
Ana Luísa Parreira Nunes Alonso

July 2015

U
M

in
ho

|2
01

5

Database Replication for Enterprise
Applications

D
a

ta
b

a
se

 R
e

p
lic

a
ti

o
n

 f
o

r
E

n
te

rp
ri

se
 A

p
p

lic
a

ti
o

n
s

An
a

Lu
ís

a
Pa

rr
ei

ra
 N

un
es

 A
lo

ns
o

Universidade do Minho

Escola de Engenharia

The MAP-i Doctoral Programme in Informatics, of
the Universities of Minho, Aveiro and Porto

Universidade do Minho

universidade de aveiro

July 2015

supervisor:

Prof. José Orlando Pereira

Ana Luísa Parreira Nunes Alonso

Database Replication for Enterprise
Applications

Universidade do Minho

Escola de Engenharia

The MAP-i Doctoral Programme in Informatics, of
the Universities of Minho, Aveiro and Porto

Universidade do Minho

universidade de aveiro

iv

Agradecimentos

Ao longo destes anos, tenho tido o privilégio (e o prazer) de trabalhar com um

grupo de pessoas excepcional em todos os sentidos: Alfrânio Correia, Bruno

Costa, Daniel Machado, Fábio Coelho, Filipe Campos, Francisco Cruz, Fran-

cisco Maia, João Paulo, José Marques, Lúıs Ferreira, Lúıs Soares, Miguel Borges,

Miguel Matos, Nelson Gonçalves, Nuno Carvalho, Nuno Castro, Nuno Lopes,

Paulo Jesus, Pedro Gomes, Ricardo Gonçalves e Ricardo Vilaça, uma tendência

que continua nos membros mais recentes. Apesar de ir crescendo e mesmo mu-

dando de nome, a essência mantém-se: é um grupo que faz, que acolhe, que orienta

e que partilha. E porque a vida também é diversão, fica também o agradecimento

a todos os SemEstatuto, onde destaco a influência do Jácome Cunha.

Em particular, quero agradecer ao meu orientador, o Prof. José Orlando

Pereira, que embarcou comigo nesta viagem e que mesmo no nevoeiro parece

saber sempre que direcção tomar. Se chegámos a bom porto, deve-se a ele.

Quero também agradecer ao Prof. Rui Oliveira, por todo o apoio e também

por, em 2007, me ter dado a oportunidade inicial de fazer investigação.

Agradeço também ao Prof. Victor Fonte que, através do GIL, me despertou

o interesse pelo trabalho do Grupo de Sistemas Distribúıdos.

Finalmente, quero também agradecer aos meus pais, que desde cedo me incu-

tiram o gosto pela ciência e sempre me apoiaram, e àquele que tem sido o meu

companheiro nos últimos 11 anos (e meu marido há quase três :)).

Algumas instituições apoiaram o trabalho apresentado nesta tese. O Depar-

tamento de Informática da Univesidade do Minho e o HASLab - High Assurance

Software Laboratory ofereceram-me as condições necessárias para desenvolver o

trabalho conducente a esta tese.

Agradeço também ao Alexandre Sousa que, através da ParadigmaXis, S.A.,

deu o mote e financiou parcialmente o ı́nicio do trabalho que deu origem a esta

v

vi

tese.

O trabalho conducente a esta tese foi parcialmente financiado pelo Sétimo Pro-

grama Quadro (FP7) da União Europeia sob o acordo de financiamento número

611068, relativo ao projecto CoherentPaaS.

Braga, Julho de 2015

Ana Nunes Alonso

Intelligence is the ability to adapt to change.

Stephen Hawking

Database Replication for

Enterprise Applications

A common pattern for enterprise applications, particularly in small and medium

businesses, is the reliance on an integrated traditional relational database system

that provides persistence and where the relational aspect underlies the core logic

of the application. While several solutions are proposed for scaling out such

applications, database replication is key if the relational aspect is to be preserved.

However, it is worrisome that because proposed solutions for database replica-

tion have been evaluated using simple synthetic benchmarks, their applicability

to enterprise applications is not straightforward: the performance of conservative

solutions hinges on the ability to conveniently partition applications while opti-

mistic solutions may experience unacceptable abort rates, compromising fairness,

particularly considering long-running transactions.

In this thesis, we address these challenges. First, by performing a detailed

evaluation of the applicability of database replication protocols based on con-

servative concurrency control to enterprise applications. Results invalidate the

common assumption that real-world databases can be easily partitioned. Then,

we tackle the issue of unacceptable abort rates in optimistic solutions by propos-

ing a novel transaction scheduler, AJITTS, which uses an adaptive mechanism

that by reaching and maintaining the optimal level of concurrency in the system,

minimizes aborts and improves throughput.

ix

x

Replicação de Base de Dados

para Aplicações Empresariais

Um padrão comum no que toca a aplicações empresariais, particularmente em

pequenas e médias empresas, é a dependência de um sistema de base dados

relacional integrado que garante a persistência dos dados e no qual o aspecto

relacional é parte integral da lógica da aplicação. Embora várias soluções tenham

sido propostas para dotar este tipo de aplicações de escalabilidade horizontal, a

replicação de base de dados é a solução se o aspecto relacional deve ser preservado.

No entanto, é preocupante que, dado que as soluções existentes para replicação

de base de dados têm sido avaliadas utilizando testes de desempenho sintéticos

e simples, a aplicabilidade destes a aplicações empresariais não é directa: o de-

sempenho de soluções conservadoras está intimamente ligado à capacidade de

particionar a aplicação convenientemente, enquanto que soluções optimistas po-

dem sofrer de taxas de insucesso inaceitáveis o que compromete a equidade das

mesmas, em particular no caso de transacções especialmente longas.

Nesta tese, abordamos estes desafios. Primeiro, através de uma avaliação

detalhada da aplicabilidade de protocolos de replicação de base de dados baseados

em controlo de concorrência conservador a aplicações empresariais. Os resultados

obtidos invalidam o pressuposto comum de que bases de dados reais podem ser

facilmente particionadas. Assim sendo, abordámos o problema das posśıveis taxas

de insucesso inaceitáveis em soluções optimistas propondo um novo escalonador

de transacções, o AJITTS, que utiliza um mecanismo adaptativo que ao atingir e

manter o ńıvel óptimo de concorrência no sistema, minimiza a taxa de insucesso

e melhora o desempenho do mesmo.

xi

xii

Contents

1 Introduction 1

1.1 Problem Statement . 4

1.2 Contributions . 4

1.3 Results . 5

1.4 Publications . 5

1.5 Document Structure . 6

2 Background 7

2.1 Overview . 7

2.1.1 Architectures . 7

2.1.2 Transactions . 10

2.2 Optimistic Concurrency Control 12

2.3 Conservative Concurrency Control 20

2.3.1 Database Partitioning . 21

2.4 Summary . 23

3 Determining Conflict Classes 25

3.1 Analysis of the TPC-E Benchmark 26

3.1.1 Conflict Class Definition 26

3.1.2 Discussion . 28

3.2 Analysis of a Real-World Application 29

3.2.1 Conflict Class Extraction 35

3.2.2 Discussion . 43

3.3 Summary . 45

4 Scheduling Optimistic Execution 47

4.1 System model . 47

xiii

xiv Contents

4.2 Approach . 52

4.2.1 Impact of Scheduling . 56

4.2.2 Finding the Optimal input 59

4.2.3 Estimating Transaction Execution Latency 61

4.3 Summary . 66

5 Evaluation 67

5.1 Simulation Model . 67

5.2 Workload . 69

5.3 Impact of Scheduling Parameters 70

5.4 Performance . 75

5.5 Summary . 76

6 Implementation 81

6.1 Model . 81

6.2 Details . 84

6.2.1 Certification . 89

6.3 Workload . 92

6.4 Results . 93

6.5 Summary . 97

7 Conclusion 99

7.1 Future Work . 100

Bibliography 101

List of Figures

2.1 Replicated implementation of the global transaction queue. 18

2.2 Centralized implementation of the global transaction queue. . . . 19

3.1 Number of database objects per type. 31

3.2 The source code is extracted from the RDBMS and analysed by the

tool, which then generates a write call graph, from which statistics

and information about the application’s structure can be derived. 38

3.3 The RDBMS creates a log database where logs are stored. For each

table in the original database, there is a corresponding table in the

log database, to which the LogID, LogTD, TRN Date, TRN User and

TRN Host name columns are added. 39

3.4 An example graph: vertices correspond to operations (INSERT,

UPDATE, DELETE), triggers and stored procedures. Edges cor-

respond to calls. Above, the subgraph using INSERT:dbB:tbl A as

the origin. On the bottom, a portion of the subgraph, in greater

detail. 40

3.5 An example subgraph. 41

3.6 An example of a write call graph. 41

3.7 Vertices representing write operations on the same table are ag-

gregated into a single vertex, which simplifies the graph. Other

vertices are folded into the edges, further highlighting the connec-

tions between tables. 42

3.8 Weakly-connected components that result from Figure 3.7. . . . 42

3.9 Nodes correspond to databases and edges are labeled with the

number of operations that cross database boundaries. 44

4.1 Allowed transitions between transaction states. 48

xv

xvi List of Figures

4.2 System model as an abstraction of both a distributed and a cen-

tralized queue. 50

4.3 Transaction life cycle events and the time intervals these define. . 51

4.4 Threshold-based transaction eligibility for execution. 53

4.5 Effect of the threshold on transaction vulnerability. 55

4.6 Out-of-order execution with multiple thresholds. 57

5.1 Latency breakdown for different fixed values of the scheduler pa-

rameter: pre-execution delay (blue), execution latency (yellow),

and post-execution delay (orange), i.e., time spent in the not exe-

cuted, executing and executed states respectively. 71

5.2 Effect of the input value on throughput, the abort ratio, transac-

tion latency and on the ratio between average transaction queueing

and average duration for different numbers of clients. 73

5.3 Effect of the input value on throughput, the abort ratio, transac-

tion latency and on the ratio between average transaction queueing

and average duration for different distributions of transaction du-

ration (i.e. transaction execution latency). 74

5.4 Throughput and abort rate using AJITTS instead of the baseline

protocol in scenarios with different numbers of clients. 76

5.5 Evolution of the position of the threshold during a particular run. 77

5.6 Latency breakdown using AJITTS and the baseline protocol: Pre-

execution delay (blue), execution latency (yellow), and queueing

for certification (orange). Columns MF-AJITTS, TR-AJITTS,

TO-AJITTS and TU-AJITTS refer to an execution of the AJITTS

protocol, while the others refer to an execution of the baseline pro-

tocol. 78

5.7 Throughput and abort rates for the baseline protocol and AJITTS

for different duration distributions. 79

6.1 Transaction states and allowed transitions for local transactions. . 83

6.2 Transaction states and allowed transitions for remote transactions. 83

6.3 ESCADA stack. 86

6.4 Sequence diagram for the ESCADA implementation of AJITTS. . 87

List of Figures xvii

6.5 Sequence diagram for the ESCADA implementation of AJITTS:

the transaction is aborted by the database’s local concurrency con-

trol. 88

6.6 Sequence diagram for the ESCADA implementation of AJITTS:

the transaction cannot be committed and must be rolled back. . . 89

6.7 Global latency breakdown with a varying scheduler parameter:

pre-execution delay (blue), execution latency (yellow), and queue-

ing before certification (orange) 94

6.8 Combined transaction latency breakdown per type of transaction

using the baseline protocol: pre-execution delay (blue), execution

latency (yellow), and queueing before certification (orange) 95

6.9 Combined transaction latency breakdown per type of transaction

using AJITTS with input = 0.05: pre-execution delay (blue), ex-

ecution latency (yellow), and queueing before certification (orange) 95

6.10 Combined transaction latency breakdown per type of transaction

using AJITTS with setpoint = 200: pre-execution delay (blue),

execution latency (yellow), and queueing before certification (orange) 96

6.11 Combined transaction latency breakdown per type of transaction

using AJITTS with setpoint = 500: pre-execution delay (blue),

execution latency (yellow), and queueing before certification (orange) 96

xviii List of Figures

List of Tables

3.1 Basic conflict classes and transaction types 27

3.2 Compound conflict classes and transaction types (näıve) 27

3.3 Compound conflict classes and transaction types 27

3.4 In-depth conflict analysis: (I)nserts, (U)pdates and (D)eletes . . . 28

3.5 Basic conflict classes and sets of transaction types. 36

3.6 Compound conflict classes and sets of transaction types. 36

3.7 New components, their size and number of writes. 43

xix

xx List of Tables

Chapter 1

Introduction

There is a growing awareness of scalability as a key property of enterprise appli-

cations. The current target is that IT services are elastic, i.e., that they scale

to very large dimensions but also that resources can be provisioned dynamically

and incrementally. The motivation for this is twofold: First, to cope with ap-

plications with an increasing number of users in a single deployment. Second,

to enable the same application to be deployed in increasingly larger settings,

allowing a software provider to swiftly capture an emerging market.

At the infrastructure level, this need is being met with the cloud computing

paradigm, the combination of a new business model with highly decentralized,

scalable, and dependable systems. The infrastructures initially built to meet

the internal requirements of large Internet applications such as Google or Ama-

zon.com are currently being commercialized as collections of services that together

realize the vision for elastic infrastructure.

Unfortunately, currently available cloud computing proposals fall short in face

of the needs of mainstream business applications. Most offerings are for low level

infrastructure services like virtual machines and raw storage, which leaves much

of the scale issues to the developer. Even initial proposals for multi-tiered appli-

cation platforms, such as Google App Engine and Windows Azure, are targeted at

specific application scenarios and offer limited functionality. Moreover, there are

additional dimensions to scalability such as management and maintenance of the

application itself, in which an increasingly large number of interventions to keep

the system operating and to fulfill changing business needs must be performed.

A particular cause for concern for small and medium businesses is the current

1

2 1 Introduction

reliance on traditional database management systems, by making use of advanced

features or simply by implementing core business logic within the DBMS itself.

In sharp contrast, current proposals for data management in the cloud of-

fer very limited functionality, rely on middleware layers for most processing and

lack strong transactional guarantees. Although migrating to a Service-Oriented

Architecture is often cited as the long term strategy for scaling, it requires a pro-

found refactoring of current systems, with a large investment in making explicit

reliability and performance guarantees that currently are implicit in the usage

of the transactional processing engine. These issues create a large gap between

current mainstream business applications and the promises of elastic computing.

Database replication differs from object or service replication because of trans-

actions. A transaction is a sequence of operations: if the transaction commits,

the result of all of its operations are reflected in the database; if the transaction

aborts, none of the operations’ effects is applied to the database (atomicity, the

A in ACID). Also, transactions are required to leave the database in a valid state

(Consistency), regardless of concurrently executing transactions (Isolation) and

their effects to be persistent (Durability). Even if considering a single database

engine, internal threads or processes compete for resources, e.g., read/write access

to rows or tables in the context of different transactions. Conflicts occur when

two such operations, in the context of different transactions, access the same data

item and at least one of them is a write. The purpose of concurrency control in

databases, whether replicated or not, is to guarantee that the concurrent execu-

tion of transactions over a shared resource, i.e., the database, is correct according

to criteria that define how conflicting operations should be handled and to which

extent the effects of concurrent transactions are visible to others. Concurrency

control is the cornerstone for ensuring isolation.

Concurrency control in distributed systems is harder because processes need to

coordinate and agree on which potentially conflicting actions should be performed

and in which order, so that the system as whole remains consistent. Database

replication requires that replicas somehow agree on which transactions should

commit (which can be submitted and/or executed at different replicas) and on

which order, so that the replicated database remains consistent.

Thus, the main challenge in database replication is to design efficient concur-

rency control mechanisms. There are two main approaches: conservative, where

3

potentially conflicting transactions are detected and prevented from executing

concurrently and optimistic, where transactions are allowed to execute concur-

rently regardless of potential conflicts, which are detected and resolved at commit

time.

While, traditionally, relational database systems value (strong) consistency

over availability, the need for handling ever-growing sets of data while providing

services with high-availability and partition-tolerance sparked the development

of key-value data stores, which share at the core a simple key-value data model

based on multi-dimensional sorted maps (Chang et al. 2008) with relaxed consis-

tency guarantees. On top of the key-value interface, some offer SQL-like query

languages although with restricted functionality (Baker et al. 2011).

Key-value stores (commonly referred to as NoSQL) eschew distributed con-

currency control offering restricted (if at all) transactional capabilities. For ex-

ample, a possible way to avoid distributed concurrency control is to define a pri-

mary replica that sequences update operations, while only guaranteeing atomic

operations within a single row and performing updates by creating new rows (ap-

pending), tagged with either the real-time at which the operation took place or

some user-defined time stamp, instead of updating existing ones (Chang et al.

2008). This approach immensely simplifies concurrency control. An improvement

to bypass the single-row limitation consists of partitioning data (e.g. by user)

in a quasi-relational model and mapping each partition to a single row (Baker

et al. 2011). Synchronous replication among replicas of a partition in different

data centers is handled by a low-latency Paxos implementation (Chandra et al.

2007). Message queues are used to allow replicas to transactionally send mul-

tiple messages to replicas of other partitions. However, each recipient processes

the message asynchronously in its own transaction, similarly to lazy replication.

ACID transactions across partitions require two-phase commit (2PC), which is

discouraged in favor of the queues because of increased latency in transactions

and higher risk of contention.

In summary, key-value data stores are not suitable for a whole range of appli-

cations that either: require SQL, are not easily partitioned, or require frequent,

global, fully-ACID transactions with strong consistency.

4 1 Introduction

1.1 Problem Statement

This work was motivated by a production system at a financial operator, which

provides brokerage and banking services to both partners and clients. The rela-

tional database management system (RDBMS) is the pivotal component of the

system, since not only does it provide persistence, but it also serves as the busi-

ness logic engine: the implicit environment and behaviour guarantees afforded

by using a relational DBMS should be considered as part of the business logic.

This is an architectural pattern frequently employed by businesses and showcases

many of the challenges faced by these.

Because this system is business critical, dependability is a core requirement.

This means ensuring availability and throughput stability is key: the ability to

scale the system as needed will prove instrumental in assuring availability through

varying loads, including the occasional load peaks that occur in financial markets.

Replication is often presented as the solution to achieve highly dependable

database management services. Existing database replication protocols should

be examined to determine to what extent their assumptions and intended be-

haviour hold in this type of scenario, namely in terms of the need to refactor the

application to accommodate them and under heavy load.

The effectiveness of the conservative approach hinges on the characteristics of

the workload: (i) the ability to identify such partitions and (ii) the actual num-

ber of such partitions that arise. Performance results that have been presented

to support such proposals are thus tightly linked to the synthetic benchmarks

that have been used. This is worrisome, since these benchmarks have not been

conceived for this purpose and the resulting definition of partitions might not be

representative of real applications.

On the other hand, replication protocols using optimistic concurrency con-

trol fall prey of increasing abort rates when loaded, compromising fairness and

throughput. This is also worrisome, since some application domains, such as

finance, are particularly sensitive to high rates of aborted transactions.

1.2 Contributions

The first contribution is the evaluation of the applicability of replication

protocols based on conservative concurrency control using current, more

1.3 Results 5

complex and more realistic benchmark suites, which leads to significantly different

conclusions about these protocols’ performance and applicability, particularly in

the financial brokerage domain. It is important to point out that this contribution

is not only directly relevant when considering replication protocols with conser-

vative concurrency control, but it also has a wider applicability to any proposal

that assumes that real-world databases can be easily and efficiently partitioned

into disjoint partitions.

The second contribution is AJITTS, an adaptive transaction scheduler that

minimizes aborts, which represent the greatest hurdle for protocols based on op-

timistic concurrency control. The approach is based on reaching and maintaining

the optimal level of queueing in the system, using the adaptive mechanism to in-

troduce finite delays in transaction execution, thus maintaining correctness. Even

though this method introduces latency, the net effect is still an improvement in

throughput.

1.3 Results

The first result is a tool that can be used to analyze SQL-based applications to

determine partitioning schemes, focusing on finding disjoint conflict classes.

The second result is the prototype implementation of AJITTS in the

ESCADA framework. Beyond the actual implementation, because it was done

over an abstraction that captures any relational database engine, the ability to

do so shows it can implemented anywhere.

1.4 Publications

The contributions presented in this thesis have been partially published in the

following papers:

• Improving transaction abort rates without compromising throughput through

judicious scheduling.

Ana Nunes and José Pereira.

In Proceedings of the 28th Annual ACM Symposium on Applied Comput-

ing, 2013.

6 1 Introduction

• Conflict Classes for Replicated Databases: a Case-Study.

Ana Nunes, Rui Oliveira and José Pereira.

In Workshop on Planetary-Scale Distributed Systems, 2013.

• Ajitts: Adaptive just-in-time transaction scheduling.

Ana Nunes, Rui Oliveira and José Pereira.

In Distributed Applications and Interoperable Systems, 2013.

1.5 Document Structure

This thesis is organized as follows:

• Chapter 2 presents an overview of database replication architectures, fo-

cusing on concurrency control mechanisms. In particular, related work on

either conservative concurrency control or optimistic concurrency control is

discussed focusing on the considered assumptions.

• Chapter 3 presents an evaluation of whether the assumptions made regard-

ing the ability to define convenient conflict classes hold when applied to

complex benchmarks or enterprise applications.

• Chapter 4 presents, in detail, the approach behind AJITTS, an adaptive,

just-in-time, transaction scheduler, defined over a model that abstracts from

implementation details, highlighting its wide applicability.

• Chapter 5 presents a detailed evaluation of AJITTS in a simulated setting.

• Chapter 6 presents a full-featured prototype implementation of AJITTS.

• Chapter 7 concludes the thesis, highlighting contributions and results, and

discussing possible directions for future work.

Chapter 2

Background

Database replication has been a hot research topic for some time now, from

single-tier architectures to multi-tier and cloud architectures. Currently, dis-

tributed transactions are a hot topic with an expanding audience, fostered by

STM and cloud databases. Previous work on replication is thus being reused in

new settings, widening its significance. The focus has been on how to enable

highly available applications/services through fault-tolerant and scalable archi-

tectures (Pedone et al. 2003; Kemme and Alonso 2000; Patiño-Mart́ınez et al.

2000; Jiménez-Peris et al. 2002; Kemme et al. 1999). A key concern in the de-

sign of fault-tolerant database replication protocols is ensuring that sufficient

transactions can be executed concurrently such that the system performs ade-

quately (Correia Jr et al. 2005).

2.1 Overview

2.1.1 Architectures

A näıve approach for distributed coordination is to allow read/write transactions

to execute at any node and implement distributed locking: performing a trans-

action requires synchronous coordination of at least a subset of replicas (with

partial replication or all if the data is fully replicated on all replicas).

For example, CacheFusion (Lahiri et al. 2001) (part of Oracle’s RAC), which

assigns the ownership of each data block to some replica, requires that in perform-

ing an update transaction, the ownership of all blocks involved in the transaction

7

8 2 Background

must be transferred to the replica in which the transaction is to execute. This

means that in the context of a transaction, while the number of replicas involved

in handling a given block of data is limited to three (meta data holder, owner,

requesting replica) there is no bound on the number of blocks whose ownership

must be transferred, thus severely limiting the scalability of such a system.

Because synchronous distributed locking on a per transaction basis as de-

scribed above clearly does not scale for large transactional workloads, throughout

this work, the focus is on database replication protocols based on other concur-

rency control mechanisms.

Active replication protocols follow the state-machine approach (Schneider

1990) where the database is considered to behave like a state-machine in which

each operation deterministically causes a change in state: each operation is for-

warded to every replica, which then executes it. In order for this approach to

be applicable, operations must be guaranteed to be deterministic, precluding the

usage of current time values and random numbers, as these would likely differ

between replicas.

In contrast, in passive replication protocols, commonly referred to as primary-

backup, only the primary replica executes the transaction, propagating the trans-

action’s write set to other replicas. The primary’s native database engine’s con-

currency control decides on which transactions to commit or abort and in which

order. To insure that replicas remain consistent, these must know or decide on

the same serialization order as the primary. In a multi-primary setting, i.e.,

where different replicas have the role of primary for different parts of data, each

transaction still executes in a single primary, but having several primaries means

that these must agree on a total order for transaction execution, as a transac-

tion might update data owned by multiple primaries. If replicas apply updates

according to that total order, strong consistency is guaranteed.

Group communication protocols that guarantee message delivery with appro-

priate semantics are instances of the abstract consensus problem (Guerraoui and

Schiper 2001) and can be used for that purpose: (Wiesmann et al. 2000) compare

different approaches toward replication as well as the primitives needed in each

case, while (Défago et al. 2004) present a survey of atomic broadcast algorithms.

Figure 2.1 shows how a group communication protocol can be used to order trans-

actions among all replicas: because the total order property guarantees that all

2.1 Overview 9

replicas receive the same set of messages and that messages are delivered in the

same order to all replicas, the transaction order can be established simply by

sending the transaction identifier (along with other relevant meta data) to the

group; if transactions are enqueued in the same order in which the respective

messages are delivered, the queues at each replica will be identical and can be

considered as instances of a replicated queue.

However, waiting for the total order to be established before applying updates

introduces a latency penalty. Protocols exploiting optimistic delivery (Kemme

et al. 1999) were proposed in an attempt to mitigate the latency penalty, without

foregoing strong consistency, at the cost of making replicas implement a slightly

more complex concurrency control, that must ensure that the execution based on

the order defined by optimistic delivery is correct considering the final total order.

It has been shown that this optimization has little impact on the performance of

such protocols by challenging the assumption that the bulk of the latency is due

to group communication (Correia et al. 2008).

Because active replication requires every replica to execute every transaction,

performance is limited by the slowest replica in the group. While passive repli-

cation protocols do not suffer from this limitation, transferring large write sets

across the network to several replicas can be costly. Protocols that combine

active and passive replication have been proposed (Correia et al. 2008). There

have also been proposals for mitigating the limitations of state-machine replica-

tion, namely by implementing speculative execution and state-partitioning (akin

to partial replication) (Marandi et al. 2011) and eschewing non-determinism by

restricting valid execution to a single predetermined serial execution (Thomson

and Abadi 2010).

Using primary-backup (and multi-primary), ownership of data partitions must

be guaranteed to be exclusive. This means that when the primary fails, the

database must block until a new primary is found, usually through a leader elec-

tion protocol. This is costly, particularly in churn-prone environments. Having

stand-by fail-over replicas might avoid most runs of the leader election protocol,

but at the cost of increasing the number of replicas that need to be updated in

each transaction, thereby increasing network utilization and generally increas-

ing the number of nodes in the system without a corresponding improvement

in system throughput. Update-everywhere protocols avoid this issue because all

10 2 Background

replicas are equivalent. Again, replicas must apply updates according to the

defined total order to guarantee correctness.

Database replication protocols can also be classified in terms of when the

client is notified the transaction has been committed: in eager (synchronous)

replication protocols, the client is only replied to after all replicas have commit-

ted the transaction (using, e.g., two-phase commit (2PC)), which can be more

costly in terms of latency but provides stronger consistency; lazy (asynchronous)

replication protocols reply to the client as soon as the transaction has committed

in some replica, later propagating updates to other replicas, providing weaker

consistency because of potential temporary divergence between replicas.

An alternative definition is to consider whether updates are propagated to

other replicas before the transaction is committed at the primary using a primitive

that guarantees delivery and the appropriate message order properties needed by

the protocol.

2.1.2 Transactions

A system that meets the serializability isolation criterion guarantees that, re-

gardless of the actual interleaving of operations from different transactions during

execution, the result is equivalent to some serial execution of the transactions.

Serializability, however, does not guarantee equivalence to a particular serial ex-

ecution of the transactions, but to one of the possible serial executions. Two

executions are considered to be equivalent, or more precisely conflict-equivalent,

if conflicting operations occur in the same order in both executions.

The overwhelming majority of relational database management systems, how-

ever, use snapshot isolation, which differs from serializability by considering only

write/write conflicts (Lin et al. 2005). Read operations return the latest commit-

ted values before the transaction began, i.e., from a snapshot of the database.

Database replication adds a dimension of complexity as other database engines

(replicas) are added to the system. These replicas can either host partial or full

copies of the ”original” database. Partial replication requires partitioning the

database either vertically, by assigning sets of tables (or even just sets of table

columns) to different partitions, or horizontally, by assigning sets of rows to

different partitions, according to some criteria: e.g., key range, key hash, or some

composition of criteria.

2.1 Overview 11

Correctness criteria for replicated systems can be defined by comparison with

the criteria for non-replicated systems, referred to as 1-copy equivalence. The

idea is that the several physical copies behave like a single logical copy, even in

the face of failures. An isolation level of 1-copy-serializability is met when even

if failures occur, the execution over the replicated system if equivalent to a serial

execution over a single logical copy. Similarly, 1-copy-snapshot-isolation differs

from 1-copy-serializability in that only write/write conflicts are considered.

A way to reason about conflict-equivalence is to consider queues of (poten-

tially) conflicting transactions. Assume that for each transaction t submitted to

database D, there is some function class(t) that outputs the set of tables that t

might update. Assume for each table T in D there is a queue QT that mediates

access to T : only the transaction at the head of QT is allowed to update table T .

Assuming transactions are enqueued atomically across all class(t) queues:

∀t T ∈ class(t) ⇐⇒ t ∈ QT (2.1)

t <
QT

t′ ⇐⇒ t precedes t′ in QT (2.2)

Common(t, t′) = class(t) ∩ class(t′) (2.3)

∀T 6= T ′ ∈ Common(t, t′) =⇒ (t <
QT

t′ =⇒ t <
QT ′

t′) (2.4)

i.e., for transactions that access sets of tables in common, the relative order in

those queues is guaranteed to be the same. In detail: Equation 2.1 states that

a transaction t is enqueued in queue QT for every table T it accesses; Equation

2.2 defines the partial order relation <
QT

on the set of transactions as consistent

with the precedence relation between transactions in QT ; Equation 2.3 defines a

function that outputs the set of tables accessed by both t and t′; and Equation

2.4 states that the partial orders induced by queues that have transactions in

common are consistent.

For a transaction t let

Order(t) =
⋃

Ti∈class(t)

<
QTi

be the order relation defined over transactions that is congruent with the set of

queues that mediate access to the tables accessed by t. t can only be certified

12 2 Background

when it is not preceded by any transaction in Order(t). An equivalent view is to

consider a queue congruent with Order(t), denoted as Queue(t): a transaction

can only be certified when it is at the head of Queue(t):

head(t, Queue(t)) ⇐⇒ @t′ : t′ <
Queue(t)

t (2.5)

Let H = t1, t2, . . . , tn be a serial history and D = {T1, T2, . . . , Tn} a database

where:

t <
H
t′ ⇐⇒ t precedes t′ in H (2.6)

i.e., the precedence relation between transactions in a history H induces a partial

order on pairs of transactions, denoted <
H

. Histories H, H ′ are conflict equivalent

iff ⋃
Ti∈D

<
QTi

⊆ <
H
∧

⋃
Ti∈D

<
QTi

⊆ <
H′

(2.7)

i.e., by definition, serial histories over D are conflict-equivalent if consistent with

the partial order defined by the queues over D.

Concurrency control for replicated databases requires replicas to coordinate

to ensure correctness. If concurrent transactions conflict, it must be guaranteed

that the same outcome is reached in all replicas so that the database remains con-

sistent. 1-copy-serializability (1-copy-snapshot-isolation) is ensured if all replicas

have conflict-equivalent serial histories as defined in Equation 2.7.

2.2 Optimistic Concurrency Control

Optimistic concurrency control in distributed data processing systems is increas-

ingly popular. In replicated database systems (Pedone et al. 2003; Kemme and

Alonso 2000), it allows concurrent transactions to execute at different sites re-

gardless of possible conflicts. Conflict detection and resolution are performed at

commit time in what is known as a certification procedure, before the changes

are applied to the database. While optimistic concurrency control allows more

concurrency and thus better use of resources than its counterpart, transactions

that are later found to conflict must be aborted. In large scale, high throughput

transactional systems such as Google’s Percolator (Peng and Dabek 2010) and

Yahoo’s OMID (Gomez Ferro et al. 2014), implementations of optimistic con-

2.2 Optimistic Concurrency Control 13

currency control with different isolation levels and locking policies are key to

achieving radical scalability.

Certification can either be centralized or replicated. Potentially conflicting

transactions must commit in the order in which these appear in the queue. In

a centralized implementation, replicas rely on a dedicated participant, i.e., the

certifier, to certify all transactions: the certifier maintains a global transaction

queue that can be used to determine certification order according to the needs of

the protocol. Figure 2.2 shows transactions being submitted to the workers while

the global transaction queue is maintained at the certifier, which determines the

commit order: assuming that transactions (A to D) are all potentially conflicting,

these are ordered such that A should be the first to commit, then B, C and D.

Upon completion (i.e., commit or abort), transactions leave the queue.

In a replicated implementation, each participant maintains a replica of a global

transaction queue, built using group communication. In particular, group com-

munication is used to totally order transactions, while the replicated queue guar-

antees that transactions are certified in a conflict-equivalent order. Figure 2.1

shows the replicated queue in three replicas to which four transactions were sub-

mitted (A to D), ordered such that, assuming all are potentially conflicting, A

should be the first to commit, followed by B, then C and finally D. Considering

the conflict-equivalence formalism defined in Section 2.1.2 this can be guaranteed

by only allowing a transaction t to be certified if it is at the head of all class(t)

queues, or equivalently at the head of Queue(t).

Notice that the more transactions are allowed to execute concurrently, the

more likely it is for conflicts to arise. Also, any transaction is vulnerable to

being aborted by other transactions from the moment it starts to execute until

it is certified: the longer it takes to execute and certify a given transaction,

the more vulnerable it is. This is the caveat of most optimistic concurrency

control strategies: when loaded, latency increases and fairness is compromised,

particularly for long-running transactions, as exemplified with DBSM (Correia

et al. 2008).

In an effort to mitigate this issue, several approaches have been proposed.

Some use database partitioning to attempt to decrease the load. Others focus

on the order in which transactions are executed (scheduling) and/or certified

(re-ordering).

14 2 Background

One approach is to partition the database defining different certification pro-

cedures depending on whether the transaction is local to a single partition or

if it reads/writes multiple partitions (Sciascia et al. 2012). While the certifica-

tion procedure for local transactions relies on a replicated queue, multi-partition

transactions require a protocol similar to two-phase commit. Although an opti-

mistic concurrency control mechanism is used, the assumption that the data can

be partitioned into disjoint partitions (or that transactions access a very small

number of partitions) is the linchpin of the scalability strategy: assuming that the

bottleneck lies in the atomic broadcast primitive, it is proposed that partitioning

the data can limit the size of the membership for each transaction, breaking up

the global membership into smaller groups according to the partitions accessed by

each transaction. Considering mostly local transactions, the load on each mem-

bership group depends on the number of transactions that access the associated

partitions. If most transactions access the same partition, then most of the load

is on the associated group, only slightly improving over the global membership

scenario. If most transactions are global, then, most of the time, this is equivalent

to the original global membership.

Although most optimistic concurrency control protocols execute transactions

as soon as these are submitted (Pedone et al. 2003; Kemme and Alonso 2000),

it has been pointed out that the worst case scenarios for optimistic concurrency

control can be mitigated by limiting the number of transactions executing concur-

rently (Correia et al. 2008). Transaction scheduling on non-distributed settings

using queue-theoretic models for automatically adjusting the maximum paral-

lelism level has been studied (Schroeder et al. 2006a). However, selecting the

correct level of parallelism is not straightforward and can result in a severe limi-

tation to maximum throughput.

Galera Cluster is an update-anywhere eager replication solution that uses

MySQL-based database engines and implements the replicated queue model. It

proposes a mechanism named ”flow control” that enables each replica to pause

replication in the cluster if the local queue of transactions waiting to be applied

grows beyond a given threshold. The threshold is dynamic and grows with the

number of replicas in the cluster, as it is expected that more replicas will execute

more transactions, therefore requiring greater tolerance in how far replicas can

2.2 Optimistic Concurrency Control 15

lag behind1. Similarly, replicas that request state transfers cache writes until the

transfer is complete and are also able to throttle replication: cluster performance

is limited by the apply throughput of these replicas. As proposed, flow control

serves only to handle transient spikes in load, performance issues or unusually

large transactions: stalling replication can only be done temporarily or queues

will grow uncontrollably.

An approach based on state-machine replication with speculative execution

would be to execute transactions in batches as soon as optimistically delivered

(Hirve et al. 2014). It is assumed that, as long as the sequencer does not crash,

the optimistic delivery order will match the final order, ensuring consistency. In

short, the idea is to use the latency due to establishing the final order to execute

transactions. The number of speculatively executed transactions is statically

limited. An evaluation of this approach using the TPC-C benchmark exposes its

poor performance with medium to high likelihood of conflict: parallel speculative

execution is reduced to serial execution as each speculative transaction has to

wait for the preceding transaction to commit in order to execute.

Transaction re-ordering techniques can be used to find alternative serialization

orders with the goal of minimizing aborts. One approach is to use optimistic con-

currency control with dynamic time stamp ranges (Mahmoud et al. 2014) where

the start and commit time stamps of concurrent transactions that potentially

conflict are adjusted at each partial replica according to causal constraints: for

example, if transaction T reads item x and transactions Ti, . . . , Tj are concurrent

with T and intend to write x, then T ’s and Ti, . . . , Tj’s time stamps must be

adjusted so that T ’s start time stamp is lower that any of the other transactions’

commit time stamp, since T has not seen their effects on x. The same type of

adjustment is carried out for each item read or written by a transaction and in-

dependently at each partial replica, which then cast their vote on whether the

transaction can be committed and with which time stamps. While only com-

pared to an implementation of conservative concurrency control using two-phase

locking, the results show how vulnerable the approach is an increase in the num-

ber of distributed transactions. Also, notice that the overhead of the time stamp

adjustment mechanism will likely be significantly more visible with a workload

where the probability on conflict between transactions is higher (or with larger

1https://www.percona.com/blog/2013/05/02/galera-flow-control-in-percona-xtradb-
cluster-for-mysql/

16 2 Background

transactions, reading and/or writing more items) as each item will likely have

more transactions intending to read or write it.

Transaction re-ordering can also be implemented using a local certification

procedure, in a model that is similar to the one in Figure 2.1 (Pedone et al.

1997). In short, if a transaction t cannot be certified in the order in which it was

delivered by the total-order group communication protocol, the authors propose

analysing the set of transactions that executed concurrently with t, but have

already been committed, C(t): for each pair of consecutive transactions in C(t),

ti ordered before tj, if t’s read set does not overlap with the write set of those in

C(t) ordered before ti and t’s write set does not overlap with the read sets of those

in C(t) ordered after tj, then t can be certified as if had been delivered between

ti and tj. Expanding this technique to reordering the whole set of committed

transactions is said to lead to an NP-complete problem (Pedone et al. 1997).

A refinement would be to allow transactions that have been certified but not

yet committed to change their relative order (Pedone et al. 2003). However,

because transactions in that state have already acquired write locks, delaying

their commits increases lock contention. The number of transactions allowed to

be in that state is limited by a constant, determined empirically.

A similar approach to re-ordering, with the goal of preventing read-write

conflicts (only considering 1-copy-serializability) in a partial replication scenario,

can be combined with a two-phase transaction execution mechanism that takes

advantage of a two-phase commit termination protocol (Diegues and Romano

2013). For transactions where the output of its updates are not used elsewhere in

its context, the execution of these operations can be delayed until after all locks

have been acquired in the prepare phase of the 2PC termination protocol. These

update operations are executed atomically in the commit phase. The assumptions

regarding transactions in which update transactions can be safely delayed to the

end are similar to those in (Stonebraker et al. 2007) and do not necessarily extend

to more complex benchmarks or applications.

Assuming a previously established certification order where t precedes t′, it

is possible that, if these transactions execute in the same replica and conflict,

due to thread interleaving in the database engine, t′ may grab its locks before t,

blocking t. Because t would have to be certified before t′, a deadlock would arise,

requiring one of the transactions to be aborted to break it (Correia et al. 2008).

2.2 Optimistic Concurrency Control 17

An alternative strategy, would be to swap t and t′, if both access the exact same

set of conflict classes and assuming t′ could be certified. If so, after t′ commits, t

can proceeed. Otherwise, t′ is aborted. One of the issues with this strategy is that

this would require knowing which of the potentially conflicting transactions is the

one blocking t or to proceed by trial and error. Also, in general, the usefulness of

optimizations based on conflict classes is tied to the number of disjoint conflict

classes that can be defined for an application.

Another approach is to exploit alternative serialization orders to mitigate the

mismatch between the order in which transactions are delivered by optimistic

and total-order deliveries (Palmieri et al. 2011).

18 2 Background

BCD A

G
ro

up
 C

om
m

un
ic

at
io

n
transaction

arrival
transaction
completion

replicated
queue

T Tlocal
transaction

remote
 transaction

BCD A

BCD A

Figure 2.1: Replicated implementation of the global transaction queue.

2.2 Optimistic Concurrency Control 19

T remote
transaction

BCD A

transaction
arrival

transaction
completion

certifier

worker

worker

Figure 2.2: Centralized implementation of the global transaction queue.

20 2 Background

2.3 Conservative Concurrency Control

A common strategy for assessing potential conflicts is to define conflict classes.

In short, the available data is partitioned according to some criteria, and a FIFO

transaction queue is associated to each partition (Patiño-Mart́ınez et al. 2000;

Jiménez-Peris et al. 2002).

Disjoint data partitions constitute basic conflict classes. A straightforward

strategy is to map each table to a basic conflict class. Notice that this is a direct

implementation of the formalization of conflict-equivalence presented in Section

2.1.2. Compound conflict classes can be defined by grouping basic conflict classes.

Each transaction has an associated set of basic conflict classes according to

the data partitions it accesses (as per Equation 2.1). Transactions that access

disjoint sets of basic conflict classes are guaranteed not to conflict and thus can

be concurrently executed. Conflicts may arise among transactions that access a

common conflict class. In order to ensure correctness, those transactions cannot

be executed concurrently. This can be straightforwardly guaranteed, using a

conservative approach, by only allowing a transaction t to execute if it is at the

head of all class(t) queues considering either a replicated or a centralized queue

model as defined in Section2.2.

In some conservative approaches, such as the OTP protocol (Kemme et al.

1999), a transaction queue is associated to each basic conflict class. In others,

such as the NODO protocol (Patiño-Mart́ınez et al. 2000; Jiménez-Peris et al.

2002), transaction queues are associated to compound conflict classes.

Let conflict classes C1, C2 be considered disjoint iff

@ transaction t : C1 ∈ class(t) ∧ C2 ∈ class(t)

In any case, the number of transactions allowed to execute concurrently is

limited to the number of disjoint conflict classes defined over the database. Thus,

the manner in which the database is partitioned is a determinant factor of the

performance of a replication protocol using conservative concurrency control. The

performance penalty imposed by the conservative strategy depends on the grain

considered for concurrency control: if the grain is too fine, conflict detection will

result in a delay before transaction execution; on the other hand, if the grain is

too coarse, transactions that would not otherwise conflict are needlessly prevented

2.3 Conservative Concurrency Control 21

from executing concurrently. In fact, protocols such as OTP further require that

the application can be completely partitioned, since any transaction is restricted

to accessing a single basic conflict class.

In order to mitigate this issue, a restricted optimistic policy, guided by which

conflict classes are accessed by transactions, can be used for transaction schedul-

ing. Transactions that would abort when executing optimistically are conserva-

tively re-executed, using conflict classes to ensure a conflict-free execution (Cor-

reia et al. 2008).

There are also some proposals for transaction scheduling using conservative

concurrency control. In (Thomson et al. 2012), the authors propose an architec-

ture for active execution where transaction sequencing and transaction schedul-

ing/concurrency control are handled by different layers. Transactions are ordered

by the sequencing layer using synchronous replication via Zookeeper (Hunt et al.

2010), akin to the replicated queue model in Figure 2.1. Each partition’s sched-

uler handles local resource locking for t,ransactions that update the partition:

because execution must be deterministic, the order defined by the sequencing

layer is strictly followed thus preventing conflicts. After locks are acquired for

a given transaction, local reads are performed and sent to every partition that

the transaction updates. Finally, the transaction is fully executed but only local

writes are applied. A mechanism is proposed to reduce lock contention by mini-

mizing disk stalls: the sequencer delays sending the transaction to the scheduling

layer and notifies the storage layer of the data required by the transaction so that

when it executes, this data will already be in memory.

2.3.1 Database Partitioning

There have also been some proposals regarding automatic database partitioning,

but these either: target data warehousing scenarios, where update transactions

are ignored (Rao et al. 2002) or attempt to partition the application in an effort

to shift some of the load to an application server (Cheung et al. 2012).

One approach to database partitioning is to optimize for two goals, simulta-

neously: minimizing distributed transactions, with the restriction of keeping the

load on partitions balanced (Curino et al. 2010). This makes it unsuitable for

finding partitions accessed by disjoint sets of transactions. Also, the proposed

explanation process, an attempt to consolidate classification/query routing rules

22 2 Background

to avoid considerably large lookup tables, introduces classification errors: con-

servative concurrency control based on conflict classes requires knowing exactly

which conflict classes will be accessed by a given transaction to guarantee cor-

rectness. Another limitation is that statements that access multiple tables are

required to use only the attributes used in partitioning rules, or are otherwise not

supported. Finally, the result of 12.1% distributed transactions with 2 partitions

using the TPC-E benchmark is not sufficient to evaluate the effectiveness of the

approach: increasing the number of partitions will almost certainly lead to an

increase in the number of distributed transactions. The effect of having less dis-

tributed transactions, as the ratio of the number of warehouses over the number

of partitions grows, observed using TPC-C, is not likely to happen with TPC-E

because the dependencies among possible partitions are not as clear cut.

An improvement is to consider temporal skew when load-balancing, i.e., po-

tential time-related patterns in the workload that create hotspots in particular

partitions (Pavlo et al. 2012). Again, because the partitioning algorithm focuses

on load balancing it is not suitable for finding disjoint partitions. In particular,

while, among others, the TPC-E benchmark is used to evaluate the approach,

the effectiveness of the partitioning scheme in terms of transaction throughput

for this benchmark is not evaluated.

Another approach is to do fine-grained partitioning instead, i.e., per tuple,

using a lookup table (Tatarowicz et al. 2012). However, an analysis of the ef-

fectiveness of the approach for TPC-E is done on a restricted subset of TPC-E

transactions and tables, thus failing to account for the actual complexity of the

benchmark and thus limiting the significance of the results.

A different approach is to do an in-depth analysis of known transaction classes,

to determine if these can be transformed to run concurrently, without the possibil-

ity of conflicts (Stonebraker et al. 2007). TPC-C transactions are partitioned into

sub-transactions that can be executed independently at different sites. In par-

ticular, the sub-transactions are found to exhibit the following properties: reads

at each site are sufficient to determine locally if the transaction must commit

or abort (generally attributed to user data entry errors); there is no communi-

cation between sites executing sub-transactions of the same transaction (e.g. to

communicate intermediate results); sub-transactions are executed conservatively

(one at a time) and commutable, i.e., if for any transactions T and T ′, the sub-

2.4 Summary 23

transactions that execute at any site i, Ti and T ′i , produce the same database

state regardless of the order in which these are executed if both commit. The

ability to convert the TPC-C benchmark to this form exploits the simplicity of

TPC-C’s schema and small number of transactions and the authors remark that

it would be unlikely for an automated partitioning mechanism to reach such a

configuration.

TPC-C is too simple to serve as a benchmark to accurately evaluate partition-

ing tools while partitioning schemes found by automated partition discovery fall

short of eliminating distributed transactions: the scheme found in (Curino et al.

2010) while similar to the one defined in (Stonebraker et al. 2007) fails to con-

sider the replication of read-only columns of the stock table; even if the discovered

partitioning schemes were the same, the actual implementation in (Stonebraker

et al. 2007) takes advantage of properties that are not elicited by the tool.

An analysis of TPC-C and TPC-E focusing on the complexity introduced

by the latter can be found in (Tözün et al. 2013), namely due to the features

that make partitioning significantly more difficult: longer and less deterministic

transaction and cross-transaction dependencies.

2.4 Summary

Both conservative and optimistic concurrency control protocols have drawbacks,

which have been analysed based on benchmarks that do not mirror the com-

plexity of a real application: schemas that are unrealistically simple are used

(e.g. TPC-C, or restricted versions of TPC-E) to evaluate database partition-

ing and consequently conflict avoidance/resolution mechanisms along with the

effectiveness of load-balancing or reduction strategies.

In particular, approaches using optimistic concurrency control focus on min-

imizing the number of aborted transactions, some by limiting the imposed load.

Those using conservative concurrency control focus on minimizing contention on

transaction execution, relying of the ability to conveniently partition the database

to increase performance.

24 2 Background

Chapter 3

Determining Conflict Classes

Conservative concurrency control based on conflict classes requires transaction

scheduling to adhere strictly to the order defined by the conflict class queues:

transactions that access a common conflict class will not be executed concurrently.

In order to use replication protocols with conservative concurrency control

efficiently, the data must be partitionable considering the particular data access

patterns of the applied workload. Moreover, even if possible, the concrete conflict

class definition chosen influences the contention and maximum parallelism attain-

able. Therefore, the performance of conservative protocols hinges on a favorable

definition of conflict classes, as the number of disjoint conflict classes defines the

maximum number of transactions that can be executed concurrently.

Most of these protocols have only been tested in particular scenarios with

very simple and unrealistic database schemas (Pedone et al. 2003; Kemme and

Alonso 2000; Jiménez-Peris et al. 2002; Kemme et al. 1999). Some have also been

tested using benchmarks such as TPC-C (Tra 2001a) and TPC-W (Tra 2001b)

which have very few database tables as well as few transactions, thereby not

reflecting the complexity of analysing a real system to develop a partitioning

schema. The question remains whether the assumptions made regarding conflict

class definition are still plausible when dealing with more complex benchmarks,

for which partitioning is not straightforward at all or, more importantly, regarding

real-world applications.

First, The TPC-E (Tra 2010) benchmark, featuring a considerably more com-

plex database model, and a real-world application in the same domain are anal-

ysed, focusing on partitioning and the suitability of database replication protocols

25

26 3 Determining Conflict Classes

with conservative concurrency control for these scenarios. The method used to

tackle the complexity of the application in performing this analysis is also de-

scribed.

3.1 Analysis of the TPC-E Benchmark

The TPC-E (Tra 2010) benchmark simulates the activities of a brokerage firm,

which handles customer account management, trade order execution on behalf of

customers and the interaction with financial markets.

This benchmark defines 33 tables across four domains: customer, broker,

market and dimension. The main transaction types operate across the domains.

TPC-E’s read/write transactions are: Market Feed (MF), Trade Order (TO),

Trade Result (TR), Trade Update (TU) and Data Maintenance (DM).1

Unlike TPC-C and TPC-W, TPC-E is an open benchmark suite (Schroeder

et al. 2006b): new requests are received by the System Under Test regardless of

the completion of previous requests. A closed benchmark suite does not suitably

test replication protocols, since the inherent limit to the number of requests

received by the system may obfuscate load/contention issues (Correia et al. 2008).

3.1.1 Conflict Class Definition

TPC-E is well-documented and conflict classes can be defined by inspection.

In this analysis we considered the 1-copy-snapshot-isolation criterion (Lin et al.

2005): by analysing the database footprint of each transaction type, we deter-

mined the specific set of tables for which write/write conflicts between different

transaction types can occur.

In order to define conflict classes, the tables read and written by each type

of transaction must be inspected to determine which tables are accessed by more

than one type of transaction. A näıve conflict class definition is to define a conflict

class per table: Table 3.1 depicts the basic conflict classes that can be defined

in a table-based manner and the types of transaction that access them. Tables

could also be grouped together in a conflict class if accessed by the same set of

1The Data Maintenance transaction type operates exclusively on a separate group of tables.
As such, it is not relevant for this analysis and is essentially omitted from the discussion that
follows.

3.1 Analysis of the TPC-E Benchmark 27

Table 3.1: Basic conflict classes and transaction types

Conf. C. Table Transaction Type

C1 trade MF, TO, TR, TU

C2 trade history MF, TO, TR

C3 trade request MF, TO

C4 cash transaction TR, TU

C5 settlement TR, TU

Table 3.2: Compound conflict classes and transaction types (näıve)

Conflict Class Transaction Type

{C1, C2, C3} MF, TO

{C1, C2, C4, C5} TR

{C1, C4, C5} TU

Table 3.3: Compound conflict classes and transaction types

Conflict Class Transaction Type Write mix

{C1, C2, C3} MF, TO 48%

{C1, C2, C4, C5} TR 43%

{C1} TU1 3%

{C5} TU2 3%

{C4} TU3 3%

transaction types, such as tables cash transaction and settlement. Table 3.2

depicts the compound conflict classes can be defined based over the basic conflict

classes, so that each transaction accesses a single conflict class, as required by

NODO. Table 3.1 highlights which transaction types can conflict: because every

transaction accesses C1, with conservative concurrency control, all transactions

must be serially executed (Patiño Martinez et al. 2005).

TPC-E transactions are composed of frames which makes it possible to define

3 sub-transaction types in lieu of TU. Table 3.3 depicts the compound conflict

classes that can be defined considering TU’s sub-transaction types TU1, TU2

and TU3. This would allow up to 3 transactions to execute concurrently using a

conservative mechanism.

However, after analysing the percentage of transactions of each type compared

28 3 Determining Conflict Classes

Table 3.4: In-depth conflict analysis: (I)nserts, (U)pdates and (D)eletes

C1 C2 C3 C4 C5

MF U (PK) I D (PK)

TO I I I

TR U (PK) I I I

TU1 U (PK)

TU2 U (PK)

TU3 U (PK)

to all write transactions in the benchmark’s mix2, displayed in Table 3.3, we

conclude that the majority of the load (91%) is concentrated in two non-disjoint

compound conflict classes, {C1, C2, C3} and {C1, C2, C4, C5}, which leads to

same performance bottleneck that occurs for the näıve approach. This means

that most of the time, transactions will execute serially.

3.1.2 Discussion

Table 3.4 details how each transaction type writes each table. For example,

MF transactions update trade (C1) by primary key, insert one or more rows in

trade history and delete one or more rows from trade request by primary

key. Assuming a row-level locking model in the underlying database, concur-

rent inserts do not conflict, nor do inserts and concurrent updates by primary

key, or inserts and concurrent deletes by primary key. Concurrent inserts on

trade history (C2) also do not conflict because the primary keys are provided

as a part of the transaction’s arguments: regardless of the order in which the

inserts are executed, the end result is the same. Thus, only MF, TR and TU1

transaction types conflict. Notice that there is no straightforward way to encode

this information in a conflict class definition short of defining one conflict class

per row, which would be futile. An alternative might be to explore decision trees,

where each node represents a predicate on partitioning attributes and each branch

represents the outcome of the predicate, to attempt to consolidate fine-grained

partitioning information into broader predicate-based rules (Curino et al. 2010):

2 We assumed that each sub-transaction is executed a similar number of times, but a different
distribution would lead to the same conclusion.

3.2 Analysis of a Real-World Application 29

for example, if there is a node with the predicate x < 5 and another with x = 5

these might be consolidated into a node x ≤ 5, merging their branches. However,

the proposed method for consolidation relies on a heuristic approach which does

not guarantee perfect classification of transactions. This is incompatible with

correct conservative concurrency control.

The TPC-E recommended way of partitioning the database is to do so by

customer identifier, which would effectively partition the trade table horizontally.

But, for example, MF transactions update the trade table ignoring the customer.

Therefore, MF transactions would likely be distributed across partitions. In

general, sharding the database would not prove helpful since it would either

require: the exact transaction write set to be known before executing it (since

conflict detection is done a priori); or the transaction to be added to queues of all

conflict classes that match shards of accessed tables, thereby rendering sharding

useless.

Moreover, current automatic partitioning tools either do not target OLTP

systems or produce a small number of partitions, thus being unsuitable for use

with conservative concurrency control (as discussed in Chapter 2).

Protocols based on conservative concurrency control offer inherently limited

performance in these circumstances (Correia Jr et al. 2005). Still, the TPC-E

benchmark can, in fact, be run with a high level of parallelism, i.e., a large number

of transactions executing concurrently, with a low abort rate, using optimistic

concurrency control as shown on Chapter 4.

3.2 Analysis of a Real-World Application

Our case-study real-world application is a production system at a financial oper-

ator which provides brokerage and banking services to partners and clients. The

main component of the system is an application that features an architectural

pattern frequently employed by businesses, particularly SMEs, and showcases

many of the challenges that these face: most features of the brokerage system

can be traced to the business logic implemented within a RDBMS, using trig-

gers and stored procedures. Globally, the application consists of hundreds of

tables, and thousands of triggers and stored procedures. As a consequence of the

development strategy, there is no documentation available, either regarding the

30 3 Determining Conflict Classes

business processes that govern operation, or the interactions and dependencies

between them.

The complexity of this application and the lack of documentation exclude the

possibility of defining conflict classes by simple inspection, as done in the previous

section for TPC-E. A systematic, yet minimally invasive approach is required.

The technique used to determine appropriate conflict classes from the available

data is described in detail.

The conflict class definition that results from applying this method to the real

case-study application is analysed focusing on the repercussions for conservative

concurrency control.

Visual inspection of the application’s schema revealed a large number of ta-

bles, with many columns, where almost every table was connected through cas-

cading referential integrity constraints, to a large number of tables. There was

also a large number of triggers and stored procedures defined in the schema. In

short, the complexity of the application meant its analysis would require a more

powerful method.

There were some hints of some potential sources of classification:

• tables are grouped into a set of databases;

• there are parameters that are applied to users which will effectively place

them in classes, as the flow of an activity will be different according to the

value of these attributes, because even if the triggered triggers are the same,

the JOINs will select different sets of data to be updated;

• different financial instruments are have distinct execution flows, e.g., deriva-

tives (90% of the business) and non-derivatives; and

• there are essentially two kinds of transactions: deals-related and records-

related.

Figure 3.1 shows the number of objects in the database, which hint at the

complexity of performing an analysis of the application. These numbers support

the need to move beyond simple visual inspection.

The T-SQL source-code was extracted from the RDBMS using the Generate

Scripts feature of Microsoft’s SQL Server Management Studio Express3.

3http://www.microsoft.com/downloads/details.aspx?familyid=c243a5ae-4bd1-4e3d-94b8-
5a0f62bf7796&displaylang=en#Overview

3.2 Analysis of a Real-World Application 31

tables views triggers stored procedures
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800
n
u
m

b
er

of
ob

je
ct

s

Figure 3.1: Number of database objects per type.

The idea behind this approach was to do a static analysis of the application,

by examining the application’s source-code, in order to systematically collect in-

formation about write operations (INSERT, UPDATE and DELETE statements)

as well as about trigger and stored procedure invocations. With this information,

the write call graph underlying the mesh of write operations, trigger and stored

procedures can be generated. From the write call graph, we can derive statistics

and information about the application’s structure, which can be used to discover

conflict classes as depicted in Figure 3.2.

The necessary information can be extracted from the source code using a

parser that selects only information that is relevant to this analysis, making it

more robust to syntax variations and more efficient that a generic SQL parser.

Source code analysis

Each database’s SQL code is scanned for the following object creation statements:

• CREATE TABLE

32 3 Determining Conflict Classes

• CREATE TRIGGER

• CREATE PROCEDURE

• CREATE VIEW

and also for these action statements:

• EXEC

• INSERT

• UPDATE

• DELETE

This information is organized into several main data structures:

• for each table, and for each operation (INSERT, UPDATE, DELETE),

there is a list of triggers associated to the operation;

• for each trigger (or stored procedure), and for each operation (INSERT,

UPDATE, DELETE), there is a list of the tables to be altered;

• for each trigger (or stored procedure), there is a list of the stored procedures

called in its body;

Limitations The script does not handle conditional statements. In order to do

so, parameter analysis would be required, which would have greatly increased the

development complexity. This means that some paths in the graph might not be

allowed by the application. Nevertheless, it is unlikely that parameter analysis

could be considered when determining which conflict classes are accessed by a

given transaction.

Extracting information from log tables

The RDBMS provides an automatic logging mechanism, depicted in Figure 3.3.

Only relevant columns are presented in this figure. For each table deemed rel-

evant, each write operation is logged, including the date at which it took place

(TRN_Date), the user responsible (TRN_User) and the machine from which it orig-

inated (TRN_Host_Name).

In particular, the columns RecordID and TS seem to be the most interesting:

3.2 Analysis of a Real-World Application 33

IDENTITY The RecordID column holds a unique (for each table) incremental

value, provided by the RDBMS for each row added to the original table.

TIMESTAMP The TS column holds a time stamp which is simply the value of a

counter, provided per database, that is incremented on each insert or update

operation on any table with a time stamp column, in that database. The

time stamp value associated to a given row refers to the latest operation.

After placing operations within transaction borders, we can reason about the

transaction itself, at a higher level of abstraction. Using the information stored

in these columns, operations executed within a database can be ordered. Across

database boundaries, however, no order can be accurately established. The ability

to order operations within a transaction makes the information extracted more

accurate and therefore easier to compare with the graph. Log data was collected

by a one-time query on the production database encompassing a time period

considered to be representative of the application. The information stored in the

log tables is used to prune graph paths that are not used in the application.

Limitations The tuple consisting of TRN Date, TRN User and TRN Host Name

columns was initially considered as the key for mapping operations to transac-

tions. However, this information is not sufficient to establish this mapping. Also,

the exact type of the write operation cannot be determined just by examining

the log tables. This limitation simply makes the results a little less accurate.

Graph Generation

The parser generates a directed, single-edged call graph, which can be directly

converted to the dot language format, part of the Graphviz project 4.

There is a vertex in the graph for each write operation applied to a given

table. There is also a vertex for each trigger or stored procedure. An edge (a, b)

implies that method (or operation) a calls or triggers method (or operation) b.

In cases where a vertex a has children b and c, this means that both b and c

are called by a. The order in which b and c executed cannot be determined from

the graph. Notice that for any given vertex, its successors are executed within

the same transaction.

4http://www.graphviz.org

http://www.graphviz.org

34 3 Determining Conflict Classes

Possible executions For any given vertex, the set of all of its successors

matches the set of operations that might be executed atomically with the op-

eration represented in that vertex. For a given vertex a consider the subgraph,

induced by the write call graph on the vertex set consisting of all of a’s successors.

Consider the tree in Figure 3.5 as such a subgraph. In this case, as determined

by a depth-first traversal starting at a, a possible execution would be:

• a, b, c, d, e, f, g, h, c, i, j

but, for example,

• a, d, e, f, g, h, c, i, j, b, c

• a, d, e, f, i, g, h, c, j, b, c

would also be possible, because no particular execution order among a vertex’s

successors can be assumed.

Depth-first traversal mimics the nesting behaviour of calls.

Figure 3.4 shows a subgraph of the application’s global graph, using vertex

INSERT:dbB:tbl A as the origin. This subgraph shows which vertices (and edges)

can follow an INSERT on table tbl A.

The format of the vertices’ labels conforms to one of the following:

• < (INSERT |UPDATE |DELETE) >:< database name >:< table name >

• < database name >:< trigger name > < (insert|update|delete) >

• < database name >:< procedure name >

In terms of the nomenclature exhibited by the application, the following gen-

erally applies:

• A stored procedure vertex can be recognized by the sp in its name.

• The SEC prefix identifies validation triggers, which are always executed

first.

• The LOG prefix identifies triggers that perform logging, which always ex-

ecute last.

3.2 Analysis of a Real-World Application 35

For example, an INSERT on table tbl A of the dbB database causes the trigger

dbB:proc tbl A insert to be fired which may insert rows on table tbl I and/or on

table tbl D. For most tables, there are validation and/or logging triggers that

respectively precede and/or follow INSERT, UPDATE and DELETE operations.

These are ommitted from Figure 3.4 for ease of presentation.

Notice that while the subgraph contains cycles, this does not mean that the

execution flow will also contain cycles. For example, an INSERT on table tbl A

may trigger an update on table tbl J, which may call procedure dbB:proc tbl J vcc

which may insert some rows on table tbl A.

As a side note, if a write call graph were generated for a stored-procedure-

based implementation of, e.g. TPC-E, the stored procedures that implement the

main logic of each transaction type would appear in the graph as vertices without

predecessors.

3.2.1 Conflict Class Extraction

Figure 3.6 shows an example of a write call graph for a complete application,

featuring table write operations, triggers and stored procedures: an INSERT

on table A triggers Trigger 1A to do an INSERT on table B and calls stored

procedure Stored Proc 1; an UPDATE on table B triggers Trigger 2B to do an

UPDATE on table C thereby calling Stored Proc 2; Stored Proc 3 updates table

D but it is only called by interactive users. From this graph, it can be deduced

that in the application that originated it, no transaction ever writes table B and

table D as there is no path in the graph connecting a write operation on B to

one on D. It also means that transactions that write on table B might also write

on table C. Table 3.5 shows a conflict class definition considering each table as

a basic conflict class: for example, conflict class C1 corresponds to table A and

is accessed by an unknown set of transaction types represented as S1. From the

graph,

(S1 ∪ S2 ∪ S3) ∩ S4 = ∅

resulting in the disjoint compound conflict class definition in Table 3.6. The goal

is to derive disjoint compound conflict classes automatically from the graph.

36 3 Determining Conflict Classes

Table 3.5: Basic conflict classes and sets of transaction types.

Conf. C. Table Transaction Type

C1 A S1

C2 B S2

C3 C S3

C4 D S4

Table 3.6: Compound conflict classes and sets of transaction types.

Conflict Class Transaction Type

{C1, C2, C3} S1 ∪ S2 ∪ S3

{C4} S4

By aggregating INSERT, UPDATE and DELETE operations on the same

table in a single vertex, we get a simplified graph, which offers a more data-

focused view of the application as depicted in Figure 3.7. The aggregation allows

information from the log tables to be incorporated into the graph: each vertex

can be annotated with the number of writes for the corresponding table found in

the log tables.

A directed graph (or a directed component) is weakly-connected iff in the

undirected version of the graph, for each pair of vertices, there is a path be-

tween them (Chartrand and Lesniak 1996). In terms of this specific analysis,

each weakly-connected component corresponds to a self-contained set of triggers,

stored procedures and INSERT, UPDATE or DELETE operations that can be

executed within the same transaction. Notice that for any given transaction, the

set of tables it writes is contained in a single weakly-connected component. As-

sume there are N components and that Ti is the set of tables for which there is a

write vertex in component i. The following properties hold for weakly-connected

components:

∀i 6= j ∈ {1..N} TSi ∩ TSj = ∅ (3.1)

and

∀i ∈ {1..N}
N⋃
i=1

TSi = Ω (3.2)

3.2 Analysis of a Real-World Application 37

where Ω is the set of all tables. Assume that a conflict class Ci is defined as

the set of tables in TSi. From Equation 3.1 we can conclude that this method

results in disjoint conflict classes, one per component. From Equation 3.2 we can

conclude that every read/write table is considered in a conflict class.

Figure 3.8 shows the weakly-connected components that result from the graph

in Figure 3.7, which matches the definition presented in Table 3.6.

Improving component detection

After analysing the graph of the example vertex’s component in Figure 3.4, it

is clear that the dbB:sp debug vertex is serving as a “hub” connecting other-

wise possibly unrelated components. By removing this vertex from the graph,

which would represent a hypothetical application refactoring where this stored

procedure would be replaced by others, the number of weakly-connected com-

ponents increases significantly. Consequently, the number of extraneous vertices

within each component is reduced. For example, the example vertex’s component

shrunk from 3500 to 2480 vertices. However, in order to accurately evaluate the

data from the log tables together with the graph, hub vertices should be consid-

ered. As long as these hubs are sink vertices, this is not an issue. It is possible

that other such vertices exist, and if appropriate, their removal from the graph

can make the latter more manageable with more finely-tuned components. Sink

vertices with large in-degrees are good candidates for this type of analysis.

38 3 Determining Conflict Classes

BD

Parser

RDBMS

Tool

Figure 3.2: The source code is extracted from the RDBMS and analysed by the
tool, which then generates a write call graph, from which statistics and informa-
tion about the application’s structure can be derived.

3.2 Analysis of a Real-World Application 39

A

DB

A_LOG

DB

RecordID (PK) (IDENTITY)

TS (timestamp)

Table TBL_A

LogID (IDENTITY) (PK)

LogTS (timestamp)

TRN_Date (datetime)

TRN_User

TRN_Host_Name

RecordID

TS

Table TBL_A_LOG

... ...

Figure 3.3: The RDBMS creates a log database where logs are stored. For each
table in the original database, there is a corresponding table in the log database,
to which the LogID, LogTD, TRN Date, TRN User and TRN Host name columns are
added.

40 3 Determining Conflict Classes

INSERT:dbB:tbl_A

dbB:proc_tbl_A_insert

INSERT:dbB:tbl_D

dbB:proc_tbl_D_insert

INSERT:dbB:tbl_I

dbB:proc_tbl_I_insert

UPDATE:dbB:tbl_D

dbB:proc_tbl_D_update

dbB:sp__debug

DELETE:dbB:tbl_A

dbB:proc_tbl_A_delete

INSERT:dbB:tbl_B

INSERT:dbB:tbl_C

INSERT:dbB:tbl_A

dbB:proc_tbl_A_insert

INSERT:dbB:tbl_D

dbB:proc_tbl_D_insert

INSERT:dbB:tbl_E

dbB:proc_tbl_E

INSERT:dbB:tbl_F INSERT:dbB:tbl_G

INSERT:dbB:tbl_H

dbB:dif_tbl_H_insert

INSERT:dbB:tbl_I

dbB:proc_tbl_I_insert

UPDATE:dbB:tbl_J

dbB:proc_tbl_J_vcc

UPDATE:dbB:tbl_K

dbB:dif_tbl_K_updatedbB:proc_tbl_K

UPDATE:dbB:tbl_D

dbB:proc_tbl_D_update

UPDATE:dbB:tbl_H

dbB:dif_tbl_H_update dbB:proc_tbl_H_recalculate

UPDATE:dbB:tbl_I

dbB:proc_tbl_I_update

dbB:sp__debug

dbB:sp_K

dbJ:sys_senderrormessage

dbJ:as

INSERT:dbB:tbl_A

dbB:proc_tbl_A_insert

INSERT:dbB:tbl_D

dbB:proc_tbl_D_insert

INSERT:dbB:tbl_I

dbB:proc_tbl_I_insert

UPDATE:dbB:tbl_D

dbB:proc_tbl_D_update

dbB:sp__debug

Figure 3.4: An example graph: vertices correspond to operations (INSERT, UP-
DATE, DELETE), triggers and stored procedures. Edges correspond to calls.
Above, the subgraph using INSERT:dbB:tbl A as the origin. On the bottom, a
portion of the subgraph, in greater detail.

3.2 Analysis of a Real-World Application 41

a

i

h

g

f

e

j

d

b

c

Figure 3.5: An example subgraph.

UPDATE
D

INSERT
A

Trigger_1
A

INSERT
B

Stored
Proc_1

UPDATE
B

Stored
Proc_2

UPDATE
C

Trigger_2
B

Stored
Proc_3

Figure 3.6: An example of a write call graph.

42 3 Determining Conflict Classes

UPDATE
D

INSERT
A

Trigger_1
A

INSERT
B

Stored
Proc_1

UPDATE
B

Stored
Proc_2

UPDATE
C

Trigger_2
B

Stored
Proc_3

WRITE
B

WRITE A

WRITE D

WRITE C

Figure 3.7: Vertices representing write operations on the same table are aggre-
gated into a single vertex, which simplifies the graph. Other vertices are folded
into the edges, further highlighting the connections between tables.

WRITE
A

WRITE
C

WRITE
B

Component 1

WRITE
D

Component 2

Figure 3.8: Weakly-connected components that result from Figure 3.7.

3.2 Analysis of a Real-World Application 43

3.2.2 Discussion

The application is structured as several databases in the same RDBMS. Aggregat-

ing vertices that operate on tables of the same database and collapsing multiple

edges between databases as a single edge decorated with the number of collpased

edges, shows that except for databases dbK (which is a remote database, not

considered to be a part of the application) and dbA, the databases are signifi-

cantly entangled, (Figure 3.9)). Database boundaries are of practically no avail

for defining disjoint conflict classes.

Applying the extraction method to the case-study application resulted in the

identification of 130 weakly-connected components, which, as stated, correspond

to the same number of disjoint conflict classes.

For this application, considering any replication protocol with conservative

concurrency control based on conflict classes, at most 130 transactions can be

scheduled to execute concurrently. This seems to be a very promising result.

However, upon examining database logs, we found that most transactions ac-

cess the same conflict class (component/partition). Therefore, almost no trans-

actions can be executed concurrently, leading to higher contention that originally

expected.

The obvious way to circumvent this issue is to partition the troublesome

component. In an effort to do so, the component with the largest number of

writes was analysed in search of cut vertices : vertices that, if removed from a

graph, result in an increase of the number of components (Chartrand and Lesniak

1996).

Of the 90 cut vertices found, the one that would lead to the largest number

of new components (8) was selected. For each new component, Table 3.7 shows

its size and the number of transactions that write on it.

Note that partitioning the graph like this would require that the table that

corresponds to the cut vertex could be added to each of the 8 new components,

Table 3.7: New components, their size and number of writes.

Component c1 c2 c3 c4 c5 c6 c7 c8

Size 1 3 28 12 135 2 10 4

Writes 0 50268 5172 4033 394738 359 4 474

44 3 Determining Conflict Classes

dbK

dbA

dbB

dbC

8

dbI

13

dbJ

21

667 73

91 2

dbG

3210 10 40

dbE

13

1

dbF

3 19

2 30

1

dbH

245

13 11

Figure 3.9: Nodes correspond to databases and edges are labeled with the number
of operations that cross database boundaries.

making these new partitions correspond to non-disjoint compound conflict classes.

While some protocols with conservative concurrency control such as NODO are

based on non-disjoint compound conflict classes, increasing the number of non-

disjoint classes does not increase the level of concurrency allowed by the protocol.

An alternative would be to partition the table that corresponds to the cut-

vertex, creating 8 new disjoint conflict classes. This would, however, require

refactoring the application and re-structuring the database. Even assuming that

this could be done, the vast majority of the writes remain concentrated in a

single component (c5). The cut-vertex strategy could now be used to partition

component c5 and so on. Still, the bulk of the writes targets a single table.

The next step would be to partition the heavily-written table, which would nec-

essarily lead to table partitioning based on filters over its attributes. In this

case, matching accessed items to conflict classes would amount to a satisfiability

problem, particularly considering that all “cut-vertex” tables must also be par-

titioned (Correia Jr et al. 2005; Guo et al. 1996). In short, the same issues that

made sharding unsuitable in Section 3.1.2 are also applicable to this scenario.

Although this technique is simple, it is exaustive (we tried removing all nodes

and selected the ones that yield the most partitions) and optimistic (we are not

sure that these partitions could actually be realized by refactoring) thus providing

3.3 Summary 45

a very strong counter-argument. We can safely conclude that no easy refactoring

exists such that effective conflict classes based on syntatic criteria can be defined.

Partitioning this application is much more complex than partitioning a TPC-

E database. Moreover, while the number of disjoint conflict classes that can be

defined for this application is much larger than what can be reasonably defined for

TPC-E, it does not result in a pratical advantage when considering a conservative

concurrency control mechanism. This scenario presents a significant hurdle for

the performance of replication protocols with conservative concurrency control,

which are thus unsuitable.

Notice that such a scenario would not, however, emcumber a replication pro-

tocol with optimistic concurrency control: even if most transactions write on a

common table, but on different rows, no conflicts occur.

3.3 Summary

Replication is often used to achieve highly dependable database management

services, however, if the result is unable to cope with the actual workloads it can

be self-defeating, as the service grinds to a halt with peak loads. The extent

to which assumptions of existing protocols hold in the real world have been

examined: there was not, to the best of our knowledge, published work that

provides a concrete counter-example that can be cited. This is precisely what

makes it significant.

First, the TPC-E benchmark was examined and despite being well-structured

in terms of schema and transactions, the number of disjoint conflict classes that

can be reasonably defined was found to be very small, which implied that proto-

cols based on conservative concurrency control are not suitable for this type of

application.

Then, a real-world brokerage application was analysed. To enable this analysis

a general method was devised for extracting a partitioning scheme based on

a graph derived from the application’s source code. In this case, the number

of disjoint conflict classes that could be defined was significantly higher than

in TPC-E. However, after looking at the distribution of write operations per

tables, the vast majority of the write load were found to fall on a single partition,

and at greater detail, on a single table. While this table could be horizontally

46 3 Determining Conflict Classes

partitioned, it is not clear how to do so to benefit a conservative concurrency

control mechanism. It is shown that even if the application could hypothetically

be refactored leading to a larger number of conflict classes, most transactions

would still conflict.

Again, the performance of a protocol based on optimistic concurrency control

would not be hindered by these facts and one might speculate it would achieve

high concurrency in this setting. The next step is to evaluate the behaviour

of replication protocols based on optimistic concurrency control for this domain

of application. But, notice that these conclusions also mean that optimizations

based on conflict class information for protocols based on optimistic concurrency

control will tend to have a minimal effect.

Chapter 4

Scheduling Optimistic Execution

If a transaction must wait to be certified in the correct order to ensure consis-

tency in a distributed system, it is better that it waits prior to execution, when

it is not susceptible to being aborted by conflicts with concurrent transactions.

The implementation of this simple intuition does however imply that the system

is continually monitored and that an appropriate execution start time is found

for each transaction. We propose AJITTS, an adaptive just-in-time transaction

scheduler. First, a system model that captures the most relevant aspects of

distributed transaction processing systems is described. Then, AJITTS is intro-

duced.

4.1 System model

We assume that transactions are submitted by clients to a distributed database

system where they can be executed optimistically. A certification procedure

ensures that no conflicting transactions are committed. Transactions are totally

ordered and thus, currently submitted but yet undecided transactions can be

regarded as a queue. In this queue, transactions are executed and go through a

sequence of states several states until leaving the system being either committed

or aborted (Figure 4.1). It is also assumed that aborted transactions are not

automatically re-executed, as the decision to re-submit them is left to the client.

This is described by the abstract Algorithm 1. In detail, upon submission,

transactions are enqueued (line 3), assigned the not executed state (line 4) and

transition to the executing state once execution begins (lines 5 and 6), transition-

47

48 4 Scheduling Optimistic Execution

not
executed executing executed

aborted

committing committed

Figure 4.1: Allowed transitions between transaction states.

ing to the executed state as execution ends (line 10). A transaction remains in

the executed state until it is its turn to be certified according to an order that is

conflict-equivalent to the previously agreed commit order, verified by the predi-

cate head(t, Q), i.e., until there is no potentially conflicting transaction in Q that

precedes it. (line 12). Notice that while a transaction may satisfy head(t, Q) in

any state, it will only be certified after it has finished executing without having

been aborted, i.e., in the executed state (line 12). If the transaction can be cer-

tified, it enters the committing state (line 14) and the database is notified of the

decision to commit the transaction with high-priority (line (15), progressing to

committed, when complete (lines 20-22). High-priority is needed to ensure the

committing transaction can acquire all necessary locks, regardless of being held

by transaction that have not been certified. If the transaction cannot be certi-

fied, the database is notified that must abort (lines 17), progressing to the aborted

state when done (lines 24, 25). When complete, transactions are removed from

the queue (lines 22, 26).

Notice that,

Queue(t) = {t′ ∈ Q : Common(t, t′) 6= ∅} =⇒ Queue(t) ⊆ Q

so from Equation 2.5, head(t, Q) can be defined as

head(t, Q) ⇐⇒ @t′ ∈ Q : t′ <
Q
t ∧ Common(t, t′) 6= ∅

Because parallel certification requires that the database can be partitioned

into disjoint conflict classes (or some equivalent abstraction) and we show in the

previous chapter that enterprise applications (as well as complex benchmarks) do

not fit this assumption, we will consider all transactions as potentially conflicting,

4.1 System model 49

so that a transaction satisfies head(t, Q) when it is at the head of Q, since Q

becomes equivalent to Queue(t).

Algorithm 1: Abstract base protocol algorithm.

1 t: transaction, Q: queue, not executed, executing, executed, committing,
committed, aborted : states ;

2 upon t is submitted
3 enqueue(Q,t);
4 t.state← not executed;
5 execute t;
6 t.state← executing;
7 return;

8 end
9 upon t is executed

10 t.state← executed;
11 end
12 upon (t.state == executed ∧ head(t,Q)
13 if certified(t) then
14 t.state← committing;
15 commit t;

16 else
17 abort t;
18 end

19 end
20 upon (t is committed)
21 t.state← committed;
22 dequeue(Q,t);

23 end
24 upon t is aborted
25 t.state← aborted;
26 dequeue(Q,t);

27 end

Because transactions must be certified in a conflict-equivalent order to the to-

tal order on which replicas agreed, the system can be modelled as a single queue,

to which all transactions are submitted. This models either a centralized ordering

at a transaction manager server (Gomez Ferro et al. 2014) or a distributed order-

ing built using a group communication system (Pedone et al. 2003) as depicted

in Figure 4.2.

Figure 4.2 shows how the centralized and replicated certification models (re-

50 4 Scheduling Optimistic Execution

BCD A

transaction
arrival

transaction
completion

G
ro

up
 C

om
m

un
ic

at
io

n

certifier

worker

worker

abstraction
of the

replicated queue

abstraction
of the

centralized queue

ABCDABCD

ABCD

ABCD

Figure 4.2: System model as an abstraction of both a distributed and a centralized
queue.

spectively in the bottom right and bottom left frames), already described, can

be represented in the system model: transactions (A to D) ordered such that,

assuming all can potentially conflict, A must be certified first, followed by B, C

and then D are submitted to the queue from the left; transactions are considered

to be local, abstracting away communication delays; upon satisfying head(t, Q),

transactions are certified, leaving the queue upon being committed or aborted.

The certification procedure present in Algorithm 1 abstracts from the im-

plementation details and models either: (a) implicit (or in-core) certification

(Kemme and Alonso 2000) where transactions that satisfy head(t, Q) in the exe-

cuted state (line 12) are inherently certified, so certified(t) always returns true; or

4.1 System model 51

......T

...... ...T

...... ...T

...... T ...

T...

T...

T

pre-execution
delay

execution
latency

post-execution
delay

apply
latency

vulnerable
to being
aborted

...

...

......

time

Figure 4.3: Transaction life cycle events and the time intervals these define.

(b) explicit certification, where certified(t) returns true if the t does not conflict

with concurrent transactions that have already been committed. Notice that in

either case, committing a transaction t causes conflicting transactions in either

executing or executed states to be aborted.

Snapshot isolation is assumed, which differs from serializability by consid-

ering only write/write conflicts (Lin et al. 2005) (line 24). This is used in the

overwhelming majority of current RDBMSs and has also been favoured in dis-

tributed transaction processing systems.

Transactions are vulnerable to being aborted by committing transactions since

their execution starts until reaching committing, i.e., during executing or executed

52 4 Scheduling Optimistic Execution

states. Figure 4.3 depicts this as a vulnerability window: because transactions

are executed immediately upon submission, these are vulnerable throughout their

term in the queue. The longer transactions are vulnerable for and the higher the

number of transactions executing concurrently, the more likely it is for aborts to

occur.

4.2 Approach

The main insight leading to our proposal is as follows: as transactions are vulner-

able to being aborted from the time execution starts until being certified, in order

to minimize the number of aborts, execution should start as late as possible. On

the other hand, if there are no transactions ready to be committed because the

transactions that should be certified still have not completed execution, through-

put decreases. Our approach is thus based on reaching and maintaining the

optimal schedule for starting transactions: as late as possible to minimize aborts

but as early as needed to maximize throughput.

Instead of executing transactions immediately upon submission, the number

of transactions executing concurrently can be throttled by placing a threshold in

the queue: transactions below the threshold are not considered as eligible to start

executing, while transactions beyond the threshold that are in the not executed

state are to be executed (lines 29-33) of Algorithm 2. Simply put, transactions

are evaluated for eligibility to execute whenever a transaction arrives to (i.e. is

submitted) (line 5) or leaves the queue (i.e. committed (line 22) or aborted (line

27)).

The first image of the queue in Figure 4.4 shows transactions A, B, C and D,

so ordered, all in the not executed state and a threshold placed so that there can

be at most 2 transactions ahead of it. Only A and B are beyond the threshold

and thus eligible to be executed as shown in the second image of the queue. As

A finishes executing and commits or aborts, leaving the queue, the remaining

transactions move forward in the queue, making C now eligible for execution as

depicted in the third image of the queue. Notice that, in this case, it is guaranteed

that at most 2 transactions can execute concurrently in the system, regardless of

the number of replicas or of which replicas the transactions are local to. Also,

the order in which transactions start to execute is not required to follow the

4.2 Approach 53

AD B... C

AD B... C

B... C... D

...

transaction
arrival

transaction
completion

time

Figure 4.4: Threshold-based transaction eligibility for execution.

established commit order, allowing for asynchronous behaviour among replicas.

It is important to point out that introducing a finite delay before execution

does not affect the correctness of the system: a similar schedule, with out-of-order

execution, could occur simply as a consequence of the interleaving of threads in

a database engine.

Under sufficient load, the threshold mechanism limits the number of transac-

tions executing concurrently, thus decreasing the likelihood of conflicts occurring,

and causes transaction execution to start at a later time than it originally would,

thus decreasing the overall post-execution delay. This results in reducing the win-

dow during which each transaction is vulnerable to being aborted significantly.

Figure 4.5 shows, for transaction T : its vulnerability window if executed immedi-

ately (Figure 4.5a; and if executed using the threshold mechanism (Figure 4.5b).

The window shrinks significantly for the latter.

This fixed threshold mechanism simulates an admission control policy, in

which the number of transactions allowed to execute concurrently is statically

limited (Correia et al. 2008).

54 4 Scheduling Optimistic Execution

Algorithm 2: Fixed threshold throttling protocol algorithm.

1 t: transaction, Q: queue, not executed, executing, executed, committing,
committed, aborted : states ;

2 upon t is submitted
3 enqueue(Q,t);
4 t.state← not executed;
5 executeEligibleTransactions (Q);
6 return;

7 end
8 upon t is executed
9 t.state← executed;

10 end
11 upon (t.state == executed ∧ head(t,Q))
12 if certified(t) then
13 t.state← committing;
14 commit t;

15 else
16 abort t;
17 end

18 end
19 upon t is committed
20 t.state← committed;
21 dequeue(Q,t);
22 executeEligibleTransactions (Q);

23 end
24 upon t is aborted
25 t.state← aborted;
26 dequeue(Q,t);
27 executeEligibleTransactions (Q);

28 end
29 function executeEligibleTransactions (Q)
30 foreach t ∈ {t ∈ Q|t.state == not executed ∧ t is beyond the

threshold} do
31 execute t ;
32 end
33 return;

4.2 Approach 55

T... ...T

transaction
arrival

transaction
completion

vulnerable to being aborted

(a) Vulnerability window for some transaction for the baseline protocol.

vulnerable
to being
aborted

TT

transaction
arrival

transaction
completion

(b) Expected vulnerability window for some transaction using the threshold throttling
mechanism.

Figure 4.5: Effect of the threshold on transaction vulnerability.

56 4 Scheduling Optimistic Execution

4.2.1 Impact of Scheduling

Ideally, the threshold would be placed such that each transaction t completes

execution just as it arrives at the head of the queue, minimizing the post-

execution delay. Again, if the transaction reaches the head of the queue in either

not executed or executing states, it cannot be certified until it finishes. Because

certification must occur in a conflict-equivalent order to the already established

total order, transactions running late cannot be overtaken by others, thus im-

pairing throughput.

A näıve approach would be to adjust the threshold simply by moving it

one position back whenever a transaction reaches the head of the queue in the

not executed or executing states or one position forward whenever a transaction

has to wait in the executed state or has been aborted. Such an adaptation mecha-

nism, while simple, causes oscillation in the system, as the changes are too abrupt

(Aström and Murray 2007).

A more evolved approach requires knowing (or estimating):

• how long it will take to execute the transaction (i.e. its execution latency)

and

• how long it will take for the transaction to reach the head of the queue.

Transactions can have widely varying execution latency (i.e. duration), which

should be considered when scheduling them: larger transactions should be exe-

cuted earlier while smaller transactions should be executed later.

Let dt be an estimate1 of the duration of transaction t. Assume there is a

constant factor relating it with the position of the threshold for that transaction

(input).

Numbering the queue positions starting from the head of the queue with

position 1, let

thresholdt = binput · dtc (4.1)

be the position (in the queue) after which transaction t will be executed.

Transaction t is scheduled to be executed when there are thresholdt−1 or less

transactions ahead of it in the queue, which is the same as placing a threshold

for t in the queue at thresholdt and executing t when it crosses it. For example,

1Details of how such an estimate can be obtained are discussed later on.

4.2 Approach 57

Transaction Estimated Duration Threshold Position

I 200 ms 4

J 50 ms 1

K 400 ms 8

(a) Assuming input = 0.02, threshold positions are calculated for each transaction.

...KJ I ...

IJK
transaction

arrival
transaction
completion

(b) Execution thresholds for transactions with significantly different estimated dura-
tions.

Figure 4.6: Out-of-order execution with multiple thresholds.

assuming a static value of input (0.02), Figure 4.6 shows for transactions I, J

and K, so ordered, where each threshold would be placed according to Equation

4.1. In the figure, transaction K has crossed the K-marked threshold, so its

execution has begun, while J and I are still waiting in the not executed state,

despite preceding K in the commit order. Scheduling transactions based on their

estimated duration enables out-of-order execution: a small transaction such as I

will begin execution near the head of the queue, while a very large transaction

as such K will be executed as soon (or almost as soon) as it is submitted.

Scheduling transaction execution in terms of the position in the queue allows

the schedule to automatically adjust to changes in the overall system throughput:

if it rises, a transaction t will progress faster in the queue and start executing

sooner than with lower throughput. If this were not the case, system throughput

would need to be explicitly considered when scheduling transactions. In particu-

lar, the schedule would need to be continuously updated as the estimate of how

long it will take for transactions to reach the head of the queue changes with

system throughput.

Applying Equation 4.1 to Algorithm 2 produces multiple lines: after being

submitted, the transaction’s execution is scheduled (Algorithm 3 line 5) using an

58 4 Scheduling Optimistic Execution

Algorithm 3: Threshold-per-transaction scheduling using a fixed input
value, based on Equation 4.1.

1 t: transaction, Q: queue, not executed, executing, executed, committing,
committed, aborted : states, input : float ;

2 upon t is submitted
3 enqueue(Q,t);
4 t.state← not executed;
5 scheduleTransaction (t);
6 executeEligibleTransactions (Q);
7 return;

8 end
9 upon t is executed

10 t.state← executed;
11 end
12 upon (t.state == executed ∧ head(t,Q))
13 if certified(t) then
14 t.state← committing;
15 commit t;

16 else
17 abort t;
18 end

19 end
20 upon t is committed
21 t.state← committed;
22 dequeue(Q,t);
23 executeEligibleTransactions (Q);

24 end
25 upon t is aborted
26 t.state← aborted;
27 dequeue(Q,t);
28 executeEligibleTransactions (Q);

29 end
30 function executeEligibleTransactions (Q)
31 foreach

t ∈ {t ∈ Q|t.state == not executed ∧ t.position ≥ t.threshold} do
32 execute t ;
33 end
34 return;

35 function scheduleTransaction (t)
36 t.line = input ∗ t.estimatedDuration;

4.2 Approach 59

estimated transaction duration (Algorithm 3 lines 35, 36).

The input parameter provides a simple way to adjust how early transactions

should be executed: for the same estimated duration, a higher value of input

means that the transaction will be executed earlier than with a lower value.

4.2.2 Finding the Optimal input

While successive experiments with a given setting and a given workload can find

an optimal throughput plateau matching a small range of input values, this is

impractical for real systems.

Finding an appropriate input value without resorting to trial and error re-

quires an adaptive mechanism that reacts to some measurement (or a set thereof)

that reflects the relevant state of the system. Also, as system load changes,

whether due to an increase in the number of clients (and consequently of the

requests per second) or due an increase in overall transaction execution latency

(e.g. as the database size grows) the optimal input value also changes.

The time a transaction spends queueing after being executed (i.e. its post-

execution delay) depends on when it started to execute with respect to how long

it takes for it to reach the head of the queue, so it is directly affected by the value

of input.

For a given transaction, let q be the time it spent queueing (i.e. post-execution

delay). Let Qing be a weighted cumulative rolling average of q and Qingopt the

optimal level of queueing for a system. An adaptive mechanism that reacts to the

state of the queue can be defined using a proportional-integral-derivative (PID)

controller (Aström and Murray 2007).

A PID controller algorithm features three terms: the proportional term, that

depends on the magnitude of the current error value, the integral term that

compensates for accumulated past error values and the derivative term that ac-

counts for the rate of change of the error. Simply put, the error of the measured

value (sensor) when compared to the desired value (setpoint) is used to update

an input to the system (input) which will in turn impact the measured value,

constituting the control feedback loop.

With Qing as the sensor, Qingopt as the set point and input (from Equation

4.1) as the system input (Aström and Murray 2007) the feedback loop becomes:

60 4 Scheduling Optimistic Execution

error = Qingopt −Qing

Pvalue = Kp · error

Ivalue = 0

Dvalue = 0

input+ = Pvalue + Ivalue +Dvalue

Kp is referred to as proportional gain, a tuning parameter that adjusts the

sensitivity of the controller, i.e., the magnitude of the adaptation relatively to

the magnitude of the error. Several methods exist for selecting an appropriate

value for Kp, from manual tuning to methods based on heuristics (Aström and

Hägglund 1984). In this particular instance, using just the proportional term for

adaptation proved effective, as the system quickly converges to an appropriate

stable state.

Intuitively, selecting the set point to target average duration would mean

that there would always be a transaction ready to be certified and, consequently,

that the rate at which transactions are certified is the same as the rate at which

transactions arrive at the head of the queue. This scenario provides optimal

throughput while minimizing the vulnerability window and, therefore, a minimal

abort rate. Notice that depending on the how accurate the duration estimate is,

selecting a set point of 0 might mean that several transactions would not finish

its execution in time.

When scheduling transaction t using Equation 4.1, if t’s actual duration is

significantly larger that its estimate (dt), then the measured queueing for trans-

actions behind t in the queue will tend to increase as these will have to wait

for t to finish its execution. Conversely, if t’s actual duration is significantly

smaller that dt, t’s measured queueing will be excessively large. In short, the er-

ror in estimating transaction duration can lead to increased queueing, causing the

queue to grow as the increased queueing leads to decreasing input and increasing

pre-execution delays in general.

If deemed necessary, instead of selecting the average duration as the set point,

a higher percentile can be chosen from its cumulative distribution function: the

higher the percentile of the chosen value, the higher the number of transactions

4.2 Approach 61

that will have completed execution as expected.

This adaptive mechanism not only allows the system to adapt to the current

load by finding the appropriate input value, but it also enables it to adapt to

changes in the workload, as long as there are sufficiently long periods of stability.

Algorithm 4 features the adaptive mechanism: whenever a transaction reaches

the head of the queue and commits, its post-execution delay (i.e. queueing) is

calculated and used to update the rolling average, Qing (line 18); the difference

between the updated value and the setpoint value (Qingopt) is used as the mea-

sured error by the feedback adaptation mechanism to update the input value

(lines 19, 34-37). The new input value is used to update the position of the

threshold for each transaction, including those that have already been sched-

uled. Doing so ensures the effect of the adaptive mechanism is timely, allowing

the system to swiflty adapt to significant changes in the state of the queue and

consequently, the system. Consider the case of a decrease in system throughput

because transactions are reaching the head of the queue before completing their

execution. This means that the current value of input is too low, leading to an ex-

cessive pre-execution delay, causing the measured queuing to be approximately 0.

If the thresholds for transactions already scheduled were not updated, this would

only be corrected for new transactions being submitted, while the previous ones

would needlessly have to wait before being executed, impairing throughput. No-

tice that the longer the queue (i.e. the more transactions there are in the system),

the more this would adversely affect system performance. Also, the additional

delay between action and effect introduced in the feedback loop, would result in

accumulated errors that would require a more complex controller.

4.2.3 Estimating Transaction Execution Latency

Query plan optimization relies on estimating the cost of competing execution

plans. This cost, however, is not a direct estimate of how long it will take a given

plan to execute. Extrapolating a transaction’s duration from the optimizer’s

output would require: tuning the planner to output cost in real time instead

of a relative cost unit; and the whole transaction must be known to the opti-

mizer before execution can start for it to output an estimate, thereby precluding

interactive transactions.

Real-world OLTP applications usually run a set of transaction types, typically

62 4 Scheduling Optimistic Execution

Algorithm 4: Threshold-per-transaction scheduling with adaptation.

1 t: transaction, Q: queue, not executed, executing, executed, committing,
committed, aborted : states, Qingopt : float ;

2 upon t is submitted
3 · · ·
4 end
5 upon t is executed
6 t.state← executed;
7 end
8 upon (t.state == executed ∧ head(t,Q))
9 if certified(t) then

10 commit t;
11 else
12 abort t;
13 end

14 end
15 upon t is committed
16 t.state← committed;
17 dequeue(Q,t);
18 update Qing;
19 adapt (Qingopt,Qing);

// Update thresholds.
20 foreach t ∈ {t ∈ Q|t.state == not executed} do
21 scheduleTransaction (t) ;
22 end
23 executeEligibleTransactions (Q);

24 end
25 upon t is aborted
26 t.state← aborted;
27 dequeue(Q,t);
28 executeEligibleTransactions (Q);

29 end
30 function executeEligibleTransactions (Q)
31 · · ·
32 function scheduleTransaction (t)
33 t.threshold = input ∗ t.estimatedDuration;
34 function adapt (setpoint, sensor)
35 error = setpoint− sensor;
36 Pvalue = Kp ∗ error;
37 input+ = Pvalue;

4.2 Approach 63

encoded as stored procedures or in an application server. The position of the

threshold for a transaction of type T , for example, can be calculated as

thresholdT = input · dT (4.2)

where dT is an estimate of the duration of transactions of type T , calculated

online using a cumulative rolling average. Furthermore, the technique for conflict

class extraction presented in Section 3.2.1 can be used to define transaction types

according to the conflict classes accessed by transactions.

Still, AJITTS can be implemented without this simplification, computing a

threshold for each individual transaction as long as an individual estimate can

be provided.

Algorithm 3 can be implemented using Equation 4.2 becoming Algorithm 5:

TTypes is introduced as the set of possible transaction types and the thresholds

are calculated using the fixed input value and the current estimate of average

duration for that type (lines 37-41). Thresholds are updated whenever the esti-

mates for average duration per type are updated (lines 10, 11). Instead of being

scheduled individually, transactions that are found to be beyond the respective

threshold whether because the threshold moves (line 12) or as transactions ad-

vance in the queue (lines 5, 25, 30) are executed.

As discussed, the set point should be chosen taking into consideration the

distribution of the duration of all write transactions. A simple way to estimate

the distribution is to sample transaction duration from the running system during

a training period, as long as it can be assumed that average transaction duration

is characteristic of the workload. If this assumption cannot be made because

the workload changes, the initial estimate can be further improved by online

sampling.

In Algorithm 6, D is introduced as the value corresponding to chosen per-

centile of transaction duration to be used as the set point. A threshold is cal-

culated for each type of transaction in TTypes based on the current estimate of

average duration for that type (lines 33 to 37) and updated whenever a transac-

tion of that type finishes execution (line 8) or whenever input changes (line 20).

Eligible transactions are executed when the thresholds move (lines 9, 21) or as

transactions advance in the queue (lines 9, 21, 26) . The estimate D is updated

before re-calculating input (lines 18, 19).

64 4 Scheduling Optimistic Execution

Algorithm 5: Threshold-per-type scheduling with a fixed input value.

1 t: transaction, Q: queue, not executed, executing, executed, committing,
committed, aborted : states, TTypes: set, input: float;

2 upon t is submitted
3 enqueue(Q,t);
4 t.state← not executed;
5 executeEligibleTransactions (Q);
6 return;

7 end
8 upon t is executed
9 t.state← executed;

10 update t.type.estimatedDuration;
11 updateThresholds ();
12 executeEligibleTransactions (Q);

13 end
14 upon (t.state == executed ∧ head(t,Q))
15 if certified(t) then
16 t.state← committing;
17 commit t;

18 else
19 abort t;
20 end

21 end
22 upon t is committed
23 t.state← committed;
24 dequeue(Q,t);
25 executeEligibleTransactions (Q);

26 end
27 upon t is aborted
28 t.state← aborted;
29 dequeue(Q,t);
30 executeEligibleTransactions (Q);

31 end
32 function executeEligibleTransactions (Q)
33 foreach t ∈ {t ∈ Q|t.state == not executed ∧ t.position ≥ t.type.line}

do
34 execute t ;
35 end
36 return;

37 function updateThresholds ()
38 foreach type ∈ TTypes do
39 type.threshold = input ∗ type.estimatedDuration;
40 end
41 return;

4.2 Approach 65

Algorithm 6: Threshold-per-type scheduling with adaptation.

1 t: transaction, Q: queue, not executed, executing, executed, committing,
committed, aborted : states, D : float, TTypes: set;

2 upon t is submitted
3 · · ·
4 end
5 upon t is executed
6 t.state← executed;
7 update t.type.estimatedDuration;
8 updateThresholds ();
9 executeEligibleTransactions (Q);

10 end
11 upon (t.state == executed ∧ head(t,Q))
12 · · ·
13 end
14 upon t is committed
15 t.state← committed;
16 dequeue(Q,t);
17 update Qing;
18 update D;
19 adapt (D,Qing);
20 updateThresholds ();
21 executeEligibleTransactions (Q);

22 end
23 upon t is aborted
24 t.state← aborted;
25 dequeue(Q,t);
26 executeEligibleTransactions (Q);

27 end
28 function executeEligibleTransactions (Q)
29 foreach

t ∈ {t ∈ Q|t.state == not executed ∧ t.position ≥ t.type.threshold} do
30 execute t ;
31 end
32 return;

33 function updateThresholds ()
34 foreach type ∈ TTypes do
35 type.threshold = input ∗ type.estimatedDuration;
36 end
37 return;

38 function adapt (setpoint, sensor)
39 error = setpoint− sensor;
40 Pvalue = Kp ∗ error;
41 input+ = Pvalue;

66 4 Scheduling Optimistic Execution

4.3 Summary

Although increasingly popular and often used, optimistic concurrency control

may lead, with more demanding workloads, to a large number of conflicts and

aborted transactions. This endangers fairness and reduces usable throughput.

Previous attempts at tackling this problem required workload-specific configura-

tion and would still impact peak throughput.

With AJITTS, the adaptive just-in-time transaction scheduler, we provide a

solution that does not require workload specific configuration and adapts in run-

time to current workload and resource availability conditions. This is achieved

by delaying transaction execution, for each transaction individually, based on the

estimated time to complete and current queueing within the system.

Chapter 5

Evaluation

The approach proposed in Section 4.2 is evaluated using a simple event-driven

simulator that enables a profound analysis of each aspect of scheduling and con-

currency control of replication protocols. This chapter describes how the simu-

lation model implements the system model defined in Section 4.1, the workload

that is used to run the simulation, the impact scheduling parameters have on be-

haviour and an evaluation of AJITTS performance when compared to the baseline

protocol.

5.1 Simulation Model

The simulation model implements the system model presented in Section 4.1.

Transaction lifecycle events are implemented as events in simulated time and

inserted in the event list, ordered by timestamp. Simulated time progresses

discretely through event timestamps. Event types are: START for transac-

tion submission; EXEC START when the transaction enters the executing state;

EXEC END when the execution is finished and the transaction progresses to the

executed state; CERT equivalent to entering committing ; COMMIT and ABORT

when the transaction is committed or aborted, respectively. In the beginning of

the simulation, the event list consists of all transactions’ START events. Sim-

ulated time starts at the earliest event timestamp, i.e., the first event to be

consumed.

Implicit certification is simulated by detecting conflicts between the transac-

tion being committed and transactions in either executing or executed states, as

67

68 5 Evaluation

transaction write sets are known (Algorithm 7, lines 14, 21 to 27).

Algorithm 7: Simulated implicit certification with commit-time conflict
detection.
1 t: transaction, Q: queue, not executed, executing, executed, committing,
committed, aborted : states ;

2 upon t is submitted
3 · · ·
4 end
5 upon t is executed
6 · · ·
7 end
8 upon (t.state == executed ∧ head(t,Q))
9 · · ·

10 end
11 upon t is committed
12 t.state← committed;
13 detectConflicts (Q,t);
14 dequeue(Q,t);
15 · · ·
16 end
17 upon t is aborted
18 · · ·
19 end
20 function detectConflicts (Q,t)
21 foreach

{t′ ∈ Q|t′ 6= t ∧ (t′.state == executing ∨ t′.state == executed)} do
22 if t′.ws ∩ t.ws 6= ∅ then
23 abort t′;
24 end

25 end
26 return;

27 · · ·

As discussed in Section 4.2, the set point should be chosen taking into consid-

eration the distribution of transaction duration. In the results presented here, the

set point used in AJITTS is the value of the average global transaction duration

of the given workload.

5.2 Workload 69

5.2 Workload

In order to obtain realistic write sets for certification, the simulation workload is

based on TPC-E. The simulator consumes execution traces obtained by running

a TPC-E like benchmark on a centralized MySQL1 database and then parsing

the resulting binlog to generate the workload. The simulator uses the following

information from the binlog: the timestamps at which each transaction started,

how long it took to execute each transaction and each transaction’s write sets.

The load generated by serial runs of TPC-E over the same database can be

parallelized by creating unique identifiers for each transaction and by manipulat-

ing timestamps making these relative to a reference instant. As a result, the load

applied to the protocol under test can be easily scaled. Also, the applied load is

not limited by resource constraints on the original MySQL database: there is no

limit on the number of load units that can be applied in parallel.

The transaction duration values extracted from the binlog reflect the penalty

introduced by synchronization and locking in the MySQL engine when the original

benchmark is executed. A correction factor (β) can be calibrated by running

the traces through the simulator with optimistic scheduling, without admission

restrictions and without re-execution, i.e., executing transactions immediately

upon submission, chosen such that the abort rate is close to 1%. The reason for

this is that the sequence of transactions in the binlog is implicitly proved to be

conflict-free with the original values for transaction duration.

Let dur′t be the duration extracted from the binlog for transaction t. The

respective value to be used in the simulation is

durt = β ∗ dur′t (5.1)

The value of the correction factor depends on the benchmark load induced on

MySQL. Therefore, the β used in the simulation is independent of the number of

parallel traces used to fuel the simulator, as long as the load induced on MySQL

by each benchmark run was about the same. If using another set of traces, the

correction factor must be recalculated. β was found to be 0.2 for the traces used

for evaluation.

Because of the way the load is scaled, the dilation effect of transaction duration

1http://www.mysql.com

http://www.mysql.com

70 5 Evaluation

as load increases is not considered. In any case, with a system functioning at or

below nominal capacity, this effect should be negligible. Notice that this is not a

limitation of AJITTS.

5.3 Impact of Scheduling Parameters

Using the event-driven simulator with Algorithm 5 (and simulated implicit certi-

fication as presented in Algorithm 7) Figure 5.1 shows the latency breakdown for

a particular workload (400 clients) for different fixed values of the input parame-

ter, i.e., without adaptation. On the right hand side, transactions are scheduled

early, thus decreasing the amount of time spent in the not executed state, shown

in blue. In fact, an extreme setting of the parameter causes transactions to be

scheduled for immediate execution, equivalent to the baseline protocol of Algo-

rithm 1(again, with simulated implicit certification as presented in Algorithm 1):

the pre-execution delay is negligible, while spending a sizeable amount of time

in the executed state. On the left, transactions are scheduled later, thus waiting

an increased amount of time before execution, but waiting very little as executed

(in orange). In particular, the average vulnerability window per transaction de-

creases from 568ms in the far right to 179ms in the far left, considering that the

input parameter does not have an impact in the execution latency (in yellow). As

expected, overly delaying transaction execution has an impact on total latency.

Figure 5.2 shows a complete set of statistics for a broader range of input values

for three workloads that differ only in the number of concurrent clients submitting

transactions. Besides impacting end-to-end latency, the input parameter has

an effect on throughput and the ratio of aborted transactions, leading to the

following trade off:

• On the left, with a larger pre-execution delay, transactions arrive at the

head of the queue but are not yet fully executed, thus stalling the queue

and leading to reduced throughput. However the small post-execution delay

leads to a reduced number of concurrency-related aborts.

• On the right, transactions are executed fairly ahead of time, thus avoiding

stalling the queue. However, by having been started early they become

concurrent with a larger number of transactions which leads to an increased

5.3 Impact of Scheduling Parameters 71

0.
00

04
5

0.
00

05

0.
00

06

0.
00

07

0.
00

08

0.
00

09

0.
00

1

0.
00

4

b
as

el
in

e

0

200

400

600

800

input

el
ap

se
d

ti
m

e
[m

s]

Figure 5.1: Latency breakdown for different fixed values of the scheduler param-
eter: pre-execution delay (blue), execution latency (yellow), and post-execution
delay (orange), i.e., time spent in the not executed, executing and executed states
respectively.

72 5 Evaluation

number of concurrency-related aborts.

Notice that, for example, if input is between 0.4 · 10−3 and 0.9 · 10−3 for 800

clients, throughput is sub-optimal because transactions are being executed too

late (Figure 5.2). Also, for the same workload, the abort ratio steadily rises as

input increases, until for a large enough value of input, it stabilizes. For example,

with 200 clients, the abort ratio stabilizes at 5%, for input larger than 1 · 10−3.

This happens because after this point almost all transactions are executed as

soon as they are submitted, reducing to the baseline protocol.

The bottom-right chart of Figure 5.2 shows the ratio between the average

queueing and the average duration of all transactions. By comparison with

the top-left chart, showing throughput, the input values that achieve optimal

throughput in the top-left chart match those for which the ratio in the bottom-

left chart is approximately 1. This confirms the intuition presented in Subsection

4.2.2 that system behaviour is optimal when the average queueing is similar to

the average duration and that the latter should be used as the set point for

adaptation.

Figure 5.3 shows how the system behaves for the same number of clients but

with different resource availability. Lower resource availability is simulated by

increasing transaction execution latency. Notice that the likelihood of conflict

rises with the increase in transaction execution latency. Still, the same trade-off

holds.

In Figure 5.2, the optimal input value for 200, 400 or 800 clients is respectively

0.19 · 10−3, 0.43 · 10−3 and 1 · 10−3; in Figure 5.3, the optimal input value for

duration D, D*2.5 and D*4 is respectively 0.43 · 10−3, 0.5 · 10−3 and 0.6 · 10−3.

The plateaus are wide: using an input value of 1 · 10−3 with 200 clients, e.g.,

instead of the optimal value, yields a negligible impact on throughput. However,

as the load increases either by serving more clients or by processing larger trans-

actions, the right-hand slope of the throughput curve becomes more and more

accentuated, increasing the toll on throughput if the input value used in not op-

timal. This behaviour is to be expected as excessive load leads to an increase in

the abort ratio due to higher concurrency (Figures 5.2 and 5.3).

5.3 Impact of Scheduling Parameters 73

0 0.5 1 1.5 2

·10−3

100

200

300

400

input

th
ro

u
gh

p
u
t

[t
p
s]

0 0.5 1 1.5 2

·10−3

0

5

10

input

ab
or

t
ra

ti
o

(%
)

0 0.5 1 1.5 2

·10−3

0

2

4

·105

input

la
te

n
cy

[m
s]

0 0.5 1 1.5 2

·10−3

1

2

3

input

av
er

ag
e

q
u
eu

ei
n
g/

d
u
ra

ti
on

200 clients 400 clients 800 clients

Figure 5.2: Effect of the input value on throughput, the abort ratio, transac-
tion latency and on the ratio between average transaction queueing and average
duration for different numbers of clients.

74 5 Evaluation

0.2 0.4 0.6 0.8 1

·10−3

0

50

100

150

200

input

th
ro

u
gh

p
u
t

(t
p
s)

0.2 0.4 0.6 0.8 1

·10−3

0

5

10

15

20

input

ab
or

t
ra

ti
o

(%
)

0.2 0.4 0.6 0.8 1

·10−3

0

2

4

6

·105

input

la
te

n
cy

[m
s]

0.2 0.4 0.6 0.8 1

·10−3

0

1

2

input

av
er

ag
e

q
u
eu

ei
n
g/

d
u
ra

ti
on

D D*2.5 D*4

Figure 5.3: Effect of the input value on throughput, the abort ratio, transaction
latency and on the ratio between average transaction queueing and average dura-
tion for different distributions of transaction duration (i.e. transaction execution
latency).

5.4 Performance 75

5.4 Performance

We compare AJITTS with the baseline protocol described in Algorithm 1 that

executes each transaction as soon as it is submitted. Figure 5.4 compares the

baseline protocol and AJITTS in terms of throughput and aborts for three work-

loads that differ only on the number of concurrent clients submitting transac-

tions. Notice that even though AJITTS introduces delays on transaction exe-

cutions, throughput is not only not adversely affected, but actually improved.

Also, AJITTS clearly succeeds in significantly reducing the abort rate. In fact,

a clear trend of further improvement can be observed in both charts as the load

increases.

Figure 5.5 shows how the threshold positions per transaction type evolve dur-

ing a run with a particular workload. Threshold positions are updated whenever

the estimates for execution duration change or whenever the adaptation input

parameter changes. The position of the threshold for each transaction type con-

verges quickly: the amplitude of the variation stabilizes after considerably few

updates. In particular, TU transactions actually consist of three different types

of sub-transactions as described in Section 3.1: the variability of the duration

of trade update transactions is mirrored in the variation of the position of the

threshold for this type of transaction. Notice that TU transactions, significantly

larger compared to other transactions, are scheduled much earlier than the other

types of transactions. Figure 5.5 also shows the cumulative distribution function

of the measured queueing (q) aggregated by transaction type, which is a result

of the position of the thresholds.

Figure 5.6 shows how the different average durations (in yellow) influence the

pre-execution delay (in blue) when using AJITTS: again, TU transactions (TU-

AJITTS) are scheduled much earlier than others, while MF transactions (MF-

AJITTS), for instance, are only executed nearer the head of the queue. When

comparing the results regarding, for example, MF transactions, the average time

during which these are vulnerable to being aborted much smaller using AJITTS

(110ms) than using the baseline protocol (562ms). This is also the case for TR

and TO transactions.

Notice that the average queueing of TU transactions actually increases using

AJITTS. This is a consequence of choosing average duration as the set point

for adaptation. Equation 4.2 causes the average post-execution delay for each

76 5 Evaluation

200 400 600 800
0

100

200

300

400

number of clients

th
ro

u
gh

p
u
t

(t
p
s)

200 400 600 800
0

5

10

15

20

number of clients

ab
or

t
ra

te
(%

)

baseline AJITTS

Figure 5.4: Throughput and abort rate using AJITTS instead of the baseline
protocol in scenarios with different numbers of clients.

transaction type to approximate each type’s transaction duration, as evident in

Figure 5.6. Because TU transactions are, on average, much larger than others,

this results in an increase of the average queueing for TU transactions. In short,

this is the cost of the effort of ensuring there is always some transaction ready to

be committed. Also, while, due to its relative size, 84% of TU transactions are

executed immediately upon submission, it is still possible for the queue to grow

so that some TU transactions, when submitted are still below the threshold,

resulting in the measured average pre-execution delay. This is evidence that

AJITTS handles peaks of increased load correctly. As expected, the net effect is

still a reduced abort rate.

Considering different duration distributions shapes the workload: higher du-

rations simulate less available resources and vice-versa. Figure 5.7 shows how

AJITTS leverages available resources significantly better than the baseline pro-

tocol. In particular, the less available resources, the more the baseline protocol’s

throughput decreases relatively to AJITTS.

5.5 Summary

Chapter 4 presented an adaptive transaction scheduler that leverages transaction

execution estimates and the measured level of queueing in the system to min-

5.5 Summary 77

0 1 2 3 4

·105

0

200

400

600

800

position updates

th
re

sh
ol

d
p

os
it

io
n

0 100 200 300 400 500 600

0

0.2

0.4

0.6

0.8

1

queueing (ms)

market feed trade order trade result trade update

Figure 5.5: Evolution of the position of the threshold during a particular run.

imize the number of aborted transactions. Evaluating AJITTS in a simulated

environment provided insight into how each decision in the design of the adap-

tive mechanism affected the behaviour of the protocol. The ability to manipulate

the load made it possible to test the algorithm under very high load and with

varying probabilities of conflict.

AJITTS was evaluated using a simulation model driven by traces from TPC-E

running on MySQL, demonstrating that it clearly outperforms the baseline proto-

col. In fact, in addition to reduced aborts, it actually improves peak throughput

even if it throttles transaction execution. This is a consequence of using available

resources better.

78 5 Evaluation

M
F

-A
J
IT

T
S

M
F

-b
as

el
in

e

T
R

-A
J
IT

T
S

T
R

-b
as

el
in

e

T
O

-A
J
IT

T
S

T
O

-b
as

el
in

e

T
U

-A
J
IT

T
S

T
U

-b
as

el
in

e
0

200

400

600

800

1,000

type of transaction

la
te

n
cy

(m
s)

Figure 5.6: Latency breakdown using AJITTS and the baseline protocol: Pre-
execution delay (blue), execution latency (yellow), and queueing for certification
(orange). Columns MF-AJITTS, TR-AJITTS, TO-AJITTS and TU-AJITTS re-
fer to an execution of the AJITTS protocol, while the others refer to an execution
of the baseline protocol.

5.5 Summary 79

1 2 3 4
0

50

100

150

200

D

th
ro

u
gh

p
u
t

(t
p
s)

1 2 3 4
0

10

20

D

ab
or

t
ra

te
(%

)

baseline AJITTS

Figure 5.7: Throughput and abort rates for the baseline protocol and AJITTS
for different duration distributions.

80 5 Evaluation

Chapter 6

Implementation

A full-featured implementation of AJITTS interacting with an actual RDBMS,

capable of handling multiple replicas and running a TPC-E like benchmark is

presented in this chapter. The goal of this effort is to show that: (1) AJIITS can

be implemented in a real system; and (2) that simply scheduling transactions

to execute sooner or later has the desired effect on the global queueing average.

First, the components of the environment on which AJITTS is implemented,

are described, followed by how the system model can be instantiated in this

environment, focusing on novel features of the certification mechanism. Then,

the workload is described, detailing the particularities of running TPC-E in the

system. Finally, results are presented.

6.1 Model

This implementation of AJITTS is based on the replicated queue model built

using a group communication protocol. Each replica has a copy of the entire

database. Transactions can be submitted to any replica and are executed at the

replica to which they were submitted. Each replica independently schedules its

transactions and can independently certify all transactions. Aborted transactions

are not automatically re-executed and the decision to resubmit them is left to

the client. While in the simulation model transaction duration is considered to

be independent of system load, that is not the case in this setting. The higher

the load (i.e. more transactions executing concurrently or larger transactions),

the longer it should take a given transaction to execute.

81

82 6 Implementation

For the sake of simplicity, each transaction is considered to be implemented

as a set of stored procedures, where the name of the first stored procedure to be

called is sufficient to classify the transaction according to its type. However, the

only requirement is that the first statement of the transaction enables it to be

classified. For example, a dummy statement, which can even be read-only, can

be used to hint at the type of the transaction.

Two kinds of interactive transactions are considered: those in which the time

spent waiting for the user exhibits low variance, in which case a useful transac-

tion duration estimate can be calculated and used by the adaptive mechanism;

and those for which time spent waiting for the user varies significantly, where

a sufficiently accurate estimate for transaction duration cannot be calculated.

While the former are fully supported, supporting the latter might destabilize the

adaptive mechanism.

It is assumed that the possible types of transaction that execute in a given

system are known, either determined directly or using the method presented in

Subsection 3.2.1.

Transaction scheduling is based on a line per type of transaction as in Equation

4.2. Transaction duration is estimated per type, using an online cumulative

rolling average as described on Subsection 4.2.3.

While 1-copy snapshot isolation is assumed, serializability is also supported

simply by changing the criteria for conflict detection to also consider transaction

read sets and by sending both read and write sets to other replicas (as in the

DBSM protocol (Pedone et al. 2003)). Some protocols offer the option of actively

executing selected transactions when the read and/or write sets are expected to

be significantly large, in an effort to reduce bandwidth consumption (Correia Jr

et al. 2007). In others, read sets are not disseminated at the cost of allowing only

the replica that locally executes the transaction to certify it (Kemme and Alonso

2000),

Figure 6.1 shows transaction states and possible transitions for local transac-

tions. Additional states, when compared to Figure 4.1, are related to tasks that

were immediate in the simulation but cannot be considered as such in an actual

implementation. For example, while transaction order is determined a priori in

the simulated environment, in this environment a transaction can only start ex-

ecuting after the its place in the order has been established, either by the group

6.1 Model 83

not
executed executing executed

aborted

committed

delivered

committing

aborting

ordered

Figure 6.1: Transaction states and allowed transitions for local transactions.

aborted

committed

delivered

committing

aborting

ordered

Figure 6.2: Transaction states and allowed transitions for remote transactions.

or some sequencer. Still, notice that by collapsing the states that are coloured

the same, the graph is the same as that in Figure 4.1.

Starting in the not executed state, transactions transition to the ordered state

once their place in the global total order has been established. When the exe-

cution starts, transactions enter the executing state, progressing to the executed

state when finished; once it can be guaranteed that the necessary information

about the transaction (read and/or write sets) will be received by other replicas,

the transaction enters the delivered state. Once there is no preceding delivered

transaction that can potentially conflict with it, if the transaction can be se-

rialized with previously committed concurrent transactions it progresses to the

committing state and once the commit is complete to committed ; if not, it must

be aborted, entering the aborting state and once complete, aborted. While in

84 6 Implementation

executing, executed and delivered states a transaction can be aborted by other

transactions, when a transaction is being certified, it can only be aborted by the

certification mechanism.

Figure 6.2 shows transaction states and allowed transitions for remote trans-

actions. A replica only becomes aware of a remote transaction when it is being

ordered, which is why not executed is not shown. Similarly, the executing and

executed states are omitted.

Starting in the ordered state, the transaction progresses to the delivered state

when its information (again, read and/or write sets) is received. Once the trans-

action can be certified it progresses to committing and later committed if it can

be committed, otherwise entering aborting and later progressing to the aborted

state. As local transactions, remote transactions can be aborted in the delivered

by other transactions but, during certification, only by the certification mecha-

nism.

6.2 Details

The ESCADA replication server, developed in the context of the GORDA project

(Correia Jr et al. 2007; Carvalho et al. 2007), provides a pluggable replication

framework as shown on Figure 6.3. The goal of implementing AJITTS using ES-

CADA is that the latter handles interfacing with database engines and with group

communication protocols abstracting most details of the particular implementa-

tions chosen. In short, ESCADA provides the following database capabilities

through handlers, defined as a part of the replication protocol, to be called at

specific stages of transaction processing (e.g. when a transaction has been sub-

mitted but before its execution starts, or when it has finished its execution and

it is ready to commit, but before it does):

• to pause or continue transaction execution according to the design of the

replication protocol;

• to access transaction specific information (e.g time stamps, read and write

sets);

• to inspect, modify or inject SQL statements;

6.2 Details 85

• to allow the replication protocol to decide whether a given transaction

should commit or abort;

ESCADA interacts with the RDBMS through a generic API, the GAPI, that

provides the capabilities itemized above as well as the ability to inject updates

originating from remote transactions. By design, the capabilities provided by the

GAPI are an abstraction of what is common in most database engines. Because

AJITTS can be implemented over this abstraction, it can also be implemented

in most relational database engines.

A simple interface to group communication is also provided by ESCADA to

replication protocol implementations, reflecting different delivery guarantees of-

fered by the chosen group communication protocol. For example, the standard

group communication framework used in the GORDA project, APPIA (Miranda

et al. 2001) offers a single send primitive that naturally sends the specified mes-

sage to the group and three message delivery primitives:

optimistic guaranteed to be delivered by all correct processes but not necessarily

in this position in the total order (used by protocols that exploit early

optimistic delivery);

regular guaranteed to be delivered in this position in the total order by all

correct processes and

uniform guaranteed to be delivered in this position in the total order even by

faulty processes.

The framework provides the building blocks for implementing several repli-

cation strategies: primary-backup, state-machine (i.e. active replication) and

certification-based replication (Correia Jr et al. 2007).

The sequence diagram in Figure 6.4 shows how a transaction is processed in

the replicated system:

Step 1: The client connects to the database and starts a transaction, which

triggers a handler invocation on the coordination kernel.

Step 2: The client submits a statement to the database, which before being

executed triggers another handler invocation in the coordination kernel.

By parsing the statement’s SQL code, the coordination kernel is able

86 6 Implementation

coordination
kernel

Group
Comm.

GAPI

Database Engine

ESCADA

coordination
kernel

Group
Comm.

GAPI

Database Engine

ESCADA

coordination
kernelGroup

Comm.

GAPI

Database Engine

ESCADA

Figure 6.3: ESCADA stack.

to determine the transaction’s type (i.e. to classify it). At this point

the transaction enters the not executed state. The object that reflects

the transaction is then sent to the group using a total order broadcast

primitive.

Step 3: Upon uniform delivery, each replica’s coordination kernel enqueues the

transaction in its instance of the replicated queue: the transaction is

local at the originating replica and remote at all others. The transaction

enters the ordered state.

Step 4: When the coordination kernel at the originating replica finds the trans-

action is eligible for execution, it notifies the local DBMS to continue,

executing the transaction, which enters the executing state.

Step 5: When the transaction sucessfully finishes executing, but before it is

allowed to commit, the corresponding coordination kernel handler is

invoked. At this point the transaction enters the executed state and the

transaction’s write set is sent to the group.

6.2 Details 87

Local DBMS Local ESCADA Group Remote ESCADA Remote DBMS

handleTxnBegin() classify()

send(txn)

deliver(txn)

enqueue()

deliver(txn)

enqueue()

continueExecution()

handleTxnCommit() send(ws)
deliver(ws)

beginTxn()

certify()certify()commitTxn()

commitOK()

dequeue()

deliver(ws)

injectWS()

commit()

dequeue()

commitOK()

Client

request

success

[eligible] execute()

Figure 6.4: Sequence diagram for the ESCADA implementation of AJITTS.

Step 6: When the write set is delivered, the transaction enters the delivered

state. Each replica can certify it independently and the decision is

guaranteed to be the same at each replica because every replica knows

every transaction’s write set and does so in the established order.

Step 7: If the decision is to commit the transaction, the database enters the

committing state and the local database is notified by the coordination

kernel to continue the transaction’s processing, committing it. Each

remote replica’s coordination kernel starts a transaction at its database,

injects and applies the transaction’s write set and commits it.

Step 8: Each database notifies the corresponding coordination kernel that the

transaction has been committted sucessfully, entering the committed

state, upon which the transaction is removed from the replicated queue.

However, transactions can be aborted: either because the database’s local

concurrency control mechanism determined a transaction cannot commit (Figure

6.5) or because it could not be certified (Figure 6.6).

In the case of the former:

88 6 Implementation

Local DBMS Local ESCADA Group Remote ESCADA Remote DBMS

handleTxnBegin() classify()

send(txn)

deliver(txn)

enqueue()

deliver(txn)

enqueue()

continueExecution()

handleTxnRollback() send()
deliver()

dequeue()dequeue()

deliver()

Client

request

abort

[eligible] execute()

abort

Figure 6.5: Sequence diagram for the ESCADA implementation of AJITTS: the
transaction is aborted by the database’s local concurrency control.

Steps 1 to 4: Same as above.

Step 5: At the local replica, the transaction is aborted by the database’s concur-

rency control when executing, triggering a coordination kernel’s handler

invocation. The transaction moves to the aborting state. A notification

of the transaction’s abort is sent to the group.

Step 6: Upon delivery, the transaction enters the aborted state and is removed

from the replicated queue.

In the case of the latter:

Steps 1 to 5: Same as when the transaction commits.

Step 6: When the write set is delivered, each replica independently decides the

transaction cannot be certified and its state becomes aborting. At the

originating replica, the coordination kernel notifies the database to abort

the transaction. At the remote replica it enters the aborted state and is

simply removed from the queue.

6.2 Details 89

Local DBMS Local ESCADA Group Remote ESCADA Remote DBMS

handleTxnBegin() classify()

send(txn)

deliver(txn)

enqueue()

deliver(txn)

enqueue()

continueExecution()

handleTxnCommit() send(ws)
deliver(ws)

certify()rollBackTxn()

rollbackOK() dequeue()

deliver(ws)

dequeue()

Client

request

abort

[eligible] execute()

abort
certify()
abort

Figure 6.6: Sequence diagram for the ESCADA implementation of AJITTS: the
transaction cannot be committed and must be rolled back.

Step 7: Upon confirmation of the rollback, the transaction enters the aborted

state and the transaction is removed from the local queue.

Notice that transaction write sets are sent to the group as soon as these are

known. The idea is to ensure that even for large write sets, when a remote

transaction reaches the head of the queue, it can be certified waiting as little as

possible (if at all) for the write set to be delivered.

6.2.1 Certification

Certification must be guaranteed to be deterministic. In order to implement a

certification mechanism that is external to the database engine, it is required

that once a transaction is being certified, the decision to commit or abort is

completely determined by the certification mechanism, meaning that no other

event should be able to cause the transaction to be aborted. In particular, in

order to ensure committing transactions get all necessary locks regardless of being

held by concurrent executing transactions, the GAPI requires the implementation

90 6 Implementation

of high-priority (i.e. MASTER) transactions, which are never aborted by the

database engine. Still, consider the following example: let a and b be conflicting

transactions executing at a given replica such that a precedes b in the commit

order. Suppose a finished executing and is at the head of the queue, ready to be

certified. Meanwhile, transaction b is being executed. If the certifier decides to

commit a, there can be a local race between the database’s deadlock resolution

mechanism 1, that can decide to abort a and the incoming notification to commit

it. Suppose the abort wins the race. Because transaction information is sent (and

received) before the transaction commits (or aborts), remote replicas would likely

commit a, leaving the system in an inconsistent state. Notice that deferring the

dissemination of the transaction’s information to after the transaction has been

committed would make the protocol asynchronous (lazy).

The solution is to promote transactions that have finished executing to the

high-priority status before notifying ESCADA, thus ensuring that the transaction

will not be aborted by the database engine, i.e., transactions in the executed state

have already been promoted to MASTER. In the example above, transaction a

would have already been promoted to MASTER and the race condition would

not exist.

However, the promotion mechanism means that implicit certification cannot

be implemented: when attempting to commit a transaction, the database en-

gine’s concurrency control mechanism is unable to abort conflicting MASTER

transactions. Explicit certification must be used instead. Also, the transaction

promotion mechanism can lead to deadlocks. The issue is two-fold:

local vs remote a local executed transaction (i.e. already promoted to MAS-

TER) may block the application of a preceding and conflicting remote

transaction, causing a deadlock as the remote transaction in turn blocks

certification until successfully committed;

local vs local due to out-of-order execution, local executed transactions may

also block the execution of a preceding and conflicting local transaction t

at the head of Q(t), also causing a deadlock as certification is blocked until

t either commits or aborts.

In order to avoid local vs remote deadlocks, local transactions that are block-

1In PostgresSQL, the deadlock detection mechanism is based on timeouts.

6.2 Details 91

ing preceding transactions from proceeding need to be detected and aborted.

This is done in two stages:

pre-certification when a local transaction t finishes executing and enters the

executed state, if it conflicts with any transaction in the committing state,

t is aborted;

post-certification when a transaction enters the committing state, if it conflicts

with any transaction t in the executed state, t is aborted;

To illustrate why both pre and post-certification are necessary, consider the

following scenarios. First, suppose there is no post-certification. Consider con-

flicting transactions a and b so ordered, where a is a remote transaction and b

is local, and the following sequence of events: (1) b has finished executing and

enters the executed state, but because a is not yet committing b is not aborted

by pre-certification; (2) a is certified and enters committing ; (3) deadlock. post-

certification would have aborted b at (2) allowing a to proceed.

Now suppose there is no pre-certification and this sequence of events: (1)

a is certified and enters committing and b is not aborted by post-certification

because it is not in the executed state and its write set is still unknown; (2)

before a is committed, b finishes executing and enters executed ; (3) deadlock.

pre-certification would have aborted b at (2), allowing a to proceed.

If both a and b are local transactions and b, whether it started to execute

before a or not, reaches executed before a does neither pre-certification nor post-

certification would abort b since a never reaches committing. The issue is that

at the coordination kernel level, this situation is indistinguishable from a simply

taking a long time to execute.

At the coordination kernel level, the transaction duration estimate can be

used as a hint of whether a deadlock should be suspected: if a transaction t is

not preceded by any conflicting transaction yet to be committed and if the time

the transaction has been in the executing state is significantly longer than the

estimate for its type, a deadlock is suspected and resolution ensues; if not, a

timer is set according to the estimate and the transaction is allowed to continue

executing until it expires, before suspecting a deadlock.

If a deadlock is suspected, the potentially conflicting transactions are those in

the executed state. At the coordination kernel level, there is no way of knowing

92 6 Implementation

which transaction is blocking t. Notice that it is possible that multiple trans-

actions block t without blocking each other. Several policies can be defined for

deadlock resolution varying between aborting all potentially conflicting trans-

actions to aborting one at a time and waiting to see if t is able to proceed,

selecting the transaction to be aborted according to some heuristic. In the cur-

rent implementation of AJITTS the policy is to abort all potentially conflicting

transactions. Notice that the adaptive mechanism already addresses this issue

by executing transactions as late as possible without reducing throughput. No-

tice that in a in-database implementation of AJITTS, it would be possible to

determine the offending transaction by examining the acquired locks.

ESCADA features a batch apply mechanism: certified transactions are sub-

mitted to the applier, which tries to commit as many as possible in parallel.

Conflicting transactions are applied serially, but non-conflicting transactions are

applied in parallel even if certification is done serially.

6.3 Workload

The DBT-5 implementation of the TPC-E benchmark was used to test AJITTS’

implementation in ESCADA with the PostgreSQL database engine. DBT-5 offers

two alternative implementations of TPC-E transactions as stored procedures: in

PGSQL, native to PostgreSQL and C. The C version of the stored procedures

was used except for the Data Maintenance transaction, which presented issues.

The PGSQL version of the Data Maintenance stored procedure was used instead.

The current version of ESCADA does not support composite primary keys. These

were replaced with surrogate keys based on a sequence and the composite key

constraint is enforced by a uniqueness constraint over an index of its components:

e.g., to

CREATE TABLE account_permission (

ap_ca_id IDENT_T NOT NULL,

ap_acl VARCHAR(4) NOT NULL,

ap_tax_id VARCHAR(20) NOT NULL,

ap_l_name VARCHAR(30) NOT NULL,

ap_f_name VARCHAR(30) NOT NULL)

where ap_ca_id, ap_tax_id is the composite primary key of this table,

6.4 Results 93

ALTER TABLE account_permission

ADD COLUMN ap_id SERIAL UNIQUE,

ADD CONSTRAINT pk_account_permission

PRIMARY KEY (ap_id)

CREATE UNIQUE INDEX old_pk_account_permission

ON account_permission (ap_ca_id, ap_tax_id);

is added.

Also ESCADA does not support foreign key constraints.

Another issue is that TPC-E defines custom data types, which were created in

PostgreSQL. The necessary mappings between PostgreSQL datatypes and Java

object types, needed by the reflection mechanism were added to the GAPI.

The test setup consisted of three identical replicas, each with a dual-core

Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz with 8 GB of RAM and a Serial

ATA, 7200 rpm disk drive, connected through a local switched network.

Each replica runs: a PostgreSQL database engine, an instance of the ESCADA

framework and an instance of the DBT-5 benchmark. Each instance of the DBT-

5 benchmark submits connects directly to the PostgreSQL database engine to

submit transactions. Before the benchmark is run, each database is loaded with

the data for 5000 customers and 30 initial trade days. Each benchmark instance

runs with 1000 active customers, with 5 clients, for 30 minutes. Notice that this

deployment is considerably smaller than the one simulated in Chapter 4. The key

contribution in this chapter is to show that AJITTS can in fact be implemented

and that it works as expected.

6.4 Results

Figure 6.7 shows how transaction latency breaks down in terms of how long it took

to execute the transaction and the pre- and post- execution delays, aggregated

from all replicas. Like Figure 5.1, it showcases the effect of the input parameter on

transaction latency, as smaller values of input tend to increasingly shift latency

from the post- to the pre-execution delay as on the right transactions tend to

execute earlier while on the left, transactions tend to execute later. Also, some

variation can be seen on transaction duration.

94 6 Implementation

0.
03

0.
04

0.
05

0.
06

0.
07

b
as

el
in

e

0

1,000

2,000

3,000

type of transaction

la
te

n
cy

(m
s)

Figure 6.7: Global latency breakdown with a varying scheduler parameter: pre-
execution delay (blue), execution latency (yellow), and queueing before certifica-
tion (orange)

From Figures 6.8 and 6.9, while there is a small increase in overall transaction

latency when comparing AJITTS using a fixed input to the baseline protocol,

the desired effect of shifting latency from post- to pre-execution latency is clearly

demonstrated.

Figure 6.10 shows how AJITTS performs with full adaptation using a setpoint

value approximately equal to the mean global transaction duration. Notice that

the behaviour is similar to what is shown in Figure 5.6, where transactions that,

on average, take longer to execute, have, on average, larger post-execution delays.

In Figure 6.11, the setpoint value approximates twice the mean global transaction

duration and as shown, the system globally adapts to reach it.

6.4 Results 95

MF TR TO TU global

0

1,000

2,000

3,000

type of transaction

la
te

n
cy

(m
s)

Figure 6.8: Combined transaction latency breakdown per type of transaction us-
ing the baseline protocol: pre-execution delay (blue), execution latency (yellow),
and queueing before certification (orange)

MF TR TO TU global

0

1,000

2,000

3,000

type of transaction

la
te

n
cy

(m
s)

Figure 6.9: Combined transaction latency breakdown per type of transaction
using AJITTS with input = 0.05: pre-execution delay (blue), execution latency
(yellow), and queueing before certification (orange)

96 6 Implementation

MF TR TO TU global
0

1,000

2,000

3,000

type of transaction

la
te

n
cy

(m
s)

Figure 6.10: Combined transaction latency breakdown per type of transaction
using AJITTS with setpoint = 200: pre-execution delay (blue), execution latency
(yellow), and queueing before certification (orange)

MF TR TO TU global

0

1,000

2,000

3,000

type of transaction

la
te

n
cy

(m
s)

Figure 6.11: Combined transaction latency breakdown per type of transaction
using AJITTS with setpoint = 500: pre-execution delay (blue), execution latency
(yellow), and queueing before certification (orange)

6.5 Summary 97

6.5 Summary

This chapter described a prototype implementation of AJITTS, evaluated using

the TPC-E benchmark on multiple replicas. Results demonstrated that the post-

execution delay can be efficiently moved to before the transaction executes in

practice, using the adaptive mechanism described in the previous chapters, which

at a large scale deployment will produce the performance impact predicted by

simulation.

98 6 Implementation

Chapter 7

Conclusion

Replication is key to achieving highly-available dependable database management

services. There is a large base of production systems that rely intrinsically on

relational databases that must be able to scale to accommodate growing user

bases or evolving markets. Current proposals based on key-value stores that focus

on high-availability while relaxing consistency guarantees might not be suitable

for a considerable subset of these, particularly if the consistency afforded by the

transactional model is key to their operation.

The ability to scale a distributed system based on transactional replication is

determined by the level of concurrency the system can support while guarantee-

ing correctness. Concurrency control is key and strategies fundamentally differ

on whether conflict detection is done conservatively, a priori, or optimistically, af-

ter transaction execution. Both have drawbacks: contention for the conservative

strategy and high abort rates when loaded for the optimistic strategy. The appli-

cability of the conservative strategy was evaluated by assessing whether assump-

tions about the ability to conveniently partition application databases, critical

for performance, hold for a complex benchmark such as TPC-E or a real-world

application in the same domain. The analysis consisted of partitioning applica-

tion databases so that a corresponding definition of disjoint conflict classes would

enable the highest level of concurrency: TPC-E was analysed by manual inspec-

tion; the case-study real-world application was analysed with a tool that enabled

conflict-class extraction. In both cases, the previous assumptions were found not

to hold, making conservative concurrency control unsuitable.

In order to mitigate the high abort rate issue of optimistic concurrency control,

99

100 7 Conclusion

we proposed AJITTS, a transaction scheduler that minimizes the length of time

during which transactions are vulnerable to being aborted. Transaction duration

estimates and the level of the queueing in the system are used as the basis for the

adaptive mechanism that delays transaction execution, so that it starts as late as

possible, minimizing aborts, but as early as needed for throughput not to suffer.

AJITTS was evaluated in a simulated environment, using a workload based on

TPC-E, and found that it outperforms the baseline protocol in which transactions

are executed immediately after submission, by improving both throughput and

the abort rate, particularly as the number of clients increases or the likelihood

that transactions conflict rises.

A prototype implementation of AJITTS on the ESCADA framework was eval-

uated using TPC-E, to demonstrate that, in practice, the adaptive mechanism is

able to minimize the length of time during which transactions are vulnerable to

being aborted, by reaching and maintaining the selected level of queueing.

7.1 Future Work

The evaluation of AJITTS’ implementation in the ESCADA framework is lim-

ited by poor scalability. It would be interesting to implement AJITTS in more

recent/efficient replication frameworks, such as, e.g., Galera Cluster.

Because optimistic concurrency control mechanisms are increasingly popu-

lar in cloud-based settings, it would also be interesting to implement AJITTS

in cloud-based certifiers. For example, AJITTS can be implemented in OMID

(Gomez Ferro et al. 2014), where transactions can be scheduled by, instead of

providing a transaction with a start time stamp immediately upon request, it is

delayed according to the threshold mechanism.

On a different note, the adaptive mechanism can be useful with other goals.

For example, Amazon prices DynamoDB according to the contracted throughput

per hour, where exceeding transactions are aborted. The adaptive mechanism can

be used to keep throughput as close as possible to the contracted limit, without

exceeding it, and still minimizing aborts.

Assuming partial replication and complex transactions broken up per accessed

partition, AJITTS could be used to schedule each sub-transaction as late as

possible to minimize aborts, but so that these finish as close in time as possible.

Bibliography

K. Aström and T. Hägglund. Automatic tuning of simple regulators with spec-

ifications on phase and amplitude margins. Automatica, 20(5):645 – 651,

1984. ISSN 0005-1098. doi: 10.1016/0005-1098(84)90014-1. URL http://www.

sciencedirect.com/science/article/pii/0005109884900141. - Cited on

page 60.

K. Aström and R. Murray. Feedback systems: An introduction for scientists

and engineers. Technical report, Princeton University Press, 2007. - Cited on

pages 56 and 59.

J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson, J. Léon, Y. Li,

A. Lloyd, and V. Yushprakh. Megastore: Providing scalable, highly available

storage for interactive services. In CIDR, volume 11, pages 223–234, 2011. -

Cited on page 3.

N Carvalho, A. Correia Jr, J. Pereira, L. Rodrigues, R. Oliveira, and S. Guedes.

On the use of a reflective architecture to augment database management sys-

tems. J. UCS, 13(8):1110–1135, 2007. - Cited on page 84.

T. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an engineering

perspective. In Proceedings of the twenty-sixth annual ACM symposium on

Principles of distributed computing, pages 398–407. ACM, 2007. - Cited on

page 3.

F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chan-

dra, A. Fikes, and R. Gruber. Bigtable: A distributed storage system for

structured data. ACM Transactions on Computer Systems (TOCS), 26(2):4,

2008. - Cited on page 3.

101

http://www.sciencedirect.com/science/article/pii/0005109884900141
http://www.sciencedirect.com/science/article/pii/0005109884900141

102 Bibliography

G. Chartrand and L. Lesniak. Graphs & Digraphs. Chapman & Hall, 1996. -

Cited on pages 36 and 43.

A. Cheung, S. Madden, O. Arden, and A. Myers. Automatic partitioning of

database applications. Proceedings of the VLDB Endowment, 5(11):1471–1482,

2012. - Cited on page 21.

A. Correia, J. Pereira, and R. Oliveira. Akara: A flexible clustering protocol

for demanding transactional workloads. On the Move to Meaningful Internet

Systems: OTM 2008, pages 691–708, 2008. - Cited on pages 9, 13, 14, 16, 21,

26 and 53.

A. Correia Jr, A. Sousa, L. Soares, J. Pereira, F. Moura, and R. Oliveira. Group-

based replication of on-line transaction processing servers. Dependable Com-

puting, pages 245–260, 2005. - Cited on pages 7, 29 and 44.

A. Correia Jr, J. Pereira, L. Rodrigues, N. Carvalho, R. Vilaça, R. Oliveira, and

S. Guedes. Gorda: An open architecture for database replication. In Net-

work Computing and Applications, 2007. NCA 2007. Sixth IEEE International

Symposium on, pages 287–290. IEEE, 2007. - Cited on pages 82, 84 and 85.

C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-driven

approach to database replication and partitioning. Proceedings of the VLDB

Endowment, 3(1-2):48–57, 2010. - Cited on pages 21, 23 and 28.

X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast al-

gorithms: Taxonomy and survey. ACM Computing Surveys (CSUR), 36(4):

372–421, 2004. - Cited on page 8.

N. Diegues and P. Romano. Bumper: Sheltering transactions from conflicts. In

Reliable Distributed Systems (SRDS), 2013 IEEE 32nd International Sympo-

sium on, pages 185–194. IEEE, 2013. - Cited on page 16.

D. Gomez Ferro, F. Junqueira, I. Kelly, B. Reed, and M. Yabandeh. Omid: Lock-

free transactional support for distributed data stores. In Data Engineering

(ICDE), 2014 IEEE 30th International Conference on, pages 676–687. IEEE,

2014. - Cited on pages 12, 49 and 100.

Bibliography 103

R. Guerraoui and A. Schiper. The generic consensus service. Software Engineer-

ing, IEEE Transactions on, 27(1):29–41, 2001. - Cited on page 8.

S. Guo, W. Sun, and M. Weiss. Solving satisfiability and implication problems

in database systems. ACM Transactions on Database Systems (TODS), 21(2):

270–293, 1996. - Cited on page 44.

S. Hirve, R. Palmieri, and B. Ravindran. Archie: a speculative replicated transac-

tional system. In Proceedings of the 15th International Middleware Conference,

pages 265–276. ACM, 2014. - Cited on page 15.

P. Hunt, M. Konar, F. Junqueira, and B. Reed. Zookeeper: Wait-free coordi-

nation for internet-scale systems. In USENIX Annual Technical Conference,

volume 8, page 9, 2010. - Cited on page 21.

R. Jiménez-Peris, M. Patiño-Mart́ınez, B. Kemme, and G. Alonso. Improving

the scalability of fault-tolerant database clusters. In Distributed Computing

Systems, 2002. Proceedings. 22nd International Conference on, pages 477–484.

IEEE, 2002. - Cited on pages 7, 20 and 25.

B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-r, a new way to

implement database replication. In Proceedings of the 26th International Con-

ference on Very Large Data Bases, VLDB ’00, pages 134–143, San Francisco,

CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1-55860-715-3. URL

http://dl.acm.org/citation.cfm?id=645926.671855. - Cited on pages 7,

12, 14, 25, 50 and 82.

B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing transactions over

optimistic atomic broadcast protocols. In Distributed Computing Systems,

1999. Proceedings. 19th IEEE International Conference on, pages 424–431.

IEEE, 1999. - Cited on pages 7, 9, 20 and 25.

T. Lahiri, V. Srihari, W. Chan, N. Macnaughton, and S. Chandrasekaran. Cache

fusion: Extending shared-disk clusters with shared caches. In VLDB, volume 1,

pages 683–686, 2001. - Cited on page 7.

Y. Lin, B. Kemme, M. Patiño-Mart́ınez, and R. Jiménez-Peris. Middleware based

data replication providing snapshot isolation. In Proceedings of the 2005 ACM

http://dl.acm.org/citation.cfm?id=645926.671855

104 Bibliography

SIGMOD international conference on Management of data, pages 419–430.

ACM, 2005. - Cited on pages 10, 26 and 51.

H. Mahmoud, V. Arora, F. Nawab, D. Agrawal, and A. El Abbadi. Maat: Ef-

fective and scalable coordination of distributed transactions in the cloud. Pro-

ceedings of the VLDB Endowment, 7(5):329–340, 2014. - Cited on page 15.

P. Marandi, M. Primi, and F. Pedone. High performance state-machine replica-

tion. In Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st Inter-

national Conference on, pages 454–465. IEEE, 2011. - Cited on page 9.

H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel sup-

porting multiple coordinated channels. In Distributed Computing Systems,

2001. 21st International Conference on., pages 707–710. IEEE, 2001. - Cited

on page 85.

R. Palmieri, F. Quaglia, and P. Romano. Osare: Opportunistic speculation

in actively replicated transactional systems. In Reliable Distributed Systems

(SRDS), 2011 30th IEEE Symposium on, pages 59–64. IEEE, 2011. - Cited

on page 17.

M. Patiño Martinez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Middle-

r: Consistent database replication at the middleware level. ACM Trans.

Comput. Syst., 23:375–423, November 2005. ISSN 0734-2071. doi: http://

doi.acm.org/10.1145/1113574.1113576. URL http://doi.acm.org/10.1145/

1113574.1113576. - Cited on page 27.

M. Patiño-Mart́ınez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Scalable repli-

cation in database clusters. Distributed Computing, pages 147–160, 2000. -

Cited on pages 7 and 20.

A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic database partitioning

in shared-nothing, parallel oltp systems. In Proceedings of the 2012 ACM SIG-

MOD International Conference on Management of Data, pages 61–72. ACM,

2012. - Cited on page 22.

F. Pedone, R. Guerraoui, and A. Schiper. Transaction reordering in replicated

databases. In Reliable Distributed Systems, 1997. Proceedings., The Sixteenth

Symposium on, pages 175–182. IEEE, 1997. - Cited on page 16.

http://doi.acm.org/10.1145/1113574.1113576
http://doi.acm.org/10.1145/1113574.1113576

Bibliography 105

F. Pedone, R. Guerraoui, and A. Schiper. The database state machine approach.

Distributed and Parallel Databases, 14:71–98, 2003. ISSN 0926-8782. URL

http://dx.doi.org/10.1023/A:1022887812188. 10.1023/A:1022887812188.

- Cited on pages 7, 12, 14, 16, 25, 49 and 82.

D. Peng and F. Dabek. Large-scale incremental processing using distributed

transactions and notifications. In 9th USENIX Symposium on Operating Sys-

tems Design and Implementation, pages 4–6, 2010. - Cited on page 12.

J. Rao, C. Zhang, N. Megiddo, and G. Lohman. Automating physical database

design in a parallel database. In Proceedings of the 2002 ACM SIGMOD inter-

national conference on Management of data, SIGMOD ’02, pages 558–569, New

York, NY, USA, 2002. ACM. ISBN 1-58113-497-5. doi: 10.1145/564691.564757.

URL http://doi.acm.org/10.1145/564691.564757. - Cited on page 21.

F. Schneider. Implementing fault-tolerant services using the state machine ap-

proach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990. -

Cited on page 8.

B. Schroeder, M. Harchol-Balter, A. Iyengar, E. Nahum, and A. Wierman. How

to determine a good multi-programming level for external scheduling. In Data

Engineering, 2006. ICDE ’06. Proceedings of the 22nd International Conference

on, page 60, april 2006a. doi: 10.1109/ICDE.2006.78. - Cited on page 14.

B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus closed: a cau-

tionary tale. In Proeceedings of the 3rd Symposium on Networked Systems

Design and Implementation, 2006b. - Cited on page 26.

D. Sciascia, F. Pedone, and F. Junqueira. Scalable deferred update replication.

In Dependable Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP

International Conference on, pages 1 –12, june 2012. doi: 10.1109/DSN.2012.

6263931. - Cited on page 14.

M. Stonebraker, S. Madden, D. Abadi, S. Harizopoulos, N. Hachem, and P. Hel-

land. The end of an architectural era:(it’s time for a complete rewrite). In Pro-

ceedings of the 33rd international conference on Very large data bases, pages

1150–1160. VLDB Endowment, 2007. - Cited on pages 16, 22 and 23.

http://dx.doi.org/10.1023/A:1022887812188
http://doi.acm.org/10.1145/564691.564757

106 Bibliography

A. Tatarowicz, C. Curino, E. Jones, and S. Madden. Lookup tables: Fine-grained

partitioning for distributed databases. In Data Engineering (ICDE), 2012

IEEE 28th International Conference on, pages 102–113. IEEE, 2012. - Cited

on page 22.

A. Thomson and D. Abadi. The case for determinism in database systems. Pro-

ceedings of the VLDB Endowment, 3(1-2):70–80, 2010. - Cited on page 9.

A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, and D. Abadi. Calvin:

fast distributed transactions for partitioned database systems. In Proceedings

of the 2012 ACM SIGMOD International Conference on Management of Data,

pages 1–12. ACM, 2012. - Cited on page 21.

P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, and A. Ailamaki. From a to e:

analyzing tpc’s oltp benchmarks: the obsolete, the ubiquitous, the unexplored.

In Proceedings of the 16th International Conference on Extending Database

Technology, pages 17–28. ACM, 2013. - Cited on page 23.

TPC Benchmark C - Standard Specification. Transaction Processing Performance

Council (TPC), revision 5.0 edition, 2001a. - Cited on page 25.

TPC Benchmark W - Standard Specification. Transaction Processing Perfor-

mance Council (TPC), revision 1.6 edition, August 2001b. - Cited on page 25.

TPC Benchmark E - Standard Specification. Transaction Processing Performance

Council (TPC), revision 1.12.0 edition, June 2010. - Cited on pages 25 and 26.

M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding

replication in databases and distributed systems. In Distributed Computing

Systems, 2000. Proceedings. 20th International Conference on, pages 464–474.

IEEE, 2000. - Cited on page 8.

	Página 1
	Página 2
	Página 3
	Página 4
	thesis.pdf
	Introduction
	Problem Statement
	Contributions
	Results
	Publications
	Document Structure

	Background
	Overview
	Architectures
	Transactions

	Optimistic Concurrency Control
	Conservative Concurrency Control
	Database Partitioning

	Summary

	Determining Conflict Classes
	Analysis of the TPC-E Benchmark
	Conflict Class Definition
	Discussion

	Analysis of a Real-World Application
	Conflict Class Extraction
	Discussion

	Summary

	Scheduling Optimistic Execution
	System model
	Approach
	Impact of Scheduling
	Finding the Optimal input
	Estimating Transaction Execution Latency

	Summary

	Evaluation
	Simulation Model
	Workload
	Impact of Scheduling Parameters
	Performance
	Summary

	Implementation
	Model
	Details
	Certification

	Workload
	Results
	Summary

	Conclusion
	Future Work

	Bibliography

