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Abstract. Based on a new abstract result on the behavior of nonautonomous
delayed equations, we obtain a stability result for the solutions of a general
discrete nonautonomous Hopfield neural network model with delay. As an ap-
plication we improve some existing results on the stability of Hopfield models.

1. Introduction

Due to their many applications in various engineering and scientific areas such
as signal processing, image processing and pattern classification (see [6, 7]), neural
network models are nowadays a subject of active research. One of the most im-
portant goals in the study of neural network models is to establish conditions that
assure the global stability of equilibrium states [15, 16, 17], of periodic solutions
[10, 22] or, more generally, of a particular solution [11].

In the present work we consider a discrete-time nonautonomous neural network
with time delay. The relevance of our setting is easily clarified. Although theoreti-
cally speaking neural networks should be described by continuous-time models, it is
essential to formulate discrete-time versions that can be implemented computation-
ally [17, 18]. It is also important to consider delay in modelling neural networks in
order to reproduce the effect of finite transmission speed of signals among neurons
(there is a mathematical counterpart of this since time delay may cause instability
and oscillation [14]). The nonautonomy is associated to the change of parameters
such as neuron charging time, interconnection weights and external inputs in the
course of time. This can be translated not only by time-varying parameters, but
also by time-varying delays [5, 12, 20, 23]. There are still few stability results in
the context of nonautonomous nonperiodic neural network models [21].

The proof presented here to establish our global stability results is different from
the usual one. In fact, the classical method of proof used in [7, 9, 15, 17, 21]
consists in proving that there is an equilibrium point or a periodic solution and
then construct a suitable Lyapunov function that assures the global stability of the
particular solution. On the other hand, the technique used here is different from
the usual ones. Namely, we see our system as a sufficiently small perturbation of
a nonuniform contraction and use Banach’s fixed point theorem in some suitable
complete metric space to obtain the global stability of our system. This approach
allows us to dismiss the requirement of existence of a stationary or, more generally,
periodic solution and additionally to consider a more general form for the nonlinear
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part of the model. When we restrict to the particular case of a periodic Hopfield
model, our conditions for existence of a globally stable periodic solution generalize
results in [22]. For other results of stability of higher order difference equations see
[13, 19, 2, 3, 4].

This work is organized in the following way. In section 2 we use the discretization
technique in [17] to obtain a discrete version of a generalized neural network model
that includes the well known Hopfield neural network models considered in [17, 22]
and the bidirectional associative memory neural network models studied in [10, 15].
Next, we state our main stability result and we see that it is a consequence of the
abstract result considered in section 3. As a corollary, we get global exponential
stability for the models in [21] under distinct hypothesis from the ones assumed in
that paper. After, for the periodic model, considering a Poincaré map, we obtain
the existence of a periodic solution as a consequence of the global exponential
stability. This result improves one of the main results in [22]. To see this we present
an illustrative example where our results can be applied but it is not possible to
apply the results of Xu and Wu [22], due to an extra hypothesis required in their
work. Finally, in section 3, we consider general discrete-time delayed models that
include our neural network models as particular cases and obtain the abstract global
stability result that we use to prove the stability results in section 2.

2. Hopfield Models

As a generalization of the continuous-time Hopfield neural network models pre-
sented in [17, 22] we have

x′

i(t) = −ai(t)xi(t) +
N∑

j=1

kij(t, xj(t− αij(t))), t > 0, i = 1, . . . , N, (1)

where ai : [0,+∞[→ [0,+∞[, kij : [0,+∞[×R → R, and αij : [0,+∞[→ [0,+∞[
are continuous functions with αij bounded and kij Lipschitz on the second variable.
Here ai(t) is the neuron charging time.

Following the ideas in [17], to obtain a discrete-time analogue of the continuous-
time model (1), we consider the following approximation

x′

i(t) = −ai([t/h]h)xi (t) +
N∑

j=1

kij

(
[t/h]h, xj

(
[t/h]h−

[
αij ([t/h]h)

h

]
h

))
, (2)

i = 1, . . . , N , t ∈ [mh, (m+1)h[ for m ∈ N0, where h is a fixed positive real number
(discretization step size) and [r] denotes the integer part of the real number r.
Clearly, for t ∈ [mh, (m+ 1)h[ we have [t/h] = m and the model (2) has the form

x′

i(t) = −ai(mh)xi(t) +

N∑

j=1

kij

(
mh, xj

((
m−

[
αij(mh)

h

])
h

))
,

which is equivalent to

eai(mh)tx′

i(t) + ai(mh)eai(mh)txi(t) = eai(mh)t
N∑

j=1

kij (mh, xj ((m− τij(m)) h)) ,

(3)
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where

τij(m) =

[
αij(mh)

h

]
.

Integrating (3) over [mh, t[, with t < (m+ 1)h, we obtain

∫ t

mh

[
eai(mh)sxi(s)

]′
ds =

(
eai(mh)t − eai(mh)mh

ai(mh)

) N∑

j=1

kij (mh, xj ((m− τij(m))h)) ,

which is equivalent to

xi(t) = eai(mh)(mh−t)xi(mh)+

(
1− eai(mh)(mh−t)

ai(mh)

) N∑

j=1

kij (mh, xj ((m− τij(m))h)) .

Letting t → (m+ 1)h, we obtain

xi((m+1)h) = e−ai(mh)hxi(mh)+

(
1− e−ai(mh)h

ai(mh)

) N∑

j=1

kij (mh, xj ((m− τij(m))h)) .

(4)
Thus, identifying xi(mh) with xi(m), ai(mh) with ai(m) and kij(mh, · ) with
kij(m, · ) and defining

θi(m) =
1− e−ai(m)h

ai(m)
, (5)

equation (4) becomes

xi(m+ 1) = e−ai(m)hxi(m) + θi(m)

N∑

j=1

kij
(
m,xj(m− τij(m))

)
. (6)

The model (6) can be rewritten in the following way

xi(m+ 1) = ci(m)xi(m) +

N∑

j=1

hij

(
m,xj(m− τij(m))

)
, (7)

i = 1, . . . , N , m ∈ N0, where ci : N0 →]0, 1[, τij : N0 → N0 are bounded functions
with τ := max{τij(m) : m ∈ N, i, j = 1, . . . , N}, and hij : N0×R → R are Lipschitz
functions on the second variable, i.e., there exist Hij : N0 → R

+ such that

|hij(m,u)− hij(m, v)| 6 Hij(m)|u− v|, ∀u, v ∈ R, m ∈ N0.

In this paper we consider the Hopfield neural network model (7) that generalizes
some existent models in the literature [10, 15, 17, 22].

Before stating our main result, we need to introduce some notation. Let

∆ =
{
(m,n) ∈ Z

2 : m > n > 0
}

and, given a set I ⊆ R and a number r ∈ Z
−, define IZ = I ∩Z. Consider the space

X of the functions

α : [r, 0]Z → R

equipped with the norm

‖α‖ = max
j=r,...,0

|α(j)|.
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GivenN ∈ N, we are going to consider the cartesian productsXN and R
N equipped

with the supremum norm, i.e., for α = (α1, . . . , αN ) ∈ XN and y = (y1, . . . , yN) ∈
R

N , we have

‖α‖ = max
i=1,...,N

‖αi‖ = max
i=1,...,N

(
max

j=r,...,0
|αi(j)|

)

and
|y| = max

i=1,...,N
|yi|.

Given n ∈ N0 and a function x : [n+r,+∞[Z→ R
N we denote the ith component

by xi, i.e., x = (x1, . . . xN ). For each m ∈ N0 such that m > n, we define xm ∈ XN

by
xm(j) = x(m+ j), j = r, r + 1, . . . , 0.

For each n ∈ N0 and each α ∈ XN , we denote by x(·, n, α) the unique solution

x : [n+ r,+∞[Z→ R
N

of (7) with initial conditions xn = α.
We now state our main global stability result for the neural network model given

by (7). This theorem furnishes a bound for the distance between solutions of (7)
based on bound for the products of consecutive neuron charging times, assuming
that the Lipschitz constants of the nonlinear part of the model are sufficiently small.
We will use it to obtain several results on the stability of several neural networks.

Theorem 1. Consider model (7) and assume that there exist a double sequence
(a′m,n)(m,n)∈∆ such that

a(i)m,n :=

m−1∏

s=n

ci(s) 6 a′m,n, (8)

for all i = 1, . . . , N and all (m,n) ∈ ∆, and

λ := max
i=1,...,N


 sup
(m,n)∈∆





1

a′m,n

m−1∑

k=n

a
(i)
m,k+1a

′

k,n

N∑

j=1

Hij(k)






 < 1.

Then, for every α, α∗ : [r, 0]Z → R
N and every (m,n) ∈ ∆, we have

‖xm(·, n, α)− xm(·, n, α∗)‖ 6
1

1− λ
a′m,n‖α− α∗‖.

Proof. Consider n ∈ N0 and α, α∗ : [r, 0]Z → R
N . The change

y(m) = x(m,n, α)− x(m,n, α∗)

transforms (7) into the system

yi(m+ 1) = ci(m)yi(m) +

N∑

j=1

h̃ij(m, yj(m− τij(m))), (9)

i = 1, . . . , N , m > n, where

h̃ij(m,u) = hij(m,u+ xj(m− τij(m), n, α∗))− hij(m,xj(m− τij(m), n, α∗)).

Now, y = 0 is an equilibrium point of (9) and, by Theorem 5, we obtain, for all
function β : [r, 0]Z → R

N ,

‖ym(·, n, β)‖ 6
1

1− λ
a′m,n‖β‖
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for all m > n. Letting β = α− α∗, we conclude that

‖xm(·, n, α)− xm(·, n, α∗)‖ = ‖ym(·, n, α− α∗)‖ 6
1

1− λ
a′m,n‖α− α∗‖

for all m > n. �

We stress that Theorem 1 includes situations that are nonuniform and even non-
exponential. In fact, our setting is sufficiently general to allow situations where the
neuron charging times ci(m) leads to a sequence a′m,n with a more general depen-

dence on m and n than the usual uniform exponential behavior a′m,n = D e−µ(m−n).

Example 1. Choosing

ci(m) = e−νi+mε[1−(−1)m]/2−(m+1)ε[1−(−1)m+1]/2

where νi > 0, for i = 1, . . . , N , ε > 0 and hij : N0 × R → R Lipschitz functions on
the second variable , i.e.,

|hij(m,u)− hij(m, v)| 6 Hij(m)|u − v|, ∀u, v ∈ R, m ∈ N0,

with

Hij(m) =
1− e−ε

2N
e−νi−ε(m+1)[1−(−1)m+1]/2−εm,

then

‖x̄m(·, n, ᾱ)− x̄m(·, n, ᾱ∗)‖ 6 2 e−µ(m−n)+εn ‖ᾱ− ᾱ∗‖.

In fact,

a(i)m,n =

m−1∏

s=n

ci(s) = e−νi(m−n)+εn[1−(−1)n]/2−εm[1−(−1)m]/2

6 e−νi(m−n)+εn 6 e−µ(m−n)+εn := a′m,n,

where µ = min
i
{νi}. Taking into account that for m > n > 0 we have

a
(i)
m,k+1a

′

k,n

a′m,n

= e(µ−νi)(m−k)−εm[1−(−1)m]/2+νi+ε(k+1)[1−(−1)k+1]/2

6 eνi+ε(k+1)[1−(−1)k+1]/2

and
N∑

j=1

Hi,j(k) =

N∑

j=1

1− e−ε

2N
e−νi−ε(k+1)[1−(−1)k+1]/2−εk

=
1− e−ε

2
e−νi−ε(k+1)[1−(−1)k+1]/2−εk,

it follows that

λ = max
i=1,...,N


 sup
(m,n)∈∆





1

a′m,n

m−1∑

k=n

a
(i)
m,k+1a

′

k,n

N∑

j=1

Hij(k)








6 max
i=1,...,N

[
sup

(m,n)∈∆

{
1− e−ε

2

m−1∑

k=n

e−εk

}]
=

1− e−ε

2

+∞∑

k=0

e−εk =
1

2
.
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A nonexponential and nonuniform example can be obtained choosing

ci(m) =

(
m+ 2

m+ 1

)−νi (m+ 1)
ε[1−(−1)m]/2

(m+ 2)
ε[1−(−1)m+1]/2

and

Hij(m) =
1− e−ε

2N
(k + 2)

−νi−ε[1−(−1)k+1]/2 e−εk .

With this choice it follows that

‖x̄m(·, n, ᾱ)− x̄m(·, n, ᾱ∗)‖ 6 2

(
m+ 1

n+ 1

)−µ

(n+ 1)ε ‖ᾱ− ᾱ∗‖.

Despite the generality of our main result, when we apply it to the Hopfield neural
network models existing in the literature, we are able to improve some of the known
results.

In [22] the authors considered the following discretization of a nonautonomous
continuous-time Hopfield neural network model, which is a particular case of (7),

xi(m+ 1) = xi(m) e−ai(m)h+θi(m)




N∑

j=1

bij(m)fj(xj(m− τ(m))) + Ii(m)


 , (10)

i = 1, . . . , N , where ai, bij , Ii : N0 → R and τ : N0 → N0 are bounded functions
with ai(m) > 0, 0 6 τ(m) 6 τ , fj : R → R are Lipschitz functions with Lipschitz
constant Fj > 0, θi(m) is given by (5) and h > 0 (h is the discretization step size).
We are going to use the following notation

a−i = inf
m

ai(m) and b+ij = sup
m

|bij(m)| and θ+i = sup
m

θi(m).

We have the following result that establishes the global exponential stability of
all solutions of (10).

Corollary 2. If

a−i >

N∑

j=1

b+ijFj . (11)

for every i = 1, . . . , N , then model (10) is globally exponentially stable, i.e., there
are constants µ > 0 and C > 1 such that

‖xm(·, n, α)− xm(·, n, α∗)‖ 6 C e−µ(m−n) ‖α− α∗‖

for every α, α∗ : [−τ, 0]Z → R
N and every (m,n) ∈ ∆.

Proof. We will show that we are in the conditions of Theorem 1. Defining νi = a−i h,
by (11) there is positive number µ < min

i
νi such that

eνi−µ −1

eνi −1
a−i >

N∑

j=1

b+ijFj , ∀i = 1, . . . , N. (12)

Putting a′m,n = e−µ(m−n), condition (8) is trivially satisfied because

a(i)m,n 6 e−νi(m−n)
6 e−µ(m−n) .
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Since θ+i =
1− e−νi

a−i
, we have by (12) that

λ = max
i=1,...,N


 sup
(m,n)∈∆





1

a′m,n

m−1∑

k=n

a
(i)
m,k+1a

′

k,n θi(k)

N∑

j=1

|bij(k)|Fj








6 max
i=1,...,N


 sup
(m,n)∈∆

{
eµ(m−n)

m−1∑

k=n

e−νi(m−k−1)−µ(k−n)

}
θ+i

N∑

j=1

b+ijFj




< max
i=1,...,N

[
sup

(m,n)∈∆

{
m−1∑

k=n

e(νi−µ)(k−m)

}
eνi

1− e−νi

a−i

eνi−µ −1

eνi −1
a−i

]

= max
i=1,...,N

[
sup

(m,n)∈∆

{
1− e(νi−µ)(n−m)

eνi−µ −1

}
(eνi −1)(eνi−µ −1)

(eνi −1)a−i
a−i

]

= max
i=1,...,N

[
sup

(m,n)∈∆

{
1− e(νi−µ)(n−m)

}]

= 1

and this proves the corollary. �

In the next corollary we slightly improve condition (11) in the last corollary.
To do that we need to define the concept of an M -matrix. We say that a square
real matrix is an M -matrix if the off-diagonal entries are nonpositive and all the
eigenvalues have positive real part.

Now consider the N ×N -matrix M defined by

M = diag(a−1 , . . . , a
−

N)−
[
b+ijFj

]

Corollary 3. If M is an M-matrix, then the model (10) is global exponential stable,
i.e., there are µ > 0 and C > 1 such that

‖xm(·, n, α)− xm(·, n, α∗)‖ 6 C e−µ(m−n) ‖α− α∗‖.

for every α, α∗ : [−τ, 0]Z → R
N and every (m,n) ∈ ∆.

Proof. If M is an M-matrix, then (see Fiedler [8, Theorem 5.1]) there is d =
(d1, . . . , dN ) > 0 such that M d > 0, i.e.,

dia
−

i >
N∑

j=1

djb
+
ijFj . (13)

The change yi(m) = d−1
i xi(m), m ∈ N0 and i = 1, . . . , N , transforms (10) into

yi(m+ 1) = yi(m) e−ai(m)h +θi(m)




N∑

j=1

b̃ij(m)f̃j(yj(m− τ(m))) + Ĩi(m)


 ,

where

b̃ij(m) = d−1
i bij(m), f̃j(u) = fj(dju), and Ĩi(m) = d−1

i Ii(m),
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for m ∈ N0 and u ∈ R. As fj are Lipschitz functions with constant Fj , then f̃j are

also Lipshitz functions with constant F̃j = djFj . From (13) we have

a−i >

N∑

j=1

d−1
i b+ijdjFj

which is equivalent to

a−i >
N∑

j=1

b̃+ijF̃j

and the result follows from the Corollary 2. �

Now we improve [22, Theorem 4.2], which proves the existence and global stabil-
ity of the periodic solution of the Hopfield neural network model (10) with periodic
coefficients. Let ω ∈ N and consider the model (10) where ai, bij , Ii : N0 → R and
τ : N0 → N0 are ω-periodic functions.

Theorem 4. If M is an M -matrix, then the model (10) has a unique ω-periodic
solution which is globally exponentially stable.

Proof. Let n ∈ N0. From Corollary 3, there are µ > 0 and C > 1 such that

‖xm(·, n, α)− xm(·, n, α∗)‖ 6 C e−µ(m−n) ‖α− α∗‖, (14)

for all m > n and all α, α∗ ∈ XN . Now, choosing an integer k ∈ N such that

C e−µkω < 1 (15)

and defining the map P : XN → XN by P (α) = xn+ω(·, n, α). For α, α
∗ ∈ XN , we

have

‖P k(α)− P k(α∗)‖

= ‖P (P k−1(α))− P (P k−1(α∗))‖

= ‖xn+ω(·, n, P
k−1(α))− xn+ω(·, n, P

k−1(α∗))‖

= ‖xn+ω(·, n, xn+ω(·, n, P
k−2(α)))− xn+ω(·, n, xn+ω(·, n, P

k−2(α∗)))‖,

and, as the model (10) is ω-periodic, from (14),

‖P k(α)− P k(α∗)‖ = ‖xn+2ω(·, n, P
k−2(α))− xn+2ω(·, n, P

k−2(α∗))‖

= ‖xn+kω(·, n, α)− xn+kω(·, n, α
∗)‖

6 C e−µkω ‖α− α∗‖.

From (15), the map P k is a contraction on XN . As XN is a Banach space, we
conclude that there is a unique point ϕ ∈ XN such that P k(ϕ) = ϕ. Noting that

P k(P (ϕ)) = P (P k(ϕ)) = P (ϕ),

we have P (ϕ) = ϕ which means xn+ω(·, n, ϕ) = ϕ.
Finally, as x(m,n, ϕ) is a solution of (10) with ai, bij , Ii, τ ω-periodic functions,

we know that x(m+ ω, n, ϕ) is also a solution of (10) and

x(m,n, ϕ) = x(m,n, xn+ω(·, n, ϕ)) = x(m+ ω, n, ϕ)

for every m > n. Therefore x(m,n, ϕ) is a ω-periodic solution of (10) and, from
(14), all other solutions converge to it with exponential rates. �
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In [22, Theorem 4.2] the authors use the extra hypothesis:

min
16i6N



âi − Fi

N∑

j=1

∣∣∣̂bji
∣∣∣



 > 0 (16)

where

âi =
1

ω

ω−1∑

m=0

ai(m) and b̂ij =
1

ω

ω−1∑

m=0

bij(m).

Note that hypothesis (H3) in [22] is equivalent toM being anM -matrix (see Fiedler
[8, Theorem 5.1]).

Next we present an example similar to the example of Xu and Wu [22] that does
not verify (16).

Example 2. In the model (10) with N = 2, let

a1(m) = 25 + cos
mπ

ω
, b11(m) = 16 + cos

mπ

ω
, b12(m) = 4 + cos

mπ

ω

a2(m) = 29 + sin
mπ

ω
, b21(m) = 16 + sin

mπ

ω
, b22(m) = 8 + sin

mπ

ω

I1(m) = cos
mπ

ω
, I2(m) = sin

mπ

ω
, τ(m) = (1 + (−1)m)/2

f1(u) = arctanu, f2(u) = tanhu, ω = 10.

Clearly F1 = F2 = 1 and since

M =

[
a−1 0
0 a−2

]
−

[
b+11F1 b+12F2

b+21F1 b+22F2

]
=

[
7 −5

−17 19

]

is an M -matrix (the eigenvalues are 2 and 24), by Theorem 4, this example has a
unique ω-periodic solution which is globally exponentially stable.

However, since

â1 − F1

(
|̂b11|+ |̂b21|

)
= −7,

(16) is not satisfied and thus the result of Xu and Wu [22] cannot be applied to this
example.

The following graphs illustrate our example with the initial conditions

x1(−1) = x2(−1) = x1(0) = x2(0) = 0,

x1(−1) = x2(−1) = x1(0) = x2(0) = 0.09,

x1(−1) = x1(0) = −0.09 and x2(−1) = x2(0) = 0.09,

x1(−1) = x1(0) = 0.09 and x2(−1) = x2(0) = −0.09,

x1(−1) = x1(0) = −0.09 and x2(−1) = x2(0) = −0.09.
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x1H-1L=x2H-1L=x1H0L=x2H0L=-0.09

x1H-1L=x1H0L=-0.09; x2H-1L=x2H0L=0.09

x1H-1L=x2H-1L=-0.09; x1H0L=x2H0L=0.09

x1H-1L=x2H-1L=x1H0L=x2H0L=0.09

x1H-1L=x2H-1L=x1H0L=x2H0L=0

20 40 60 80
t

-0.05

0.05

0.10

x1

x1H-1L=x2H-1L=x1H0L=x2H0L=-0.09

x1H-1L=x1H0L=-0.09; x2H-1L=x2H0L=0.09

x1H-1L=x2H-1L=-0.09; x1H0L=x2H0L=0.09

x1H-1L=x2H-1L=x1H0L=x2H0L=0.09

x1H-1L=x2H-1L=x1H0L=x2H0L=0

20 40 60 80
t

-0.05

0.05

0.10

x2

x1H-1L=x1H0L=-0.09; x2H-1L=x2H0L=0.09

x1H-1L=x2H-1L=-0.09; x1H0L=x2H0L=0.09

x1H-1L=x2H-1L=x1H0L=x2H0L=0.09

x1H-1L=x2H-1L=x1H0L=x2H0L=0

x1H-1L=x2H-1L=x1H0L=x2H0L=-0.09

-0.06 -0.04 -0.02 0.02 0.04 0.06
x1

-0.05

0.05

x2
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3. Stability of nonuniform contractions

Let Y be a Banach space and denote by X the space of functions

α : [r, 0]Z → Y

equipped with the norm ‖α‖ = max
j∈[r,0]Z

|α(j)|, where | · | is the norm in Y . Given

N ∈ N, we are going to consider the cartesian products XN and Y N equipped with
the supremum norm, i.e., for α = (α1, . . . , αN ) ∈ XN and y = (y1, . . . , yN) ∈ Y N ,
we have

‖α‖ = max
i=1,...,N

‖αi‖ = max
i=1,...,N

(
max

j=r,...,0
|αi(j)|

)

and
|y| = max

i=1,...,N
|yi|.

Given a function x : [r,+∞[Z→ Y N we define, for each m ∈ N0, xm ∈ XN by

xm(j) = x(m+ j), j = r, r + 1, . . . , 0.

Let fm : XN → Y N be Lipschitz perturbations such that

fm(0) = 0 (17)

for every m ∈ N0.
We are going to consider the following nonlinear delay difference equation

x(m+ 1) = Lmxm + fm(xm), m ∈ N0, (18)

where, for each m ∈ N0, Lm : XN → Y N is given by

Lmα =
(
L(1)
m α1, L

(2)
m α2, . . . , L

(N)
m αN

)
, (19)

with L
(i)
m : X → Y a bounded linear operator for i = 1, . . . , N . For each n ∈ N0

and α ∈ XN , we obtain a unique function

x : [n+ r,+∞[Z→ Y N ,

denoted by x(·, n, α), such that xn = α and (18) holds. Consequently, for each

(m,n) ∈ ∆, we can define the operator Fm,n : XN → XN given by

Fm,n (α) = xn(·, n, α), α ∈ XN .

Associated with equation (18), we will consider the linear difference equation

vi(m+ 1) = L(i)
m (vi,m) (20)

i = 1, . . . , N , where vi,m ∈ X is defined, as usual, by vi,m(j) = vi(m + j), j =

r, r + 1, . . . , 0 and L
(i)
m is given by (19). For each n ∈ N0 and αi ∈ X , we obtain a

unique function vi : [n + r,+∞[Z→ Y , denoted by vi(·, n, αi), such that vi,n = αi

verifying (20).

For each (m,n) ∈ ∆ and i = 1, . . . , N , we define the operator A
(i)
m,n : X → X by

A
(i)
m,nαi = vi,m(·, n, αi), αi ∈ X.

We can easily verify that

a) A
(i)
m,n is linear for each (m,n) ∈ ∆;

b) A
(i)
m,m = Id;

c) A
(i)
l,mA

(i)
m,n = A

(i)
l,n for (l,m), (m,n) ∈ ∆.
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It is easy to prove by induction in m (see [1]) that

Fm,n(α) =
(
F
(1)
m,n(α), . . . ,F

(N)
m,n(α)

)
,

where, for i = 1, . . . , N ,

F
(i)
m,n(α) = A

(i)
m,nαi +

m−1∑

k=n

A
(i)
m,k+1Γf

(i)
k (xk),

α = (α1, . . . , αN ), fk(xk) =
(
f
(1)
k (xk), . . . , f

(N)
k (xk)

)
and Γ: Y → X is defined by

Γu : [r, 0]Z → Y

j 7→ Γu(j) =

{
u if j = 0,

0 if j < 0,

for all u ∈ Y .

Theorem 5. Let fm : XN → Y N be Lipschitz functions such that (17) is satisfied

and consider equation (18). Let
(
a
(i)
m,n

)
(m,n)∈∆

, i = 1, . . . , N , and let
(
a′m,n

)
(m,n)∈∆

be double sequences such that

‖A(i)
m,n‖ 6 a(i)m,n 6 a′m,n

for all (m,n) ∈ ∆, where A
(i)
m,n are the evolutions operators of equation (20) derived

from equation (18). Assume that

λ := max
i=1,...,N

[
sup

(m,n)∈∆

{
1

a′m,n

m−1∑

k=n

a
(i)
m,k+1 Lip(f

(i)
k )a′k,n

}]
< 1.

Then

‖Fm,n(α)‖ 6
1

1− λ
a′m,n‖α‖

for every (m,n) ∈ ∆.

Proof. Given n ∈ N0 and α ∈ XN \ {0}, let Cn,α be the space of functions

x : [n+ r,+∞[Z→ Y N

such that

xn = α

|x|
Cn,α

= sup

{
‖xm‖

a′m,n‖α‖
: m > n

}
< +∞.

It is clear that Cn,α is a complete metric space with the metric defined by

d(x, y) = |x− y|
Cn,α

= sup

{
‖xm − ym‖

a′m,n ‖α‖
: m > n

}
.

For every x ∈ Cn,α we define

(Jx)m =

{
α if m = n

(ξ
(1)
m , . . . , ξ

(N)
m ) if m > n.
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where, for each i = 1, . . . , N ,

ξ(i)m = A
(i)
m,nαi +

m−1∑

k=n

A
(i)
m,k+1Γf

(i)
k (xk).

Since for m > n we have

‖ (Jx)m ‖ 6 max
i=1,...,N

{
‖A(i)

m,nαi‖+

m−1∑

k=n

‖A
(i)
m,k+1‖‖Γf

(i)
k (xk)‖

}

6 max
i=1,...,N

{
a(i)m,n‖αi‖+

m−1∑

k=n

a
(i)
m,k+1 Lip(f

(i)
k )‖xk‖

}

6 max
i=1,...,N

{
a′m,n‖αi‖+

m−1∑

k=n

a
(i)
m,k+1 Lip(f

(i)
k )a′k,n‖α‖ |x|Cn,α

}

6

(
1 + λ |x|

Cn,α

)
a′m,n‖α‖

and this implies that Jx belongs to Cn,α and

|Jx|
Cn,α

6 1 + λ |x|
Cn,α

. (21)

Hence J : Cn,α → Cn,α.
Now we prove that J is a contraction. For every x, y ∈ Cn,α and every m > n

we have

‖ (Jx− Jy)m ‖ = ‖ (Jx)m − (Jy)m ‖

6 max
i=1,...,N

{
m−1∑

k=n

‖A
(i)
m,k+1‖‖Γf

(i)
k (xk)− Γf

(i)
k (yk)‖

}

6 max
i=1,...,N

{
m−1∑

k=n

a
(i)
m,k+1 Lip(f

(i)
k )‖xk − yk‖

}

6 max
i=1,...,N

{
m−1∑

k=n

a
(i)
m,k+1 Lip(f

(i)
k )a′k,n‖α‖ |x− y|

Cn,α

}

6 a′m,n‖α‖λ |x− y|
Cn,α

and thus
|Jx− Jy|

Cn,α
6 λ |x− y|

Cn,α
.

Since λ < 1, J is a contraction and by the Banach fixed point theorem J has a
unique fixed point x∗. By (21) it follows that the fixed point x∗ verifies

|x∗|
Cn,α

6
1

1− λ

and this proves the theorem. �
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