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ABSTRACT 

 
Acute myeloid leukemia (AML) is a clonal disorder characterized by genetic alterations in 

hematopoietic stem and/or progenitor cells, leading to the accumulation of leukemic 

myeloblasts. Current AML therapies rely mainly on high doses of cytarabine and doxorubicin, 

which promote good outcomes for young patients but that are highly toxic and have limited 

application and poor outcomes among old individuals. Thus, the elucidation of the mechanisms 

underlying AML cell’s response to conventional chemotherapy is still a major challenge.  

Studies showed that some anticancer agents that induce DNA damage activate a DNA 

damage response (DDR), involving the phosphorylation of proteins such as AMP-activated protein 

kinase (AMPK), that leads to autophagy induction as a pro-survival mechanism. Cytarabine and 

doxorubicin are inducers of DNA damage and DDR, however, the study of their effects in AML 

cells is still very scarce. Our preliminary data showed that AML cells treated with conventional 

chemotherapy displayed cell cycle arrest in G0/G1 and S phases associated with autophagy 

induction. Therefore, this work aimed to understand if the activation of AMPK pathway with 

consequent cell cycle arrest and autophagy induction could act as a pro-survival mechanism in 

AML cells. For such purpose, two AML cell lines (HL-60 and KG-1) were used as in vitro models 

and their response to conventional chemotherapy, cytarabine and/or doxorubicin was evaluated. 

The effect of conventional chemotherapy combination with rapamycin or chloroquine (CQ), 

autophagy activator or inhibitor, respectively, was also determined. 

Results suggested that cytarabine or doxorubicin promote DNA damage in HL-60 cells, which 

leads to the activation of AMPK pathway culminating in G0/G1 cell cycle arrest and autophagy 

induction as a pro-survival mechanism. Whether anti-leukemia agents promote DNA damage in 

KG-1 cells is inconclusive due to the high endogenous levels of DNA damage displayed by these 

cells, however, our data showed that doxorubicin alone or combined with cytarabine promote 

AMPK pathway activation, S phase cell cycle arrest and autophagy induction as a tumor 

suppressor mechanism. Results obtained with the combination of anti-leukemia agents with CQ 

showed a decrease in HL-60 cell viability but an increase in KG-1 cell viability, supporting the 

hypothesis that this process may function as a pro-survival in HL-60 cells but a pro-death in KG-1 

cells. Therefore, different approaches involving the combination of conventional chemotherapy 

with AMPK/autophagy modulators could be a good strategy for combined chemotherapy in AML. 
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RESUMO 

 
A leucemia mielóide aguda (LMA) é uma doença clonal caracterizada por alterações 

genéticas nas células estaminais e/ou progenitoras hematopoiéticas, resultando numa 

acumulação de mieloblastos leucémicos. A actual terapia anti-leucémica consiste principalmente 

na aplicação de elevadas doses de citarabina e doxorubicina. Apesar deste regime terapêutico 

ser eficiente em pacientes jovens, a sua aplicação é limitada e tem resultados insatisfatórios em 

pacientes idosos. Desta forma, a elucidação dos mecanismos celulares de resposta das células 

de LMA à quimioterapia convencional é ainda um grande desafio. 

Diferentes estudos demonstraram que alguns agentes anticancerígenos indutores de danos 

no DNA activam uma resposta celular a estes danos, que envolve a fosforilação de proteínas tais 

como “AMP-activated protein kinase” (AMPK), resultando numa indução de autofagia como 

mecanismo de adaptação e sobrevivência. A citarabina e a doxorubicina são conhecidos 

indutores de danos no DNA e da resposta celular a estes danos, no entanto, os dados sobre 

estes efeitos em células de LMA são ainda muito escassos. Dados preliminares do nosso grupo 

demonstraram que células de LMA tratadas com quimioterapia convencional exibem uma 

paragem do ciclo celular nas fases G0/G1 e S associada com a indução de autofagia. Assim, 

este trabalho pretende determinar se a activação da via AMPK com consequente paragem do 

ciclo celular e indução de autofagia pode constituir um mecanismo de adaptação e sobrevivência 

das células de LMA. Para isso, duas linhas celulares de LMA (HL-60 e KG-1) foram usadas como 

modelos in vitro, sendo sujeitas a tratamento com citarabina e/ou doxorubicina. O efeito da 

combinação da quimioterapia convencional com rapamicina ou cloroquina (CQ), um activador ou 

inibidor da autofagia, respectivamente, foi também avaliado.  

Os resultados obtidos indicaram que a citarabina e a doxorubicina promovem danos no DNA 

nas células HL-60, os quais levam à activação da via do AMPK culminando numa paragem do 

ciclo celular nas fases G0/G1 e indução de autofagia como mecanismo de sobrevivência. Apesar 

de os resultados serem inconclusivos no que diz respeito à indução de danos no DNA nas 

células KG-1, principalmente devido aos elevados níveis endógenos de danos no DNA 

apresentados por estas células, os nossos resultados indicam que a doxorubicina sozinha ou 

combinada com a citarabina promove activação da via AMPK, paragem no ciclo celular na fase S 

e indução de autofagia como mecanismo associado à morte celular. Os resultados obtidos com a 

combinação da terapia convencional com a CQ mostraram uma diminuição da viabilidade das 
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células HL-60 mas um aumento da viabilidade das células KG-1, suportando a hipótese de que a 

autofagia funciona como um mecanismo de sobrevivência nas células HL-60 mas como um 

mecanismo associado à morte nas células KG-1. Assim, diferentes metodologias envolvendo a 

combinação da quimioterapia convencional com moduladores do AMPK/autofagia poderão ser 

uma boa estratégia terapêutica para pacientes com LMA.      
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INTRODUCTION 

 
1. Acute Leukemia 

Acute leukemia comprises a group of clonal disorders characterized by an uncontrolled 

expansion of hematopoietic stem cells (HSCs) and/or committed progenitor cells that fail to 

differentiate normally, resulting in the accumulation of nonfunctional immature cells [1-3]. This 

group of disorders is divided into two different subtypes depending on their cell of origin: 

leukemia evolving from myeloid precursors is named acute myeloid leukemia (AML), while 

lymphocytic precursors give rise to acute lymphoid leukemia (ALL) [4].    

  

 

1.1. Acute myeloid leukemia 

1.1.1. Etiology and epidemiology 

AML is a clonal hematopoietic disorder characterized by an extreme proliferation and 

accumulation of abnormal leukemic myeloblasts in the bone marrow, which interfere with the 

normal production of blood cells [5-8]. Alterations in HSCs, committed myeloid progenitors cells 

or both can be responsible for the transformation of normal hematopoietic cells into leukemic 

myeloblasts [3, 9] and three different scenarios can be described [3]: A) HSC undergoes a first 

mutation leading to the formation of a pre-leukemic stem cell. Then, secondary mutation(s), 

epigenetic changes and/or aberrant microenvironment signals promote the transformation of the 

pre-leukemic stem cell into a leukemic stem cell (LSC) (Fig.1A); B) a first mutation occurs at the 

HSC level resulting in the formation of a pre-leukemic myeloid progenitor cell. This cell gives rise 

to LSC after secondary mutation(s), epigenetic changes and/or aberrant microenvironment 

signals (Fig.1B); C) HSC first differentiates into a common myeloid progenitor (CMP) cell, which 

then undergoes primary and secondary mutations to ultimately generate LSC (Fig.1C). For all of 

the three scenarios, the generation of LSC with self-renewal capability, abnormal/arrested 

differentiation and resistance to death signals leads to the formation and accumulation of 

leukemic myeloblasts in the bone marrow (Fig.1). This accumulation disrupts the normal 

production of white and red blood cells and platelets [5-8]. During the progression of the disease, 

leukemic myeloblasts accumulation occurs not only in the bone marrow, but also in the blood 
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and organs such as brain, skin and gums, which may lead to infection, anemia, bleeding or 

organ infiltration [5-8]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Schematic representation of the models for acute myeloid leukemia (AML) development. 

Three different scenarios can occur during AML evolution (A-C). HSCs, CMP cells or both are potential targets for 

primary and secondary mutations, epigenetic changes and/or aberrant microenvironment signals that lead to the 

acute myeloid disease development. Cells bearing a single mutation are termed “pre-leukemic”, which upon 

undergoing subsequent mutations, epigenetic changes and/or aberrant microenvironment signals give rise to LSCs. 

LSCs in turn give rise to the majority of malignant cells found in the leukemia population – myeloblasts. From [3]. 

 

  

AML can arise de novo or secondarily either due to the progression of other malignant 

disorders, such as myelodysplastic syndrome (MDS) or chronic bone marrow stem cell disorders, 

[10, 11] or due to the treatment with cytotoxic agents or radiotherapy (10-15% of patients with 

AML develop this disease after treatment with cytotoxic chemotherapy used in solid tumors) [12, 

13]. 
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AML comprises about 40% of all leukemia in the Western world [8] and 25% of all leukemia 

diagnosed in adults [14]. In fact, AML is the most common type of acute leukemia in adults [14], 

with a median age of diagnosis of 65 years [8, 15, 16]. The incidence of AML increases with age 

[17-19], being rarely diagnosed before the 40 years (Fig.2) [18, 19]. From 2006 to 2010, the 

U.S. incidence in the <65 years’ age group was only 1.5 cases per 100,000 people, whereas in 

the ≥ 65 years’ age group was 18.3 cases per 100,000 people (Fig.2) [19]. AML in adults has a 

slight male predominance and from 2006 to 2010, the U.S. incidence in the male´s group was 

7.9 per 100,000 people, whereas only 5.1 per 100.000 people was in females (Fig.2) [19]. AML 

incidence is expected to increase in the future in line with age population [17, 18].    

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 2 - Acute Myeloid Leukemia (AML): Age-Specific Incidence Rates by Sex in the U.S. population 

(2006-2010). The horizontal axis shows 5-year age intervals. The vertical axis shows the frequency of new cases 

of AML per 100,000 people in a given age and sex-group. Red, purple and blue represents males, females and 

males plus females, respectively. From [19]. 

 

 

1.1.2. Clinical presentation 

The AML symptoms are nonspecific and include loss of weight and appetite, weakness and 

fatigue, lethargy, dyspnea, fever and bleeding [4, 20]. Pains in the bones may occur as result of 
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bone marrow infiltration with blasts [4, 20]. Hepatosplenomegaly may also occur when blasts 

infiltrate organs [4].  

Common physical features may include pallor, epistaxis, gingivitis, splenomegaly, 

hepatomegaly or bone tenderness [4]. 

 

 

1.1.3. Diagnosis and classification 

The 2 systems commonly used in the classification of AML are the French-American-British 

(FAB) system, initially proposed in 1976 [21], and the World Health Organization (WHO) system, 

introduced by the first time in 1999 [20, 22]. The FAB classification is based on morphology, 

cytochemistry and degree of maturation of malignant blasts [23, 24], whereas WHO classification 

combines not only morphologic and cytochemistry features but also genetic, immunophenotypic, 

biologic and clinical information [25-27].  

The FAB classification recognizes eight subtypes of AML (M0 to M7) (Table 1) [4, 20, 23], 

while 2008 WHO classification identifies four main subgroups: i) AML with recurrent genetic 

abnormalities; ii) AML with myelodysplasia-related changes (AML-MRC); iii) therapy-related 

myeloid neoplasms (t-MN) and iv) those that do not fall into any of these groups (Table 2) [26-

28].  

 

 

Table 1 - Classification of acute myeloid leukemia (AML) according to FAB classification system [20].  

FAB subtype Morphological classification 

M0 Undifferentiated acute myeloid leukemia 

M1 Acute myeloid leukemia with minimal maturation 

M2 Acute myeloid leukemia with maturation 

M3 Acute promyelocytic leukemia 

M4 Acute myelomonocytic leukemia 

M4 eos Acute myelomonocytic leukemia with eosinophilia 

M5 Acute monocytic leukemia 

M6 Acute erythroid leukemia 

M7 Acute megakaryoblastic leukemia 
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The WHO system created several subclasses of AML (Table 2), allowing physicians to identify 

subgroups of patients who might benefit from specific treatment strategies [20]. 

 

 

Table 2 - Classification of acute myeloid leukemia (AML) according to 2008 WHO classification system [26-28]. 

AML with recurrent genetic abnormalities 
AML with myelodysplasia-

related changes (AML-
MRC) 

Therapy-related 
myeloid neoplasms 

(t-MN: t-AML; t-
MDS; t-MDS/MPN) 

AML not otherwise specified (AML 
NOS) 

AML with 
t(8;21)(q22;q22); 
RUNX1-RUNX1T1 

AML with inv(3)(q21; 
q26.2) or 

t(3;3)(q21;q26.2); 
RPN1-EVl1 

AML cases with a history of 
MDS (myelodysplastic 

syndrome) or MDS/MPN 
(myelodysplastic 

syndrome/myeloproliferative 
neoplasm) 

Direct 
mutational effect of 

cytotoxic agents 
and/or radiation 

AML with minimal 
differentiation 

Acute erythroid 
leukemia 

(erythroid/myeloid 
and pure 

erythroleukemia) * 

AML with inv(16)(p13.1; 
q22) or 

t(16;16)(p13.1;p22); 
CBFB-MYH11 

AML 
(megakaryoblastic) 

with 
t(1;22)(p13;q13); 

RBM15-MKL1 

Without antecedent MDS or 
MDS/MPN, but with dysplasia 

in at least 50% of cells in two or 
more myeloid lineages 

Immunosuppression 
from 

prior or current 
therapy 

AML without 
maturation 

Acute 
megakaryocytic 

leukemia 

Acute promyelocytic 
leukemia with 

t(15;17)(q22;q12); PML-
RARα 

Provisional entities: 
AML with mutated 
NPM1; AML with 
mutated CEBPA 

AML cases with myelodysplasia-
related cytogenetic 

abnormalities 

Ineffective bone 
marrow 

microenvironment 
because of injury to 
vascular supply or 

increasing 
fibrosis (caused by 

prior treatment) 

AML with 
maturation 

Acute basophilic 
leukemia 

AML with 
t(9;11)(p22;q23); 

MLLT3-MLL 
  Host genetic 

predisposition 

Acute 
myelomonocytic 

leukemia 

Acute panmyelosis 
with myelofibrosis 

AML with 
t(6;9)(p23;q34); DEK-

NUP214 
  

High frequency of 
unfavorable 
cytogenetic 

abnormalities 

Acute 
monoblastic/ 

acute monocytic 
leukemia 

 

 

Footnote: 

* The 2008 WHO system recognizes two different subtypes of acute erythroid leukemia depending on the presence 

or absence of a significant myeloblastic component: acute erythroid/myeloid leukemia and pure erythroleukemia.  

The first subtype is characterized by: i) myeloblasts <20% of all bone marrow cells but ≥ 20% of the nonerythroid 

cells; ii) at least 50% erythroid precursors in the bone marrow nucleated cell population [28]. In the second subtype 

80% or more of the bone marrow cells are immature erythroid precursors with minimal differentiation and no 

significant myeloblastic component [25].   
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According to WHO classification, a myeloid neoplasm with 20% or more blasts in the 

peripheral blood or bone marrow is identified as AML, in contrast with the FAB system where this 

threshold increases to 30% [25, 26].    

 

 

1.1.4. Cytogenetic abnormalities  

AML is a heterogeneous hematological disorder with respect to chromosome abnormalities, 

gene mutations and changes in expression of multiple genes and microRNAs [20]. Cytogenetic 

abnormalities are detected in 50% to 60% of the newly diagnosed AML patients [29], being the 

majority associated with non-random chromosomal translocations [30]. These translocations 

often result in gene rearrangements that involve a locus encoding a transcriptional activator that 

leads to the expression of a fusion protein [30]. In many cases, this fusion protein functions as a 

transcriptional factor capable of interacting with a co-repressor complex [30]. Thus, in the 

presence of aberrant recruitment of a co-repressor to a locus of active transcription, this fusion 

protein changes expression of target genes necessary for myeloid development, which contribute 

for leukemic transformation [31, 32]. The three most common chromosomal translocations that 

occur in AML are t (15; 17) and t (8; 21) with an occurrence of 10% and inv (16) with an 

occurrence of 5% [20, 29]. The t (15; 17), t (8; 21) and inv (16) result in the expression of PML-

RARα, RUNX1-RUNX1T1 (also called AML1-ETO [33]) and CBFβ-MYH11 oncofusion proteins, 

respectively. These proteins, by different mechanisms (reviewed in [20, 29, 33]),  act as 

transcriptional repressors that interfere with the expression of genes involved in important 

processes such as differentiation, impairing the hematopoietic myeloid cells maturation [34-38]. 

AML patients with these alterations are classified into the group with a favorable prognosis [29].  

Around 40%-50% of AML patients present a normal karyotype and are included into the 

intermediate-risk group [39]. However, not all these patients exhibit the same response to 

treatment, mainly due to the presence of a large variability in gene mutations. These mutations 

can be divided into two classes, class I and class II [20]. Class I comprises the mutations that 

activate signal transduction pathways responsible for proliferation, survival or both in 

hematopoietic myeloid progenitor cells. Mutations in KIT (feline sarcoma viral oncogene 

homolog), FLT3 (Fms-like tyrosine kinase 3) and RAS (rat sarcoma viral oncogene homolog) fall 

into this group [20]. On the other hand, class II includes the mutations that affect transcription 
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factors or components of the cell cycle machinery blocking normal myeloid differentiation. 

Mutations in MLL (mixed lineage leukemia), BAAL (brain and acute leukemia), WT1 (Wilms tumor 

1), CEBPα (enhancer-binding protein α) and NPM1 (nucleoplasmin 1) genes belong to this group 

[20]. 

The detailed knowledge about cytogenetic and molecular characterization of AML patients 

comprises crucial information for a better diagnosis, prognosis and treatment strategies.   

 

 

1.1.5. Therapy and outcomes 

Acute leukemia is a fatal disease that if untreated has a median survival of 3 months or less 

[4]. Therefore, the early diagnosis and treatment are fundamental for obtain better outcomes. 

The treatment of AML is divided into two phases: the remission induction therapy (with 

possible post-induction phase) and the post-remission therapy [4, 20]. In the induction therapy, 

the goal is to achieve a marked reduction in the number of malignant cells in the bone marrow 

and peripheral blood in order to establish normal hematopoiesis [4, 20]. The post-remission 

therapy is administered weeks after the induction therapy has ended with the intention of 

preventing relapse [4, 20]. The basis for the current AML treatment was developed nearly 30 

years ago and consists in the combination of an anthracycline (DNA intercalating agent and 

topoisomerase II inhibitor), such as daunorubicin or idarubicin, and cytarabine (a nucleoside 

analog) [40-43]. The standard regimen used during the remission induction therapy of AML 

includes 7 days of continuous infusion of cytarabine (100-200 mg/m2) combined with 

daunorubicin or idarubicin (45-60 mg/m2) administered intravenously for 3 days, referred to as 

“7 + 3” regimen [40-43]. After this first phase, it is expected that AML patients achieve complete 

remission (CR), which is defined as a bone marrow with less than 5% of blasts and a neutrophil 

and platelet count greater than 1000 and 100 000, respectively [44]. However, only 65%-75% of 

patients aged < 60 years [40-42, 45] and 40%-50% of patients aged > 60 years reach CR [45-

47]. In order to improve the CR rate, several studies have been conducted using alternative 

anthracyclines, the anthracenedione mitoxantrone, high doses of cytarabine (HDAC) (cumulative 

dose 18-24 g/m2) or additional cytotoxic agents such as etoposide, fludarabine, cladribine or 

topotecan [6, 7, 20]. However, despite theoretical benefits, none of these regimens have 

convincingly shown a survival advantage over “7 + 3” standard regimen [6, 7, 20]. Therefore, 
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patients who fail to achieve CR after remission induction therapy, should participate in the post-

induction therapy [20]. On the other hand, patients who achieve CR should advance to the next 

phase, the post-remission therapy, since studies have shown that patients who don´t receive 

post-remission therapy relapse within 6 to 9 months [48]. The post-remission therapy includes 

chemotherapy, autologous hematopoietic stem cell transplantation (HSCT) or allogeneic HSCT 

[7]. The choice of the treatment depends on patient age, comorbidities, chance of relapse based 

on cytogenetics and whether or not the patient has a suitable donor for HSCT [7]. For patients 

aged < 60 years, the standard consolidation chemotherapy consists in high doses of cytarabine 

(2-3 g/m2) [7, 20] twice a day on days 1, 3 and 5, for a total of 3 to 4 cycles [7]. However, 

patients older than 60 years receive a less intensive chemotherapy based in 5 days of cytarabine 

(100 mg/m2) and 2 days of daunorubicin (45 mg/m2), for a total of 2 cycles [6, 7]. Previous 

studies showed that high doses of cytarabine induce higher toxicity, mainly cerebellar toxicity, in 

patients aged > 60 years, making this approach an unacceptable option [49, 50]. HSCT is also 

associated with increased risks of transplant-related morbidity and mortality. Therefore, this 

approach is less common in patients aged > 60 years, being used in patients aged < 60 years 

who have a substantial risk of relapse [51].  

In addition to AML treatment recommendations also AML outcomes differ depending on 

whether patients are above or below 60 years old [52, 53]. Patients aged > 60 years have lower 

CR rates, shorter disease-free survival and overall survival (OS) and higher incidence of early 

death during chemotherapy when compared to patients aged < 60 years (Table 3) [7, 46, 47, 

54]. These poor outcomes occur because old patients present higher prevalence of unfavorable 

cytogenetics and myelodysplasia, a greater incidence of multi-drug resistance (MDR) and more 

frequent comorbidities, which often make them unsuitable for intensive treatment [7]. Thus, 

while young patients tolerate intensified treatment strategies and have good outcomes, AML 

treatment is highly toxic and has limited application and poor outcomes among old individuals.  
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Table 3 - Treatment outcomes in acute myeloid leukemia (AML) based on age criteria [20].  

 Age < 60 years Age > 60 years 

Complete remission (CR) (%) 65-75 40-50 

Disease-free survival (%) 45 20 

Early death (%) 10 25 

Overall survival (OS) (%) 30 10 

  

 

The net incidence of AML in older patients is expected to increase as the population 

continues to age, making essential the development of new therapeutic strategies [55]. Current 

clinical trials have focused on less-intensive therapies with the potential to be efficacious without 

impairing patients’ quality of life [53]. The growing understanding of specific gene mutations, 

chromosomal translocations and alterations in signaling pathways and gene transcription in AML 

has led to the development of a number of targeted agents [53, 56]. These include histone 

deacetylase inhibitors, FLT3 inhibitors, proteosome inhibitors, DNA methyl transferase inhibitors, 

among others (Table 4) [53, 56]. In addition, several studies have also been done to optimize 

traditional chemotherapeutics [20]. Alterations in the concentrations and new formulations are 

examples of these optimizations [20].  
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Table 4 - Therapeutic strategies investigated in the treatment of acute myeloid leukemia (AML) [20].  

Therapeutic approach Examples 

 Epigenetic regulation 

 Histone deacetylase inhibitors: vorinostat, 
panobinostat, belinostat; 

 DNA methyl transferase inhibitors: Vidaza, 
Dacogen. 

 Differentiation-inducing therapeutics  Retinoid X receptor agonists; 
 Arsenic trioxide. 

 Angiogenesis inhibition  Inhibition of angiogenesis: Velcade; 
 Thalomid, Revlimid. 

 Inhibition of signaling pathways 

 Tyrosine kinase inhibitors: midostaurin, 
lestaurtinib, sorafenib, KW-2449, AC220; 

 Cell cycle inhibitors: ON 01910.Na; 
 Farnesyl transferase inhibitors: Zarnestra, 

Sarasar; 
 mTOR inhibitors: Afinitor, PI-103, 

temsirolimus, GSK21110183; 
 PARP inhibitors: ABT-888; 
 MEK1/2 inhibitors: AZD6244, AS703026, 

PD98059, GSK1120212; 
 Bcl-2 inhibitors: oblimersen, obatoclax, ABT-

263; 
 XIAP inhibitor: AEG-35156; 
 Aminopeptidase inhibitors (tosedostat); 

 Modulation of drug resistance  Valspodar, zosuquidar 

 Modified traditional chemotherapeutics 

 Nucleoside analogs: clofarabine, 
sapacitabine, elacytarabine; 

 Alkylating drugs: irofulven, Temodar, Onrigin; 
 Topoisomerase inhibitors: Hycamtin 

 Immune therapy  Antibodies: Mylotarg, lintuzumab, Avastin, T-
cell targeted therapy 

 

 

Despite the fact that standard treatment strategies, above mentioned, are applied to the most 

AML subtypes, acute promyelocytic leukemia (APL) is differently treated [57]. APL is 

characterized by the t(15;17) chromosomal translocation and consequent expression of the 

fusion protein PML-RARα [57, 58]. In normal conditions and in the absence of the all-trans 

retinoic acid (ATRA), RARα interacts with the nuclear receptor RXR (Retinoid X receptor) forming 

the RARα/RXR heterodimer that binds to DNA recruiting co-repressor complexes that blocks 

transcription of its target genes [59, 60]. However, in the presence of physiological 

concentrations of ATRA, the co-repressor complexes undergo a conformational alteration that 

triggers their dissociation and promotes the recruitment of co-activators important for the 

transcription of genes involved in processes such as differentiation [61, 62]. In APL, PML-RARα 
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binds to RXR and acts as a constitutive repressor that is insensitive to physiological 

concentrations of ATRA [57, 63, 64]. Thus, the transcription of genes involved in differentiation is 

disrupted blocking the normal promyelocytic maturation [57, 63, 64]. In an attempt to overcome 

this problem, APL patients are treated with ATRA, a noncytotoxic agent capable of differentiate 

abnormal promyelocytes into mature granulocytes [65, 66]. However, despite the high CR rates 

(80%-90%) [65, 66], this effect is transient, lasting weeks or months, when ATRA is administered 

as a single agent [66, 67]. Therefore, the current standard approach consists in the 

administration of ATRA plus anthracycline-based chemotherapy [68]. APL patients treated with 

this approach present the similar high CR rates but lower relapse rate when compared to those 

treated with ATRA monotherapy [69]. These better outcomes seem to suggest an additive or 

synergistic effect of both treatment modalities [69]. Recently, some studies have demonstrated 

that arsenic trioxide (ATO) has also activity against APL [70], showing a CR rate >80% [71, 72]. A 

more recent study also showed that APL patients treated with ATRA, ATO or ATRA plus ATO 

present the same CR rates (> 80%), however, in patients submitted to the combination treatment, 

the time to achieve CR was significantly shorter and the reduction of the disease burden was 

greater [73]. Nevertheless, despite these results, the current recommendation for induction 

therapy in newly diagnosed APL remains the standard approach with ATRA plus chemotherapy 

[68]. 

 

 

2. Cytarabine and doxorubicin 

2.1.  Mechanisms of action 

Malignant cells are characterized by high nuclear DNA replication rates and consequent 

extreme proliferation when compared to surrounding healthy cells [74]. Interference in DNA 

replication of malignant cells leads to unsuccessful DNA replication that creates DNA replication 

stress, which may culminate in cell death, inhibiting tumor cell expansion [75]. Therefore, the 

mechanistic basis for several anticancer agents consists in the interference with the machinery 

required for DNA replication [76]. Cytarabine (1-β-D-arabinofuranosylcytosine [ara-C]), one of the 

most effective chemotherapeutic agents used in the treatment of acute leukemia [77], is a 

nucleoside/deoxycytidine analogue that is easily taken up by transformed cells and subsequent 

metabolized into the nucleoside triphosphate form (ara-CTP) [78], which is a substrate for DNA 
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polymerase [79]. Several studies have reported that the incorporation of ara-CTP instead of 

deoxycytidine into nascent DNA strand during DNA replication is responsible for the inhibition of 

DNA strand elongation and unsuccessful DNA replication [80]. Moreover, evidence showed that 

ara-CTP - deoxycytidine substitution occurs mainly in the Okazaki fragments, inhibiting their 

elongation and consequently the elongation of the lagging strand during DNA replication [80]. 

However, the knowledge of how the ara-CTP incorporation interferes with the Okazaki fragments 

extension is still very scarce. Studies showed that ara-CTP incorporation affects the local 

structure and/or stability of newly replicated DNA, inhibiting the extension of the nascent DNA at 

a point distal from the site of substitution [80, 81]. Gmeiner et al. described that ara-CTP 

incorporation provokes an increase in the bend of the helical axis at the site of ara-CTP 

substitution, which may contribute to the inhibition of DNA extension [76]. Nevertheless, 

additional studies are required to better understand this mechanism and to improve 

chemotherapeutic regimens [76].  

Doxorubicin, a hydroxylated daunorubicin derivate used against a broad spectrum of solid 

tumors, lymphomas and leukemias [82], has also been described as impairing important cellular 

processes involving DNA, such as DNA replication and transcription [83]. This chemotherapeutic 

agent is rapidly taken up into the nucleus where it binds with high affinity to DNA by classical 

intercalation between base pairs [84]. However, its precise mechanism of action is not fully 

understood and several hypotheses have been proposed [83, 85-88]. The mechanism of action 

most widely accepted is that doxorubicin acts as a DNA topoisomerase II inhibitor [89-91]. DNA 

topoisomerases II are enzymes involved in the unwinding of DNA during the replication and 

transcription processes [92]. These enzymes modify the topology of DNA through different steps 

[92]: 1) DNA topoisomerase II cleaves one strand of the DNA duplex introducing a transient 

enzyme-bridged DNA gate; 2) a second DNA segment passes through the enzyme-bridged DNA 

gate; 3) DNA topoisomerase II catalyzes the re-ligation of the cleavage duplex/double-strand DNA 

break and the products of the reaction are released from the enzyme. The anthracycline 

doxorubicin is commonly described as an inhibitor of the re-ligation reaction, leading to the 

accumulation of enzyme-linked double-strand DNA break complexes [89-92], which are extremely 

toxic to the cells [83]. 
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2.2. Activation of a DNA damage response (DDR) 

Dividing cells are under continuous assault either by environmental agents, such as UV light, 

or by products of normal metabolism, such as reactive oxygen intermediates, which may damage 

the DNA impairing the proper replication and segregation of the genome to daughter cells [93-

95]. To preserve the integrity of the genome, eukaryotic cells have evolved checkpoint control 

mechanisms capable of detect DNA damage [93-95]. The identification of DNA damage results in 

the activation of a DNA damage response (DDR), which is a complex network of interacting signal 

transduction pathways that coordinate cell cycle transitions, DNA replication, DNA repair and cell 

death [96]. The major regulators of the DDR pathways are the phosphoinositide 3-kinase related 

protein kinases (PIKKs), including ataxia-telangiectasia mutated (ATM) and ATM and Rad3 related 

(ATR) [96]. ATM is mainly activated in response to double-strand DNA (dsDNA) breaks [97], while 

ATR is mainly activated by the presence of single-strand DNA (ssDNA) breaks, induced for 

example by DNA replication stress [98, 99] (Fig.3). Once activated, both ATM and ATR 

preferentially phosphorylate serine or threonine residues that are followed by glutamine 

(“SQ”/“TQ” motifs). Therefore, these proteins cross-talk and target an overlapping set of 

substrates that promote cell cycle arrest and activation of specific repair pathways in order to 

repair the damaged DNA and guarantee that progeny cells receive two accurate copies of the 

genome at the time of cell division [96, 99] (Fig.3). However, when DNA damage is extensive and 

impossible to repair, DDR pathways activate the expression of genes that induce programmed 

cell death, mainly described as being of apoptotic nature [96, 100] (Fig.3).  
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Figure 3 – General outline of the DNA damage response (DDR). In the presence of DNA damage, such as 

dsDNA and ssDNA breaks, a DDR is activated in order to repair these abnormal structures. The central components 

of the DDR are the ATM protein, activated by dsDNA breaks, and ATR protein, triggered by ssDNA breaks. Activated 

ATM and ATR target an overlapping set of substrates/effectors that block cell cycle transitions and stimulate DNA 

repair. Apoptosis is induced through these pathways when DNA damage is impossible to repair. Blue and red arrows 

represent ATM and ATR pathway activation, respectively. Cell-cycle arrest is illustrated as a stop sign, DNA repair is 

represented with a DNA helix with several oval-shaped subunits and apoptosis with a tombstone. From [96]. 

 

 

Cytarabine and doxorubicin are chemotherapeutic agents described as inducers of DNA 

damage [80, 81, 89-91] and DDR pathways [101-103]. As previous referred, cytarabine inhibits 

the strand elongation during DNA replication [80], which results in ssDNA breaks [104] (Fig.4). 

On the other hand, doxorubicin inhibits the re-ligation reaction catalyzed by DNA topoisomerase II 

during the unwinding of DNA, leading to dsDNA breaks [89-91] (Fig.4). Therefore, the lesions 

induced by cytarabine result in the activation of ATR pathway [101], while the damage caused by 

doxorubicin activates ATM pathway [103] (Fig.4).  

Under normal conditions, ATM protein resides in the nucleus as an inactive dimer or higher 

order multimer [105]. However, upon introduction of dsDNA breaks, induced for example by 
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doxorubicin [89-91], ATM suffers autophosphorylation at Ser1981 [103, 105], which leads to 

ATM dimer dissociation into monomers and ATM activation [105] (Fig.4). Although ATM protein is 

activated by autophosphorylation at Ser1981 upon dsDNA breaks, some studies reported that 

this protein is also activated by ATR, through phosphorylation at Ser1981, upon DNA replication 

stress induction [106] (Fig.4). Moreover, ATM protein has also been described as inducer of ATR 

activation [107] (Fig.4). Therefore, ATR and ATM proteins crosstalk and phosphorylate an 

overlapping set of substrates [106, 107] (Fig.4).  

Once activated, ATM protein phosphorylates the histone H2AX at Ser139 [108], being this 

modification the currently most widely used marker to detect DNA damage [109-111] (Fig.4). A 

cyclic process is responsible for the phosphorylation of the histone H2AX over megabases of DNA 

flanking dsDNA breaks and for the consequent formation of an expanding platform for the 

recruitment of additional damage-response proteins [108], which act as scaffolding proteins that 

make some non-chromatin-associated substrates accessible to the activated ATM protein [112, 

113]. Thus, beyond histone H2AX [108], ATM protein also phosphorylates several other 

effectors, such as p53 at Ser15 [114, 115], Liver kinase B1 (LKB1) at Thr366 [116] and AMP-

activated protein kinase (AMPK) at Thr172 [117, 118] (Fig.4). AMPK is a heterotrimeric complex 

composed by one catalytic subunit, AMPKα, and two regulatory subunits, AMPKβ and AMPKγ 

[119] (Fig.4). Therefore, in response to DNA damage, ATM phosphorylates AMPK at Thr172 

located in the α catalytic subunit [117, 118] (Fig.4). In addition to ATM and in response to DNA 

damage, AMPK is also phosphorylated at Thr172 (AMPKα) by LKB1 [120] (Fig.4), a 

serine/threonine protein kinase that was discovered 12 years ago as mutated in the Peutz-

Jeghers Syndrome [121], a rare disorder that predisposes patients to multiple benign and 

malignant tumors including gastrointestinal, pancreatic and lung tumors [122].     
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Figure 4 – Partial schematic representation of the DNA damage response (DDR) pathway activated 

by the chemotherapeutic agent’s cytarabine and doxorubicin. Cytarabine induces ssDNA breaks, which 

result in the activation of ATR protein. On the other hand, doxorubicin leads to the formation of dsDNA breaks, which 

promote the phosphorylation at Ser1981 and consequent activation of ATM. Furthermore, ATR is also activated by 

ATM, as well as, ATM is stimulated by ATR (through phosphorylation at Ser1981). Once activated, ATM protein 

phosphorylates the histone H2AX at Ser139, being this modification widely used to detect DNA damage. Beyond 

histone H2AX, other several substrates are phosphorylated by ATM, namely p53 at Ser15, LKB1 at Thr366 and 

AMPK at Thr172 (AMPKα). In response to DNA damage, AMPK is also phosphorylated at Thr172 (AMPKα) by the 

LKB1 protein.  

 

 

p53 is an important checkpoint protein that plays a crucial role in the maintenance of 

genome integrity [123]. Under physiological conditions, p53 is kept at basal levels through 

interaction with the murine double minute 2 (MDM2) protein, an ubiquitin E3 ligase that 

promotes p53 ubiquitination and degradation by the proteasome [124]. However, in the 

presence of a stress stimulus, p53 undergoes post-translational modifications, such as the 

phosphorylation at Ser15 by ATM in response to DNA damage [114, 115], which disrupt p53-

MDM2 complex and promotes p53 stabilization and accumulation. Once activated, p53 acts as a 

transcription factor that regulates the transcription of several target genes leading to cell cycle 

arrest, DNA repair and apoptosis if the damage is too severe to be repaired [115] (Fig.5). 
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Recently, it was also reported that activation of p53 in response to DNA damage might promote 

the transcription and expression of the evolutionarily conserved stress-sensitive genes Sestrins 1 

and 2 (Sesn 1/2), which form a complex with AMPK and TSC (tuberous sclerosis) 1:TSC2 

heterodimer [125] (Fig.5). In this complex, Sesn 1/2 promote the activation of AMPK by induced 

proximity-dependent autophosphorylation at Thr172 (AMPKα), which, once activated, 

phosphorylates TSC2, present in the TSC1:TSC2 heterodimer, at Thr1227 and Ser1345 [125] 

(Fig.5). After activation, TSC2 functions as a GTPase-activating protein for the Ras homolog 

enriched in brain (Rheb) GTPase, inducing a decrease in the Rheb-GTP levels [125] (Fig.5). As 

the GTP-bound form of Rheb is required for mammalian target of rapamycin complex 1 

(mTORC1) activation, through phosphorylation at Ser2448 [126], in response to DNA damage, 

mTORC1 is inactivated [125] (Fig.5). The mTORC1 complex, constituted by mTOR, raptor, 

PRAS40 and mLST8, regulates several important biological processes [127], such as: positively 

regulates protein synthesis [128, 129] and negatively regulates autophagy (a catabolic process) 

[130]. Therefore, in response to DNA damage occurs the inhibition of protein synthesis [125] 

and the activation of autophagy [131] (Fig.5). Upon DNA damage induction, AMPK not only 

directly phosphorylates TSC2 [125], but also phosphorylates p53 at Ser15 [132], which suggests 

the existence of a positive regulatory loop to further increase the activation of TSC2 with 

consequent inhibition of mTORC1 and induction of autophagy (Fig.5). In addition, it was also 

reported that, in response to DNA damage, AMPK phosphorylates p27 at Thr198 [133] (Fig.5). 

p27 is a member of the cyclin-dependent kinase inhibitors (CDKIs) family that functions, in the 

nucleus, to negatively regulate Cdk2 on Cyclin E (A)/Cdk2 complexes, preventing the progression 

of the cell cycle by induction of G0/G1 cell cycle arrest [134]. Nonetheless, in response to stress 

stimuli, including DNA damage, the phosphorylation of p27 at Thr198 by AMPK promotes p27 

stabilization, exportation and sequestration in the cytoplasm, where it promotes autophagy 

induction [135] (Fig.5). However, the precise mechanism by which p27 stimulates autophagy is 

not yet known.   
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Figure 5 - Schematic representation of the interplay between AMPK and p53 and p27 in response to 

DNA damage. After DNA damage, p53 is phosphorylated at Ser15 and consequently activated. After activation, 

p53 functions as a transcription factor that regulates the transcription of several target genes leading to cell cycle 

arrest, DNA repair and apoptosis when the damage is impossible to repair. As transcriptional factor, p53 may also 

promote the transcription and expression of Sesn 1/2, which form a complex with AMPK and TSC1:TSC2 

heterodimer. In this complex, Sesn 1/2 promote the activation of AMPK by induced proximity-dependent 

autophosphorylation at Thr172 (AMPKα), which, once activated, phosphorylates TSC2 at Thr1227 and Ser1345. 

After activation, TSC2 acts as a GTPase-activating protein for the Rheb GTPase, leading to a decrease in the Rheb-

GTP levels. As the GTP-bound form of Rheb is required for mTORC1 activation, through phosphorylation at Ser2448, 

in response to DNA damage, mTORC1 is inhibited with consequent activation of autophagy. After DNA damage 

induction, AMPK also phosphorylates p53 at Ser15, suggesting the existence of a positive regulatory loop to further 

increase the activation of TSC2 with consequent inhibition of mTORC1 and induction of autophagy. In addition, 

activated AMPK also phosphorylates p27 at Thr198 promoting p27 stabilization and cytoplasmic sequestration, 

leading to autophagy induction.  
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 The information above referred shows us that AMPK is a central/crucial player in the DDR, 

since this protein allows the interconnection of several molecules involved in this complex 

pathway. 

In addition to DNA damage, the LKB1-AMPK pathway is also activated in response to 

metabolic/energy stresses, such as nutrient starvation (e.g. glucose or amino acid deprivation), 

growth factor withdrawal, hypoxia or agents that affect ATP synthesis (reviewed in [136]). These 

cellular stresses reduce ATP production or accelerate ATP consumption, causing a rise in the 

AMP:ATP ratio (reviewed in [136]). The accumulation of AMP results in the allosteric binding of 

AMP to the regulatory γ subunit of AMPK, which induces conformational changes in the AMPK 

heterotrimeric complex, improving the ability of the catalytic α subunit of AMPK to serve as a 

substrate for upstream kinases (reviewed in [136, 137]). LKB1 is one of the most important 

upstream kinases that activate AMPK, through phosphorylation at Thr172 (AMPKα), in response 

to energy depletion [138]. Once activated, and similar to that described for DDR (Fig.5), AMPK 

phosphorylates p53 at Ser15 [139], TSC2 at Thr1227 and Ser1345 [140] and p27 at Thr198 

[141]. The activation of p53 induces cell cycle arrest and consequent cell proliferation inhibition 

[139], while the stimulation of TSC2 suppresses mTORC1 complex, which results in the 

inhibition of anabolic processes, such as protein synthesis [140] and activation of catabolic 

processes, such as autophagy [130]. The phosphorylation of p27 at Thr198 by AMPK is also 

described as inducing autophagy in response to metabolic stress [141]. Furthermore, recently, it 

was also reported that, in response to energy deprivation, AMPK can inhibit mTORC1 

independently of TSC2 by phosphorylating raptor, a component of the mTORC1 complex, at 

Ser722 and Ser792 [142] (Fig.6). Moreover, it was also described that AMPK is capable of 

phosphorylating ULK1 at Ser317 and Ser777, leading to autophagy induction [143] (Fig.6).  

Therefore, AMPK functions as an important sensor of cellular energy status that allows cells 

to coordinate energy availability with cell proliferation and regulation of anabolic and catabolic 

processes [136, 139, 141].     
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Figure 6 – Schematic representation of the interaction of AMPK with raptor and ULK1 in response to 

metabolic stress. After energy depletion, AMPK is activated through phosphorylation at Thr172 (AMPKα). Then, 

AMPK can phosphorylate raptor at Ser722 and Ser792 or ULK1 at Ser317 and Ser777, promoting autophagy 

induction.  

 

 

Given the similarities observed between the downstream effectors of AMPK in response to 

DNA damage and metabolic stress, it is possible that, in response to DNA damage, AMPK also 

phosphorylates raptor and ULK1 leading to autophagy induction (Fig.6).  

Therefore, at the end of the complex DDR three main processes are affected and regulated: 

cell cycle, DNA repair and autophagy (Fig.7). 
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Figure 7 – Schematic representation of the interplay between DNA damage response, activated by 

the chemotherapeutic agent’s cytarabine and doxorubicin, and LKB1-AMPK pathway. After DNA 

damage, cytarabine activates ATR, while doxorubicin activates ATM (phosphorylation at Ser1981). Furthermore, ATR 

is also activated by ATM, as well as, ATM is stimulated by ATR (through phosphorylation at Ser1981). Once 

activated, ATM phosphorylates several substrates such as histone H2AX at Ser139, p53 at Ser15, LKB1 at Thr366 

and AMPK at Thr172 (AMPKα). In response to DNA damage, LKB1 is also capable of phosphorylating AMPK at 

Thr172 (AMPKα). p53 acts as a transcription factor that after phosphorylation at Ser15 regulates the transcription of 

genes involved in cell cycle arrest, DNA repair and apoptosis (when the damage is impossible to repair). 

Furthermore, the activation of p53 results in the transcription and expression of Sesn 1/2, which form a complex 

with AMPK and TSC1:TSC2 and promote the activation of AMPK by induced proximity-dependent 

autophosphorylation at Thr172 (AMPKα). The interaction between Sesn1/2, AMPK and TSC1:TSC2 allows the 

phosphorylation of TSC2 at Thr1227 and Ser1345 by activated AMPK. After activation, TSC2 functions as a GTPase-
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activating protein that activates the Rheb GTPase, leading to a decrease in the Rheb-GTP levels and consequent 

mTORC1 inhibition. As mTORC1 is a negative regulator of autophagy, its inhibition results in autophagy induction. 

Once activated, AMPK also phosphorylates p53 at Ser15, suggesting the existence of a positive regulatory loop to 

further increase the activation of TSC2, and p27 at Thr198. Phosphorylation of p27 promotes the stabilization and 

cytoplasmic sequestration of this protein, leading to autophagy induction. Although not yet demonstrated in the DDR, 

it is known that in response to metabolic stress, AMPK activation, through  phosphorylation at Thr172 (AMPKα), by 

LKB1 results in the phosphorylation of ULK1 at Ser317 and Ser777 and mTORC1 inhibition through raptor 

phosphorylation at Ser722 and Ser792, which stimulates autophagy induction. Therefore, it is possible that in 

response to DNA damage these two pathways also occur in order to promote autophagy. Adapted from Paula 

Ludovico (2012).    

 

 

3. Cell cycle regulation in response to DNA damage 

Activation of DDR promotes an arrest in the cell cycle progression, providing time for DNA 

repair or apoptosis induction when the damage is impossible to repair [144]. This arrest is 

mediated by a network of signaling pathways termed cell cycle checkpoints, which include G1, 

intra-S and G2/M checkpoints [144]. G1 is the first checkpoint and prevents cells with damaged 

DNA from entering into the S phase and replicate the abnormal DNA [145]. During this 

checkpoint, the activation of ATM in response to dsDNA breaks promotes the phosphorylation of 

checkpoint kinase 2 (Chk2), while the activation of ATR in response to ssDNA breaks results in 

Chk1 phosphorylation [146]. ATM and ATR may also phosphorylate MDM2 [147, 148] and p53 

[114, 115] at different residues. Once activated, Chk1 or Chk2 phosphorylates Cdc25A (Cell 

division cycle 25 homolog A) phosphatase and p53 [144]. The phosphorylation of Cdc25A leads 

to its enhanced ubiquitination and proteasome-mediated degradation, which prevents the 

dephosphorylation of Cdk2 on Cyclin E (A)/Cdk2 complexes, promoting Cdk2 inhibition and 

preventing the initiation of DNA synthesis [145, 149, 150]. This checkpoint pathway targeting 

Cdc25A occurs rapidly and is relatively transient, arresting cell cycle progression for only some 

hours [149, 150]. The prolonged maintenance of G1 cell cycle arrest is achieved through a 

complementary pathway that involves p53 [144, 145]. The phosphorylation of p53 and MDM2, 

through the proteins previous mentioned, induces the stabilization and accumulation of p53, 

increasing its activity as transcription factor [144]. One of the key targets of p53 during G1 

checkpoint is the gene that codifies the CDKI p21. After transcription and expression, p21 

inhibits Cdk2 activity on Cyclin E (A)/Cdk2 complexes, preventing the transcription of genes 
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required for S phase entry [151-153]. As result, cells undergo G1 cell cycle arrest. Although the 

phosphorylation of Cdc25A and p53 occurs rapidly, the impact of these events on cell cycle 

machinery is faster in the case of Cdc25A pathway than p53, since contrarily to Cdc25A the p53 

pathway requires the transcription, expression and accumulation of new proteins, namely p21 

[144, 145]. Therefore, the checkpoint pathway involving p53 complements and eventually 

replaces the transient inhibition of Cdk2 promoted by Cdc25A degradation, leading to a 

sustained G1 cell cycle arrest [144]. Cells that overcome the G1 checkpoint will be subjected to 

another, the intra-S checkpoint. This checkpoint occurs during the S phase of the cell cycle 

progression and slows down DNA synthesis and replication after DNA damage detection [144]. 

Contrarily to G1 checkpoint, the intra-S checkpoint is independent of p53 and therefore does not 

induce the sustained cell cycle arrest. Thus, in response to genotoxic insults the intra-S 

checkpoint only induces a transient arrest in the S phase of the cell cycle [144]. Similar to 

observed with G1 checkpoint, the intra-S checkpoint also involves the ATM/ATR - Chk2/Chk1 - 

Cdc25A transient cascade [149, 150, 154]. Cells that overtake the intra-S checkpoint will 

undergo the G2/M checkpoint. This checkpoint prevents cells that suffer DNA damage to 

progress into G2 with unrepaired DNA damage and to initiate mitosis and segregate damaged 

DNA into daughter cells [144]. Similar to G1 checkpoint, in response to DNA damage, G2/M 

checkpoint also induces an acute and transient cell cycle arrest, which involves post-translational 

modifications of effector proteins, and a delayed and sustained cell cycle arrest, which in addition 

to post-translational modifications also involves alterations of transcriptional programs [144]. The 

acute and transient G2 cell cycle arrest involves two main pathways: ATM/ATR - Chk2/Chk1 - 

Cdc25A [155, 156] and ATM/ATR - Chk2/Chk1 - Cdc25C [155, 157]. In the first pathway 

Cdc25A suffers proteasome-mediated degradation [155], while in the second pathway the 

phosphatase Cdc25C is exported from nucleus to cytoplasm [158-160]. These both processes 

prevent the dephosphorylation of Cdk1 on Cyclin B (A)/Cdk1 complexes, preventing cells from 

entering in mitosis [155, 160]. Similar to that observed during the sustained G1 cell cycle arrest, 

the mechanism that contributes for the sustained G2 cell cycle arrest also involves the p53 

transcription factor. Once stabilized and activated, p53 promotes the transcription and expression 

of the CDKI p21, which by the inhibition of Cdk1 activity prevents the transcription of genes 

required for the initiation of mitosis [161]. However, in addition to p21, p53 also promotes the 

transcriptional up-regulation of additional target genes, namely 14-3-3σ and GADD45 (growth 

arrest and DNA damage 45). After expression, 14-3-3σ [162] and GADD45 [163] proteins bind to 
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Cdk1 inducing its cytoplasmic sequestration and consequent impairment of the initiation of the 

mitotic process.   

 

 

4. Autophagy: a pro-survival or a pro-death mechanism? 

In addition to cell cycle, autophagy has also been described as a process target by DDR 

[131, 135]. Autophagy is an evolutionarily conserved self-degradative process by which 

cytoplasmic content, including cellular proteins and organelles, are delivered to the lysosomes for 

degradation [164-167]. This cellular catabolic pathway involves at least five steps (Fig.8): 1 - 

induction (isolation of a membrane to form a phagophore); 2 - expansion (elongation of the 

phagophore); 3 - completion (maturation of the autophagosome); 4 - fusion (between 

autophagosome and lysosome) and 5 - degradation of autolysosome content [164]. Several Atg 

(autophagy-related genes) proteins are involved in this process and constitute the core of the 

“autophagy machinery” essential for the execution of this dynamic process [164-167].  

The induction of autophagy is mainly regulated by two complexes: type I PI3K-Akt-mTOR and 

type III PI3K hVPS34 (vacuolar protein sorting 34)/Beclin1 (Fig.8). Inhibition of mTOR leads to 

the activation of ULK1, which may be involved in the isolation of a small membrane called 

phagophore (Fig.8). On the other hand, the activation of hVPS34/Beclin1 may be responsible for 

the recruitment of the Atg5 and Atg12 proteins into the phagophore (Fig.8). The expansion of this 

crescent structure requires the conjugation of the Atg12 to Atg5 and LC3-I to 

phosphatidylethanolamine (PE), which is catalyzed by Atg7 and Atg3 proteins (Fig.8). The LC3-I is 

synthesized through a larger precursor called pro-LC3. Therefore, before LC3-I/PE conjugation 

the cysteine protease Atg4 cleaves the C-terminal portion of nascent pro-LC3 leading to the 

formation of LC3-I (Fig.8). After conjugation, Atg12/Atg5 complex binds to Atg16 forming the 

Atg12/Atg5/Atg16 trimeric complex, which binds to phagophore (Fig.8). This trimeric complex 

recruits cytosolic LC3-I/PE (also referred as LC3-II) to the edges of phagophore, allowing the 

elongation and curvature of this structure (Fig.8). Moreover, the cargo may also contribute to the 

induction and expansion of the phagophore by serving as a scaffold. During maturation of 

autophagosome, the trimeric complex redistributes and concentrates mostly on the outer side of 

the phagophore, while LC3-II is distributed symmetrically on both sides of this structure (Fig.8). 

Then, the proteins present in the outer side of the membrane are released into the cytosol and 
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the uncoated autophagosome fuses with the lysosome originating the autolysosome (Fig.8). The 

acid hydrolases supplied by the lysosome promote the acidification of the autophagosome 

environment, which allows the degradation of autolysosome content, namely the cargo and the 

LC3-II trapped in the lumen of this structure (Fig.8). The macromolecules resulting from this 

degradation are transported through permeases to cytoplasm for recycling or energy production 

[164-167].  

The LC3-II present in the autophagosomes can be easily monitored by immunoblotting and 

immunofluorescence, therefore, this is the best and most widely used marker for autophagy 

detection [168].   

 

 

 
 Figure 8 – Schematic representation of the several stages of autophagy: induction, expansion, 

completion, fusion of autophagosome with lysosome and degradation of autolysosome content. The induction step is 

regulated by two important complexes, type I PI3K-Akt-mTOR and type III PI3K hVPS34/Beclin1. The inhibition of 

mTOR promotes ULK1 activation, which participates in the isolation of the phagophore, while the activation of 

hVPS34/Beclin1 may be involved in the recruitment of Atg5 and Atg12 proteins into this structure. In the next step, 

expansion of the phagophore, pro-LC3 is converted to LC3-I by the cysteine protease Atg4 and the conjugation of 

Atg12 to Atg5 and LC3-I to PE is mediated by Atg7 and Atg3 proteins. The recruitment of Atg12/Atg5/Atg16 and 

LC3-I/PE (LC3-II) conjugates to phagophore allows the elongation and curvature of this structure. During the 
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completion of autophagosome, Atg12/Atg5/Atg16 complex concentrates mostly on the outer side of the 

phagophore, while LC3-II is distributed symmetrically on both sides of this structure. Then, the proteins present in 

the outer side of the membrane are released into the cytosol, which allows the fusion of uncoated autophagosome to 

lysosome, originating the autolysosome. Finally, the acid hydrolases supplied by the lysosome allows the degradation 

of autolysosome content. Adapted from [164, 169]. 

 

 

Under physiological conditions, autophagy occurs at basal levels for the turnover of long-lived 

proteins and also for the removal of superfluous or damaged organelles, playing an essential role 

in the maintenance of normal cellular homeostasis [165, 170]. On the other hand, in the 

presence of stressful conditions, such as starvation (e.g. amino acid and nutrient deprivation) and 

hypoxia, this “self-eating” process is rapidly up-regulated functioning as an adaptive response 

that recycles and generates basic components, such as amino acids, fatty acids and nucleotides, 

to sustain core metabolic functions, allowing the temporary cell survival until the end of the 

unfavorable conditions [171-173]. Therefore, autophagy primarily functions as a pro-survival 

mechanism. However, this cytoprotective role of autophagy does not occur indefinitely and when 

the cellular stress leads to continuous or excessively autophagy, this process can be lethal, 

possibly as result of the inability of cells to survive to the degradation of large amounts of 

cytoplasmic contents [172-174]. Accordingly, it is extremely important that autophagy be tightly 

regulated [174], since cell survival or death can ensue depending on the duration and severity of 

this process [172].   

In the last years, the role of autophagy as a pro-survival or pro-death mechanism in cancer 

research has been a subject of intense debate and controversy (reviewed in [172, 175]). 

Accumulating evidence suggests that autophagy functions as a cytoprotection that allows the 

adaptation and survival of tumor cells to adverse conditions, such as radiotherapy and 

chemotherapy. Examples of such evidence are: the combination of 3-Methyladenine (3-MA), an 

autophagy inhibitor, with radiotherapy resulted in an increased susceptibility of liver cancer cells 

(in vitro study) and in a significant repression of liver tumor growth (in vivo study), suggesting that 

cancer cells could be responding to radiotherapy with an increase of autophagy as a self-

protective mechanism [176]; studies with chloroquine (CQ), also an autophagy inhibitor, showed 

that this autophagy modulator potentiated the effectiveness of the chemotherapeutic agents in 

colon cancer cells [177] and glioblastoma [178], indicating a cytoprotective role of autophagy in 

cancer cells response to chemotherapy; the inhibition of autophagy by pharmacological inhibitors 
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(3-MA, CQ or bafilomycin A1) or genetic knockdown of autophagy genes (ATG5 and ATG7) was 

also described as enhancing cell death induced by Imatinib in chronic myeloid leukemia cells 

[179]; in Myc-induced model of lymphoma the combination of CQ or ATG5 siRNA with 

chemotherapy also enhanced the ability of chemotherapeutic agents to induce tumor cell death 

[180]. However, the pro-death function of autophagy has also been described in tumor cells 

submitted to stress conditions: the treatment of malignant glioma cells with arsenic trioxide 

promoted autophagy induction and consequent tumor glioma cell death [181]; tamoxifen was 

also described as inducing autophagic cell death in breast cancer cells [182]; several molecules, 

including morphinone (morphine derivate), vitamin K2 and Eupalinin A (sesquiterpene lactone), 

were also reported as inducing autophagic cell death in HL-60 AML cell line [183]. Moreover, the 

link between autophagy and tumor cell death has also been demonstrated using pharmacological 

(e.g. 3-MA) and genetic approaches (BECLIN1, ATG5 or ATG7 silencing) for suppression of 

autophagy [172].  

Although studies suggest that autophagy functions as a tumor pro-death mechanism, it is 

believed that this process primarily acts as a pro-survival mechanism that becomes lethal when 

the autophagic degradation of the cytoplasmic contents becomes extensive. Thus, it is possible 

that the induction of tumor cell death promoted by autophagy in response to stress conditions is 

a mechanism by which the cells are trying to survive [171, 175]. Therefore, autophagy is a 

double-edged sword that may induce tumor cell survival or death depending on the cellular 

context, such as type of tumor and duration/severity of autophagy process [171, 175].   

In recent years, studies have emerged reporting that some DNA-damaging anticancer agents 

induce a DDR that involves the activation of crucial proteins, such as AMPK, resulting in 

autophagy induction [184-186]. In these studies the induction of autophagy resulted in a pro-

survival mechanism that conferred chemoresistance to cancer cells:      

 

 2009, Harhaji-Trajkovic et al. described that cisplatin triggered AMPK activation associated 

with mTOR inhibition and autophagy induction, which protected human glioma cells from 

cell death [184]; 

 2011, Xie et al. reported that etoposide induced AMPK activation associated with autophagy 

induction, which promoted human hepatoma cells adaptation and survival to new stress 

conditions [185]; 
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 2012, Li et al. showed that topotecan induced p53 activation associated with Sestrins and 

AMPK activation that promoted autophagy induction and human colon cancer cell survival 

[186]. 

However, other studies showed that AMPK activation associated with autophagy induction 

resulted in a pro-death mechanism that allows the eradication of malignant cells: 

 2012, Shi et al. reported that the activation of AMPK, through metformin, induced mTOR 

inhibition and autophagy induction, which promoted lymphoma cells sensitization and death 

[187]; 

 2013, Huo et al. showed that C6 ceramide triggered AMPK activation associated with 

autophagy induction, which promoted cytotoxic effects in human colorectal cancer cells 

[188]. 

Taken together, these studies clearly show that the association of AMPK activation with 

autophagy induction plays an important role in the response of cancer cells to chemotherapeutic 

agents. Therefore, it becomes crucial to understand the exact role of this cellular process in 

cancer context in order to develop new and more efficient therapies. 

 

 

5. LKB1-AMPK pathway and autophagy in acute myeloid leukemia: a pro-survival 

or a pro-death mechanism?  

Over the past few years, studies have emerged reporting the relevance of LKB1-AMPK 

pathway and autophagy on AML cells survival [189-192]. In 2010, Green et al. showed that the 

LKB1-AMPK axis is consistently functional in primary AML cells [189]. Using the AMPK activator 

metformin, Green et al. also showed that LKB1-AMPK pathway acts as a tumor suppressor 

pathway, since the treatment with this compound resulted in a decrease of AML cells survival 

(primary samples) and a significant reduction in the growth of AML tumors in mice [189]. This 

study suggested that the induction of LKB1-AMPK pathway could be a good strategy to fight AML 

disease. In fact, in 2000, Yokozawa et al. had reported that AML patients with low p27 (a direct 

substrate of AMPK) protein levels were associated with poor prognosis and disease progression, 

while patients with high p27 protein levels had a significantly increased disease-free survival, 

suggesting that p27 functions as a tumor suppressor in AML cells [192]. However, in 2011, 
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Borthakur et al. described that AML patients display higher LKB1 protein levels associated with 

shorter overall survival and that high LKB1 and Beclin1 (an autophagy related protein) protein 

levels negatively impacts clinical outcomes in AML patients [190]. Therefore, given the scarce 

studies about the LKB1-AMPK pathway and autophagy functions in AML cells, it becomes 

essential a more detailed knowledge about these processes in order to develop more effective 

therapeutic approaches.       

Our preliminary results showed that anti-leukemia conventional chemotherapy, cytarabine 

and/or doxorubicin, promoted cell cycle arrest in G0/G1 and S phases associated with 

autophagy induction in AML cells (unpublished data). Therefore, for this master work we 

proposed the hypothesis that cytarabine and/or doxorubicin treatment activates LKB1-AMPK 

pathway that culminates in cell cycle arrest and autophagy induction as a pro-survival 

mechanism that confers chemoresistance to AML cells. If this hypothesis is confirmed, or even if 

we find that this pathway acts as a pro-death mechanism, the combination of conventional 

chemotherapy with manipulation of AMPK pathway or its outcomes may be used to develop more 

effective therapeutic strategies.  
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AIMS 

 
In the present work we aimed to investigate the role of DNA damage response and its 

interplay with LKB1-AMPK pathway in AML cells subjected to conventional chemotherapy, 

cytarabine and doxorubicin. For that, the following purposes were achieved: 

1) Evaluate the DNA damage in AML cells exposed to conventional chemotherapy; 

2) Characterize the AMPK pathway functioning in AML cells response to anti-leukemia 

agents; 

3) Evaluate the AMPK pathway outcomes, cell cycle and autophagy activity, after AML 

cells treatment with conventional chemotherapy; 

4) Evaluate the impact of autophagy pharmacological manipulation in AML cells viability 

and cell cycle profile after treatment with conventional chemotherapy; 

5) Characterize the DNA damage in AML cells submitted to the combination of anti-

leukemia agents with autophagy modulators. 
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MATERIAL AND METHODS 

 
Cell cultures - Two distinct types of cell lines, HL-60 and KG-1, were used during this work. HL-

60 is an acute myeloid leukemia (AML) cell line, a French-American British (FAB) - M2 [193],  

and was established in 1976 from a 35-year-old female [194]. These cells grow in culture 

suspensions, display a doubling time between 25h to 45h and exhibit myeloblastic morphology, 

particularly large cells with 2 to 4 rounded nuclei and basophilic cytoplasm [194]. KG-1 is an 

erythroleukemia cell line, a subtype of AML and a FAB - M6, and was established in 1977 from a 

59-year-old male. These cells also grow in culture suspensions, present a doubling time between 

40h to 50h and display morphology and physiology similar to dendritic myeloid cells [195].  

HL-60 and KG-1 cell lines were obtained from German Collection of Microorganisms and Cell 

cultures (DMSZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen in German). These 

cells were culture in Roswell Park Memorial Institute (RPMI) 1640 medium (Biochrom®) 

supplemented with 10% heat-inactivated fetal bovine serum (Biochrom®) and 1% antibiotic-

antimitotic mix (Invitrogen®, San Diego, CA, USA) in a humidified, 37°C, 5% CO2 atmosphere. 

Cells between 5 and 20 passages were used for all the experiments. 

 

 

Treatments - The standard regimen used in AML treatment consists in the combination of an 

anthracycline, such as doxorubicin, and cytarabine. Therefore, doxorubicin and cytarabine were 

used and obtained from Sigma-Aldrich® (St. Louis, USA). Aqueous solutions of both compounds 

were prepared (at a final concentration of 400 µM and 100,000 µM for doxorubicin and 

cytarabine, respectively) and storage at - 80⁰C during 6 months. Other drugs used during this 

work were chloroquine diphosphate salt (CQ) and rapamycin, modulators of autophagy process 

[196-198], which were purchased from Sigma-Aldrich® (St. Louis, USA) and prepared in dH2O 

and DMSO, respectively. Hydroxyurea (HU), an inducer of DNA damage [199], was also used. 

This drug was obtained by Sigma-Aldrich® (St. Louis, USA) and resuspended in dH2O. 350,000 

cells/well were plated and subject to treatments during 18h. 
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Measurement of cell survival 

 

 MTS assay – Cell viability was assessed using ‘Cell Titer 96 Aqueous One Solution Cell 

Proliferation Assay (MTS)’, which was acquired from Promega® (Madison, WI, USA). MTS is a 

colorimetric method widely used to determine the number of viable cells, since the mitochondrial 

dehydrogenases present in metabolically active cells have the ability to reduce the MTS, a yellow 

tetrazolium salt, into purple formazan [200]. Therefore, this method measures mitochondrial 

metabolic rate, which indirectly reflects the number of viable cells [200]. 

The number of viable cells in culture was determined after 18h of treatment exposure. 

Control cells without treatment were maintained at the same conditions. Cells were plated in 96-

well plates at volume of 100 µl/well of each sample and 10 µl of MTS solution (1.90 mg/ml) 

was added to each well. Absorbance at 490 nm was recorded after 4 hours of incubation in a 

humidified, 37°C, 5% CO2 atmosphere. Results were expressed as relative MTS activity compared 

to control (cells without treatment) and at least three biological replicates were used. 

 

 

 Annexin V/PI assay – The Annexin V/PI assay is widely used to identify and quantify viable 

and non-viable cells characterizing the mode of cell death. This technique allows us to distinguish 

three distinct cellular populations: viable cells, cells in early apoptosis and cells in late apoptosis 

or necrosis [201]. Viable cells are characterized by an asymmetric distribution of the 

phospholipids between the inner and outer leaflets of the plasma membrane and the 

phosphatidylserine is almost exclusively observed in the inner surface of the membrane [201, 

202]. However, cells in early apoptosis undergo changes in the plasma membrane structure, 

such as the translocation of the phosphatidylserine from the inner to the outer leaflet of the 

plasma membrane, while the membrane integrity remains unchallenged [202]. Late apoptosis 

and necrosis are characterized by fragmentation of the plasma membrane [201]. Therefore, 

these three populations can be identified using Annexin V, a Ca2+ dependent protein that has high 

affinity for phosphatidylserine, and propidium iodide (PI), a membrane impermeable compound 

that penetrates cells with compromised plasma membrane binding the nucleic acids [201]. Thus, 

viable cells are Annexin V-negative and PI-negative, early apoptotic cells are Annexin V-positive but 

PI-negative and late apoptotic or necrotic cells are Annexin V-positive and PI-positive [201].  
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After 18h of treatment, cells were washed twice with PBS and resuspended in binding buffer 

solution (100 mM HEPES (pH 7.4), 140 mM NaCl and 2.5 mM CaCl2) at a concentration of 

1x106 cells/ml. After that, 100 µl of each sample (1x105 cells), 5 µl of Annexin V (BD 

Biosciences®) and 10 µl of PI (50 µg/ml) (Invitrogen®, San Diego, CA, USA) were transferred to 

cytometer tubes. The samples were incubated in the dark for 15 minutes at room temperature 

and then 200 µl of binding buffer solution was added to each tube. PI signals were measured 

using FACS LSRII flow cytometer (BD Biosciences®) with a 488 nm excitation laser. The Annexin 

V signal was collected through a 488 nm blocking filter, a 550 nm long-pass dichroic with a 525 

nm band pass. Signals from 10,000 cells/sample gated in the singlets population were captured 

at a flow rate of 1,000 cells/s. Data collected with the FACS LSRII flow cytometer were analyzed 

with FlowJo 7.6 (Tree Star®, Ashland, OR) software. Three biological replicates were used.    

 

 

Immunoblot analysis - For detection of protein levels in total cellular extracts, untreated or 

treated cells were collected after 18h of treatment and disrupted: 50 µl of lysis buffer (1% NP-40, 

500 mM Tris HCl, 2.5 M NaCl, 20 mM EDTA, phosphatase and protease inhibitors from 

Roche®, at pH 7.2) was used and samples were sonicated to protein extraction. Total cellular 

protein was quantified by Bradford (from BioRad®) method with BSA (from Sigma-Aldrich®) as 

the standard and 20 µg of protein was resolved on a 12% sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE). Proteins were transferred using the Trans-Blot Turbo® transfer 

system (BioRad®) to a Nitrocellulose membrane, which was boiled for 15 minutes in a water 

bath. Then, membranes were blocked for 1h at room temperature in PBS-T containing 3% skim 

milk Molico® and incubated overnight at 4°C with monoclonal primary antibodies at 1:1000: 

Rabbit anti-phospho-histone H2AX (Ser139), Rabbit anti-histone H2AX, Rabbit anti-phospho-

AMPKα (Thr172), Rabbit anti-AMPKα (all from Cell Signaling®), Rabbit anti-phospho p27 

(Thr198), Rabbit anti-p27 (both from Abcam®), Rabbit anti-LC3A/B (from Cell Signaling) and 

Mouse anti-Actin (from Milipore®). In the next step, membranes were washed with TBS-T and 

incubated with the corresponding secondary antibodies for 1:30h at room temperature and 

1:5000: IgG anti-Mouse for Actin (from BioRad®) and IgG anti-Rabbit for all the others (from Cell-

Signaling®). Protein levels were detected with ChemiDoc XRS system (BioRad®) after incubation 

with SuperSignal® West Femto Maximum Sensitivity Substrate (from Thermo Scientific®) and 
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protein bands quantified with Image Lab® Software. At least three biological replicates were 

used. 

 

 

Cell cycle analysis by flow cytometry – After 18h of treatment exposure, cells were washed 

with PBS, resuspended in absolute ethanol at 70% of final concentration and incubated for at 

least 30 minutes at 4⁰C. After that, the samples were washed with PBS and incubated with 

staining solution (0.1% triton-X-100, 20 µg/ml of PI and 250 µg/ml of RNase in PBS) in the dark 

for 1h at 50⁰C. Cell cycle analysis was performed through DNA content assessment and PI 

signals were measured using FACS LSRII flow cytometer (BD Biosciences®) with a 488 nm 

excitation laser. Signals from 10,000 cells/sample gated in the singlets population were captured 

at a flow rate of 1,000 cells/s. Data collected with the FACS LSRII flow cytometer were analyzed 

with the Modifit® Software. Three biological replicates were used.     

 

 

Statistical Analysis – All the experiments were performed using at least three biological 

replicates. Significant differences between treatments and the respective controls were 

determined based on Two-way ANOVA with Bonferroni post hoc test for Annexin V/PI and cell 

cycle analysis. For all the other methods this difference was evaluated using the Student’s t-test. 

Data is reported as the mean ± standard error of the mean (SEM) and a p-value lower than 0.05 

was assumed to denote a significant difference. Statistical analyses were performed using Prism 

software (Graph-Pad Software, San Diego, CA). 
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RESULTS 

 

1. Detection of DNA damage induced by conventional chemotherapy in AML cells  

Cytarabine and doxorubicin, chemotherapeutic agents used in acute myeloid leukemia (AML) 

treatment, are described as inducers of DNA damage [80, 81, 89-91] and DNA damage 

response (DDR) [101-103]. However, the study of these effects in AML cells is still very scarce. 

Therefore, we decided to evaluate the occurrence of DNA damage, reflected by the 

phosphorylation of histone H2AX (Ser139) [109, 110], elicited by conventional chemotherapy 

(cytarabine and/or doxorubicin) in the AML cell lines HL-60 and KG-1.  

In a first approach, the cytotoxicity and the determination of the half maximal inhibitory 

concentration (IC50) of cytarabine and doxorubicin were performed for both HL-60 and KG-1 cells. 

The study of the cytotoxicity of drugs in tumor cell lines commonly uses IC50 values due to the 

good relation between stress response and cell death that these concentrations allow [203, 204] 

and therefore these were the drugs concentrations used throughout this study.                                                                 

  

 

1.1. HL-60 cells (AML - FAB M2 leukemia) 

1.1.1. Cytarabine and doxorubicin cytotoxicity and IC50 determination   

As mentioned above, previous to the determination of the DNA damage induced by 

cytarabine and/or doxorubicin in HL-60 cells, the IC50 values of these anti-leukemia agents were 

determined. For that, HL-60 cells were exposed to these drugs, either individually or combined, 

during 18h. After that, MTS (Cell Titer 96 Aqueous One Solution Cell Proliferation Assay) and 

Annexin V/PI assays were performed to assess cell viability. 

The results showed that cell survival obtained by MTS was not correlated with Annexin V/PI 

data when HL-60 cells were treated with cytarabine and/or doxorubicin (Fig.9). The drugs 

concentration that decreased cell viability to about 50% by MTS assay (Fig.9A) (cytarabine = 

1000 µM; doxorubicin = 1 µM) only induced a decrease of about 30% by Annexin V/PI assay 

(Fig.9B). MTS is a method that measures mitochondrial metabolic rate, through the reduction of 

tetrazolium salt into formazan, which indirectly reflects the number of viable cells [200]. 

However, in the last years, cytotoxicity studies have reported that some chemicals have the ability 

to interfere with mitochondrial function, leading to alterations in the reduction of tetrazolium salt 
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into formazan and consequent cytotoxicity erroneous conclusions [205-207]. Cytarabine [208] 

and doxorubicin [209] have also been described as affecting mitochondrial function of HL-60 

cells. Thus, the differences between MTS and Annexin V/PI results observed in this study could 

be explained by the loss of mitochondrial function induced by these anti-leukemia agents, which 

may impair the reduction of tetrazolium into formazan, resulting in false positives. Therefore, 

according to this hypothesis and based on Annexin V/PI assay, which is a more accurate method 

[201, 202], we can suggest that the IC50 values determined by MTS assay do not correspond to 

real IC50 values.  

Data obtained by MTS assay also revealed that conventional chemotherapy combination 

promoted a statistical significant decrease in HL-60 cell’s viability when compared to cytarabine 

but not doxorubicin treatment (Fig.9A). However, Annexin V/PI results showed that the 

combination of these anti-leukemia agents induced a statistical significant decrease in HL-60 

cell’s viability when compared either with cytarabine or doxorubicin individual treatment (Fig.9B), 

suggesting that the combination of these drugs may generate a synergistic cytotoxic effect. 

Nevertheless, in future, specific software analysis, such as CalcuSyn [210], will be performed in 

order to confirm the synergistic effect of drugs combination.           

According to Annexin V/PI data, cytarabine and/or doxorubicin promoted both early 

apoptotic (Annexin V+/PI-) and late apoptotic/necrotic (Annexin V+/PI+) cell death (Fig.9B). 

However, the combination of the two anti-leukemia agents only induced a statistical significant 

increase in the late apoptotic/necrotic HL-60 cell population when compared to cytarabine 

treatment (Fig.9B), suggesting that the most efficient drug is doxorubicin and that cytarabine only 

potentiates its cell death effects. 

  

 

Figure 9 – Cytotoxicity of cytarabine and/or doxorubicin in HL-60 cells. Cells were incubated during 18h 

with cytarabine and/or doxorubicin, and after this time, cell viability was measured by MTS (A) and Annexin V/PI (B) 
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assays, as described in Material and Methods section. The results of MTS and Annexin V/PI assays were obtained 

from comparison with non-treated cells (no drug) and are represented as mean+/-SEM of at least three biological 

replicates. The comparison between non-treated group and treated groups and within treated groups was performed 

using the Student´s t-test for MTS results and the Two-way ANOVA with Bonferroni post hoc test for Annexin V/PI 

results. The statistical analysis was performed using the Prism software (Graph-Pad Software, San Diego, CA) and 

*/x p <0.05; ** p <0.01; ***/+++ p <0.001. C – cytarabine; D – doxorubicin; C+D – cytarabine combined with 

doxorubicin.  

   

 

As hydroxyurea (HU) is a well-known inducer of DNA damage [199], we used this drug as a 

positive control. For that, a sub-lethal and a lethal concentration of this cytotoxic agent were 

determined through MTS and Annexin V/PI assays after 18h of treatment. In this case, a good 

correlation between MTS (Fig.10A) and Annexin V/PI (Fig.10B) data was observed and 100 µM 

and 500 µM were the concentrations chosen for the following experiments. This good correlation 

between MTS and Annexin V/PI supports the hypothesis that cytarabine and doxorubicin may 

interfere with mitochondrial activity of HL-60 cells resulting in false positives by MTS assay. 

Annexin V/PI results also showed an evident increase in the percentage of late apoptotic/necrotic 

HL-60 cells with increasing HU concentration (Fig.10B). 

 

 

Figure 10 – Hydroxyurea (HU) cytotoxicity in HL-60 cells. Cells were incubated during 18h with HU, and 

after this time, cell viability was measured by MTS (A) and Annexin V/PI (B) assays, as described in Material and 

Methods section. The results of MTS and Annexin V/PI assays were obtained from comparison with non-treated cells 

(no drug) and are represented as mean+/-SEM of at least three biological replicates. The comparison between non-

treated group and treated groups was performed using the Student´s t-test for MTS results and the Two-way ANOVA 

with Bonferroni post hoc test for Annexin V/PI results. The statistical analysis was performed using the Prism 
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software (Graph-Pad Software, San Diego, CA) and *p <0.05; ***p <0.001. HU [100 µM] - hydroxyurea 100 µM; HU 

[500 µM] - hydroxyurea 500 µM.   

 

 

The conventional chemotherapy IC50 values and the sub-lethal and lethal HU concentrations 

selected for the following assays are described in table 5. The HU concentrations were chosen 

based on both MTS and Annexin V/PI assays. However, IC50 values for cytarabine and 

doxorubicin were selected based only on MTS assay, since the IC50 values of cytarabine and 

doxorubicin determined by this approach (table 5) are the most commonly used in studies 

performed with HL-60 cells [203, 204]. Nevertheless, in the future, new studies have to be 

performed with the IC50 values determined by Annexin V/PI assay.    

 

 

Table 5 - IC50 values of cytarabine and doxorubicin determined by MTS assay and sub-lethal and lethal 

concentrations of hydroxyurea (HU) determined by MTS and Annexin V/PI assays in HL-60 cells.   

HL-60 

Cytarabine 
IC50 Concentration 

1000 

[µM] 
Doxorubicin 1 

HU 
Sub-lethal concentration 100 

Lethal concentration 500 

 

 

 

1.1.2. Detection of DNA damage through the evaluation of H2AX 

phosphorylation 

The phosphorylation of histone H2AX at Ser139 occurs as result of DNA damage induction 

and thus this event has been widely used as biomarker for this genotoxic insult [109-111]. 

Therefore, after 18h of treatment with cytarabine and/or doxorubicin or HU (as a control), 

immunoblotting analysis of pH2AX (Ser139) and total H2AX were performed to evaluate DNA 

damage.  

The results showed that the pH2AX/H2AX ratio increased after treatment of HL-60 cells with 

cytarabine and/or doxorubicin (Fig.11A). However, a statistical significant increase was only 
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observed when both anti-leukemia agents (C+D) were combined (Fig.11A), re-enforcing the use of 

drugs combination to achieve the desired synergistic effect and the more effective loss of cell 

survival observed by Annexin V/PI assay (Fig.9B). As expected from a positive control, both HU 

concentrations promoted a statistical significant increase in pH2AX/H2AX ratio, which is dose-

dependent and thus higher for the highest HU concentration (Fig.11B).  

These results suggested that cytarabine or doxorubicin individual treatment, at the 

concentrations tested, might be inducing DNA damage in HL-60 cells. Nevertheless, the DNA 

damage, as reflected by the pH2AX/H2AX ratio, was higher and statistical significant only when 

both drugs were combined. Since these chemotherapeutic agents are well described as inducers 

of DNA damage [80, 81, 89-91], the results obtained were expected. In addition, the non-

significant increase of pH2AX/H2AX ratio in HL-60 cells treated with cytarabine or doxorubicin, 

individually, could be explained by the fact that the IC50 values used for these anti-leukemia 

agents do not correspond to real IC50 values. Therefore, it is possible that using IC50 values 

determined by Annexin V/PI assay the DNA damage inflicted by these drugs individually becomes 

more pronounced. Thus, in future approaches, the evaluation of DNA damage promoted by 

cytarabine and/or doxorubicin, using IC50 values obtained by Annexin V/PI assay, will be 

performed.            
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Figure 11 – pH2AX (Ser139) and total H2AX protein levels and densitometric analysis of 

pH2AX/H2AX in HL-60 cells treated with cytarabine and/or doxorubicin (A) or hydroxyurea (HU) (B). 

Cells were incubated during 18h with each of the agents as represented, and after this time, immunoblotting 

analysis of pH2AX (Ser139) and total H2AX, as described in Material and Methods section, was performed to assess 

DNA damage. The protein bands were quantified in the Image Lab® Software. The comparison between non-treated 

group and treated groups and within treated groups was performed using the Student´s t-test and the Prism 

software (Graph-Pad Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at least three 

biological replicates. *p <0.05; **p <0.01. C – cytarabine; D – doxorubicin; C+D – cytarabine combined with 

doxorubicin; HU [100 µM] - hydroxyurea 100 µM; HU [500 µM] - hydroxyurea 500 µM.   

 

 

1.2. KG-1 cells (erythroleukemia - FAB M6 leukemia) 

1.2.1. Cytarabine and doxorubicin cytotoxicity and IC50 determination   

Similar to the approach used for HL-60 cells, the IC50 values of cytarabine and doxorubicin 

were determined in KG-1 cells. For that, cells were treated during 18h with those drugs, either 

individually or combined, and MTS and Annexin V/PI assays were performed to measure cell 
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viability and to determine the IC50 values. KG-1 cells were also treated with HU to determine a 

sub-lethal and a lethal concentration. 

In contrast to HL-60 cells, in KG-1 cells a good correlation between the MTS and Annexin 

V/PI data was obtained (Fig.12). The IC50 concentration for cytarabine (1000 µM) and 

doxorubicin (2 µM) promoted a decrease in cell viability to about 50-60% and the combination of 

these drugs further decreased the viability of KG-1 cells to about 30-40% as reflected by the 

results obtained by both assays (Fig.12A and 12B). Therefore, these results suggested that, in 

contrast to HL-60 cells, cytarabine and doxorubicin do not have major effects on the 

mitochondrial function of KG-1 cells, suggesting that these two types of AML cells are distinctly 

affected by the anti-leukemia agent’s treatment. Moreover, results also suggested that the 

combination of both anti-leukemia agents promotes a synergistic cytotoxic effect in KG-1 cells. 

However, as described for HL-60 cells, CalcuSyn analysis has to be performed to confirm this 

effect.    

Annexin V/PI results also demonstrated that cytarabine and/or doxorubicin treatment 

resulted in both early apoptotic and late apoptotic/necrotic KG-1 cells, however, there was an 

evident increase in the percentage of early apoptotic cells promoted by these drugs either alone 

or combined (Fig.12B). This data suggested that in KG-1 cells the conventional chemotherapy is 

mainly inducing apoptotic cell death and once again reinforces that HL-60 and KG-1 cells 

respond differently to anti-leukemia therapy, since the predominant type of cell death promoted 

by these agents was distinct for each cell line.  

 

 

Figure 12 – Cytotoxicity of cytarabine and/or doxorubicin in KG-1 cells. Cells were incubated during 18h 

with cytarabine and/or doxorubicin, and after this time, cell viability was measured by MTS (A) and Annexin V/PI (B) 

assays, as described in Material and Methods section. The results of MTS and Annexin V/PI assays were obtained 

from comparison with non-treated cells (no drug) and are represented as mean+/-SEM of at least three biological 
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replicates. The comparison between non-treated group and treated groups and within treated groups was performed 

using the Student´s t-test for MTS results and the Two-way ANOVA with Bonferroni post hoc test for Annexin V/PI 

results. The statistical analysis was performed using the Prism software (Graph-Pad Software, San Diego, CA) and 

***/+++/xxx p <0.001. C – cytarabine; D – doxorubicin; C+D – cytarabine combined with doxorubicin.  

   

 

Regarding HU, the results from MTS (Fig.13A) and Annexin V/PI (Fig.13B) assays were also 

similar and 100 µM and 500 µM were, respectively, the sub-lethal and lethal concentrations 

chosen for the following experiments. Moreover, these results also showed that 500 µM of HU 

promoted an evident and statistical significant increase in the percentage of early apoptotic KG-1 

cells (Fig.13B).  

 

 

Figure 13 – Hydroxyurea (HU) cytotoxicity in KG-1 cells. Cells were incubated during 18h with HU, and after 

this time, cell viability was measured by MTS (A) and Annexin V/PI (B) assays, as described in Material and Methods 

section. The results of MTS and Annexin V/PI assays were obtained from comparison with non-treated cells (no drug) 

and are represented as mean+/-SEM of at least three biological replicates. The comparison between non-treated 

group and treated groups was performed using the Student´s t-test for MTS results and the Two-way ANOVA with 

Bonferroni post hoc test for Annexin V/PI results. The statistical analysis was performed using the Prism software 

(Graph-Pad Software, San Diego, CA) and *p <0.05; ***p <0.001. HU [100 µM] - hydroxyurea 100 µM; HU [500 

µM] - hydroxyurea 500 µM.   

 

 

The conventional chemotherapy IC50 values and the sub-lethal and lethal HU concentrations 

selected for the following experiments were chosen based on both MTS and Annexin V/PI assays 

and are described in table 6.  
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Table 6 - IC50 values of cytarabine and doxorubicin and sub-lethal and lethal concentrations of hydroxyurea (HU) 

determined by MTS and Annexin V/PI assays in KG-1 cells.   

KG-1 

Cytarabine 
IC50 Concentration 

1000 

[µM] 
Doxorubicin 2 

HU 
Sub-lethal concentration 100 

Lethal concentration 500 

 

 

 

1.2.2. Detection of DNA damage through the evaluation of H2AX 

phosphorylation 

In the next step, we determined the protein levels of H2AX and its phosphorylated form by 

immunoblotting. The pH2AX/H2AX ratio was also calculated to compare the DNA damage levels 

in KG-1 cells after conventional chemotherapy treatment. Cells were also submitted to HU 

treatment in the conditions mentioned before and the same parameters were evaluated.  

The results showed that KG-1 non-treated cells displayed high basal levels of H2AX 

phosphorylation and low levels of total H2AX, resulting in a high pH2AX/H2AX ratio (Fig.14) and 

suggesting that these cells may exhibit endogenous DNA damage. In fact, Boehrer et al. reported 

that KG-1 cells display signs of endogenous DNA damage, such as the phosphorylation of ATM 

(Ser1981) and histone H2AX (Ser139) [211]. Furthermore, data obtained also demonstrated that 

cytarabine and/or doxorubicin did not promote major alterations in pH2AX/H2AX ratio (Fig.14A). 

Curiously, this phenomenon was also observed by Boehrer et al., that when submitted KG-1 cells 

to different doses of irradiation did not observe major alterations in the phosphorylation of ATM 

and histone H2AX in comparison to non-treated cells [211]. Therefore, this data suggested that 

either these drugs do not induce DNA damage in KG-1 cells or it is not detectable due to the high 

endogenous DNA damage levels displayed by these cells. One interesting hypothesis that could 

be raised is whether the high endogenous levels of DNA damage of KG-1 cells confer them 

resistance to DNA damage agents consistently with an hormesis effect. Although the results 

obtained only allows us to speculate, the data obtained with HU, a well-known inducer of DNA 

replication stress [199] that also did not affect the pH2AX/H2AX ratio (Fig.14B), claims for 

further studies to clarify these observations. 
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Figure 14 – pH2AX (Ser139) and total H2AX protein levels and densitometric analysis of 

pH2AX/H2AX in KG-1 cells treated with cytarabine and/or doxorubicin (A) or hydroxyurea (HU) (B). 

Cells were incubated during 18h with each of the agents as represented, and after this time, immunoblotting 

analysis of pH2AX (Ser139) and total H2AX, as described in Material and Methods section, was performed to assess 

DNA damage. The protein bands were quantified in the Image Lab® Software. The comparison between non-treated 

group and treated groups and within treated groups was performed using the Student´s t-test and the Prism 

software (Graph-Pad Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at least three 

biological replicates. *p <0.05. C – cytarabine; D – doxorubicin; C+D – cytarabine combined with doxorubicin; HU 

[100 µM] - hydroxyurea 100 µM; HU [500 µM] - hydroxyurea 500 µM.   
 

 

Taken together, results of sections 1.1.2 and 1.2.2 suggested that the conventional 

chemotherapy used in AML treatment (cytarabine and doxorubicin), alone or in combination, 

promote DNA damage in HL-60 cells, an in vitro model of AML with differentiation. Nevertheless, 

without further deep analysis, the data is inconclusive in what regards KG-1 cells, an in vitro 

model of erythroleukemia. 
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2. Determination of AMPK pathway functioning in AML cells response to 

conventional chemotherapy 

2.1. HL-60 cells (AML - FAB M2 leukemia)  

In section 1.1.2 we showed that cytarabine or doxorubicin treatment promoted a slight 

increase in pH2AX/H2AX ratio in HL-60 cells, suggesting the occurrence of DNA damage. We 

also demonstrated that conventional chemotherapy combination induced a statistical significant 

increase in this ratio. In the last years, studies have reported that the DNA damage induced by 

some chemotherapeutic agents could promote AMP-activated protein kinase (AMPK) activation 

[184-186]. Therefore, we decided to evaluate the impact of cytarabine and/or doxorubicin in the 

AMPK pathway functioning in HL-60 cells. For that, the activation of this pathway was determined 

through the immunoblotting analysis of phosphorylated AMPK (Thr172) and total AMPK. As p27 

is a direct substrate of AMPK [141], we also evaluated the p27 phosphorylation (Thr198). Similar 

to the previous sections, HU treatment was used as a control to understand the connections 

between DNA damage and the functioning of AMPK pathway.  

The results showed that cytarabine or doxorubicin individual treatment promoted a statistical 

significant increase in pAMPK/AMPK ratio of HL-60 cells, being the effect of cytarabine more 

pronounced than doxorubicin (Fig.15A). Surprisingly, the combination of both drugs resulted in a 

statistical significant decrease of pAMPK/AMPK ratio when compared to cytarabine and a 

decrease, although without statistical significance, when compared to doxorubicin (Fig.15A). 

However, a slight and not statistical significant increase in pAMPK/AMPK ratio was observed 

when both drugs were combined in comparison to non-treated cells (Fig.15A). HL-60 cells treated 

with HU also displayed an increase, although not significant, in pAMPK/AMPK ratio, being the 

effect of the lower HU concentration more evident than the higher concentration (Fig.15B). 

Therefore, these results suggested that while cytarabine or doxorubicin induces AMPK pathway 

activation in HL-60 cells, the combination of both drugs only promotes a slight activation.  

Altogether, this data and the data of section 1.1 seem to indicate that the combination of 

both anti-leukemia agents promotes more cytotoxicity (determined by Annexin V/PI assay; 

Fig.9B) and DNA damage (Fig.11A) associated with less AMPK pathway activation (Fig.15A), 

suggesting that this pathway may function as a pro-survival mechanism in HL-60 cells. In fact, 

this hypothesis is supported by results obtained with HU, since these demonstrated that the 

higher HU concentration, which promoted more HL-60 cell death (Fig.10) and DNA damage 
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(Fig.11B) in comparison to the lower concentration, induced a trend for a less AMPK pathway 

activation (Fig.15B). 

 

 

Figure 15 – pAMPK (Thr172) and total AMPK protein levels and densitometric analysis of 

pAMPK/AMPK in HL-60 cells treated with cytarabine and/or doxorubicin (A) or hydroxyurea (HU) (B). 

Cells were incubated during 18h with each of the agents as represented, and after this time, immunoblotting 

analysis of pAMPK (Thr172) and total AMPK, as described in Material and Methods section, was performed to 

assess AMPK activation. The protein bands were quantified in the Image Lab® Software. The comparison between 

non-treated group and treated groups and within treated groups was performed using the Student´s t-test and the 

Prism software (Graph-Pad Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at least 

three biological replicates. *p <0.05; **p <0.01. C – cytarabine; D – doxorubicin; C+D – cytarabine combined with 

doxorubicin; HU [100 µM] - hydroxyurea 100 µM; HU [500 µM] - hydroxyurea 500 µM.   

 

 

Regarding the phosphorylation of p27, the results showed that treatment of HL-60 cells with 

cytarabine and/or doxorubicin did not altered pp27/p27 ratio (Fig.16A). The same holds true for 

the treatment of the cells with HU, although the higher concentration resulted in a non-statistical 
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significant increase of pp27/p27 ratio (Fig.16B). Therefore, these results suggested that 

cytarabine and/or doxorubicin treatment do not promote p27 phosphorylation in HL-60 cells. 

Nevertheless, its cellular compartmentalization has still to be studied. 

 

 

 

Figure 16 – pp27 (Thr198) and total p27 protein levels and densitometric analysis of pp27/p27 in 

HL-60 cells treated with cytarabine and/or doxorubicin (A) or hydroxyurea (HU) (B). Cells were 

incubated during 18h with each of the agents as represented, and after this time, immunoblotting analysis of pp27 

(Thr198) and total p27, as described in Material and Methods section, was performed to assess p27 activation. The 

protein bands were quantified in the Image Lab® Software. The comparison between non-treated group and treated 

groups and within treated groups was performed using the Student´s t-test and the Prism software (Graph-Pad 

Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at least three biological replicates. C – 

cytarabine; D – doxorubicin; C+D – cytarabine combined with doxorubicin; HU [100 µM] - hydroxyurea 100 µM; HU 

[500 µM] - hydroxyurea 500 µM.   

 

 

So far, data concerning HL-60 cells indicated that cytarabine or doxorubicin promotes a slight 

induction of DNA damage and AMPK pathway activation, which does not result in the 

phosphorylation of p27. Moreover, results also suggested that the higher cytotoxic effect induced 
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by the combination of these drugs is associated with an increased DNA damage but lower AMPK 

pathway activation, suggesting that, in HL-60 cells, this pathway may act as a pro-survival 

mechanism.    

 

 

2.2. KG-1 cells (erythroleukemia - FAB M6 leukemia) 

Although results exhibited in section 1.2.2 are inconclusive about the induction of DNA 

damage by cytarabine and/or doxorubicin in KG-1 cells, we decided to proceed with the analysis 

of AMPK functioning. In fact, due to the high endogenous DNA damage levels of KG-1 cells, 

AMPK could be also constitutively activated, or different regulatory mechanisms, such as the 

increase in AMP/ATP ratio [136, 137], could have relevant functions in this context. Thus, similar 

to HL-60 cells, we decided to evaluate AMPK and p27 functioning in KG-1 cells response to 

conventional chemotherapy. For that, cells were treated during 18h with cytarabine and/or 

doxorubicin and immunoblotting analysis of pAMPK (Thr172), pp27 (Thr198), total AMPK and 

p27 was performed. The results showed that either cytarabine or doxorubicin individual treatment 

promoted an increase in pAMPK/AMPK ratio of KG-1 cells, although without statistical 

significance (Fig.17A). Data also revealed that conventional chemotherapy combination induced a 

marked increase in pAMPK/AMPK ratio when compared to cytarabine or doxorubicin alone 

(Fig.17A), nonetheless, these alterations did not reach statistical significance. Regarding HU 

treatment of KG-1 cells, results demonstrated that both concentrations promoted an increase in 

pAMPK/AMPK ratio, however, only the higher HU concentration induced a statistical significant 

increase (Fig.17B). These results suggested that cytarabine and/or doxorubicin promote AMPK 

pathway activation in KG-1 cells, being the effect of the drugs combination more pronounced 

than the individual drugs.  

Taken together, this data and the data of section 1.2.1 seem to indicate that the higher 

cytotoxic effect induced by the combination of both anti-leukemia agents (Fig.12) is associated 

with an elevated AMPK pathway activation (Fig.17A), suggesting that AMPK, contrarily to HL-60 

cells, may function as a tumor suppressor in KG-1 cells. Indeed, results with HU support this 

conclusion, since the higher HU concentration, which promoted higher cytotoxicity (Fig.13), 

induced an increase in AMPK activation (Fig.17B). 
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Over again, these results suggested that HL-60 and KG-1 cells are two distinct types of AML 

that respond differently to conventional chemotherapy treatment, since HL-60 cells seem to 

activate AMPK pathway mediated by the induction of DNA damage as a pro-survival mechanism, 

while KG-1 cells seem to stimulate this pathway as a tumor suppressor pathway. 

    

  
Figure 17 – pAMPK (Thr172) and total AMPK protein levels and densitometric analysis of 

pAMPK/AMPK in KG-1 cells treated with cytarabine and/or doxorubicin (A) or hydroxyurea (HU) (B). 

Cells were incubated during 18h with each of the agents as represented, and after this time, immunoblotting 

analysis of pAMPK (Thr172) and total AMPK, as described in Material and Methods section, was performed to 

assess AMPK activation. The protein bands were quantified in the Image Lab® Software. The comparison between 

non-treated group and treated groups and within treated groups was performed using the Student´s t-test and the 

Prism software (Graph-Pad Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at least 

three biological replicates. *p <0.05. C – cytarabine; D – doxorubicin; C+D – cytarabine combined with doxorubicin; 

HU [100 µM] - hydroxyurea 100 µM; HU [500 µM] - hydroxyurea 500 µM.   
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Concerning p27 immunoblotting analysis, results showed that KG-1 cells, similar to that 

observed with H2AX phosphorylation (Fig.14), also displayed high basal levels of p27 

phosphorylation (Fig.18), suggesting that these cells may exhibit endogenous DNA damage 

associated with a constitutive DDR involving p27. Although Boehrer et al. described that KG-1 

cells display an intrinsic DDR activation [211], until now, none study reported the participation of 

p27 in this pathway.      

Moreover, data obtained also demonstrated that neither cytarabine nor doxorubicin nor the 

combination of both drugs induced statistical significant alterations on pp27/p27 ratio (Fig.18A). 

In the same way, HU treatment did not affect pp27/p27 ratio (Fig.18B). Therefore, these results 

indicated that, similar to HL-60 cells, anti-leukemia agents do not promote p27 phosphorylation 

in KG-1 cells. However, its cellular compartmentalization has still to be studied.  

 

 

Figure 18 – pp27 (Thr198) and total p27 protein levels and densitometric analysis of pp27/p27 in 

KG-1 cells treated with cytarabine and/or doxorubicin (A) or hydroxyurea (HU) (B). Cells were incubated 

during 18h with each of the agents as represented, and after this time, immunoblotting analysis of pp27 (Thr198) 

and total p27, as described in Material and Methods section, was performed to assess p27 activation. The protein 

bands were quantified in the Image Lab® Software. The comparison between non-treated group and treated groups 

and within treated groups was performed using the Student´s t-test and the Prism software (Graph-Pad Software, 

San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at least three biological replicates. C – 
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cytarabine; D – doxorubicin; C+D – cytarabine combined with doxorubicin; HU [100 µM] - hydroxyurea 100 µM; HU 

[500 µM] - hydroxyurea 500 µM.   

 

 

In summary, data concerning KG-1 cells suggested that cytarabine or doxorubicin promotes a 

slight AMPK activation, which does not result in p27 phosphorylation. Moreover, results also 

indicated that the higher cytotoxic effect promoted by drugs combination is associated with 

higher AMPK activation, suggesting that AMPK pathway may function as a pro-death mechanism 

in KG-1 cells.  

 

 

3. Analysis of AMPK pathway outcomes, cell cycle profile and autophagy activity, 

in AML cells challenged with conventional chemotherapy  

3.1. HL-60 cells (AML-FAB M2 leukemia) 

Studies in different solid tumor cells (e.g. human hepatoma cells, human/rat glioma cells 

and human colon cancer cells) showed that the activation of AMPK results in autophagy 

induction as a pro-survival mechanism [184-186]. Our preliminary data showed that cytarabine 

or doxorubicin treatment promoted cell cycle arrest in G0/G1 and S phases associated with 

autophagy induction in AML cells (unpublished data). In section 2.1, results also suggested that 

AMPK pathway activation may function as a pro-survival mechanism in HL-60 cells. Therefore, 

we decided to evaluate the impact of conventional chemotherapy in the cell cycle profile and 

autophagy activity, two processes that might be regulated by AMPK activation. For that, HL-60 

cells were treated with cytarabine and/or doxorubicin during 18h and the cell cycle profile was 

determined by assessing DNA content by flow cytometry. As LC3 is the best and most widely 

used marker for autophagy detection [168], immunoblotting analysis of LC3 (I and II) was 

performed to assess autophagy. As previously mentioned, pro-LC3 is processed to LC3-I, which is 

conjugated to phosphatidylethanolamine (PE) forming LC3-PE (or LC3-II) [164, 165, 167]. 

Nevertheless, as LC3-II is degraded in the autolysosome, the amount of this protein would not 

provide accurate information about alterations on autophagy. Therefore, chloroquine (CQ), a 

lysosomotropic agent that raises intralysosomal pH [196] impairing the autophagic protein 

degradation [197], is used to avoid LC3-II degradation [212]. Thus, after 16h of treatment with 

the conventional chemotherapy, CQ was added to inhibit LC3-II degradation, allowing its 
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accumulation and accurate information about its levels. HL-60 cells were also treated with HU in 

the same conditions explained before and the same parameters were evaluated.     

Data obtained showed that cytarabine or doxorubicin treatment promoted cell cycle arrest in 

G0/G1 phases in HL-60 cells, being the effect of cytarabine more evident than the one induced 

by doxorubicin (Fig.19A). Moreover, results also revealed that although conventional 

chemotherapy combination promoted a G0/G1 cell cycle arrest when compared to non-treated 

cells, in comparison to cytarabine or doxorubicin treatment, it induced a cell cycle arrest in S 

phase (Fig.19A). This is supported by the increased percentage of cells in S phase and lower 

percentage of cells in G2/M phases (Fig.19A). Data obtained with conventional chemotherapy 

did not correlate to that obtained with HU treatment. Indeed, HU did not seem to be inducing 

major alterations on cell cycle profile although at the lower HU concentration there was an 

increase in the percentage of cells in G2/M phases (Fig.19B). These results were unexpected, 

since HU is a well-known inducer of DNA replication stress that promotes cell cycle arrest in S 

phase [213]. In fact, studies reported that HL-60 cells treated with similar HU concentrations 

used in this work undergo DNA damage predominantly during the S phase of the cell cycle [199]. 

However, one possible explanation for these results could be that HL-60 cells progress into G2 

phase with some unrepaired DNA damage inflicted by HU in the previous S phase, resulting in 

the activation of G2/M checkpoint and G2/M cell cycle arrest in an attempt to repair the DNA 

damage.  

 

 

Figure 19 - Cell cycle profile of HL-60 cells treated with cytarabine and/or doxorubicin (A) or 

hydroxyurea (HU) (B). Cells were incubated during 18h with each of the agents as represented, and after this 

time, cell cycle profile was determined through DNA content assessment, as described in Material and Methods 

section. Cell cycle analysis was performed using the Modifit® Software. The comparison between non-treated group 
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and treated groups and within treated groups was performed using the Two-way ANOVA with Bonferroni post hoc test 

and the Prism software (Graph-Pad Software, San Diego, CA). Cell cycle analysis is shown as mean+/-SEM of at 

least three biological replicates. *p <0.05; **/++ p <0.01; ***/+++/xxx p <0.001. C – cytarabine; D – doxorubicin; 

C+D – cytarabine combined with doxorubicin; HU [100 µM] - hydroxyurea 100 µM; HU [500 µM] - hydroxyurea 500 

µM.   

 

 

Regarding the effect of anti-leukemia drugs on autophagy in HL-60 cells, our data showed 

that cytarabine or doxorubicin treatment promoted a slight increase, without statistical 

significance, in LC3-II/LC3-I ratio and that the effect of cytarabine was slightly more pronounced 

than that of doxorubicin (Fig.20A). The results also demonstrated that the combination of both 

drugs had no particular evident effect in the LC3-II/LC3-I ratio when compared to control 

conditions (Fig.20A). HU results revealed that while the lower concentration promoted a slight but 

not statistical significant increase in LC3-II/LC3-I ratio, the higher HU concentration displayed a 

LC3-II/LC3-I ratio similar to that of non-treated cells (Fig.20B).   

 

 

Figure 20 – LC3-I and LC3-II protein levels and densitometric analysis of LC3-II/LC3-I in HL-60 cells 

treated with cytarabine and/or doxorubicin (A) or hydroxyurea (HU) (B). Cells were incubated during 18h 

with each of the agents as represented and 2h before the end of the treatment CQ (4.4 µM) was added to block the 
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autophagy flux and to allow LC3-II accumulation. After the treatment time, immunoblotting analysis of LC3 (I and II), 

as described in Material and Methods section, was performed to assess autophagy activity. The protein bands were 

quantified in the Image Lab® Software. The comparison between non-treated group and treated groups and within 

treated groups was performed using the Student´s t-test and the Prism software (Graph-Pad Software, San Diego, 

CA). Densitometric analysis is shown as mean+/-SEM of at least three biological replicates. C – cytarabine; D – 

doxorubicin; C+D – cytarabine combined with doxorubicin; HU [100 µM] - hydroxyurea 100 µM; HU [500 µM] - 

hydroxyurea 500 µM.   

 

 

Altogether, results suggested that cytarabine or doxorubicin promote a slight induction of 

DNA damage, which results in the activation of AMPK associated with G0/G1 cell cycle arrest 

and a moderate induction of autophagy. Interesting, the combination of both anti-leukemia 

agents, which promoted higher cytotoxicity and DNA damage in comparison to individual drugs, 

resulted in lower AMPK activation, lower cell cycle arrest in G0/G1 phases and had no impact on 

autophagy, reinforcing the idea that AMPK pathway activation may function as a pro-survival 

mechanism. Data obtained with HU supports this hypothesis, since the higher concentration of 

this compound promoted more HL-60 cell death and DNA damage associated with less AMPK 

activation and without impact on autophagy.  

 

 

3.2. KG-1 cells (erythroleukemia - FAB M6 leukemia) 

In contrast with that described in section 3.1, different studies have also reported that AMPK 

activation could be associated with autophagy induction and tumor cell death [187, 188]. In 

section 2.2, results also indicated that AMPK pathway activation may act as a tumor suppressor 

in KG-1 cells. Therefore, similar to the approach used for HL-60 cells, we decided to evaluate the 

impact of conventional chemotherapy in the cell cycle profile and autophagy activity of KG-1 cells. 

The results showed that while cytarabine promoted a G0/G1 cell cycle arrest, doxorubicin 

induced an arrest in S phase (Fig.21A). Moreover, data also demonstrated that conventional 

chemotherapy combination resulted in a cell cycle profile similar to that exhibited by doxorubicin 

treatment, an arrest in S phase (Fig.21A). Regarding HU, results showed that HU had a modest 

effect on cell cycle and only the higher HU concentration was able to promote a cell cycle arrest 

in G0/G1 phases (Fig.21B).       
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Figure 21 - Cell cycle profile of KG-1 cells treated with cytarabine and/or doxorubicin (A) or 

hydroxyurea (HU) (B). Cells were incubated during 18h with each of the agents as represented, and after this 

time, cell cycle profile was determined through DNA content assessment, as described in Material and Methods 

section. Cell cycle analysis was performed using the Modifit® Software. The comparison between non-treated group 

and treated groups and within treated groups was performed using the Two-way ANOVA with Bonferroni post hoc test 

and the Prism software (Graph-Pad Software, San Diego, CA). Cell cycle analysis is shown as mean+/-SEM of at 

least three biological replicates. *p <0.05; ***/+++ p <0.001. C – cytarabine; D – doxorubicin; C+D – cytarabine 

combined with doxorubicin; HU [100 µM] - hydroxyurea 100 µM; HU [500 µM] - hydroxyurea 500 µM.   

 

 

Regarding the effect of conventional chemotherapy in the autophagy levels of KG-1 cells, our 

data showed that cytarabine did not induce alterations in LC3-II/LC3-I ratio while doxorubicin 

promoted a statistical significant increase in this ratio (Fig.22A). A slight increase in LC3-II/LC3-I 

ratio was also observed when both drugs were combined (Fig.22A). Data obtained also revealed 

that both HU concentrations induced a statistical significant increase in LC3-II/LC3-I ratio, being 

the effect of the higher concentration more pronounced that the lower concentration (Fig.22B).   
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Figure 22 – LC3-I and LC3-II protein levels and densitometric analysis of LC3-II/LC3-I in KG-1 cells 

treated with cytarabine and/or doxorubicin (A) or hydroxyurea (HU) (B). Cells were incubated during 18h 

with each of the agents as represented and 2h before the end of the treatment CQ (4.4 µM) was added to block the 

autophagy flux and to allow LC3-II accumulation. After the treatment time, immunoblotting analysis of LC3 (I and II), 

as described in Material and Methods section, was performed to assess autophagy activity. The protein bands were 

quantified in the Image Lab® Software. The comparison between non-treated group and treated groups and within 

treated groups was performed using the Student´s t-test and the Prism software (Graph-Pad Software, San Diego, 

CA). Densitometric analysis is shown as mean+/-SEM of at least three biological replicates. **p <0.01. C – 

cytarabine; D – doxorubicin; C+D – cytarabine combined with doxorubicin; HU [100 µM] - hydroxyurea 100 µM; HU 

[500 µM] - hydroxyurea 500 µM.    

 

 

In summary, data concerning KG-1 cells suggested that doxorubicin alone or combined with 

cytarabine promotes AMPK activation associated with cell cycle arrest in S phase and autophagy 

induction. Data obtained with HU also showed that AMPK pathway activation was associated with 

autophagy induction. Given that the higher cytotoxicity induced by the higher HU concentration 
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was associated with higher AMPK activation and autophagy induction, it suggests that AMPK 

pathway may function, in these conditions, as a tumor suppressor pathway.     

 

     

4. Study the impact of autophagy pharmacological manipulation on cell survival 

and DNA damage of AML cells treated with conventional chemotherapy  

In previous sections, results seem to indicate that AMPK pathway activation associated with 

G0/G1 cell cycle arrest and autophagy induction functions as a pro-survival mechanism in HL-60 

cells. In fact, in section 3.1 we also mentioned that studies in diverse solid tumor cells described 

that AMPK activation associated with autophagy induction is responsible for cancer cells survival 

and chemoresistance. Therefore, in order to better understand if autophagy induction observed in 

HL-60 cells treated with cytarabine or doxorubicin is a mechanism developed to allow HL-60 cell 

survival, we decided to evaluate the impact of autophagy modulation on cell survival of HL-60 

cells treated with the anti-leukemia agents. In earlier sections we also demonstrated that KG-1 

cells submitted to doxorubicin alone or combined with cytarabine induced a slight increase in 

AMPK activation, cell cycle arrest in S phase and autophagy induction. Therefore, we also 

decided to evaluate the impact of autophagy manipulation on the viability of these cells after 

cytarabine and/or doxorubicin treatment. For such a purpose, in a first approach, we determined 

the autophagy modulators concentrations that induce a minimal impact on cell viability but 

promote alterations in the autophagy levels. In fact, there are no specific pharmacological 

inhibitors or inducers of autophagy and therefore the choice of sub-lethal concentrations are 

important to minimize the impact that these drugs might have in other cellular processes and 

maximize their effects on autophagy. The autophagy inducer selected was rapamycin, an indirect 

autophagy activator through inhibition of the negatively autophagy regulator mammalian target of 

rapamycin complex 1 (mTORC1) [198], which also exerts crucial functions on a plethora of other 

biological processes (reviewed in [127]). The autophagy inhibitor selected was CQ, that as 

previous referred is a lysosomotropic drug that raises intralysosomal pH [196] blocking the last 

step of autophagy pathway [197]. CQ is also known as an inducer of DNA damage [214]. 

Therefore, the choice of sub-lethal concentrations was important for a more accurate and reliable 

interpretation of the results.        
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4.1. HL-60 cells (AML-FAB M2 leukemia) 

4.1.1. Determination of rapamycin sub-lethal concentrations that induce 

autophagy  

To determine the sub-lethal concentrations of rapamycin, HL-60 cells were treated during 

18h with different concentrations of this agent and after this time cell viability was assessed 

through MTS assay. The results showed that 1 µM of rapamycin induced a slight decrease in HL-

60 cell viability while 3 µM of rapamycin was close to the IC50 concentration for this compound 

(Fig.23).  

 

 

 

 

 

 

 

 

 

 

 

Figure 23 – Determination of HL-60 cell viability after treatment with rapamycin. Cells were incubated 

during 18h with different concentrations of this agent as represented, and after this time, cell viability was measured 

by MTS assay, as described in Material and Methods section. The results were obtained from comparison with non-

treated cells (no drug) and are shown as mean+/-SEM of at least three biological replicates. The comparison 

between non-treated group and treated groups was performed using the Student´s t-test and the Prism software 

(Graph-Pad Software, San Diego, CA). *p <0.05; ***p <0.001.  

 

 

To confirm that rapamycin was inducing autophagy, LC3-II/LC3-I ratio was determined, as 

previously described. The results showed that, as expected, both rapamycin concentrations 

promoted a statistical significant increase in LC3-II/LC3-I ratio (Fig.24).   



61 
 

 

Figure 24 – LC3-I and LC3-II protein levels and densitometric analysis of LC3-II/LC3-I in HL-60 cells 

treated with rapamycin. Cells were incubated during 18h with different concentrations of this agent as 

represented and 2h before the end of the treatment CQ (4.4 µM) was added to block the autophagy flux and to allow 

LC3-II accumulation. After the treatment time, immunoblotting analysis of LC3 (I and II), as described in Material and 

Methods section, was performed to assess autophagy activity. The protein bands were quantified in the Image Lab® 

Software. The comparison between non-treated group and treated groups was performed using the Student´s t-test 

and the Prism software (Graph-Pad Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at 

least three biological replicates. *p <0.05; **p <0.01.  

 

 

As rapamycin 1 µM was a sub-lethal concentration that promoted an increase in the 

autophagy activity, we chose this concentration to be used in the following experiments.  

 

 

4.1.2. Determination of CQ sub-lethal concentrations that inhibit autophagy  

To determine the sub-lethal concentrations of CQ, HL-60 cells were treated during 18h with 

different concentrations of this agent and cell viability was assessed through MTS assay. The 

results demonstrated that CQ concentrations between 5 µM to 15 µM had no significant effect on 

HL-60 cell’s viability and that only the highest concentrations, 25 µM and 50 µM, induced a 

decrease in cell’s viability (Fig.25).     
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Figure 25 – Determination of HL-60 cell viability after treatment with CQ. Cells were incubated during 

18h with different concentrations of this agent as represented, and after this time, cell viability was measured by 

MTS assay, as described in Material and Methods section. The results were obtained from comparison with non-

treated cells (no drug) and are shown as mean+/-SEM of at least three biological replicates. The comparison 

between non-treated group and treated groups was performed using the Student´s t-test and the Prism software 

(Graph-Pad Software, San Diego, CA). *p <0.05; **p <0.01. 

 

 

 The autophagy levels of HL-60 cells treated with the determined CQ concentrations were 

also evaluated. For that, cells were treated with the different drug concentrations and 

immunoblotting analysis of LC3 (I and II) was performed. The results demonstrated that all CQ 

concentrations tested induced a statistical significant increase in LC3-II/LC3-I ratio compatible 

with an inhibition of autophagy (Fig.26). 
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Figure 26 – LC3-I and LC3-II protein levels and densitometric analysis of LC3-II/LC3-I in HL-60 cells 

treated with CQ. Cells were incubated during 18h with different concentrations of this agent as represented, and 

after this time, immunoblotting analysis of LC3 (I and II), as described in Material and Methods section, was 

performed to assess autophagy activity. The protein bands were quantified in the Image Lab® Software. The 

comparison between non-treated group and treated groups was performed using the Student´s t-test and the Prism 

software (Graph-Pad Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at least three 

biological replicates. *p <0.05; **p <0.01; ***p <0.001.   

 

 

As 10 µM of CQ could be considered a sub-lethal concentration that promotes autophagy 

inhibition, we selected this concentration to be used in the subsequent experiments.  

 

 

4.1.3. Evaluation the impact of autophagy pharmacological manipulation on 

viability of cells treated with conventional chemotherapy  

4.1.3.1. Evaluation of autophagy activity and cell cycle profile 

To understand the role of autophagy in the viability of HL-60 cells treated with conventional 

chemotherapy, we started by evaluating the impact of sub-lethal concentrations of autophagy 

modulators in the autophagy levels of cells treated with cytarabine and/or doxorubicin. For that, 

cells were submitted to cytarabine and/or doxorubicin treatment combined with rapamycin or 
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CQ, and after this time, immunoblotting analysis of LC3 was performed to assess autophagy 

activity. After 16h of treatment, CQ was added to samples, excepted to those treated with CQ, to 

block the autophagy flux and to allow LC3-II accumulation. As in previous sections, the cell cycle 

profile of HL-60 cells was also analyzed after the treatment mentioned before to determine any 

crosstalk regulation between autophagy and cell cycle progression. The results showed that 

rapamycin promoted an increase in LC3-II/LC3-I ratio of HL-60 cells treated with doxorubicin 

alone or combined with cytarabine, however, only the combination of rapamycin with doxorubicin 

displayed statistical significance (Fig.27). Data also demonstrated that the combination of 

rapamycin with cytarabine did not affect the LC3-II/LC3-I ratio when compared to cells only 

treated with cytarabine (Fig.27).  

 

 

Figure 27 – LC3-I and LC3-II protein levels and densitometric analysis of LC3-II/LC3-I in HL-60 cells 

treated with cytarabine and/or doxorubicin combined with a sub-lethal concentration of rapamycin. 

Cells were incubated during 18h with each of the agents as represented and 2h before the end of the treatment CQ 

(4.4 µM) was added to block the autophagy flux and to allow LC3-II accumulation. After the treatment time, 

immunoblotting analysis of LC3 (I and II), as described in Material and Methods section, was performed to assess 

autophagy activity. The protein bands were quantified in the Image Lab® Software. The comparison between non-

treated group and treated group and within treated groups was performed using the Student´s t-test and the Prism 

software (Graph-Pad Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at least three 
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biological replicates. **p <0.01. C – cytarabine; D – doxorubicin; C+D – cytarabine combined with doxorubicin; R - 

rapamycin; C+R – cytarabine combined with rapamycin; D+R – doxorubicin combined with rapamycin; C+D+R – 

cytarabine and doxorubicin combined with rapamycin.    

 

 

Regarding the cell cycle profile, results showed that rapamycin induced cell cycle arrest in S 

phase of HL-60 cells treated with doxorubicin alone or combined with cytarabine, being this effect 

more pronounced in cells treated only with doxorubicin (Fig.28). Moreover, results also revealed 

that the combination of rapamycin with cytarabine did not alter the cell cycle profile exhibited by 

cells only treated with the anti-leukemia agent (Fig.28).       

 

 

Figure 28 - Cell cycle profile of HL-60 cells treated with cytarabine and/or doxorubicin combined 

with a sub-lethal concentration of rapamycin. Cells were incubated during 18h with each of the agents as 

represented, and after this time, cell cycle profile was determined through DNA content assessment, as described in 

Material and Methods section. Cell cycle analysis was performed using the Modifit® Software. The comparison 

between non-treated group and treated group and within treated groups was performed using the Two-way ANOVA 

with Bonferroni post hoc test and the Prism software (Graph-Pad Software, San Diego, CA). Cell cycle analysis is 

shown as mean+/-SEM of at least three biological replicates. *p <0.05; **p <0.01; *** <0.001. C – cytarabine; D – 

doxorubicin; C+D – cytarabine combined with doxorubicin; R – rapamycin; C+R – cytarabine combined with 

rapamycin; D+R – doxorubicin combined with rapamycin; C+D+R – cytarabine and doxorubicin combined with 

rapamycin.     

 

 

Altogether, these results suggested that rapamycin promotes autophagy induction associated 

with cell cycle arrest in S phase of HL-60 cells treated with doxorubicin alone or combined with 

cytarabine. 
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Concerning CQ, results demonstrated that this autophagy inhibitor induced a statistical 

significant increase in LC3-II/LC3-I ratio of HL-60 cells treated with cytarabine and/or 

doxorubicin (Fig.29), suggesting that in all tested conditions an evident inhibition of the 

autophagy process occurred.  

 

 

Figure 29 – LC3-I and LC3-II protein levels and densitometric analysis of LC3-II/LC3-I in HL-60 cells 

treated with cytarabine and/or doxorubicin combined with a sub-lethal concentration of CQ. Cells 

were incubated during 18h with each of the agents as represented, and after this time, immunoblotting analysis of 

LC3 (I and II), as described in Material and Methods section, was performed to assess autophagy activity. The 

protein bands were quantified in the Image Lab® Software. The comparison between non-treated group and treated 

group and within treated groups was performed using the Student´s t-test and the Prism software (Graph-Pad 

Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at least three biological replicates. **p 

<0.01; *** <0.001. C – cytarabine; D – doxorubicin; C+D – cytarabine combined with doxorubicin; CQ - chloroquine; 

C+CQ – cytarabine combined with chloroquine; D+CQ – doxorubicin combined with chloroquine; C+D+CQ – 

cytarabine and doxorubicin combined with chloroquine.    

 

 

In addition to autophagy activity, the cell cycle profile of HL-60 cells treated with the 

combination of CQ with cytarabine and/or doxorubicin was also evaluated. Results showed that 

CQ induced a cell cycle arrest in S phase of HL-60 cells treated with cytarabine and/or 
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doxorubicin and that the combination of CQ with doxorubicin also promoted a cell cycle arrest in 

G2/M phases (Fig.30).    

 

 

Figure 30 - Cell cycle profile of HL-60 cells treated with cytarabine and/or doxorubicin combined 

with a sub-lethal concentration of CQ. Cells were incubated during 18h with each of the agents as represented, 

and after this time, cell cycle profile was determined through DNA content assessment, as described in Material and 

Methods section. Cell cycle analysis was performed using the Modifit® Software. The comparison between non-

treated group and treated group and within treated groups was performed using the Two-way ANOVA with Bonferroni 

post hoc test and the Prism software (Graph-Pad Software, San Diego, CA). Cell cycle analysis is shown as mean+/-

SEM of at least three biological replicates. **p <0.01; *** <0.001. C – cytarabine; D – doxorubicin; C+D – 

cytarabine combined with doxorubicin; CQ - chloroquine; C+CQ – cytarabine combined with chloroquine; D+CQ – 

doxorubicin combined with chloroquine; C+D+CQ – cytarabine and doxorubicin combined with chloroquine. 

 

 

Altogether, these results suggested that CQ induces autophagy inhibition associated with cell 

cycle arrest in S phase of HL-60 cells treated with cytarabine and/or doxorubicin.     

 

In summary, the results of section 4.1.3.1 suggested the existence of a correlation between 

the autophagy process and the arrest in S phase of the cell cycle. Indeed, either autophagy 

induction or inhibition was closely associated with cell cycle arrest in S phase of HL-60 cells 

submitted to conventional chemotherapy. 

Previous results suggested that autophagy may function as a pro-survival mechanism in HL-

60 cells. Thus, it is possible that the autophagy activation associated with cell cycle arrest in S 

phase occurs as an attempt to promote HL-60 cell survival. Interesting, the connection between 

autophagy inhibition and cell cycle arrest in S phase may also suggest that this arrest occurs to 
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promote HL-60 cell death. Therefore, it was crucial to understand the impact that these 

approaches have on HL-60 cell survival.  

 

 

4.1.3.2. Evaluation of cell viability 

After determining the impact of the sub-lethal concentrations of rapamycin or CQ in the 

autophagy levels and cell cycle profile of HL-60 cells treated with conventional chemotherapy, our 

next step was to evaluate the effect of these autophagy modulators on the viability of HL-60 cells 

submitted to anti-leukemia agents. For that, cells were submitted, during 18h, to cytarabine 

and/or doxorubicin combined with rapamycin or CQ. After that, MTS and Annexin V/PI assays 

were performed to assess cell viability. Similar to that observed in section 1.1.1, these results 

also showed that data for cell survival obtained by MTS did not correlate with Annexin V/PI when 

HL-60 cells were treated with cytarabine and/or doxorubicin alone or combined with rapamycin 

or CQ (Fig.31 and 32). Once again, these differences between MTS and Annexin V/PI assays 

suggested that cytarabine and doxorubicin may interfere with mitochondrial activity of HL-60 

cells. 

Regarding MTS assay, data showed that rapamycin promoted a statistical significant 

decrease in the viability of HL-60 cells treated with doxorubicin alone or combined with 

cytarabine (Fig.31A). The Annexin V/PI data did not show statistical significant alterations in the 

viability of HL-60 cells treated with cytarabine and/or doxorubicin combined with rapamycin 

when compared to cells only submitted to conventional chemotherapy treatment (Fig.31B). Thus, 

according to Annexin V/PI assay, results indicated that the induction of autophagy (Fig.27) and 

cell cycle arrest in S phase (Fig.28) promoted by rapamycin do not affect the viability of HL-60 

cells treated with anti-leukemia agents. One possible explanation for these results could be the 

fact that the concentrations of cytarabine or doxorubicin used in this study, by Annexin V/PI 

assay, only induced a decrease of about 30% in the viability of HL-60 cells (Fig.9B) and therefore 

jeopardize the detection of the effects that autophagy promotion by rapamycin have on HL-60 cell 

viability.   
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Figure 31 - Determination of HL-60 cell viability after treatment with cytarabine and/or doxorubicin 

combined with a sub-lethal concentration of rapamycin. Cells were incubated during 18h with each of the 

agents as represented, and after this time, cell viability was measured by MTS (A) and Annexin V/PI (B) assays, as 

described in Material and Methods section. The results of MTS and Annexin V/PI assays were obtained from 

comparison with non-treated cells (no drug) and are represented as mean+/-SEM of at least three biological 

replicates. The comparison between non-treated group and treated group and within treated groups was performed 

using the Student´s t-test for MTS results and the Two-way ANOVA with Bonferroni post hoc test for Annexin V/PI 

results. The statistical analysis was performed using the Prism software (Graph-Pad Software, San Diego, CA) and *p 

<0.05; ***p <0.001. C – cytarabine; D – doxorubicin; C+D - cytarabine combined with doxorubicin; R – rapamycin; 

C+R – cytarabine combined with rapamycin; D+R – doxorubicin combined with rapamycin; C+D+R – cytarabine and 

doxorubicin combined with rapamycin.   

 

 

Regarding CQ, the MTS results showed that this autophagy inhibitor did not affect the viability 

of HL-60 cells treated with doxorubicin alone or combined with cytarabine, however, promoted a 

statistical significant increase in the viability of cells treated with cytarabine (Fig.32A). In contrast 

to MTS results, the Annexin V/PI data showed that combination of CQ with cytarabine and/or 

doxorubicin promoted a decrease in HL-60 cell’s viability, however, only the combination of CQ 
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with cytarabine or doxorubicin promoted statistical significance (Fig.32B). Thus, according to 

Annexin V/PI assay and as previous hypothesized, autophagy inhibition associated with cell cycle 

arrest in S phase may promote the death of HL-60 cells treated with anti-leukemia agents. 

Moreover, these results also supported the hypothesis that autophagy may function as a pro-

survival mechanism in HL-60 cells. However, in future, genetic manipulation of autophagy, such 

as the silencing by siRNA of some autophagy regulators such as BECLIN1, ATG5 and ATG7, will 

be performed in order to confirm this hypothesis.        

 

 

Figure 32 - Determination of HL-60 cell viability after treatment with cytarabine and/or doxorubicin 

combined with a sub-lethal concentration of CQ. Cells were incubated during 18h with each of the agents as 

represented, and after this time, cell viability was measured by MTS (A) and Annexin V/PI (B) assays, as described in 

Material and Methods section. The results of MTS and Annexin V/PI assays were obtained from comparison with 

non-treated cells (no drug) and are represented as mean+/-SEM of at least three biological replicates. The 

comparison between non-treated group and treated group and within treated groups was performed using the 

Student´s t-test for MTS results and the Two-way ANOVA with Bonferroni post hoc test for Annexin V/PI results. The 

statistical analysis was performed using the Prism software (Graph-Pad Software, San Diego, CA) and *p <0.05; **p 

<0.01; ***p <0.001. C – cytarabine; D – doxorubicin; C+D - cytarabine combined with doxorubicin; CQ – 
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chloroquine; C+CQ – cytarabine combined with chloroquine; D+CQ – doxorubicin combined with chloroquine; 

C+D+CQ – cytarabine and doxorubicin combined with chloroquine.   

 

 

4.1.4. Evaluation the impact of autophagy pharmacological manipulation on 

DNA damage of cells treated with conventional chemotherapy 

In the previous section, we presented results suggesting that autophagy may act as a pro-

survival mechanism in HL-60 cells. Therefore, in the next step we decided to evaluate if 

autophagy modulation impacts on DNA damage of HL-60 cells. Results showed that rapamycin 

promoted a decrease in pH2AX/H2AX ratio of untreated cells and of cells treated with cytarabine 

or doxorubicin (Fig.33). However, only the combination of rapamycin with doxorubicin displayed 

statistical significance (Fig.33). Data obtained also demonstrated that rapamycin combination 

with cytarabine plus doxorubicin did not induce any changes in pH2AX/H2AX ratio (Fig.33). 

Thus, our data suggested that rapamycin protects HL-60 cells from DNA damage induced by 

cytarabine or doxorubicin individual treatment. However, as rapamycin is a direct inhibitor of 

mTORC1 and its action may have pleiotropic effects on several cellular processes (reviewed in 

[127]), we cannot conclude if this protection is promoted by autophagy induction or by other 

processes affected by mTORC1 inhibition.   
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Figure 33 – pH2AX (Ser139) and total H2AX protein levels and densitometric analysis of 

pH2AX/H2AX in HL-60 cells treated with cytarabine and/or doxorubicin combined with a sub-lethal 

concentration of rapamycin. Cells were incubated during 18h with each of the agents as represented, and after 

this time, immunoblotting analysis of pH2AX and total H2AX, as described in Material and Methods section, was 

performed to assess DNA damage. The protein bands were quantified in the Image Lab® Software. The comparison 

between non-treated group and treated group and within treated groups was performed using the Student´s t-test 

and the Prism software (Graph-Pad Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at 

least three biological replicates. *p <0.05. C – cytarabine; D – doxorubicin; C+D – cytarabine combined with 

doxorubicin; R - rapamycin; C+R – cytarabine combined with rapamycin; D+R – doxorubicin combined with 

rapamycin; C+D+R – cytarabine and doxorubicin combined with rapamycin.     

 

 

Regarding CQ, results demonstrated that this autophagy inhibitor promoted an increase, 

although without statistical significance, in pH2AX/H2AX ratio of cells treated with cytarabine 

and/or doxorubicin (Fig.34). Indeed, these results were somewhat expected, since studies (in rat 

liver cells) reported that CQ, besides the well-known effect as autophagy inhibitor [196, 197], is 

also an inducer of DNA damage [214]. Therefore, it is difficult to understand if the increase in 

DNA damage induced by the combination of CQ with cytarabine and/or doxorubicin is promoted 

by the inhibition of autophagy or by the genotoxic stress induced by CQ.   
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Figure 34 – pH2AX (Ser139) and total H2AX protein levels and densitometric analysis of 

pH2AX/H2AX in HL-60 cells treated with cytarabine and/or doxorubicin combined with a sub-lethal 

concentration of CQ. Cells were incubated during 18h with each of the agents as represented, and after this time, 

immunoblotting analysis of pH2AX and total H2AX, as described in Material and Methods section, was performed to 

assess DNA damage. The protein bands were quantified in the Image Lab® Software. The comparison between non-

treated group and treated group and within treated groups was performed using the Student´s t-test and the Prism 

software (Graph-Pad Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at least three 

biological replicates. C – cytarabine; D – doxorubicin; C+D – cytarabine combined with doxorubicin; CQ – 

chloroquine; C+CQ – cytarabine combined with chloroquine; D+CQ – doxorubicin combined with chloroquine; 

C+D+CQ – cytarabine and doxorubicin combined with chloroquine.   

  

 

Taken together, results of section 4.1.4 claim for further studies, involving genetic 

manipulation of autophagy, in order to understand whether autophagy induction or inhibition 

have impact on DNA damage levels of HL-60 cells.  
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4.2. KG-1 cells (erythroleukemia - FAB M6 leukemia) 

4.2.1. Determination of rapamycin sub-lethal concentrations that induce 

autophagy  

To define the sub-lethal concentrations of rapamycin that induce autophagy, KG-1 cells were 

submitted, during 18h, to rapamycin treatment and after this time cell viability and autophagy 

activity were determined through MTS assay and immunoblotting analysis of LC3, respectively. 

Data showed that although rapamycin 1 µM promoted a decrease in KG-1 cell viability of about 

20% (Fig.35A), this was the lowest concentration that induced alterations on autophagy levels 

(Fig.35B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 – Determination of cell viability (A) and LC3-I and LC3-II protein levels and densitometric 

analysis of LC3-II/LC3-I (B) in KG-1 cells treated with rapamycin. Cells were incubated during 18h with this 

agent as represented and 2h before the end of the treatment CQ (4.4 µM) was added to samples designed for LC3 

protein analysis to block the autophagy flux and to allow LC3-II accumulation. After the treatment time, cell viability 

was measured by MTS assay and autophagy activity by immunoblotting analysis of LC3 (I and II), as described in 
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Material and Methods section. The MTS results were obtained from comparison with non-treated cells (no drug) and 

are shown as mean+/-SEM of at least three biological replicates. The protein bands were quantified in the Image 

Lab® Software and densitometric analysis is shown as mean+/-SEM of at least three biological replicates. For both 

approaches the comparison between non-treated group and treated group was performed using the Student´s t-test 

and the Prism software (Graph-Pad Software, San Diego, CA). ***p <0.001.   

 

   

Based on the above mentioned, we decided to choose 1 µM of rapamycin to be used in the 

following experiments. 

 

 

4.2.2. Determination of CQ sub-lethal concentrations that inhibit autophagy 

To determine the sub-lethal concentrations of CQ, KG-1 cells were treated during 18h with 

different concentrations of this agent and after this time cell viability was assessed through MTS 

assay. The results showed that KG-1 cells displayed a decrease in cell viability associated with an 

increase of CQ concentration with the highest concentration affecting the viability of about 20% of 

the cells (Fig.36).  

 
 

 

 

 

 

 

 

 

 
Figure 36 – Determination of KG-1 cell viability after treatment with CQ. Cells were incubated during 18h 

with different concentrations of this agent as represented, and after this time, cell viability was measured by MTS 

assay, as described in Material and Methods section. The results were obtained from comparison with non-treated 

cells (no drug) and are shown as mean+/-SEM of at least three biological replicates. Comparison between non-



76 
 

treated group and treated groups was performed using the Student´s t-test and the Prism software (Graph-Pad 

Software, San Diego, CA). **p <0.01; ***p <0.001.    

 

 

In the next step, the autophagy levels of KG-1 cells treated with the different CQ 

concentrations were also evaluated. For that, cells were treated with different drug concentrations 

and immunoblotting analysis of LC3 (I and II) was performed. Data showed that all CQ 

concentrations tested promoted a statistical significant increase in LC3-II/LC3-I ratio compatible 

with autophagy inhibition (Fig.37). 

 

  

Figure 37 – LC3-I and LC3-II protein levels and densitometric analysis of LC3-II/LC3-I in KG-1 cells 

treated with CQ. Cells were incubated during 18h with different concentrations of this agent as represented, and 

after this time, immunoblotting analysis of LC3 (I and II), as described in Material and Methods section, was 

performed to assess autophagy activity. The protein bands were quantified in the Image Lab® Software. The 

comparison between non-treated group and treated groups was performed using the Student´s t-test and the Prism 

software (Graph-Pad Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at least three 

biological replicates. *p <0.05; **p <0.01.  

 

 

As CQ 10 µM was the concentration that exhibited less impact on KG-1 cell viability and 

simultaneously inhibits autophagy, we selected this concentration to be used in future 

experiments.   
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4.2.3. Evaluation the impact of autophagy pharmacological manipulation on 

viability of cells treated with conventional chemotherapy  

4.2.3.1.  Evaluation of autophagy activity and cell cycle profile   

Similar to HL-60 cells, to determine the role of autophagy in the viability of KG-1 cells 

submitted to conventional chemotherapy treatment, we started by evaluating the impact of sub-

lethal concentrations of autophagy modulators in the autophagy levels and cell cycle progression 

of KG-1 cells treated with cytarabine and/or doxorubicin. For that, cells were treated, during 18h, 

with cytarabine and/or doxorubicin combined with rapamycin or CQ, and after this time, 

immunoblotting analysis of LC3 and cell cycle profile analysis was performed. Results showed 

that rapamycin promoted a statistical significant increase in LC3-II/LC3-I ratio of KG-1 cells 

treated with cytarabine, while in cells treated with doxorubicin alone or combined with cytarabine 

rapamycin did not induce alterations (Fig.38).   

 

 

Figure 38 – LC3-I and LC3-II protein levels and densitometric analysis of LC3-II/LC3-I in KG-1 cells 

treated with cytarabine and/or doxorubicin combined with a sub-lethal concentration of rapamycin. 

Cells were incubated during 18h with each of the agents as represented and 2h before the end of the treatment CQ 

(4.4 µM) was added to block the autophagy flux and to allow LC3-II accumulation. After the treatment time, 

immunoblotting analysis of LC3 (I and II), as described in Material and Methods section, was performed to assess 
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autophagy activity. The protein bands were quantified in the Image Lab® Software. The comparison between non-

treated group and treated group and within treated groups was performed using the Student´s t-test and the Prism 

software (Graph-Pad Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at least three 

biological replicates. **p <0.01. C – cytarabine; D – doxorubicin; C+D – cytarabine combined with doxorubicin; R - 

rapamycin; C+R – cytarabine combined with rapamycin; D+R – doxorubicin combined with rapamycin; C+D+R – 

cytarabine and doxorubicin combined with rapamycin. 

 

 

Regarding cell cycle profile, data demonstrated that rapamycin induced a cell cycle arrest in 

S phase of KG-1 cells treated with cytarabine, while in cells submitted to doxorubicin alone or 

combined with cytarabine this agent did not promote major alterations (Fig.39).   

 

 

Figure 39 - Cell cycle profile of KG-1 cells treated with cytarabine and/or doxorubicin combined with 

a sub-lethal concentration of rapamycin. Cells were incubated during 18h with each of the agents as 

represented, and after this time, cell cycle profile was determined through DNA content assessment, as described in 

Material and Methods section. Cell cycle analysis was performed using the Modifit® Software. The comparison 

between non-treated group and treated group and within treated groups was performed using the Two-way ANOVA 

with Bonferroni post hoc test and the Prism software (Graph-Pad Software, San Diego, CA). Cell cycle analysis is 

shown as mean+/-SEM of at least three biological replicates. *p <0.05; *** <0.001. C – cytarabine; D – doxorubicin; 

C+D – cytarabine combined with doxorubicin; R - rapamycin; C+R – cytarabine combined with rapamycin; D+R – 

doxorubicin combined with rapamycin; C+D+R – cytarabine and doxorubicin combined with rapamycin.     

 

 

Altogether, these results suggested that rapamycin promote autophagy induction associated 

with cell cycle arrest in S phase of KG-1 cells treated only with cytarabine.  
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Concerning CQ, our data showed that this autophagy inhibitor promoted a statistical 

significant increase in LC3-II/LC3-I ratio of KG-1 cells submitted to cytarabine and/or doxorubicin 

treatment, indicating that in all tested conditions an inhibition of the autophagy process took 

place (Fig.40).  

 

 

Figure 40 – LC3-I and LC3-II protein levels and densitometric analysis of LC3-II/LC3-I in KG-1 cells 

treated with cytarabine and/or doxorubicin combined with a sub-lethal concentration of CQ. Cells 

were incubated during 18h with each of the agents as represented, and after this time, immunoblotting analysis of 

LC3 (I and II), as described in Material and Methods section, was performed to assess autophagy activity. The 

protein bands were quantified in the Image Lab® Software. The comparison between non-treated group and treated 

group and within treated groups was performed using the Student´s t-test and the Prism software (Graph-Pad 

Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at least three biological replicates. **p 

<0.01; *** <0.001. C – cytarabine; D – doxorubicin; C+D – cytarabine combined with doxorubicin; CQ - chloroquine; 

C+CQ – cytarabine combined with chloroquine; D+CQ – doxorubicin combined with chloroquine; C+D+CQ – 

cytarabine and doxorubicin combined with chloroquine.    

 

 

In addition to autophagy activity, cell cycle profile of KG-1 cells treated with the combination 

of CQ with cytarabine and/or doxorubicin was also evaluated. Data showed that CQ induced cell 
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cycle arrest in S phase of KG-1 cells treated with cytarabine or doxorubicin and that the 

combination of CQ with cytarabine plus doxorubicin promoted cell cycle arrest in G0/G1 phases 

when compared to cells only treated with the anti-leukemia agents (Fig.41).  

 
Figure 41 - Cell cycle profile of KG-1 cells treated with cytarabine and/or doxorubicin combined with 

a sub-lethal concentration of CQ. Cells were incubated during 18h with each of the agents as represented, and 

after this time, cell cycle profile was determined through DNA content assessment, as described in Material and 

Methods section. Cell cycle analysis was performed using the Modifit® Software. The comparison between non-

treated group and treated group and within treated groups was performed using the Two-way ANOVA with Bonferroni 

post hoc test and the Prism software (Graph-Pad Software, San Diego, CA). Cell cycle analysis is shown as mean+/-

SEM of at least three biological replicates. *p <0.05; **p <0.01; *** <0.001. C – cytarabine; D – doxorubicin; C+D – 

cytarabine combined with doxorubicin; CQ - chloroquine; C+CQ – cytarabine combined with chloroquine; D+CQ – 

doxorubicin combined with chloroquine; C+D+CQ – cytarabine and doxorubicin combined with chloroquine. 

 

 

Overall, these results demonstrated that autophagy inhibition promoted by CQ is associated 

with cell cycle arrest in S phase of KG-1 cells treated with cytarabine or doxorubicin and cell cycle 

arrest in G0/G1 phases of cells treated with the anti-leukemia agent´s combination.   

 

In summary, and identical to observed with HL-60 cells, results of section 4.2.3.1 also 

suggested the existence of a correlation between the autophagy process and the cell cycle arrest 

in S phase of KG-1 cells treated with anti-leukemia agents.  

In contrast to HL-60 cells, our previous results indicated that autophagy may act as a pro-

death mechanism in KG-1 cells. Thus, and contrarily to HL-60 cells, the connection between 

autophagy induction and S phase cell cycle arrest may occur in order to promote KG-1 cell death, 

while the inhibition of autophagy associated with S phase cell cycle arrest may occur to promote 
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KG-1 cell survival. Therefore, and similar to HL-60 cells, it was fundamental to understand the 

impact that these approaches have in KG-1 cell survival.  

 

 

4.2.3.2  Evaluation of cell viability 

Identical to HL-60 cells, after evaluating the effects of the sub-lethal concentrations of 

rapamycin or CQ on autophagy and cell cycle profile of KG-1 cells treated with conventional 

chemotherapy, our next step was to determine the impact of these autophagy modulators in the 

viability of KG-1 cells submitted to anti-leukemia agents. Similar to that observed in section 1.2.1, 

these results also showed a good correlation between MTS and Annexin V/PI assays (Fig.42A 

and 42B). In fact, data from both approaches demonstrated that rapamycin promoted a 

statistical significant decrease in the viability of KG-1 cells treated with doxorubicin alone or 

combined with cytarabine (Fig.42A and 42B). However, due to the effects that mTORC1 

inhibition may have on other cellular processes, these results do not allow us to conclude that 

this decrease in KG-1 cell viability is promoted only by autophagy.       
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Figure 42 - Determination of KG-1 cell viability after treatment with cytarabine and/or doxorubicin 

combined with a sub-lethal concentration of rapamycin. Cells were incubated during 18h with each of the 

agents as represented, and after this time, cell viability was measured by MTS (A) and Annexin V/PI (B) assays, as 

described in Material and Methods section. The results of MTS and Annexin V/PI assays were obtained from 

comparison with non-treated cells (no drug) and are represented as mean+/-SEM of at least three biological 

replicates. The comparison between non-treated group and treated group and within treated groups was performed 

using the Student´s t-test for MTS results and the Two-way ANOVA with Bonferroni post hoc test for Annexin V/PI 

results. The statistical analysis was performed using the Prism software (Graph-Pad Software, San Diego, CA) and 

**p <0.01; ***p <0.001. C – cytarabine; D – doxorubicin; C+D - cytarabine combined with doxorubicin; R – 

rapamycin; C+R – cytarabine combined with rapamycin; D+R – doxorubicin combined with rapamycin; C+D+R – 

cytarabine and doxorubicin combined with rapamycin.   

 

 

Regarding CQ, both MTS and Annexin V/PI results showed that this autophagy inhibitor 

promoted a statistical significant increase in the viability of KG-1 cells submitted to doxorubicin 

alone or combined with cytarabine, being this effect more evident in cells treated with 

doxorubicin (Fig.43A and 43B). Moreover, data obtained from both techniques also 

demonstrated that CQ did not induce alterations in the viability of KG-1 cells treated with 
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cytarabine (Fig.43A and 43B). Thus, this data indicated that autophagy inhibition associated with 

cell cycle arrest in S phase may promote the survival of KG-1 cells treated with anti-leukemia 

agents. Moreover, these results also supported the hypothesis that autophagy may function as a 

tumor suppressor process in KG-1 cells. However, studies involving the genetic manipulation of 

autophagy will be performed in future to confirm these results. 

 

 

Figure 43 - Determination of KG-1 cell viability after treatment with cytarabine and/or doxorubicin 

combined with a sub-lethal concentration of CQ. Cells were incubated during 18h with each of the agents as 

represented, and after this time, cell viability was measured by MTS (A) and Annexin V/PI (B) assays, as described in 

Material and Methods section. The results of MTS and Annexin V/PI assays were obtained from comparison with 

non-treated cells (no drug) and are represented as mean+/-SEM of at least three biological replicates. The 

comparison between non-treated group and treated group and within treated groups was performed using the 

Student´s t-test for MTS results and the Two-way ANOVA with Bonferroni post hoc test for Annexin V/PI results. The 

statistical analysis was performed using the Prism software (Graph-Pad Software, San Diego, CA) and *p <0.05; **p 

<0.01; ***p <0.001. C – cytarabine; D – doxorubicin; C+D - cytarabine combined with doxorubicin; CQ – 

chloroquine; C+CQ – cytarabine combined with chloroquine; D+CQ – doxorubicin combined with chloroquine; 

C+D+CQ – cytarabine and doxorubicin combined with chloroquine. 
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4.2.4. Evaluation the impact of autophagy pharmacological manipulation on 

DNA damage of cells treated with conventional chemotherapy   

In contrast to HL-60 cells, the results described in previous sections suggested that 

autophagy may act as inducer of KG-1 cell death. Therefore, our next step was to determine if 

autophagy modulation impacts on DNA damage of KG-1 cells. Results showed that rapamycin 

promoted a decrease in pH2AX/H2AX ratio of untreated cells or cells treated with cytarabine 

and/or doxorubicin (Fig.44). However, as referred above, control cells displayed a high 

endogenous pH2AX/H2AX ratio (Fig.44). Thus, and similar to observed for HL-60 cells, this data 

suggested that rapamycin decreases the DNA damage levels of KG-1 cells treated with cytarabine 

and/or doxorubicin. However, and as previous mentioned, the effect that mTORC1 inhibition may 

have on diverse cellular processes do not allow us to associate this decrease only with 

autophagy.  

 

 

Figure 44 – pH2AX (Ser139) and total H2AX protein levels and densitometric analysis of 

pH2AX/H2AX in KG-1 cells treated with cytarabine and/or doxorubicin combined with a sub-lethal 

concentration of rapamycin. Cells were incubated during 18h with each of the agents as represented, and after 

this time, immunoblotting analysis of pH2AX and total H2AX, as described in Material and Methods section, was 

performed to assess DNA damage. The protein bands were quantified in the Image Lab® Software. The comparison 
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between non-treated group and treated group and within treated groups was performed using the Student´s t-test 

and the Prism software (Graph-Pad Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at 

least three biological replicates. **p <0.01. C – cytarabine; D – doxorubicin; C+D – cytarabine combined with 

doxorubicin; R - rapamycin; C+R – cytarabine combined with rapamycin; D+R – doxorubicin combined with 

rapamycin; C+D+R – cytarabine and doxorubicin combined with rapamycin.     

 

 

Concerning CQ, results demonstrated that this autophagy inhibitor promoted an increase in 

pH2AX/H2AX ratio of KG-1 cells treated with cytarabine or doxorubicin and a decrease in cells 

treated with the combination of these two anti-leukemia agents (Fig.45). However, in none of the 

tested conditions statistical significance was obtained (Fig.45). Thus, similar to HL-60 cells, this 

data do not allow us to conclude if autophagy inhibition may interfere with DNA damage levels of 

KG-1 cells. 

 

 

Figure 45 – pH2AX (Ser139) and total H2AX protein levels and densitometric analysis of 

pH2AX/H2AX in KG-1 cells treated with cytarabine and/or doxorubicin combined with a sub-lethal 

concentration of CQ. Cells were incubated during 18h with each of the agents as represented, and after this time, 

immunoblotting analysis of pH2AX and total H2AX, as described in Material and Methods section, was performed to 

assess DNA damage. The protein bands were quantified in the Image Lab® Software. The comparison between non-

treated group and treated group and within treated groups was performed using the Student´s t-test and the Prism 
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software (Graph-Pad Software, San Diego, CA). Densitometric analysis is shown as mean+/-SEM of at least three 

biological replicates. C – cytarabine; D – doxorubicin; C+D – cytarabine combined with doxorubicin; CQ – 

chloroquine; C+CQ – cytarabine combined with chloroquine; D+CQ – doxorubicin combined with chloroquine; 

C+D+CQ – cytarabine and doxorubicin combined with chloroquine.   

 

 

Taken together, results of section 4.2.4 indicated that further studies are needed to 

understand if autophagy activation or inhibition has impact on DNA damage levels of KG-1 cells. 

 

 

A summary of the results obtained is presented in table 7 and 8 for HL-60 and KG-1 cells, 

respectively. In summary, our results suggested that anti-leukemia agents induce DNA damage in 

HL-60 cells, which promote AMPK pathway activation, cell cycle arrest in G0/G1 phases and 

autophagy. The fact that the drugs combination, more efficient in eradicating HL-60 cells (by 

Annexin V/PI), is associated with a lower activation of AMPK suggests that this pathway functions 

as a pro-survival mechanism. In addition, the inhibition of autophagy through CQ promoted a 

decrease in the viability of HL-60 cells (by Annexin V/PI) indicating that one of the outcomes of 

AMPK activation could be responsible for HL-60 cell survival. Surprisingly, all the treatment 

combinations that display higher efficiency in killing HL-60 cells are associated with an arrest of 

cells in S phase and further studies have to be performed to understand the interconnections and 

the coordinated regulation of AMPK, autophagy and cell cycle (Table 7).  

Our data also indicated that HL-60 and KG-1 cells respond differently to conventional 

chemotherapy treatment. Indeed, KG-1 cells display high levels of endogenous DNA damage, as 

previously described [211], that jeopardizes the analysis of chemotherapy effects on DNA 

damage. However, and in contrast to HL-60 cells, increased AMPK activation, cell cycle arrest in 

S phase and autophagy induction was observed in the most efficient treatments such as 

doxorubicin alone or combined with cytarabine, suggesting that AMPK in KG-1 cells might 

function as a tumor suppressor pathway. In addition, the inhibition of autophagy through CQ 

promoted an increase in the viability of KG-1 cells treated with anti-leukemia agents, suggesting 

that autophagy could be one of the AMPK outcomes responsible for its tumor suppression 

function (Table 8). 

Altogether, these results suggested that, contrarily to occur in clinical, different strategies 

should be applied for AML-FAB M2 and AML-FAB M6 leukemia patients’ treatment. Particularly, 
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the combination of conventional chemotherapy with AMPK and/or autophagy inhibitors seem to 

be a good approach for AML-FAB M2 leukemia treatment, while, on other hand, the combination 

of anti-leukemia agents with AMPK and/or autophagy activators could be a good strategy to apply 

in AML-FAB M6 leukemia. 
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Table 7 - An overview of the results obtained with HL-60 cells. 

HL-60 

 
C D C + D 

 + R + CQ  + R + CQ  + R + CQ 

Viability 

MTS 57±1.7%* 52±1.8% 68±1.2%* 46±1.4%* 36±1.8%* 44±1.5% 52±1.1%* 41±1.0%* 51±2.1% 

Annexin 

V/PI 
75±1.4%* 77±1.0% 67±1.0%* 72±1.5%* 70±1.7% 68±1.4%* 68±1.4%* 72±1.8% 66±1.6% 

pH2AX/H2AX + - ++ + -* ++ +* N/C ++ 

pAMPK/AMPK +++* ND ND ++* ND ND + ND ND 

pp27/p27 N/C ND ND N/C ND ND N/C ND ND 

Cell cycle 
G0/G1 phases 

(+++)* 
N/C S phase* 

G0/G1 phases 

(++)* 
S phase* 

S phase* and 

G2/M phases* 

G0/G1 phases 

(+)* and S 

phase (+)* 

S phase (++)* 
S phase 

(++)* 

Autophagy ++ N/C -* + ++* -* N/C + -* 

The letters and symbols exhibited in the previous table represent: C (cytarabine); D (doxorubicin); C+D (cytarabine combined with doxorubicin); R (rapamycin); CQ (chloroquine); + (increase); - (decrease); N/C (not 
changed); ND (not determined); * (results with statistical significance). 
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Table 8 - An overview of the results obtained with KG-1 cells. 

The letters and symbols exhibited in the previous table represent: C (cytarabine); D (doxorubicin); C+D (cytarabine combined with doxorubicin); R (rapamycin); CQ (chloroquine); + (increase); - (decrease); N/C (not 
changed); ND (not determined); * (results with statistical significance). 
 

KG-1 

 
C D C + D 

 + R + CQ  + R + CQ  + R + CQ 

Viability 

MTS 57±1.5%* 42±1.0% 59±1.9% 56±1.1%* 34±1.7% 75±3.7% 39±1.1%* 17.7±1.2% 42±0.9% 

Annexin 

V/PI 
46±0.5%* 46±0.2% 46±0.4% 45±0.7%* 39±1.4% 57±1.4% 31±0.5%* 26.7±1.7% 35±0.9% 

pH2AX/H2AX N/C - + N/C - + N/C - - 

pAMPK/AMPK + ND ND ++ ND ND +++ ND ND 

pp27/p27 N/C ND ND N/C ND ND N/C ND ND 

Cell cycle 
G0/G1 

phases* 
S phase* S phase* S phase (+)* N/C S phase (++)* S phase (+)* N/C 

G0/G1 

phase* 

Autophagy N/C +* -* ++* N/C -* + N/C -* 
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GENERAL DISCUSSION AND FUTURE PERSPECTIVES 

 
As current acute myeloid leukemia (AML) therapies present poor outcomes among old 

patients, it becomes crucial to elucidate the mechanisms underlying AML cell´s 

resistance/susceptibility to conventional chemotherapy in order to develop more effective 

treatments. Malignant cells are characterized by high nuclear DNA replication rates and 

consequent extreme proliferation, when compared to surrounded healthy cells [74], and 

therefore several anticancer agents act as inducers of DNA damage [76]. However, recently 

studies reported that the DNA damage induced by some of these agents activates a DNA damage 

response (DDR) involving the activation of crucial proteins, such as AMP-activated protein kinase 

(AMPK), that culminates in autophagy induction as a pro-survival mechanism [135, 184-186]. 

Cytarabine and doxorubicin, chemotherapeutic agents used in AML treatment, are described as 

inducers of DNA damage [80, 81, 89-91] and DDR [101-103]. However, their effects on AMPK 

activation in AML cells are still elusive. Our preliminary data showed that these anti-leukemia 

agents promoted cell cycle arrest in G0/G1 and S phases associated with autophagy induction in 

AML cells. Therefore, this master project aimed to associate those events with the occurrence of 

DNA damage induced by conventional chemotherapy in AML cells. The work hypothesis was 

based on the fact that DNA damage, which activates a DDR, could culminate in cell cycle arrest 

and autophagy induction as a pro-survival mechanism conferring chemoresistance to AML cells. 

To validate this hypothesis, two distinct AML cell lines, HL-60, an in vitro model of AML with 

differentiation, and KG-1, an in vitro model of erythroleukemia, were used. Cell lines are 

advantageous models that allow the reduction of human burden associated with ethical 

considerations, as well as, the decrease of the variability between samples. Moreover, continuous 

proliferation of AML cells permits to study leukemia in vitro whereas non-immortalized 

hematopoietic cells cannot survive in these conditions during long time periods. However, studies 

using cell lines have important limitations such as: these models do not recapitulate the 

complexity of primary tumor cells and the cellular interactions with the environment niches are 

not reviewed in these in vitro studies [215]. Nevertheless, these models are very useful to identify 

targets to be explored in patient’s sample contexts.  

The occurrence of DNA damage and DDR elicited by the anti-leukemia agents was evaluated 

using the half maximal inhibitory concentration (IC50) values of cytarabine and doxorubicin. In fact, 

these concentrations are the most commonly used in testing drugs cytotoxicity in tumor cell lines 



92 
 

[203, 204]. MTS and Annexin V/PI assays were the approaches used to determine these 

concentrations, however, in contrast to KG-1 cells, a good correlation between these methods 

was not obtained in HL-60 cells. Particularly, the drugs concentration that correspond to IC50 

values by MTS only promoted a decrease of about 30% in the viability of HL-60 cells by Annexin 

V/PI assay. MTS is a metabolic assay that allows the indirect determination of the number of 

viable cells by the ability of mitochondria to reduce tetrazolium salt into formazan [200]. On the 

other hand, Annexin V/PI assay is a more accurate method that permits this determination 

through the use of Annexin V, a molecule that binds with high affinity to phosphatidylserine (PE) 

allowing the identification of plasma membrane symmetry alterations, and propidium iodide (PI), 

a membrane impermeable compound that only intercalates with nucleic acids when cells have 

compromised/disintegrated plasma membrane [201, 202]. Cytarabine [208] and doxorubicin 

[209] have been described as affecting mitochondrial function of HL-60 cells. Therefore, these 

anti-leukemia agents could interfere with mitochondrial activity of HL-60 cells impairing the 

reduction of tetrazolium salt into formazan, leading to an overestimation of the drugs cytotoxicity. 

In fact, over the last years, studies have emerging reporting that some drugs have the capacity to 

interfere with mitochondrial activity affecting the reduction of tetrazolium salt and resulting in 

erroneous cytotoxicity conclusions [205-207]. Our data suggested that the IC50 values of 

cytarabine or doxorubicin determined by MTS assay for HL-60 cells are not real IC50 values, 

however, we decided to use these concentrations throughout this work since these are the most 

commonly used concentrations chosen for cytotoxicity studies performed in HL-60 cells [203, 

204]. Nonetheless, in future, the determination of IC50 values for cytarabine or doxorubicin in HL-

60 cells will be performed by Annexin V/PI assay and all parameters studied in this thesis will be 

repeated using these concentrations.  

Annexin V/PI results for HL-60 cells and MTS and Annexin V/PI results for KG-1 cells also 

showed that the combination of cytarabine with doxorubicin increases the killing of cells when 

compared to the individual treatments, suggesting that this combination generates a synergistic 

cytotoxic effect. However, the most accurate procedure to study synergism between drugs is 

through the determination of a ratio between these agents in order to find the most effective 

combination, which is achieved using specific software analysis such as CalcuSyn [210]. 

Therefore, in future, this analysis will also be performed to determine the combinations that have 

the highest synergistic effect.  
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The strategy for studying DNA damage in AML cell´s response to conventional chemotherapy 

was based on the evaluation of histone H2AX phosphorylation at Ser139, since this event is the 

most commonly used biomarker to detect genotoxic stress [109-111]. As expected, our data 

showed that cytarabine and/or doxorubicin promoted DNA damage in HL-60 cells, being that the 

higher cytotoxic effect promoted by drugs combination seemed to result in a more pronounced 

DNA damage induction. In contrast, KG-1 cells appeared to exhibit endogenous DNA damage and 

anti-leukemia agents did not seem to affect this DNA damage levels. In fact, previous work 

showed that KG-1 cells display signs of endogenous DNA damage and that high doses of 

irradiation did not promote alterations in these levels [211]. Thus, our data raises two 

hypotheses: either anti-leukemia agents do not promote DNA damage in KG-1 cells or it is not 

detectable due to the high endogenous DNA damage levels displayed by these cells. To 

complement and validate results obtained with both cell lines, additional methodologies to 

evaluate the occurrence of DNA damage, such as TUNEL (terminal deoxyribonucleotidyl 

transferase-mediated deoxyuridine triphosphate nick end labeling) assay [216], can be applied in 

future.  

Studies have shown that the DNA damage induced by some anticancer agents promotes the 

activation of AMPK pathway [184-186]. Our results on HL-60 cells suggest that cytarabine or 

doxorubicin alone induce AMPK activation. Interesting the combination of both drugs resulted in a 

less AMPK activation when compared to individual treatments, suggesting that AMPK activation 

may function as a pro-survival mechanism in these cells. Cytarabine and doxorubicin are 

described as inducers of ATR and ATM (through phosphorylation at Ser1981) activation, 

respectively [101, 103]. However, once activated, ATR or ATM may phosphorylate AMPK directly 

[118] or mediated through LKB1 phosphorylation [120]. Therefore, in future, further studies 

should be accomplished in order to understand if the activation of AMPK observed in HL-60 cells 

treated with anti-leukemia agents is promoted by ATR or ATM directly or mediated through LKB1 

phosphorylation. These studies may include: immunoblotting analysis of ATR, ATM (Ser1981) 

and LKB1 (Thr366) and knockdown of ATR, ATM or LKB1 by siRNA [120].  

In addition to DNA damage, AMPK is also an important sensor of cellular energy status that 

is activated by a rise in the AMP: ATP ratio, promoted either by a reduction in ATP production or 

an increase in ATP consumption (reviewed in [136]). Results about the induction of DNA damage 

promoted by cytarabine and/or doxorubicin in KG-1 cells were inconclusive, however, AMPK 

could also be activated in response to an increase in AMP: ATP ratio promoted by these agents. 
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In fact, data suggested that cytarabine and/or doxorubicin promote AMPK activation in KG-1 

cells, being that the higher cytotoxic effect promoted by drugs combination resulted in a more 

evident AMPK activation. Thus, it would be interesting to determine the ATP levels in KG-1 cells 

submitted to anti-leukemia agents in order to correlate these levels with AMPK activation. 

Studies in solid tumors cells have shown that the activation of AMPK leads to autophagy 

induction as a tumor pro-survival mechanism [184-186]. Nonetheless, other studies, namely in 

lymphoma cells, demonstrated that AMPK activation associated with autophagy induction acts as 

a pro-death mechanism [187, 188]. Interesting, our data suggested that while in HL-60 cells the 

activation of AMPK promoted by anti-leukemia agents leads to a moderate autophagy induction 

and G0/G1 cell cycle arrest as a pro-survival mechanism, in KG-1 cells this activation seems to 

result in autophagy induction and S phase cell cycle arrest as a pro-death mechanism. 

Once activated AMPK is described as phosphorylating the cyclin-dependent kinase inhibitor 

(CDKI) p27, which results in its exportation from nucleus to cytoplasm where it induces 

autophagy [135, 141]. However, contrarily to expected, our results suggested that both in HL-60 

and KG-1 cells the activation of AMPK by anti-leukemia agents did not result in p27 

phosphorylation, suggesting that phosphorylated p27 is not involved in the slight induction of 

autophagy observed in these cells. Nonetheless, to complement and corroborate this data, 

additional approaches, such as immunohistochemistry for the detection of phosphorylated p27 

and total p27, will be performed in order to evaluate the subcellular localization of these 

molecules. In addition to phosphorylated p27, AMPK could also impact on autophagy in other 

different ways, such as: through directly phosphorylation of ULK1 [143] or through 

phosphorylation of raptor [142]. Therefore, to clarify how AMPK activation could promote 

autophagy in AML cells, immunoblotting analysis of these proteins may be executed in the future. 

Our results also suggested that cytarabine and/or doxorubicin induce AMPK activation 

associated with G0/G1 cell cycle arrest in HL-60 cells. As p27 is a CDKI that functions in nucleus 

to negatively regulate Cdk2 promoting G0/G1 cell cycle arrest [134], it is possible that the 

G0/G1 cell cycle arrest observed in HL-60 cells treated with conventional chemotherapy be 

induced by this CDKI. Thus, this aspect may be clarified through an immunohistochemistry in 

order to detect and confirm p27 nuclear localization. p53 plays an important role in the 

maintenance of genome integrity and it is well described as inducer of G0/G1 cell cycle arrest in 

response to DNA damage (reviewed in [144]). However, this protein is not involved in the G0/G1 

cell cycle arrest observed in HL-60 cells, since these cells have a null-p53 phenotype [217, 218]. 
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Interesting, KG-1 cells also lack the expression of P53 mRNA [217]. However, while in HL-60 

cells most of the P53 gene is deleted and no aberrant P53 mRNA species is detected [217], in 

KG-1 cells wild-type P53 mRNA is not expressed because these cells have mutations in P53 gene 

[219]. In fact, deletions or mutations in this gene were detected in other types of AML cell lines, 

suggesting that inactivation of the P53 gene may be a common feature in AML cells and that 

may play an important role in the establishment of these cells [219]. The Cdc25A (Cell division 

cycle 25 homolog A) phosphatase is another protein that could be involved in the G0/G1 cell 

cycle arrest promoted by cytarabine and/or doxorubicin in HL-60 cells. In response to DNA 

damage Cdc25A is phosphorylated and suffers ubiquitin-proteasome mediated degradation, 

which impairs the dephosphorylation of Cdk2 leading to its inhibition and consequent G0/G1 cell 

cycle arrest (reviewed in [144]). Thus, to determine if the G0/G1 cell cycle arrest promoted by 

conventional chemotherapy could be mediated by a mechanism that involves Cdc25A 

degradation, immunoblotting analysis of Cdc25A can be performed in future approaches. The 

degradation of Cdc25A is also involved in S phase cell cycle arrest (reviewed in [144]) and 

therefore immunoblotting analysis of this protein may also be done to understand if the S phase 

cell cycle arrest induced by doxorubicin alone or combined with cytarabine in KG-1 cells is 

promoted by this event.        

To complement and validate results showing that AMPK is a crucial player in HL-60 cells 

response to conventional chemotherapy, we intent to pharmacologically manipulate AMPK 

through metformin, an AMPK activator, or compound C, an AMPK inhibitor. To confirm results 

obtained, genetic approaches, such as the silencing by siRNA of AMPK, will also be performed. 

The same approaches will be executed in KG-1 cells to confirm the role of AMPK in the cell cycle 

arrest and autophagy induction as a pro-death mechanism.   

Autophagy has been described as playing a dual role in cancer therapeutic context, namely in 

hematological malignancies. Studies have reported that autophagy may function as a pro-survival 

mechanism in response to chemotherapy. For example, the inhibition of autophagy by 

pharmacological inhibitors or genetic knockdown of autophagy genes enhanced the death of 

chronic myeloid leukemia (CML) cells by Imatinib [179]. However, studies also described a role 

as a pro-death mechanism for autophagy. For example, morphinone, vitamin K2 and Eupalinin A 

were reported as inducing autophagic cell death in HL-60 AML cell line [183]. These findings 

point for a role of autophagy in cancer cells response to chemotherapy but also suggest that the 

impact of autophagy on the multiple cancer cells is different. In fact, our results also supported 
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this dual role of autophagy. The pharmacological inhibition of autophagy potentiated the cytotoxic 

effects of the anti-leukemia therapy in HL-60 cells, but in KG-1 cells this inhibition enhanced cell 

survival. Therefore, these results suggested that while in HL-60 cells autophagy may function as 

a pro-survival mechanism, in KG-1 cells may act as a pro-death mechanism. Data of 

pharmacological activation of autophagy limits our conclusions on the role of autophagy in AML 

cells survival due to the fact that rapamycin induces autophagy through direct inhibition of the 

mammalian target of rapamycin complex 1 (mTORC1), which may exert crucial functions in other 

several cellular processes (reviewed in [127]). Thus, the genetic manipulation of autophagy 

through the silencing by siRNA of some autophagy regulators, such as BECLIN1, ATG5 and 

ATG7, will be performed to confirm obtained results. 

In conclusion, our findings suggested that AMPK pathway activation culminating in cell cycle 

arrest and autophagy induction plays an important role in AML cells response to conventional 

chemotherapy (Fig.47). Nevertheless, our results showed that HL-60 and KG-1 cells respond 

differently to anti-leukemia therapy. In fact, while in HL-60 cells AMPK activation associated with 

G0/G1 cell cycle arrest and autophagy induction promoted by DNA damage (Fig.47A) seems to 

function as a pro-survival mechanism, in KG-1 cells the AMPK activation associated with S phase 

cell cycle arrest and autophagy induction (Fig.47B) seems to act as a pro-death mechanism. 

Thus, this data points for AMPK as a potential therapeutic target, which in combination with 

conventional chemotherapy may be a successful strategy to eradicate AML cells.        
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Figure 47 - Schematic representation of the results obtained with HL-60 (A) and KG-1 (B) cells during this master project. In HL-60 cells, cytarabine or doxorubicin promoted 

H2AX phosphorylation at Ser139, AMPK phosphorylation at Thr172 and G0/G1 cell cycle arrest. The combination of both drugs resulted in a more pronounced H2AX phosphorylation, less 

AMPK phosphorylation and G0/G1 cell cycle arrest and no impact on autophagy. Nonetheless, cytarabine and/or doxorubicin did not promote p27 phosphorylation at Thr198. In KG-1 cells, 

cytarabine and/or doxorubicin did not promote H2AX phosphorylation at Ser139, but induced AMPK phosphorylation and cell cycle arrest. Doxorubicin alone or combined with cytarabine 

promoted AMPK phosphorylation associated with S phase cell cycle arrest and autophagy induction. Similar to HL-60 cells, the phosphorylation of p27 at Thr198 was also not observed in KG-1 

cells treated with cytarabine and/or doxorubicin. C - cytarabine; D - doxorubicin; C+D - cytarabine combined with doxorubicin.   
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