inner inverses of a. Recall that an element a ∈ R is said to be group
invertible if there exists x ∈ R such that axa = a, xax = x and ax = xa.
The element x satisfying the conditions above is called a group inverse of a.
The group inverse of a is unique if it exists, and is denoted by a#.

An involution in R is an anti-isomorphism of degree 2, which satisfies
(a∗)∗ = a, (a + b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗ for all a, b ∈ R. An element
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a ∈ R is called Moore-Penrose invertible (see [8]) if there exists x ∈ R
satisfying the following equations

(i) axa = a (ii) xax = x (iii) (ax)∗ = ax (iv) (xa)∗ = xa.

Any element x satisfying the equations (i)-(iv) is called a Moore-Penrose
inverse of a. If such x exists, it is unique and is denoted by a†. If x satisfies
the conditions (i) and (iii), then x is called a {1, 3}-inverse of a, and is
denoted by a(1,3). If x satisfies the conditions (i) and (iv), then x is called a
{1, 4}-inverse of a, and is denoted by a(1,4). The symbols R−1, R#, R†, R(1,3)

and R(1,4) denote the sets of all invertible, group invertible, Moore-Penrose
invertible, {1, 3}-invertible and {1, 4}-invertible elements in R, respectively.

The concept of core inverse of a complex matrix was first introduced by
Baksalary and Trenkler in [2]. Recently, Rakić et al. [10] gave an equivalent
definition of core inverse in rings. An element a ∈ R is core invertible (see
[10, Definition 2.3]) if there exists x ∈ R such that axa = a, xR = aR and
Rx = Ra∗. It is known that the core inverse x of a is unique if it exists, and
is denoted by a#©. The dual core inverse of a when exists is defined as the
unique a#© such that aa#©a = a, a#©R = a∗R and Ra#© = Ra. By R#© and R#©

we denote the sets of all core invertible and dual core invertible elements in
R, respectively.

In this paper, double commutativity and reverse order law for core inverse
proposed in [1] are considered. Also, we characterize the Moore-Penrose
inverse of a regular element by one-sided invertibilities in a ring R. Further,
new existence criteria of core inverse and dual core inverse of a regular element
are given by units. Moreover, their expressions are shown.

2. Main results

In what follows, R always denotes an associative unital ring with involu-
tion. We first give the representation of (dual) core inverse of a in R.

Proposition 2.1. Let a ∈ R. Then
(i) a ∈ R#© if and only if a ∈ R# ∩R(1,3). In this case, a#© = a#aa(1,3).
(ii) a ∈ R#© if and only if a ∈ R# ∩R(1,4). In this case, a#© = a(1,4)aa#.

Proof. (i) “ ⇒ ” By [10, Theorem 2.14], we have a ∈ R(1,3). Also, a =
aa#©a = aa(a#©)2a = a2(a#©)2a ∈ a2R, which combines with a = a#©a2 ∈ Ra2

yield a ∈ R#. Hence, a ∈ R# ∩R(1,3).
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“⇐ ” Let x = a#aa(1,3). We next show that x is the core inverse of a.
(1) It is direct to check that axa = a.
(2) We have xR = a#aa(1,3)R = aa#a(1,3)R ⊆ aR and aR = a#a2R =

a#aa(1,3)a2R ⊆ xR.
(3) From x = a#aa(1,3) = a#(a(1,3))∗a∗ and a∗ = a∗aa(1,3) = a∗ax, it

follows that Rx = Ra∗.
Hence, a#© = a#aa(1,3).
(ii) By a similar proof of (i). 2

It is known that a ∈ R† if and only if a ∈ R(1,3) ∩ R(1,4). By Proposition
2.1, we obtain a ∈ R#© ∩R#© ⇔ a ∈ R# ∩R(1,3) ∩R(1,4) ⇔ a ∈ R# ∩R†.

We next give a result regarding commutativity. Firstly, we show the
following lemma.

Lemma 2.2. Let a, x ∈ R with xa = ax and xa∗ = a∗x. If a(1,3) exists, then

aa(1,3)x = xaa(1,3).

Proof. From xa = ax, it follows that

xaa(1,3) = axa(1,3) = aa(1,3)axa(1,3)

= aa(1,3)xaa(1,3).

The condition xa∗ = a∗x implies that

aa(1,3)x = (a(1,3))∗a∗x = (a(1,3))∗xa∗

= (a(1,3))∗x(aa(1,3)a)∗ = (a(1,3))∗xa∗aa(1,3)

= (a(1,3))∗a∗xaa(1,3)

= aa(1,3)xaa(1,3).

Hence, aa(1,3)x = xaa(1,3). 2

Applying Lemma 2.2, we obtain the following result.

Theorem 2.3. Let a, x ∈ R with xa = ax and xa∗ = a∗x. If a#© exists, then
a#©x = xa#©.

Proof. Since a#© = a#aa(1,3) and a#x = xa#, it follows that

a#©x = a#aa(1,3)x = a#xaa(1,3) = xa#aa(1,3) = xa#©.
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Hence, a#©x = xa#©. 2

Baksalary and Trenkler [1] asked the following question: Given com-
plex matrices A and B, if A#©, B#© and (AB)#© exist, does it follow that
(AB)#© = B#©A#©. Later, Cohen, Herman and Jayaraman [3] presented sev-
eral counterexamples for this problem.

Next, we show that the reverse order law for core inverse holds under
certain conditions in a general ring case.

Theorem 2.4. Let a, b ∈ R with ab = ba and ab∗ = b∗a. If a#© and b#© exist,
then (ab)#© exists and (ab)#© = b#©a#© = a#©b#©.

Proof. It follows from Theorem 2.3 that b#©a = ab#© and a#©b = ba#©.
Also, the conditions b∗a = ab∗ and a∗b∗ = b∗a∗ guarantee that b∗a#© =

a#©b∗, which together with a#©b = ba#© imply a#©b#© = b#©a#© according to
Theorem 2.3.

Once given the above conditions, it is straightforward to check that
(1) By Lemma 2.2, we have abb(1,3) = bb(1,3)a. Hence, abb#©a#©ab =

abb(1,3)aa#b = bb(1,3)aaa#b = bb(1,3)ba = ab.
(2) Since abb(1,3) = bb(1,3)a, it follows that b#©a#© = b#bb(1,3)a#aa(1,3) =

b#bb(1,3)aa#a(1,3) = b#abb(1,3)a#a(1,3) = ab#bb(1,3)a#a(1,3) = abb#b(1,3)a#a(1,3)

and ab = b#b2a = b#bb(1,3)b2a = b#©ab2 = b#©a#aa(1,3)a2b2 = b#©a#©a2b2.
Hence, abR = b#©a#©R.
(3) If x in Lemma 2.2 is group invertible, then aa(1,3)x# = x#aa(1,3). We

have
b#©a#© = b#bb(1,3)a#aa(1,3) = b#a#bb(1,3)aa(1,3) = b#a#(aa(1,3)bb(1,3))∗ =

b#a#(baa(1,3)b(1,3))∗ = b#a#(a(1,3)b(1,3))∗(ab)∗ and
(ab)∗ = b∗a∗aa(1,3) = a∗b∗aa(1,3) = a∗b∗bb(1,3)aa(1,3) = b∗a∗aa#abb(1,3)a(1,3) =

b∗a∗abb(1,3)a#aa(1,3) = b∗a∗abb#bb(1,3)a#aa(1,3) = b∗a∗abb#©a#©.
So,

Rb#©a#© = R(ab)∗.

Thus, (ab)#© = b#©a#© = a#©b#©. 2

Herein, we first state several lemmas which paly an important role in the
sequel.

Lemma 2.5. Let a, b ∈ R. Then
(i) If (1 + ab)x = 1, then (1 + ba)(1− bxa) = 1.
(ii) If y(1 + ab) = 1, then (1− bya)(1 + ba) = 1.
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Lemma 2.6. [12, Theorems 2.16, 2.19 and 2.20] Let S be a ∗-semigroup and
a ∈ S. Then the following conditions are equivalent:

(i) a ∈ S†.
(ii) a = aa∗ax for some x ∈ S.
(iii) a = yaa∗a for some y ∈ S.
In this case, a† = a∗ax2a∗ = a∗y2aa∗.

Lemma 2.7. (see e.g. [5, Lemma 5.1]) Let a ∈ R. Then a ∈ R† if and only
if there exist x, y ∈ R such that axa = a = aya, (ax)∗ = ax and (ya)∗ = ya.
In this case, a† = yax.

In the following theorem, new characterizations of the Moore-Penrose
inverse are given by one-sided invertibilities.

Theorem 2.8. Let a ∈ R be regular with inner inverse a−. Then the fol-
lowing conditions are equivalent:

(i) a ∈ R†.
(ii) aa∗ + 1− aa− is right invertible.
(iii) a∗a + 1− a−a is right invertible.
(iv) aa∗aa− + 1− aa− is right invertible.
(v) a−aa∗a + 1− a−a is right invertible.
(vi) aa∗ + 1− aa− is left invertible.
(vii) a∗a + 1− a−a is left invertible.
(viii) aa∗aa− + 1− aa− is left invertible.
(ix) a−aa∗a + 1− a−a is left invertible.

Proof. (ii) ⇔ (iii), (ii) ⇔ (iv), (iii) ⇔ (v), (vi) ⇔ (vii), (vi) ⇔ (viii) and
(vii) ⇔ (ix) are followed from Lemma 2.5.

(i) ⇒ (ii) If a ∈ R†, then there exists x ∈ R such that a = aa∗ax from
Lemma 2.6. As (aa∗aa−+1−aa−)(axa−+1−aa−) = 1, then aa∗aa−+1−aa−
is right invertible. Hence, aa∗ + 1− aa− is right invertible by Lemma 2.5.

(ii)⇒ (i) As aa∗+1−aa− is right invertible, then a∗a+1−a−a is also right
invertible by Lemma 2.5. Hence, there is s ∈ R such that (a∗a+1−a−a)s = 1.
We have a = a(a∗a+ 1− a−a)s = aa∗as ∈ aa∗aR. So a ∈ R† by Lemma 2.6.

(i) ⇒ (vi) It is similar to the proof of (i) ⇒ (ii).
(vi) ⇒ (i) As aa∗ + 1 − aa− is left invertible, then t(aa∗ + 1 − aa−) = 1

for some t ∈ R. Also, a = 1 · a = t(aa∗ + 1− aa−)a = taa∗a ∈ Raa∗a, which
ensures a ∈ R† according to Lemma 2.6. 2
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We get the following result from Theorem 2.8.

Corollary 2.9. [7, Theorem 1.2] Let a ∈ R be regular with inner inverse a−.
Then the following conditions are equivalent:

(i) a ∈ R†.
(ii) aa∗ + 1− aa− is invertible.
(iii) a∗a + 1− a−a is invertible.
(iv) aa∗aa− + 1− aa− is invertible.
(v) a−aa∗a + 1− a−a is invertible.

Theorem 2.10. Let a ∈ R be regular with inner inverse a−. Then the
following conditions are equivalent:

(i) a ∈ R† and aR = a2R.
(ii) u = aa∗a + 1− aa− is right invertible.
(iii) v = a∗a2 + 1− a−a is right invertible.

Proof. (i) ⇒ (ii) As aR = a2R, then a + 1− aa− is right invertible by [9,
Theorem 1]. Also, a ∈ R† can conclude aa∗aa− + 1 − aa− is invertible by
Corollary 2.9. Hence, u = aa∗a+ 1− aa− = (aa∗aa−+ 1− aa−)(a+ 1− aa−)
is right invertible.

(ii) ⇔ (iii) Follows from Lemma 2.5.
(iii) ⇒ (i) Since v is right invertible, there exists v1 ∈ R such that vv1 =

1. Then a = avv1 = a(a∗a2 + 1 − a−a)v1 = aa∗a2v1 ∈ aa∗aR and hence
a ∈ R† by Lemma 2.6. It follows from Corollary 2.9 that a ∈ R† implies
that w = a∗a + 1 − a−a ∈ R−1. As v = (a∗a + 1 − a−a)(a−a2 + 1 − a−a) is
right invertible, then a−a2 + 1 − a−a = w−1v is right invertible, and hence
a + 1− a−a is also right invertible. So, aR = a2R by [9, Theorem 1]. 2

Remark 2.11. In general, a ∈ R† and aR = a2R can not imply a ∈ R#.
Such as, let R be the ring of all bi-finite infinite complex matrices with
transpose as involution, where an infinite matrix is said to be bi-finite if it is
both row-finite and column-finite. Let a = Σ∞i=1ei,i+1 ∈ R, where ei,j denotes
the infinite matrix whose (i, j)-entry is 1 and other entries are zero. Then
aa∗ = 1 and a∗a = Σ∞i=2ei,i. So, a† = a∗ and aR = a2R. But a /∈ R#. In
fact, if a ∈ R#, then a#a = aa# = aa#aa∗ = aa∗ = 1, which implies a is
invertible. Contradiction.

Dually, we have the following result.
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Theorem 2.12. Let a ∈ R be regular with inner inverse a−. Then the
following conditions are equivalent:

(i) a ∈ R† and Ra = Ra2.
(ii) u = aa∗a + 1− a−a is left invertible.
(iii) v = a2a∗ + 1− aa− is left invertible.

Lemma 2.13. ([6, Proposition 2.1] and [9, Corollary 2]) Let a ∈ R be regular
with inner inverse a−. Then the following conditions are equivalent:

(i) a# exists.
(ii) a + 1− aa− is invertible.
(iii) a + 1− a−a is invertible.
(iv) a2 + 1− aa− is invertible.

We next give existence criteria and representations of core inverse and
dual core inverse by units in a ring.

Theorem 2.14. Let a ∈ R be regular with inner inverse a−. Then the
following conditions are equivalent:

(i) a ∈ R# ∩R†.
(ii) a ∈ R#© ∩R#©.
(iii) u = aa∗a + 1− aa− is invertible.
(iv) v = aa∗a + 1− a−a is invertible.
(v) s = a∗a2 + 1− a−a is invertible.
(vi) t = a2a∗ + 1− aa− is invertible.
In this case,

a#© = u−1aa∗, a#© = a∗av−1,

a† = (t−1a2)∗ = (a2s−1)∗ and

a# = (aa∗t−1)2a = a(s−1a∗a)2.

Proof. (i) ⇔ (ii) By Proposition 2.1.
(iii) ⇔ (v) and (iv) ⇔ (vi) are obtained by Lemma 2.5.
(i) ⇒ (iii) In virtue of Lemma 2.13 and Corollary 2.9, a ∈ R# ∩ R†

implies that a + 1 − aa− and aa∗aa− + 1 − aa− are both invertible. Hence,
u = aa∗a + 1− aa− = (aa∗aa− + 1− aa−)(a + 1− aa−) is invertible.

(iii) ⇒ (i) Suppose that u = aa∗a + 1 − aa− is invertible. Then a ∈ R†

from Theorem 2.10 and hence aa∗aa− + 1 − aa− is invertible by Corollary
2.9. As u = (aa∗aa−+ 1−aa−)(a+ 1−aa−) is invertible, then a+ 1−aa− =
(aa∗aa− + 1− aa−)−1u is invertible, i.e., a ∈ R# by Lemma 2.13.
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(i) ⇔ (iv) can be obtained by a similar proof of (i) ⇔ (iii).
Next, we give representations of a#©, a#©, a† and a#, respectively. Herein,

we recall in [4, Proposition 7] and [11, Corollary 5] that a ∈ R# if and only if
a = a2x and a = ya2 for some x, y ∈ R. In this case, a# = yax = y2a = ax2.

Since ua = aa∗a2, a = (u−1aa∗)a2. As a# exists, then a# = (u−1aa∗)2a.
By Proposition 2.1, we have

a#© = a#aa(1,3) = u−1aa∗u−1aa∗a2a(1,3)

= u−1aa∗aa(1,3) = u−1aa∗(aa(1,3))∗

= u−1aa∗.

Similarly, it follows that a# = a(a∗av−1)2 and a#© = a∗av−1.
As as = aa∗a2 and ta = a2a∗a, then we have a = aa∗(a2s−1) = (t−1a2)a∗a.

It follows from Lemma 2.7 that a ∈ R† and

a† = (a2s−1)∗a(t−1a2)∗ = (s−1)∗(a2)∗a(a2)∗(t−1)∗

= (s−1)∗(aa∗a2)∗a∗(t−1)∗ = (s−1)∗(as)∗a∗(t−1)∗

= (a∗)2(t−1)∗

= (t−1a2)∗.

Similarly, a† = (a2s−1)∗.
Noting sa−a = a∗a2, we have a−a = s−1a∗a2 and a = aa−a = (as−1a∗)a2.

Hence, it follows that a# = (as−1a∗)2a = a(s−1a∗a)2 since a ∈ R#.
We can also get a# = (aa∗t−1)2a by a similar way. 2

Theorem 2.15. Let a ∈ R be regular. Then the following conditions are
equivalent:

(i) a#© exists.
(ii) a + 1− aa− and a∗ + 1− aa= are invertible for some a−, a= ∈ a{1}.
(iii) a + 1− aa− is invertible and a∗ + 1− aa= is left invertible for some

a−, a= ∈ a{1}.
(iv) a∗a+1−aa− and (a∗)2+1−aa= are invertible for some a−, a= ∈ a{1}.
(v) a∗a+1−aa− and (a∗)2 +1−aa= are left invertible for some a−, a= ∈

a{1}.
In this case, a#© = (a∗a + 1− aa−)−1a∗ = a[((a∗)2 + 1− aa=)−1]∗.

Proof. (i) ⇒ (ii) Since a ∈ R#©, a ∈ R(1,3) by Proposition 2.1. Let a−,
a= ∈ a{1, 3}. Then a + 1 − aa− and a + 1 − aa= are invertible by Lemma
2.13 and hence a∗ + 1− aa= = (a + 1− aa=)∗ is invertible.
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(ii) ⇒ (iii) It is clear.
(iii) ⇒ (i) As a∗ + 1− aa= is left invertible, then there exists s ∈ R such

that s(a∗ + 1 − aa=) = 1. Hence, a = s(a∗ + 1 − aa=)a = sa∗a ∈ Ra∗a,
i.e., a(1,3) exists by [13, Lemma 2.2]. Also, a+ 1− aa− ∈ R−1 concludes that
a ∈ R# exists by Lemma 2.13. So, a ∈ R#© by Proposition 2.1.

(i) ⇒ (iv) Let a−, a= ∈ a{1, 3}. Then a + 1− aa− and a∗ + 1− aa= are
invertible. Hence, a∗a + 1− aa− = (a∗ + 1− aa=)(a + 1− aa−) is invertible.

Also, it follows from Lemma 2.13 that a2 + 1− aa= ∈ R−1 since a ∈ R#.
So, (a∗)2 + 1− aa= = (a2 + 1− aa=)∗ ∈ R−1.

(iv) ⇒ (v) Clearly.
(v)⇒ (i) Since a∗a+ 1− aa− and (a∗)2 + 1− aa= are both left invertible,

there exist m,n ∈ R such that m(a∗a + 1− aa−) = 1 = n((a∗)2 + 1− aa=).
As a = m(a∗a + 1− aa−)a = ma∗a2 and a = n((a∗)2 + 1− aa=)a = n(a∗)2a,
then ma∗ = m(n(a∗)2a)∗ = (ma∗a2)n∗ = an∗.

Let x = ma∗ = an∗. Then x is the core inverse of a. Indeed, we have
(1) (ax)∗ = ax since ax = n(a∗)2a(an∗) = (a2n∗)∗a2n∗.
(2) axa = (ax)∗a = (a∗ax)∗ = (a∗a2n∗)∗ = n(a∗)2a = a.
(3) xax = (ma∗)a(an∗) = (ma∗a2)n∗ = an∗ = x.
(4) xa2 = ma∗a2 = a.
(5) ax2 = ax(an∗) = (axa)n∗ = an∗ = x.
It follows from [10, Theorem 2.14] that x = a#©.
We next give the formulae of a#©. In process of (v) ⇒ (i), a∗a + 1− aa−

and (a∗)2 + 1− aa= are both invertible from (iv) ⇔ (v). Hence, m = (a∗a +
1− aa−)−1 and n = ((a∗)2 + 1− aa=)−1.

We obtain

a#© = ma∗ = (a∗a + 1− aa−)−1a∗

= an∗ = a[((a∗)2 + 1− aa=)−1]∗.

The proof is completed. 2

Proposition 2.16. Let a ∈ R be regular. If a∗ + 1 − aa− is invertible for
any a− ∈ a{1}, then a#© exists.

Proof. If u = a∗ + 1− aa− is invertible, then a = u−1a∗a ∈ Ra∗a, hence a
is {1, 3}-invertible by [13, Lemma 2.2].

As a + 1− aa(1,3) = (a∗ + 1− aa(1,3))∗ is invertible for a(1,3) ∈ a{1}, then
a ∈ R# by Lemma 2.13. So, a#© exists from Proposition 2.1. 2
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Proposition 2.17. Let a ∈ R be regular. If (a∗)2 + 1− aa− is invertible for
any a− ∈ a{1}, then a#© exists.

Proof. Let u = (a∗)2 + 1 − aa−. Then ua = (a∗)2a, it follows a =
u−1(a∗)2a ∈ Ra∗a. So, a is {1, 3}-invertible by [13, Lemma 2.2].

Also, a2+1−aa(1,3) = ((a∗)2+1−aa(1,3))∗ ∈ R−1 guarantees that a ∈ R#

from Lemma 2.13. Hence, it follows from Proposition 2.1 that a#© exists. 2

The converse statements of Propositions 2.16 and 2.17 may not be true.
In following Example 2.18, we find that a is core invertible, but there exist
some a− ∈ a{1} such that a∗ + 1− aa−, (a∗)2 + 1− aa− and a∗a + 1− aa−

are all not invertible.

Example 2.18. Let M2(C) be the ring of 2 by 2 complex matrices and let

involution ∗ be the conjugate transpose. Given A =

[
1 −2
1 −2

]
∈ M2(C),

then A2 = −A and hence A# exists. So, A#© exists. Taking A− =

[
2
3

1
3

0 0

]
,

then A∗ + I − AA− = 1
3

[
4 2
−8 −4

]
, (A∗)2 + I − AA− = 1

3

[
−2 −4
4 8

]
and

A∗A + I − AA− = 1
3

[
7 −13
−14 26

]
are not invertible.

Remark 2.19. Even a∗a + 1 − aa− ∈ R−1 for any a− ∈ a{1}, a may not
be core invertible. Let R be a ring which is the same as the infinite matrix
ring in Remark 2.11 and let a = Σ∞i=1ei+1,i. Then a∗a = 1, aa∗ = Σ∞i=2ei,i
and a† = a∗. It is easy to know that a− = Σ∞i=1ei,i+1 + Σn

i=1aiei,1 for some n
and ai ∈ C. So, a∗a + 1 − aa− = 2 − aa− = 2e1,1 − Σn

i=1aiei+1,1 + Σ∞i=2ei,i
and (a∗a + 1 − aa−)−1 = 1

2
e1,1 + Σn

i=1aiei+1,1 + Σ∞i=2ei,i. But a /∈ R#, hence
a /∈ R#©.

Proposition 2.20. Let a ∈ R#. Then a ∈ R† if and only if a∗ + 1− aa# ∈
R−1.

Proof. “⇒ ” Note that a ∈ R† implies a∗a+1−a#a ∈ R−1 by Corollary 2.9.
As a ∈ R#, then a+ 1−aa† ∈ R−1 from Lemma 2.13. Since a∗a+ 1−a#a =
(a∗ + 1− aa#)(a + 1− aa†) ∈ R−1, it follows that a∗ + 1− aa# ∈ R−1.

“⇐ ” Let u = a∗ + 1− aa# be invertible. Then ua = a∗a and au = aa∗.
Hence, a = u−1a∗a = aa∗u−1 = a(u−1a∗a)∗u−1 = aa∗a(u−1)∗u−1 ∈ aa∗aR.
So, a ∈ R† by Lemma 2.6. 2
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Recall that a ring R is called Dedekind-finite ring if ab = 1 implies ba = 1,
for all a, b ∈ R. We next give characterizations of core inverse in such a ring.

Proposition 2.21. Let R be a Dedekind-finite ring. Then the following con-
ditions are equivalent:

(i) a#© exists.
(ii) a ∈ R(1,3) and a∗a + 1− aa(1,3) is invertible for any a(1,3).
(iii) a ∈ R(1,3) and a∗a + 1− aa(1,3) is invertible for some a(1,3).
In this case, a#© = (a∗a + 1− aa(1,3))−1a∗.

Proof. (i) ⇒ (ii) By Theorem 2.15 (i) ⇒ (iv).
(ii) ⇒ (iii) Clearly.
(iii) ⇒ (i) Let u = a + 1 − aa(1,3). Then u∗u = a∗a + 1 − aa(1,3) ∈ R−1.

As R is a Dedekind-finite ring, then u ∈ R−1, which guarantees a ∈ R# by
Lemma 2.13. Hence, a ∈ R# ∩ R(1,3) is core invertible from Proposition 2.1.
Now, a#© = (a∗a + 1− aa(1,3))−1a∗ by Theorem 2.15. 2

Corollary 2.22. Let R be a Dedekind-finite ring. If a ∈ R†, then a ∈ R#© if
and only if a∗a + 1− aa† ∈ R−1. In this case, a#© = (a∗a + 1− aa†)−1a∗.
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