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RESUMO 

A tuberculose, uma doença devastadora causada por bactérias do complexo Mycobacterium tuberculosis 

(MTBC), mantém-se vastamente fora de controlo. Embora a imunidade mediada por células T positivas 

para cluster de diferenciação 4 (T CD4+) seja crítica para o controlo da infeção, não existe um 

conhecimento profundo sobre as características das respostas protetoras mediadas por células T bem 

como dos fatores que têm impacto no seu estabelecimento. Neste contexto, a diversidade genética do 

MTBC tem sido subestimada, visto que a maioria dos antigénios conhecidos de M. tuberculosis são 

hiperconservados. A existência de epítopos de células T variáveis foi investigada através da análise da 

diversidade, evolução e imunogenicidade de uma ilha genómica expressa in vivo (iVEGI) em 270 genomas 

do MTBC. A iVEGI apresentou um nível de diversidade nucleotídica acima da média do genoma, devido 

à presença de 21 genes altamente diversos. A análise computacional de evolução molecular previu 11 

codões de nove genes como estando sob seleção diversificante. De particular interesse foram três 

substituições nos genes accD2, Rv0987 e Rv0988, que alteraram significativamente o número de 

péptidos codificados com elevada afinidade de ligação prevista para diferentes moléculas de antigénio 

leucocitário humano (HLA) de classe II. Ensaios in vitro realizados com o HLA DRB1*01:01 corroboraram 

a existência de péptidos com elevada afinidade de ligação e revelaram diferenças de mais de 58% na 

afinidade de ligação entre péptidos wild-type e mutante que sobrepõem AccD2 R233L e Rv0987 V169L. 

Notavelmente, o péptido AccD2228-241 demonstrou níveis de afinidade e estabilidade tão elevados como 

o controlo positivo ESAT-63-17, sendo assim um forte candidato para um epítopo de célula T CD4+ restrito 

a uma linhagem de M. tuberculosis. Durante a longa coevolução entre M. tuberculosis e populações 

humanas, a diversidade genética em epítopos específicos de células T pode ter sido selecionada de modo 

a induzir respostas imunes vantajosas para o agente patogénico. Revelar a trajetória evolutiva de M. 

tuberculosis em resposta à pressão imunológica pode oferecer ferramentas sem precedentes para 

explorar os seus alvos moleculares em favor do hospedeiro, nomeadamente para o desenvolvimento de 

vacinas mais eficientes. 

 

Palavras-Chave: Tuberculose; Mycobacterium tuberculosis; seleção diversificante; epítopo de células 

T, antigénio leucocitário humano          
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ABSTRACT 

Tuberculosis, a devastating disease caused by bacteria from the Mycobacterium tuberculosis complex 

(MTBC), remains vastly uncontrolled. Although cluster of differentiation 4 positive (CD4+) T cell-mediated 

immunity is critical for infection control, a deep knowledge on the characteristics of the protective T cell 

responses and on the factors impacting their establishment is lacking. In this context, the MTBC genetic 

diversity has been underappreciated, as most of the known M. tuberculosis antigens are hyperconserved. 

The existence of varying T cell epitopes was investigated by analysing the diversity, evolution and 

immunogenicity of an in vivo-expressed genomic island across 270 MTBC genomes. The in vivo-expressed 

genomic island displayed a level of nucleotide diversity above the whole-genome average due to the 

presence of 21 highly diverse genes. Computational molecular evolution analysis predicted 11 codons 

from nine genes to be under diversifying selection. Of particular interest were three substitutions in the 

genes accD2, Rv0987 and Rv0988, which significantly altered the number of encoded peptides with 

predicted high binding affinity to class II human leukocyte antigen (HLA) molecules. In vitro assays 

performed with HLA DRB1*01:01 corroborated the existence of high binding affinity peptides and 

revealed differences of more than 58% in the binding affinity between wild-type and variant peptides 

overlapping AccD2 R233L and Rv0987 V169L. Notably, the AccD2228-241 peptide showed affinity and 

stability levels as high as the positive control ESAT-63-17, thus being a strong candidate for an M. 

tuberculosis lineage-restricted CD4+ T cell epitope. During the long co-evolution of M. tuberculosis and 

human populations, genetic diversity in specific T cell epitopes might have been selected to induce 

immune responses advantageous for the pathogen. Unveiling the evolutionary path of M. tuberculosis in 

response to immune pressure might offer unprecedented tools to exploit its molecular targets in favour 

of the host, namely for the development of more efficient vaccines.  

 

KEYWORDS:  Tuberculosis; Mycobacterium tuberculosis; diversifying selection; T cell epitope; human 

leukocyte antigen   

 

 

 

 

 



x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xi 

 

TABLE OF CONTENTS 

Acknowledgements .............................................................................................................................. v 

Resumo ............................................................................................................................................. vii 

Abstract .............................................................................................................................................. ix 

Table of contents ................................................................................................................................ xi 

Figures index .................................................................................................................................... xiii 

Tables index ...................................................................................................................................... xv 

Abbreviations .................................................................................................................................... xvi 

Introduction ........................................................................................................................................ 1 

Tuberculosis: a major human health problem .................................................................................. 1 

The origin of human TB .................................................................................................................. 2 

MTBC population structure ............................................................................................................. 3 

Genetic diversity among host and pathogen populations in TB ......................................................... 5 

Influence of the host-pathogen genetic diversity on TB ..................................................................... 6 

Detection of diversifying selection .................................................................................................... 8 

The role of T cells in the immune response against TB .................................................................. 10 

Principles and techniques for T cell epitope discovery .................................................................... 11 

Aims ................................................................................................................................................ 13 

Results ............................................................................................................................................. 15 

High nucleotide diversity and evidence for diversifying selection in the iVEGI .................................. 15 

Specific iVEGI variants under diversifying selection impact T cell epitope prediction ........................ 18 

Geographic correlations between population coverage and MTBC lineage frequency....................... 21 

In vitro validation of the predicted CD4+ T cell epitopes under diversifying selection ........................ 24 

Discussion ........................................................................................................................................ 25 

Conclusion and future perspectives ................................................................................................... 29 

Materials and Methods ..................................................................................................................... 31 

Sequence retrieval ........................................................................................................................ 31 

Nucleotide diversity and recombination tests ................................................................................. 31 

Analysis of diversifying selection .................................................................................................... 32 

T cell epitope prediction ................................................................................................................ 32 



xii 

 

Assessment of the worldwide population coverage and the geographic distribution of the MTBC ..... 33 

In vitro HLA-binding assays ........................................................................................................... 33 

References ....................................................................................................................................... 35 

Supplementary Data ......................................................................................................................... 51 

Single-nucleotide substitutions found in iVEGI ................................................................................ 51 

HLA alleles used in the immunoinformatics analysis ...................................................................... 64 

Calculation of the normalized percentage of high binding affinity peptides ...................................... 65 

Geographic regions used for the estimation of the regional population coverage and MTBC lineages 

distribution ................................................................................................................................... 66 

HLA alleles with predicted high binding affinity peptides encompassing wild-type and variant amino 

acid residues under diversifying selection ...................................................................................... 67 

Regional population coverage for peptides encompassing residues under diversifying selection ...... 71 

In vitro HLA-binding assays ........................................................................................................... 72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xiii 

 

FIGURES INDEX 

 

Figure 1. Pathology and death rate of human TB. ............................................................................. 2 

Figure 2. Phylogeny of the MTBC based on whole-genomes of 216 M. tuberculosis and 3 animal-

adapted strains. .................................................................................................................................. 5 

Figure 3. Transmission dynamics of TB in San Francisco, United States of America (2001-2009). ..... 7 

Figure 4. Schematic representation of the action of diversifying selection.. ......................................... 8 

Figure 5. Key players in the immunity against TB.. .......................................................................... 10 

Figure 6. Comparative genomics analysis of the iVEGI.. ................................................................... 16 

Figure 7. Immunoinformatics analysis of the sites under diversifying selection in iVEGI.. ................... 19 

Figure 8. Variations in the worldwide population coverage in sites under diversifying selection.. ........ 20 

Figure 9. Association between differential population coverage of predicted epitopes and the 

geographic distribution of the MTBC.. ................................................................................................ 23 

Figure 10. In vitro validation of the candidate CD4+ T cell epitopes under diversifying selection......... 24  



xiv 

 

 



 

xv 

 

TABLES INDEX 

 

Table 1. Amino acid substitutions under diversifying selection in iVEGI. ............................................ 17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 

 

 



 

xvii 

 

ABBREVIATIONS 

AIDS  Acquired immune deficiency syndrome 

ALOX5  Arachidonate 5-Lipoxygenase 

AM  Alveolar macrophage 

APC  Antigen-presenting cells 

BCG  Bacille-Calmette-Guérin 

BEB  Bayes Empirical Bayes 

CD4+  Cluster of differentiation 4 positive 

DNA  Deoxyribonucleic acid 

FUBAR  Fast Unbiased Bayesian AppRoximation 

GWAS  Genome-wide association study 

HIV  Human immunodeficiency virus 

HLA  Human leukocyte antigen 

IFN-γ  Interferon-gamma 

IL-10  Interleukin-10 

IRGM  Immunity-related GTPase M 

iVEGI  in vivo-expressed genomic island 

LRT  Likelihood ratio test 

LSP  Large sequence polymorphism 

MBL2  Mannose-binding lectin 2 

MHC  Major histocompatibility complex 

MIRU-VNTR Mycobacterial interspersed repetitive units-variable number of tandem repeats 

MRCA  Most recent common ancestral 

MSMD  Mendelian susceptibility to mycobacterial diseases 

MTBC  Mycobacterium tuberculosis complex 

PAML  Phylogenetic analysis by maximum likelihood 

PCR  Polymerase chain reaction 

PRR  Pattern recognition receptor 

SNP  Single nucleotide polymorphism 

TB  Tuberculosis 

TLR  Toll-like receptor 



xviii 

 

WHO  World Health Organization               

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

 

INTRODUCTION 

Tuberculosis: a major human health problem 

Tuberculosis (TB) is an infectious disease caused by the bacillus Mycobacterium tuberculosis. Human 

TB affects primarily the lungs, where it leads to progressive tissue necrosis and cavity formation (Figure 

1A). Without treatment, patients get increasingly debilitated with fever, weight loss and ultimately 

respiratory failure [1,2]. In less common cases, the pathogen can disseminate and induce pathology in 

other parts of the body, such as the central nervous system, bones and the gastrointestinal tract [3]. Only 

pulmonary TB can lead to aerosol transmission of the tubercle bacilli to other individuals [4]. The single 

preventive strategy available is the Bacille-Calmette-Guérin vaccine (BCG), first administered in 1921. 

Unfortunately, this vaccine is only efficient in protecting children against disseminated TB and its efficacy 

against pulmonary TB in adults is highly variable [5,6]. It is estimated that at least one third of the world’s 

population had already inhaled airborne droplets containing M. tuberculosis [7]. Most people are able to 

control bacterial growth and remain asymptomatic (latent TB). Nevertheless, 5-10% will eventually 

manifest the active form of the disease [1,2]. This percentage is even higher in immunocompromised 

patients, such as the ones infected with the human immunodeficiency virus (HIV). According to the World 

Health Organization (WHO), nine million people developed TB in 2013, resulting in a tragic amount of 

1.5 million deaths (0.4 million due to HIV-associated TB) (Figure 1B) [7]. In fact, TB is only seconded by 

the acquired immune deficiency syndrome (AIDS) in terms of human casualties due to an infectious 

disease worldwide. Furthermore, TB also poses a high global economic burden, with eight billion dollars 

spent each year in diagnostic and treatment [7]. Once a person is diagnosed with TB, typical treatment 

relies on the administration of four antibiotics (isoniazid, rifampicin, ethambutol and pyrazinamide) over 

six months. Although this regime is highly effective among new cases (85% success), current global death 

rate decline is a modest 1-2% (Figure 1B) [7]. In addition to this, the emergence of drug-resistant strains 

threatens the use of antibiotics in the future [7]. Therefore, new therapeutic strategies are urgently needed 

to tackle this disease. 
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The origin of human TB 

TB has been a cause of human death since the antiquity. The earliest written evidence of the disease was 

found in 4700-year old Chinese medical manuscripts [9]. Paleopathological lesions characteristic of TB 

were also detected in human remains dated from various historical periods of the human civilization and 

found in several locations around the globe. These include ancient Syria (8200-7600 BC) [10], Israel 

(7250-6160 BC) [11], Germany (5400-4800 BC) [12], Egypt (2050-1650 BC) [13], United Kingdom 

(400–230 BC) [14] and more recently Hungary (1731–1838 AD) [15]. It is estimated that 25% of the 

Egyptians mummified after 3400 BC suffered from TB [16]. A similar scenario was also true for all adults 

that died in Europe during the Industrial Revolution [17].  

The etiologic agent of human TB remained unknown until the isolation of M. tuberculosis in 1882, by 

Robert Koch [18]. In 1896, taxonomists Lehmann and Neumann included M. tuberculosis in the 

Mycobacterium genus, alongside with another important human pathogen, Mycobacterium leprae [19]. 

Two years later, Theobald Smith isolated a similar organism (posteriorly named Mycobacterium bovis) 

from cattle with TB-like clinical presentation [20]. Since then, other TB-causing bacteria have been 

recovered from wild and domestic mammals, such as goats and sheep (Mycobacterium caprae) [21], 

seals (Mycobacterium pinnipedii) [22] and rodents (Mycobacterium microti) [23]. Nowadays, it is known 

that these bacteria share a high level of similarity at the nucleotide level and together constitute the 

Mycobacterium tuberculosis complex (MTBC) [24,25]. Contrarily to the majority of the mycobacteria, 

members of the MTBC are obligate pathogens with no known environmental reservoir [26,27]. In addition, 

MTBC bacteria are found in a limited number of different host species [26,27]. Since mycobacteria were 

(A) (B)

Figure 1. Pathology and death rate of human TB. (A) Gross appearance of TB dissemination in the lungs of a 35-year 
old male individual infected with HIV [8]. (B) Estimated number of TB deaths in millions per year, 1990–2013 [7]. Reproduced 
with permission from WHO, ID 182946. 
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already widely dispersed before the existence of animal kingdom, some of them may have evolved to 

colonize specific hosts during the early expansion of animal life on Earth [26]. Owing to its broader host 

spectrum [28], M. bovis was believed to be the most recent common ancestral (MRCA) of the MTBC. In 

that sense, the bacterium was thought to have spread to humans due to close contact with infected cattle 

[26]. However, analysis of its genome revealed no new genes comparatively to M. tuberculosis [29]. 

Instead, the genomes of M. bovis and other animal-adapted MTBC species were found to be smaller due 

to the accumulation of large deletions [24]. Since horizontal gene transfer is thought to be scarce across 

MTBC [30,31], these losses of genetic material must have occurred once and could not have been 

reverted over time. Thus, it was proposed that human and animal-adapted MTBC members were two 

distinct clades and that the ancestral of the complex would be more similar to M. tuberculosis [24]. In 

support of this notion, skeletal evidence indicated that human TB was present before the early stages of 

animal domestication [10]. Moreover, although animal-adapted MTBC bacteria can occasionally infect 

humans [32,33], the ability to transmit TB seems to be restricted to M. tuberculosis [26,34]. Significant 

advances in finding the MRCA of the MTBC were made in 2013, with the inclusion of Mycobacterium 

canettii (an occasional human TB-causing bacterium [35]), as a member of the complex. The genome of 

M. canettii was found to be larger than any other MTBC bacterium, while sharing more than 95% 

nucleotide sequence identity [36]. It was also reported that M. canettii displays ongoing horizontal gene 

transfer and recombination between strains [36,37], similarly to other environmental mycobacteria 

[38,39]. Together, all these characteristics placed M. canettii in the early branches of the MTBC evolution 

[36]. The mechanisms underlying the transition of an M. canettii-like ancestral to M. tuberculosis are not 

fully clarified [36,40] and will not be discussed in this thesis. In the next section, the focus will be on the 

population structure of MTBC and its impact on the human population. 

MTBC population structure  

In clinical settings, detection and classification of M. tuberculosis isolates is routinely performed through 

polymerase chain reaction (PCR) amplification of certain repetitive and polymorphic genomic regions of 

the bacterium [41]. The occurrence pattern of these deoxyribonucleic acid (DNA) stretches is 

characteristic of each strain and can be interrogated by two methods, spoligotyping [42] and 

mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) [43]. Over 

the years, the amount of data generated by these techniques lead to the creation of online databases, 

such as SITVITWEB [44]. Further analysis of the genotyping patterns available at SITVITWEB [44] and 
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others [45] revealed the existence of distinct groups of strains with variable predominance throughout the 

world. In other words, each considered geographical region seemed to have a prevailing genotype 

[44,45]. Other studies harnessing single and large sequence polymorphism (SNP and LSP) data also 

reached the same conclusions [46–49]. Although PCR-based typing is useful for epidemiological studies 

[41], it only assess the diversity within small portions of the genome. Alternatively, whole-genome 

sequencing has a much higher discriminatory power and can be used to measure the evolutionary 

relationships and distances between different strains [50]. A robust phylogenetic tree of the M. 

tuberculosis population (Figure 2) was constructed in 2013 by Iñaki Comas and colleagues [51]. To 

achieve that, the authors took advantage of 216 whole-genome sequences of clinical isolates from several 

regions of the globe. The study highlighted that the global M. tuberculosis diversity was distributed by 

seven main phylogenetic lineages, each one with a strong association for certain world regions. Lineage 

1 (also designated as Indo-Oceanic lineage) predominates in East Africa and South-East Asian countries 

(such as India, Philippines and Vietnam); lineage 2 is highly dispersed through Eastern Asia (e.g. China 

and Mongolia); lineage 3 is frequently found in Central Asia (e.g. India, Pakistan and Bangladesh) and to 

a lesser extent in East Africa; lineage 4 (Euro-American lineage) encompasses Europe, America, Africa 

and Middle-East; lineages 5 and 6 (also known as Mycobacterium africanum) are narrowly restricted to 

West Africa (e.g. Guinea-Bissau) and finally, lineage 7 was only found till date in Ethiopia [52]. It was also 

verified that the M. tuberculosis phylogeny was similar to a human phylogeny based on representative 

mitochondrial groups [51]. This suggested that the M. tuberculosis lineages could have followed the major 

human migrations out of the African continent, the cradle of mankind [49,51,53–55]. Lineages 1, 5 and 

6 were the first to diverge from a 70 000 year-old M. canetti-like progenitor and were designated as 

‘ancient’ MTBC lineages. In contrast, lineages 2, 3 and 4 (which shared a characteristic large genomic 

deletion [24]) were classified as ‘modern’ MTBC strains [51]. Additionally, animal-adapted MTBC strains 

were confirmed to share a common ancestral with M. tuberculosis, as aforementioned [24]. 



 

5 

 

 

Genetic diversity among host and pathogen populations in TB 

TB is a heterogeneous disease with several outcomes and clinical manifestations upon exposure to its 

causative agent [1,2]. Much of this heterogeneity was linked with social and environmental factors in the 

past [56]. However, accumulating evidence has been showing that there is an intrinsic role of biological 

factors related with the bacterium, the host and the host-pathogen interaction.  

On the bacterium’s side, it was reported that the diversity among MTBC lineages and sub-lineages has 

clinical relevance, namely on disease onset, severity and transmission. For instance, a delay in seeking 

medical care was detected by Yimer et al. (2015) in Ethiopians infected with lineage 7 strains [57]. 

Parwati et al. (2010) associated lineage 2 with treatment failure [58] and Stavrum et al. (2014) related 

lineage 4 with more debilitating symptoms (such as weight loss) in Tanzanian individuals [59]. Albanna 

et al. (2011) found lineage 3 to be less transmissible than lineages 1, 2 and 4 across Montreal, Canada 

[60], whereas an increasing frequency of lineage 2 was described in South Africa by Cowley et al. (2008) 

[61]. At a sub-lineage level, Kato-Maeda et al. (2010) identified a highly transmissible sub-lineage of 

lineage 2 in San Francisco [62] and Gehre et al. (2013) registered striking differences in transmissibility 

Figure 2. Phylogeny of the MTBC based on whole-genomes of 216 M. tuberculosis and 3 animal-adapted 
strains. Major MTBC lineages are depicted by different colors. Scale bar indicates substitutions per site. Extracted from [51]. 
Reproduced with permission from Nature Publishing Group, license number 3717280653767. 
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among sub-lineages of lineage 5 in Benin and Nigeria [63]. Distinct lineage 2 strains were also found to 

impact the interaction with host innate immune system, either by preferentially activating the pattern 

recognition receptor (PRR) Toll-like receptor (TLR) 2 or TLR4 [64]. MTBC lineages are also not similar in 

epidemiological terms, with the ‘modern’ MTBC lineages 2 and 4 being the most widespread [44]. These 

have been correlated with a low induction of pro-inflammatory molecules in vitro [65,66] and a higher 

capacity to replicate in vivo when compared to ‘ancient’ MTBC strains [67]. Although the aforementioned 

studies emphasize the influence of pathogen diversity in TB, some controversial data can be found in the 

literature. For example, Marais et al. (2009) found the transmissibility not to be significantly associated 

with the M. tuberculosis genotype in South Africa [68] and Krishnan et al. (2011) also reported no 

significant alterations between lineage 1 and lineage 2 strains regarding the in vitro inflammatory profile 

[69]. These apparent contradictions in studies performed in different geographic areas might be related 

with the heterogeneity in human populations and its impact in TB. Clinical surveys revealed that a 

substantial part (30-50%) of household contacts with the disease did not result in measurable infection 

[70,71], thus suggesting that some people might be intrinsically less susceptible to TB. Indeed, the SNP 

rs2057178 on chromosome 11p13 was related with protection against TB in Gambia, Indonesia and 

Russia by a genome-wide association study (GWAS) [72]. Additionally, genetic mutations were found to 

cause Mendelian susceptibility to mycobacterial diseases (MSMD) [73,74], which is a primary 

immunodeficiency that leads to complications even with typically non-pathogenic mycobacteria  [75]. In 

addition, susceptibility and immune response to TB were also described to vary according to ethnicity 

[76,77]. Many other studies identified human genetic variants thought to influence the risk of developing 

TB (reviewed in [78] and [79]). Nevertheless, the results have been considered inconsistent and difficult 

to reproduce. Regarding these studies, the lack of incorporation of the nucleotide diversity and population 

structure of both the host and M. tuberculosis was appointed as one of the most prominent weaknesses 

[80]. 

Influence of the host-pathogen genetic diversity on TB 

Accumulating evidence has been showing that epidemiological and clinical aspects of TB are significantly 

shaped by the interaction between human and MTBC populations.  

At the epidemiological level, Gagneux et al. (2006) and Reed et al. (2009) demonstrated that the 

transmission dynamics of TB in highly urbanized settings (i.e. San Francisco [48] and Montreal [81]) 

were not random. Instead, MTBC lineages frequently found in established ethnic communities (namely 
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Chinese, Filipino and Vietnamese) were the ones that predominated in the corresponding countries of 

origin (Figure 3) [48,81]. Interestingly, Hirsh et al. (2004) had previously referred that the host’s ethnic 

origin could predict the MTBC lineage of the infecting strain [46].  

  

  

  

  

  

  

  

  

  

  

  

At the clinical level, de Jong et al. (2008) observed that lineages 2 and 4 had a higher rate of progression 

to active TB comparatively to lineage 6 in Gambia [83] and a multivariate analysis performed by Caws et 

al. (2008) showed that lineage 2 strains were more commonly found in Vietnamese patients with a 

particular polymorphism on the TLR2-encoding gene [84]. In Ghana (West Africa), Herb et al. (2008) 

reported a statistically significant association between a polymorphism (G254K) on the Arachidonate 5-

Lipoxygenase (ALOX5) gene and increased predisposition to develop TB due to lineage 6 [85]; Intemann 

et al. (2009) linked a nucleotide variant upstream of the Immunity-related GTPase M (IRGM) coding region 

with protection from TB caused by lineage 4 (and not by other MTBC lineages) [86]; and Thye et al. 

(2011) found that the LYQC haplotype of the Mannose-binding lectin 2 (MBL2) gene conferred an 

exclusive protective effect against lineages 5 and 6 [86]. Interestingly, the MBL2 LYQC haplotype is rarely 

found outside of sub-Saharan Africa (which encompasses West Africa region), suggesting that it could 

have had increased its frequency over time owing to its protection to endemic MTBC lineages. [87]. On 

the other hand, the exonic variant G254K of ALOX5 is highly frequent in Africa relative to other world 

regions [85], indicating that lineage 6 strains (abundant in West Africa) might have a selective advantage 

in hosts harbouring  the referred polymorphism.  

Figure 3. Transmission dynamics of TB in San Francisco, United States of America (2001-2009). The number 
of secondary TB cases is plotted as a function of the number of index cases (secondary case rate ratio) Pink, lineage 1 or 
Indo-Oceanic lineage; blue, lineage 2 or East Asian lineage and red, lineage 4 or Euro-American lineage. Adapted from [82]. 
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Overall, described findings indicated that MTBC lineages tend to be more successful (i.e. more adapted) 

upon infection of humans that share the same ancestral geographic region (sympatric) than with hosts 

of foreign ascendency (allopatric) [48,81,82,88].. Furthermore, genetic variants associated with host-

pathogen adaptation in TB might have arisen due to natural selection, rather than by chance (i.e. genetic 

drift) [89]. Consequently, the detection of molecular signatures of adaptation could reveal the basis 

underlying the success of M. tuberculosis and reveal potential targets for therapy design. 

Detection of diversifying selection 

Diversifying selection (also referred as positive selection [90]), is the directional action of natural selection 

to increase the prevalence of beneficial genetic variants over time (Figure 4) [91]. More importantly, 

diversifying selection is thought to be the main mechanism of adaptation in disease contexts [92]. 

Classical examples are the high frequency of sickle-cell anaemia (caused by a mutation in Hemoglobin-B 

gene) in malaria endemic regions [93] and the development of drug-resistance during treatment in HIV 

[94].  

The detection of diversifying selection is not easy if the selective pressure and its targets are not known. 

To try to mitigate these issues, numerous computational methods were developed to detect selection in 

genomic sequences by taking advantage of its increasing availability. Briefly, the methods can be divided 

in two types: the ones based on population genetics data and comparative genomics [91]. The population 

genetics-based methods apply statistical models in order to distinguish if variation among a representative 

sample of the population was randomly generated or fixed by selection. Typical evaluated datasets include 

linkage disequilibrium [96] or allelic frequency [97], for instance. Despite its popularity in human genetics, 

these methodologies are highly dependent on assumptions about the population demography, such as 

population size, that are not easily estimated in pathogen populations [91,98]. Furthermore,  the 

resolution provided is rarely to the codon level [98,99]. In contrast, comparative genomics methods rely 

Figure 4. Schematic representation of the action of diversifying selection. Adapted from [95]. Reproduced with 
permission from Elsevier Ltd, license number 3717271494244. 
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on measuring information within sequence alignments of protein-coding DNA [91]. The main parameter 

assessed is the ratio (ω) of the number of nonsynonymous nucleotide substitutions (i.e. that change the 

encoded aminoacid) per site (dN) over the number of synonymous nucleotide substitutions (i.e. with no 

aminoacid changing) per site (dS) (ω=dN/dS) [90]. The interpretation of the ω ratio is based on the 

principle that most mutations are synonymous and evolutionary neutral, i.e. without functional 

consequences. In that sense, a ω = 1 means that an aminoacid change is neutral and a ω < 1 will reflect 

negative selection (meaning that aminoacid change was probably deleterious and its fixation rate was 

reduced). Evidence for diversifying selection is inferred when ω is significantly higher than 1 [90]. Initial 

applications of the method averaged the ω ratio over all codons in a gene and thus only provided 

information for the whole-protein [100]. Nevertheless, the action of positive selection is thought to be 

aimed at only a few number of sites [101–103]. To address this matter, new statistical models were 

developed to allow estimation of different ω ratios in distinct codons [101,104]. In each model, the 

variation of ω over all sites can be described by a specific statistical distribution. A likelihood ratio test 

(LRT) is then used to evaluate what model fits better to the data. To check for positive selection, LRT can 

compare a model that does not admit ω ≤ 1 (null hypothesis) with one that admits ω > 1 (alternative 

hypothesis) [103]. Two pairs of models incorporated in Phylogenetic analysis by maximum likelihood 

(PAML) package were shown to be the most reliable for this purpose (null versus alternative hypotheses, 

respectively): M1a versus M2a and M7 versus M8 [105]. The LRT is statistically significant (null 

hypothesis rejected) when twice the log likelihood difference between the two compared models is above 

the previously described critical values of a chi-squared distribution with two degrees of freedom [105]. 

The parameters in the statistical distributions of M2a and M8 models are grouped into classes, with one 

of them allowing ω > 1 [105]. When this condition is met, a post-inference method designed Bayes 

Empirical Bayes (BEB) is used to calculate the probability of a codon to come from the class with ω > 1 

[106]. A more recent method named Fast Unbiased Bayesian AppRoximation (FUBAR) [107] also applies 

a codon model to infer the synonymous and the nonsynonymous substitution rates (designated as α and 

β by the authors, respectively). FUBAR differs from  PAML due to the adoption of some computational 

shortcuts and the use of a distinct method to assess site-specific posterior probabilities for being under 

diversifying selection, indicated as the posterior probability of β > α [107]. Codon models were previously 

shown to be powerful and robust in the absence of recombination [108]. Indeed, PAML and FUBAR have 

unveiled positively selected sites in human pathogens, such as in genes encoding for surface 

glycoproteins of the influenza H5N1 virus [109], as well as a specific siderophore in Pseudomonas 

aeruginosa [110]. PAML has also revealed sites under diversifying selection in the genome of M. 
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tuberculosis related to drug-resistance [111,112] and to other evolutionary pressures [111]. Particularly, 

evidences of positive selection were identified in a putative antigenic region, suggesting that human 

immune system can be responsible for the selection of some variants in the genome of the pathogen 

[111]. 

The role of T cells in the immune response against TB 

The immunity against TB is tightly dependent on T lymphocytes, namely CD4+ and CD8+ T cells [1,113]. 

Indeed, the low numbers of CD4+ T cells characteristic of HIV-patients are associated with high 

susceptibility to TB [114] and mice that are deficient in CD4+ T cells die rapidly from the disease [115]. 

CD8+ T cells also contribute to disease resistance in humans [116], rhesus macaques [117] and mice 

[115]. Owing to the importance of these two types of T lymphocytes in the control of TB, it is very relevant 

to detail the characteristics of the T cell-mediated TB protective immune responses. After aerosol 

inhalation, tubercle bacilli are phagocytized by antigen-presenting cells (APC) such as alveolar 

macrophages (AM) (Figure 5A) and interstitial dendritic cells [1]. On the surface of APC, peptides 

generated by proteolysis of M. tuberculosis proteins (i.e. the antigens) are bounded to major 

histocompatibility complex (MHC) proteins (also known as human leukocyte antigen [HLA] in humans). 

HLA class I molecules present antigenic peptides to CD8+ T cells and HLA class II molecules to CD4+ T 

cells (Figure 5B) [118]. T cell receptor then recognize a specific complex formed by the HLA molecule 

and the presented peptide (i.e. the T cell epitope) [119,120]. After this step, T cells can stimulate bacterial 

killing in macrophages by the secretion of inflammatory mediators such as interferon-gamma (IFN-γ) [1] 

(Figure 5A). Some T cells also differentiate into a memory phenotype that provide more rapid protection 

Figure 5. Key players in the immunity against TB. (A) Phagocytosis of M. tuberculosis and secretion of IFN-γ by T 
cells. Adapted from [122]. (B) Recognition of epitope-MHC II complex by a CD4+ T cell. Adapted from [121]. 

(A) (B)
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upon new contacts with the same pathogen peptide. This property turns T cells attractive to be explored 

in the context of vaccine design [113].   

Principles and techniques for T cell epitope discovery 

The formation of a epitope-HLA complex with the right affinity and stability is a strong requirement to  

elicit a T cell response [123]. This makes the step of formation of the epitope-HLA complex an important 

focus of epitope discovery. Nevertheless, identifying the epitope with proper characteristics is a difficult 

task. First, T cell epitopes can be derived from virtually all proteins expressed in an organism [124]. 

Second, HLA molecules can accommodate peptides of several lengths in their binding groove, i.e. 8-15 

amino acids in the case of HLA class I and 8-20 in HLA class II [125]. Laboratorial approaches to identify 

T cell epitopes rely on the synthesis of overlapping peptides encompassing antigens of interest. 

Synthesized peptides are then used to stimulate sensitized T cells ex vivo and the best epitope candidates 

are inferred through the quantification of correlates of T cell immune response, such as cytokine 

production [126] or T cell proliferation [127]. The complexity, time and cost of these experimental steps 

are huge constraints to a more widespread application [125]. 

In the last two decades, several computational methods were developed to analyse and model the 

properties of the immune system, giving rise to the field of immunoinformatics [124,128]. T cell epitope 

prediction, also known as reverse vaccinology [129], is a specific branch of immunoinformatics that offers 

a large potential to accelerate the process of epitope discovery [123]. The main principle of T cell epitope 

prediction is to find peptides with high binding affinity to HLA molecules, since these have more probability 

to be presented to T cells [130,131]. This pretension is complicated by the existence of thousands of 

HLA class I (HLA-DR, -DQ and -DP) and class II (HLA-DR, -DQ and -DP) alleles in the human population, 

each one with a distinct binding specificity [132]. Furthermore, HLA alleles have different frequencies 

across the worldwide population [133]. This means that a certain T cell epitope can elicit a response in 

some human populations but not in others [134]. Taking this into account, Bui et al. (2006) developed 

an algorithm that calculates the population coverage of an epitope, i.e. the fraction of individuals in a 

population in which it will be putatively effective [135].  

In addition to the HLA molecule, binding affinity also depends on the amino acid sequence of the antigen 

epitopes [136,137]. In the context of TB, it was previously shown that a large set of experimentally 

validated MTBC T cell epitopes are evolutionarily conserved [138]. However, the known repertoire of 

MTBC epitopes is likely to be incomplete, thus impairing a full view of the evolution across the MTBC 
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immunoproteome [139,140]. In fact, only a small percentage of M. tuberculosis proteins has been shown 

to include epitopes [140,141].  

Among the variety of in silico algorithms that predict T cell epitopes (reviewed in [123] and [142]), the 

most accurate ones are trained with large sets of epitopes with experimentally determined binding affinity 

[143]. Particularly, NetMHCpan [144] and NetMHCIIpan [145] were shown to be the best overall 

predictors in independent benchmarks [146–148]. Both methods only need the amino acid sequences 

of interest as input to generate predictions for all known HLA molecules. Quantitative prediction of the 

binding affinity is extrapolated from a training data set through advanced computational algorithms 

[144,145]. It is also possible to predict the binding affinity to HLA proteins with no known experimental 

binding data on the basis of other HLA molecules with similar binding pocket residues [143]. 

The bulk of the immune response is aimed at a small fraction of the possible epitopes [119,120], a 

feature called immunodominance [149]. In this regard, it was described that a higher kinetic stability of 

the HLA-peptide complex is a good predictor for immunodominance in both HLA class I [150] and HLA 

class II [151–153]. In M. tuberculosis, besides antigen 6-kDa early secretory protein antigenic target 

(ESAT-6) [154], only a few other immunodominant epitopes were validated in TB patients [155]. Another 

factor that affects immunodominance is the relative abundance of peptides available for binding. Genes 

with high in vivo expression levels in the context of infection constitute good candidates for the 

identification of relevant T cell epitopes since their encoded peptides are more likely to be presented than 

other low abundance peptides with similar HLA-binding affinity and stability [156]. In the M. tuberculosis 

genome, Talaat and colleagues found a genomic region of 44,849 nucleotides that harbour several genes 

highly expressed in vivo [157,158]. The region is constituted by 43 contiguous genes and was designated 

as in vivo-expressed genomic island (iVEGI) [157]. Interestingly, iVEGI is upregulated upon infection in 

wild-type mice models but not in immune compromised animals or during in vitro growth of M. 

tuberculosis [157]. This suggests a role for iVEGI in the interaction with host immune cells, highlighting 

T cell responses as a possible driving force of natural selection in this region. 
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AIMS 

Co-evolution between humans and M. tuberculosis strains have produced numerous examples of clinical 

and epidemiological heterogeneity (reviewed in [159] and [88]). However, the molecular basis underlying 

host-pathogen interactions in TB remain poorly understood. Indeed, despite the critical importance of T 

cells to the control of TB, the impact of the genetic diversity selected during the MTBC evolution on the 

full repertoire of M. tuberculosis T cell epitopes is poorly study. Still, the existing studies show evidence 

for genetic variation in known T cell epitopes [138] and for diversifying selection in a predicted antigenic 

region [111]. The identification and functional characterization of the immune responses elicited by 

variable epitopes are of critical importance from a vaccine-development point of view since these might 

correlate with protective responses. Highly in vivo-expressed genes mediate most of the host-pathogen 

interactions and are thus thought to be major targets of immune-related selective pressure. Therefore, 

M. tuberculosis iVEGI, a genomic region found to be upregulated in vivo in immunocompetent mice 

models of infection [157], is a good candidate region to identify these epitopes.   

Taking this into account, the aim of this thesis is to analyse the iVEGI for evidence supporting the presence 

of M. tuberculosis epitopes under T cell driven positive selection. In order to address this goal, a research 

workflow composed of four main tasks was designed:  

(i) Comparative genomics analysis, to investigate the nucleotide diversity of 43 genes highly expressed in 

in vivo models of infection;   

(ii) Detection of diversifying selection, to search for signatures of molecular adaptation among the genetic 

diversity unveiled at (i);  

(iii) Prediction of CD4+ and CD8+ T cell epitopes in protein sequences encoded by genes with sites under 

diversifying selection; 

(iv) In vitro HLA-peptide binding assays, to provide the experimental validation of the best candidates from 

preceding tasks.  
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RESULTS 

High nucleotide diversity and evidence for diversifying selection in the iVEGI 

The in vivo expression pattern of iVEGI suggests a role in host-pathogen interactions during infection and 

the consequent possibility of evolution in response to host pressures. To investigate this, the sequence 

diversity on the iVEGI was characterized. This region was extracted from the genomes of 270 isolates 

belonging to the seven MTBC lineages and comparative genomics analysis was performed. The iVEGI 

was significantly more diverse (π = 5.04 x 10-4, p < 0.001) than the rest of the genome (π = 2.65 x 10-

4), with the majority of the genes analysed (21 out of 40) displaying levels of nucleotide diversity (π) above 

the genome-wide mean (Figure 6A). The level of genetic diversity in the iVEGI was very similar (p > 0.05) 

between ‘ancient’ (lineages 1, 5, 6 and 7; π = 3.42 x 10-4) and ‘modern’ (lineages 2, 3 and 4; π = 3.62 

x 10-4) MTBC strains. This is in contrast with the whole-genome data, which showed that the ‘ancient’ 

lineages (π = 3.10 x 10-4) had a significantly higher nucleotide diversity level (p < 0.001) when compared 

to the ‘modern’ lineages (π = 1.82 x 10-4) (Figure 6B). A more detailed analysis revealed a total of 320 

SNPs, of which 291 were located in coding regions and 29 in intergenic regions (Figure 6C and 

Supplementary Table 1). SNPs were detected in all the seven MTBC lineages and with highly variable 

frequencies. Homoplastic SNPs were also found, 13 located in genes and two in intergenic regions 

(Supplementary Table 1). 
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Considering that SNPs under diversifying selection may reflect targets of molecular adaptation driven by 

host-related pressures, the iVEGI genes were screened for diversifying selection with PAML and FUBAR 

[105,107]. The site models M2a and M8 included in PAML package were applied and Bayes Empirical 

Bayes (BEB) analysis revealed significant evidence for diversifying selection (M2a pp > 0.95 or M8 pp > 

0.95) in seven codon sites corresponding to amino acid positions 186 of LprP (M2a pp = 0.928 and M8 

pp = 0.977), 666 of AccA2 (M2a pp = 0.999 and M8 pp = 1.000), 51 and 233 of AccD2 (M2a pp = 

0.901 and M8 pp = 0.953; M2a pp = 0.997 and M8 pp = 0.999, respectively), 54 and 68 of Rv0990c 

(M2a pp = 0.957 and M8 pp = 0.982; M2a pp = 0.960 and M8 pp = 0.983, respectively) and 81 of RimJ 

Figure 6. Comparative genomics analysis of the iVEGI. (A) Nucleotide diversity of individual iVEGI genes. (B) Nucleotide diversity (π) of the genome (in 
blue) versus iVEGI (in orange) in strains from the ‘ancient’, ‘modern’ and all the seven MTBC lineages. (C) Schematic representation of the sequence variation 
found in iVEGI. The relative frequency of the nucleotide substitutions in each of the seven MTBC lineages (right yy axis) is represented on the left yy axis. 
Genomic positions (xx axis) are according to the reference genome H37Rv (GenBank accession number NC00962.3). Pe_pgrs16, pe_pgrs17 and pe_pgrs18 
were excluded from the analysis and are not represented (stroke line). ** p < 0.01; *** p < 0.01. 
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(M2a pp = 0.950 and M8 pp = 0.981) (Table 1). FUBAR identified four additional putative targets of 

diversifying selection (pp (β>α) > 0.9) in amino acid residues 169 of Rv0987 (pp β>α = 0.941); 191 of 

Rv0988 (pp β>α = 0.967); 141 of GrcC2 (pp β >α = 0.942) and 303 of Rv0996 (pp β>α = 0.918) 

(Table 1). An overlap between the predictions of PAML and FUBAR was found for the amino acid 233 of 

AccD2. To test a possible influence of recombination, nucleotide sequences were analysed with RDP, 

GENECONV and Bootscan, with none of the methods detecting signals supportive of recombination (data 

not shown). Overall, evidences for diversifying selection were detected by PAML or FUBAR in 11 codons 

of nine distinct iVEGI genes (Table 1). These data support high levels of nucleotide diversity and the 

occurrence of targeted events of diversifying selection in the iVEGI. 

 

 
BEB, Bayes Empirical Bayes; pp, posterior probability; β, nonsynonymous substitution rate; α, synonymous substitution rate; *p < 0.05; **p < 
0.01 
a pp above 0.900 considered as highly supportive of diversifying selection by FUBAR. 

Table 1. Amino acid substitutions under diversifying selection in iVEGI. 

Gene 

name 

Genomic 

position 

Gene 

position 

Amino acid 

substitution 

PAML 
FUBAR 

M2a M8 

BEB pp ω>1 ω ratio ± SE BEB pp ω>1 ω ratio ± SE β-α pp β>α 

lprP 

(Rv0962c) 
1074996 557 L186P 0.928 8.138 ± 2.683 0.977* 8.561 ± 2.145 4.798 0.876 

accA2 

(Rv0973c) 
1083755 1996 S666P 0.999** 8.705 ± 1.835 1.000** 7.992 ± 1.954 2.658 0.788 

accD2 

(Rv0974c) 

1087193 153 K51N 0.901 7.778 ± 2.910 0.953* 8.006 ± 2.516 3.300 0.819 

1086648 698 R233L 0.997** 8.482 ± 1.973 0.999** 8.341 ± 2.015 6.601 0.930ª 

Rv0987 1103046 505 V169L 0.289 1.231 ± 1.276 0.361 1.242 ± 1.220 7.789 0.941ª 

Rv0988 1105686; 1105687 571;572 L191A 0.704 3.977 ± 3.117 0.815 4.316 ± 3.069 7.887 0.967ª 

grcC2 

(Rv0989c) 
1106961;1106962 421;422 V141L/A 0.831 5.613 ± 3.174 0.925 5.749 ± 2.902 7.140 0.942ª 

Rv0990c 

1107940 160 A54S 0.957* 7.555 ± 2.542 0.982* 7.333 ± 2.484 4.183 0.861 

1107897 203 A68V 0.960* 7.571 ± 2.524 0.983* 7.340 ± 2.477 4.422 0.881 

rimJ 

(Rv0995) 
1111852 241 D81Y 0.951* 6.780 ± 2.667 0.981* 6.428 ± 2.570 3.516 0.840 

Rv0996 1113290;1113292 907;909 Q303E/H 0.696 4.076 ± 3.210 0.827 4.595 ± 3.204 6.693 0.912a 
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Specific iVEGI variants under diversifying selection impact T cell epitope 

prediction 

The sustained high in vivo expression of iVEGI in mouse models of M. tuberculosis infection [157,158] 

makes its encoded proteins good candidates for antigen presentation. Taking this into account and 

considering its genetic diversity, the genomic island was next tested for the presence of unknown T cell 

epitopes that could be the underlying cause of diversifying selection. For this purpose, the binding affinity 

of the peptides overlapping the iVEGI sites under diversifying selection was predicted to a set of 72 class 

I and 41 class II HLA molecules (Supplementary Table 2). The analysis was performed with NetMHCpan 

[144] and NetMHCIIpan [145]. A total of 1530 putative high binding affinity peptides were identified, 

including 244 for class I HLA and 1286 for class II HLA. To allow class I versus class II comparisons, the 

results were normalized for the number of peptide lengths and HLA molecules tested and expressed as 

the percentage of the maximum possible number of high binding affinity peptides (Figure 7 and 

Supplementary Figure 1). The majority of the sites with significant evidences for being under diversifying 

selection (eight out of 11) were found to be included in regions encoding peptides predicted to bind with 

high affinity to at least one HLA of both classes (Figure 7A). The exceptions were the amino acids AccA2 

S666, with no predicted high binding affinity peptides, and AccD2 K51 and Rv0990c A68, with high 

binding affinity peptides detected only to class I HLAs. HLA class II predictions identified in mean five 

times more immunogenic peptides than HLA class I predictions (Figure 7A). Interestingly, about 90% of 

the putative CD4+ T cell epitopes were concentrated in the overlapping regions of three sites (Rv0987 

V169, Rv0988 L191 and Rv0996 Q303). 
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To evaluate the functional impact of sequence diversity on T cell epitope prediction, the HLA-binding 

affinity of wild-type peptide sequences was compared to that of the variant peptides under selection 

(Figure 7B). Variations in class II HLA were highly predominant and responsible for 84% of the total 

Figure 7. Immunoinformatics analysis of the sites under diversifying selection in iVEGI. (A) Number of putative 
CD4+ and CD8+ T cell epitopes in amino acid sequences including sites under diversifying selection. High binding affinity 
peptides were predicted by NetMHCpan and NetMHCIIpan to a representative set of HLA class I (in blue) and class II (in red) 
alleles (Supplementary Table 2). The number of predicted immunogenic peptides is represented as percentage of the total 
possibilities for each HLA class (Supplementary Figure 1). (B) Variation in the number of high binding affinity peptides due to 
diversifying selection in the iVEGI. a More than one amino acid substitution in the same codon; only the substitution resulting 
in the highest variation was represented. 
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differences registered. Strikingly, three substitutions (AccD2 R233L, Rv0987 V169L and Rv0988 L191A) 

contributed to 72% of all the predicted alterations in class II HLA-binding (Figure 7B). Indeed, variants 

AccD2 R233L and Rv0987 V169L increased the number of potential CD4+ T epitopes by 2.5% and 2.1%, 

respectively. Contrarily, Rv0988 L191A decreased this number by 2.2% when compared to the wild-type 

sequence. Overall, the data revealed three amino acid substitutions (AccD2 R233L, Rv0987 V169L and 

Rv0988 L191A) with high probability to be under CD4+ T cell driven diversifying selection. 

Figure 8. Variations in the worldwide population coverage in sites under diversifying selection. The percentage 
of the human population with potential to recognize predicted T cell epitopes (worldwide population coverage) was estimated 
for HLA class I (in blue) and HLA class II (in red). The difference between the population coverage of the variants under 
diversifying selection relative to the wild-type is on the yy axis. a More than one amino acid substitution in the same codon; 
only the substitution that resulted in the highest variation was represented. 
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Geographic correlations between population coverage and MTBC lineage 

frequency 

T cell epitopes might be differentially recognized by diverse individuals due to the variable frequencies of 

HLA alleles across the human population, thus resulting in distinct population coverage. For this reason, 

the fraction of the human population with potential to recognize the putative epitopes under study 

(worldwide population coverage) was predicted. Next, the variation resulting from the presence of amino 

acids under diversifying selection was calculated (Figure 8 and Supplementary Table 3). Despite the low 

number of high binding affinity peptides to HLA class I (Figure 7), the highest alterations in population 

coverage imposed by the variant epitopes were found for HLA class I (Figure 8). Of particular note were 

four amino acid substitutions (LprP L186P, AccD2 R233L, Rv0988 L191A and RimJ D81Y) which showed 

a high impact on the HLA class I worldwide population coverage (-26%, +16%, -41% and +15%, 

respectively, as compared to the wild-type sequence) (Figure 8). 

The largest variations in class II HLAs worldwide population coverage were attributed to AccD2 R233L 

and Rv0987 V169L (which were expected to increase coverage by 9% and 11%, respectively) and to 

Rv0988 L191A (expected to decrease the coverage by 11%). The analysis was expanded by investigating 

if the regional variations in population coverage were associated with the geographic distribution of the 

MTBC lineages harbouring the selected variants (Figure 9). For that purpose, the frequency of the MTBC 

lineages and the alterations in regional population coverage induced by the variants under diversifying 

selection were compared across 15 world geographic regions (Supplementary Figure 2). No correlations 

were found for the HLA class I. In contrast, three statistically significant correlations were found between 

the variations in HLA class II population coverage for AccD2 R233L (rτ = 0.39, p < 0.05), Rv0987 V169L 

(rτ = 0.47, p < 0.05) and Rv0988 L191A (rτ = -0.41, p < 0.05) and the frequency of lineage 1 and lineage 

2 strains (Figure 9 and Supplementary Table 4). AccD2 R233L occurred in all the lineage 1 strains 

analysed (Figure 6C and Supplementary Table 1) and the variant amino acid induced a calculated 

increase in regional population coverage ranging from 1% in Central America to nearly 30% in Southeast 

Asia (Figure 9A). This increase in population coverage significant and positively correlated with the 

percentage of lineage 1 frequency in the 15 tested regions (graph in Figure 9A). Rv0987 V169L was 

found in 10% of the lineage 1 strains and 8% of the lineage 2  strains analysed (Figure 6C and 

Supplementary Table 1) and resulted in a predicted increase of the regional population coverage ranging 

from 3% in Central America to 29% in Southeast Asia (Figure 9B). The estimated increase in coverage 

was also significant and positively correlated with the regional prevalence of lineage 1 and 2 strains (graph 

in Figure 9B). In contrast, Rv0988 L191A, that was found in 69% of the lineage 2 strains (Figure 6C and 
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Supplementary Table 1), was estimated to decrease the regional population coverage from 3% in Central 

America to 29% in Southeast Asia (Figure 9C). This was significant and negatively correlated with the 

regional frequency of the lineage 2 strains (graph in Figure 9C). Overall, the results suggest that the 

amino acid substitutions AccD2 R233L, Rv0987 V169L and Rv0988 L191A were likely relevant to the 

sympatric adaptation of MTBC strains to certain host populations. 
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Figure 9. Association between differential population coverage of predicted epitopes and the geographic 
distribution of the MTBC. The frequency (in pie charts) of the MTBC lineages harboring sites under diversifying selection 
(in xx axis of each graph) correlated with the variations in population coverage due to differential binding to human HLA class 
II (green and red color gradients) of peptides harbouring three amino acid substitutions: (A) AccD2 R233L (rτ = 0.39, p < 
0.05); (B) Rv0987 V169L (rτ = 0.47, p < 0.05) and (C) Rv0988 L191A (rτ = -0.41, p < 0.05). 
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In vitro validation of the predicted CD4+ T cell epitopes under diversifying 

selection 

Typical T cell epitopes are expected to bind with high affinity and stability to an HLA molecule [123]. 

Thus, large alterations in the HLA-binding properties are anticipated in epitopes under T cell driven 

diversifying selection. Taking this into account, the in vitro HLA-binding affinity and stability were 

compared for the set of wild-type and variant peptides that i) were predicted to be under diversifying 

selection; ii) showed large variation in the predicted HLA-binding affinity and iii) impacted the population 

coverage and correlated with the geographical distribution of the MTBC lineages. This set was formed by 

six peptides with the amino acid substitutions AccD2 R233L, Rv0987 V169L and Rv0988 L191A. The 

HLA class II DRA1*01:01 DRB1*01:01 was chosen for the in vitro assays since this was the HLA with 

the broadest population coverage [160] among the ones with variable predicted binding affinity. The 

binding affinity and stability of each peptide was compared to a validated DRB1*01:01 CD4+ T cell epitope 

of the M. tuberculosis ESAT-6 protein [155]. The results confirmed the variant forms of AccD2228-241 and 

Rv0987164-177, but not of Rv0988185-202, as being epitopes with strong binding affinity to DRB1*01:01. In 

agreement with the in silico analysis, radical alterations (> 58%) in the binding affinity between wild-type 

and variant peptides were observed for AccD2228-241 and Rv0987164-177 (Figure 10). Most importantly, the 

variant AccD2228-241 peptide, in addition to displaying a binding affinity as high as ESAT-63-17, also formed 

a highly stable complex with DRA1*01:01 DRB1*01:01. This suggests that the variant AccD2228-241, but 

not the wild-type peptide, has the potential to function as a previously unidentified immunodominant CD4+ 

T cell epitope in individuals expressing the HLA DRA1*0101 DRB1*01:01. 

Figure 10. In vitro validation of the candidate CD4+ T cell epitopes under diversifying selection. Amino acid substitutions with the highest impact 
on HLA class II binding predictions (AccD2 R233L, Rv0987 V169L and Rv0988 L191A) were subjected to in vitro confirmation of the estimated HLA-binding 
affinity. The HLA class II molecule with the broadest population coverage among the ones with variable predicted binding affinity (DRA1*01:01 DRB1*01:01) 
was used. The binding affinity of wild-type and variant peptide sequences was measured at 0 h and 24 h after incubation with the DRA1*01:01 DRB1*01:01 
protein and compared with a validated M. tuberculosis CD4+ T epitope (ESAT-63-17). The stability index of the different DRA1*01:01 DRB1*01:01-peptide 
epitope complexes was also evaluated. 
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DISCUSSION 

Control of TB, a global disease that affects millions of people every year, highly relies on the development 

of better preventive strategies as the only vaccine in use (BCG) is of limited efficiency [5,6]. In fact, much 

effort has been put on the development of new vaccines but so far the results have been at best similar 

to BCG [161,162]. To achieve better outcomes, a deep understanding of the characteristics of protective 

immune responses and of how they are triggered and modulated is critical [162,163]. In this context, 

and considering that the efficiency of host T cell-mediated immunity is determinant for infection control 

[1,113], it is greatly relevant to obtain a full picture of the factors that might influence T cell responses in 

TB. Among these factors, the genetic and phenotypic diversity associated with the MTBC has been 

neglected. Indeed, several studies showed that strains of M. tuberculosis differently interact with innate 

immune cells [64,65,69,164,165], thus potentially being able to modulate the outcome of the acquired 

immune response [166]. Another factor with a potential impact on the type and quality of T cells 

responses is the existence of varying epitopes within the MTBC. It has been previously described that 

several T cell epitopes are evolutionarily hyperconserved [138], suggesting that the T cell responses 

induced in the host are similar across the MTBC diversity. However, the sympatric associations between 

MTBC lineages and human populations [48] and its disruption in HIV-1 infected individuals [114] suggests 

that at least an unknown set of relevant and variable MTBC CD4+ T cell epitopes may exist. Furthermore, 

considering the long co-evolution of MTBC with its human host [51,88], it is likely that the host immune 

system represents a strong pressure shaping the evolution of the MTBC complex and namely at the level 

of the epitope-HLA interaction. In fact, different HLA haplotypes have been associated with resistance or 

susceptibility to TB caused by uncharacterized strains [167–169]) or even associated to TB caused by 

specific MTBC phylogenetic taxa [170]. In this thesis, a pipeline of molecular evolution, 

immunoinformatics and in vitro techniques was applied to reveal novel T cell epitopes in MTBC, taking 

into consideration the genetic variation within MTBC and its phylogeographic adaptation to the human 

host. Herein presented data constitute the first evidences for T cell driven diversifying selection in MTBC, 

namely within the genomic island iVEGI.  

The iVEGI is a good candidate region within the M. tuberculosis genome for the discovery of MTBC-varying 

epitopes, due to its in vivo expression profile [157] and high genetic diversity as shown herein. Screening 

in vivo-expressed regions for the discovery of novel M. tuberculosis antigens has previously allowed the 

successful identification of a novel antigen encoded by Rv2034 [171]. The iVEGI contains several genes 

implicated in the survival and pathogenesis [158] of M. tuberculosis and with prolonged high expression 
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levels in immunocompetent animal models of TB infection but not in immunosuppressed animals or 

during in vitro growth [157]. Data for high genetic diversity in the iVEGI were firstly reported in a study 

comparing 20 genomes across four MTBC lineages, which highlighted a three genes operon (Rv0986-

Rv0988) in this region with high SNP density [89]. Using 270 genomes from all the known seven MTBC 

lineages, it was revealed that a total of 21 genes in the iVEGI had a level of nucleotide diversity above the 

whole-genome average. The results also showed that SNPs in the iVEGI were evenly distributed across 

the MTBC lineages, which is in contrast with the genome-wide data in support for higher genetic 

conservation among the ‘modern’ (lineages 2, 3 and 4) when compared to ‘ancient’ lineages (lineages 

1, 5, 6 and 7). This finding points to differences in the evolutionary process of this particular region. In 

addition, evidence supporting the action of diversifying selection was found in 11 iVEGI loci. Thus, genetic 

diversity and molecular evolution analyses strongly support the involvement of this genomic island in the 

long-term evolution of the MTBC population. Subsequent immunoinformatics data highlighted T cells as 

one of the driving forces for this evolution. Some variant iVEGI peptides were predicted to have differential 

binding affinity to class I or class II HLAs, with the more pronounced alterations found in HLA class II. 

This is congruent with previous studies showing that the contribution of CD4+ T cells for the immunity 

against TB is more relevant than the one of CD8+ T cells [115,172]. Distinct host-pathogen interactions 

could be the cause of failure in producing a universal vaccine with high worldwide population coverage. 

Indeed, three distinct TB vaccine candidates were found to have considerably different overall population 

coverage, thus threatening their efficacy in certain regions of the globe [173]. In this context, much of the 

existing T cell epitope discovery studies in M. tuberculosis field have been using HLA molecules with high 

frequency in white individuals, which is likely to have a negative impact in the efficacy of the vaccine in 

several world regions with high TB burden [141]. The in silico-based approach followed in this thesis 

addresses this bias by including in the predictions HLA alleles that are predominant in TB endemic 

regions. The largest variations in HLA-binding affinity were concentrated in three specific codons of three 

distinct iVEGI-encoded proteins and were estimated to have a large impact in the world population 

coverage. Interestingly, for these three amino acid substitutions, there were significant correlations 

between the alterations in HLA class II population coverage and the frequency of the MTBC strains 

harbouring the selected variants. Therefore, the referred substitutions may represent evolutionary 

markers in MTBC of sympatric adaptation driven by CD4+ T cells. The binding affinity and the stability of 

wild-type and variant forms of the peptides containing these markers was measured in vitro. The in vitro 

assays showed that the single amino acid substitutions predicted to be under diversifying selection in 

both AccD2228-241 and Rv0987164-177 induced large alterations (> 58%) in the binding affinity between wild-



 

27 

 

type and variant peptides, which was not observed for Rv0988185-202. However, the most striking finding 

was that although the wild-type sequence of AccD2228-241 did not bind to DRB1*01:01, the lineage 1-

associated variant peptide displayed a level of binding affinity and stability as high as the experimentally 

confirmed immunodominant epitope ESAT-63-17 [155]. Since the stability of the HLA-peptide complex was 

associated with immunodominance [150–153], the variant AccD2228-241 peptide may constitute a 

relevant lineage-specific CD4+ T cell epitope.  
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CONCLUSION AND FUTURE PERSPECTIVES 

The workflow described in this thesis allowed the identification of predicted T cell epitopes under 

diversifying selection in iVEGI, their study in terms of envisaged HLA-binding, impact in worldwide 

population coverage and geographic association between the human population and MTBC and, finally, 

the functional validation of the most promising candidates. The use of these approaches provided 

evidence for the existence of HLA-restricted T cell epitopes evolving under diversifying selection across 

the MTBC in response to immune pressure. From the 11 amino acid substitutions predicted to be under 

diversifying selection in iVEGI, three (AccD2 R233L, Rv0987 V169L and Rv0988 L191A) were associated 

with immune system pressure in silico. Of this, strong evidences to be a variable T cell epitope were 

confirmed in vitro for a peptide encompassing AccD2 R233L. However, T cells cannot be discarded as 

drivers of Rv0987 V169L and Rv0988 L191A, as performing the in vitro binding assays with other HLA 

predicted to have variable binding affinity (or even with other peptide) could yield different results. For the 

eight remaining sites, the responsible selective pressure has yet to be uncovered. Protein signature 

recognition tools such as InterProScan [174] could be the starting point to understand the cause and 

importance of these substitutions to M. tuberculosis. These tools perform homology search for conserved 

motifs, enzymatic active sites and many other features [174], and are thus a vital aid in the functional 

characterization of a protein. 

The variant form of AccD2228-241 was confirmed to have different binding affinity and stabilities 

comparatively to the wild-type. Nevertheless, further experiments are needed to ensure that the peptide 

is presented to T cells and is differentially immunogenic in humans infected with lineage 1 strains. To 

achieve this, wild-type and mutant peptides could be synthesised and used to stimulated blood collected 

from TB patients that i) express the HLA class II of interest and ii) were infected with lineage 1 strains. 

Assuming that memory T cells are created upon the recognition of the AccD2228-241-DRB1*01:01 complex, 

differences in the levels and type of T cell responses are expected upon stimulation. For instance, this 

could be assessed by the quantification of cytokines known to be associated with TB disease, such as 

IFN-γ and interleukin-10 (IL-10) [1]. The implications of this study can also be extended to vaccination 

field, i.e. the BCG vaccine strains harbour the wild-type AccD2228-241 peptide that was found not to bind 

to DRB1*01:01. It is thus tempting to speculate that boosting the BCG-induced immune response with 

the variant AccD2228-241 could influence the protection to infections caused by lineage 1 MTBC strains. 
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Overall, the results presented in this thesis contributed to highlight T cells as one of the drivers in the 

evolutionary process of highly expressed M. tuberculosis genes, with consequences in the host-pathogen 

sympatric associations. The findings further support the impact of MTBC diversity in host immune-

responses and pave the way to the discovery of novel MTBC lineage-specific epitopes. A better 

understanding of the molecular targets under T cell driven evolution will offer unprecedented tools in the 

development of TB preventive and therapeutic strategies with broader effectiveness. 
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MATERIALS AND METHODS 

Sequence retrieval 

To comprehensively represent all the seven known phylogenetic lineages of the MTBC, two previously 

described M. tuberculosis whole-genome sequence sets [51,111] were combined with five additional M. 

tuberculosis genomes publically available in the databases (Beijing/NITR203, CAS/NITR204, 

EAI5/NITR206, Haarlem/NITR202 and NCGM2209; GenBank accession numbers NC_021054, 

NC_021193, NC_021194, NC_021192 and NZ_DF126614, respectively), resulting in a total of 270 

MTBC genomes (48 from lineage 1, 49 from lineage 2, 40 from lineage 3, 95 from lineage 4, 17 from 

lineages 5, 17 from lineages 6 and 4 from lineage 7). The region of 44,849 nucleotides known as iVEGI 

[157] was extracted with MegaBlast [176] from the 270 M. tuberculosis genomes using H37Rv (GenBank 

accession number NC_000962.3) as the reference. Three pe_pgrs genes present in the iVEGI region 

(pe_pgrs16, pe_pgrs17 and pe_pgrs18) displayed high homology between its coding and intergenic 

repetitive regions [177,178] and were thus excluded from the analysis due to the technical difficulties in 

obtaining reliable nucleotide sequences. Multiple sequence alignments were performed by MUSCLE 

[179], with subsequent manual curation.  

Nucleotide diversity and recombination tests  

Whole genome and iVEGI nucleotide sequences were divided into 100 equal parts and its nucleotide 

diversity (π) was calculated using MEGA-CC [180]. Statistical significance in the comparisons among 

groups was assessed with t-test in SPSS v22. Nucleotide sequences of iVEGI were screened for 

recombination events through the automated RDP, GENECONV and Bootscan algorithms implemented 

in RDP v4.36 software [181].  
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Analysis of diversifying selection 

Signatures of diversifying selection were detected by the CODEML program included in PAML package 

[105] and by FUBAR [107] implementation available on the Datamonkey web server 

(http://www.datamonkey.org) [182]. Inference of diversifying selection in CODEML was performed 

through pairwise comparison of site models that do not allow ratios of nonsynonymous to synonymous 

substitutions greater than one (ω>1) with an alternative model that allow ω>1 (M1-M2a and M7-M8), by 

a likelihood ratio test (LRT). As recommended [105], a Bayes empirical Bayes (BEB) approach [106] was 

used to calculate the posterior probability (BEB pp) of each codon to be under diversifying selection only 

when LRT values > 5.99 (meaning that the model admitting selection fitted better to data at a 5% 

significance level). The minimum requirement for a given site to be considered as evolving under 

diversifying selection was BEB pp > 0.95 in one of the M2a or M8 CODEML models. In FUBAR, the 

posterior probability of the nonsynonymous substitution rate (β) to be greater than the synonymous 

substitution rate (pp β>α) was considered as indicative of diversifying selection only for pp β>α values 

above 0.9. 

T cell epitope prediction  

iVEGI regions comprising amino acid residues under diversifying selection were investigated for the 

presence of CD4+ T and CD8+ T cell epitopes with NetMHCpan 2.8 [144] and NetMHCIIpan 3.0 [145], 

respectively. These methods were chosen since they were reported to be the best overall predictors [146–

148]. A comprehensive set of HLA alleles (Supplementary Table 2) was selected based on its high 

prevalence in the human population worldwide [183,184] or in TB endemic regions [173]. HLA-C alleles 

were not selected for the HLA class I predictions due to its limited polymorphism and lower expression 

levels (about 90% less) comparatively to HLA-A and HLA-B [185]. Regarding HLA class II, HLA-DP and 

HLA-DQ loci were not considered since the predictions are thought to be less reliable due to few 

experimental binding data available [145]. On the –DR locus, only DRB1 alleles were used, as they bind 

the majority of the M. tuberculosis epitopes and were described to be five times more expressed than 

other DR alleles [186]. Half maximal inhibitory concentrations (IC50) < 50 nM or rank scores < 0.5% were 

used as cutoff for high binding affinity peptides. All peptide lengths available were used, for both HLA 

class I (peptides of 8-14 amino acids) and HLA class II (peptides of 9-19 amino acids). To allow 

comparison, a normalization to the number of peptide lengths and HLA molecules tested was applied 

and the results were expressed as the percentage of the maximum possible number of high binding 
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affinity peptides (Supplementary Figure 1). In cases of more than one amino acid substitution per codon, 

only the substitution with the highest impact on the predictions was represented in the figures.  

Assessment of the worldwide population coverage and the geographic 

distribution of the MTBC 

The fraction of the human population with the ability  to recognize the predicted epitopes (worldwide 

population coverage) was estimated using the implementation of a previously described algorithm [135] 

at the Immune Epitope Database (http://tools.immuneepitope.org/tools/population/iedb_input) [160]. 

The input data were the HLA alleles with at least one high binding affinity peptide overlapping the selected 

sites (Supplementary Table 3). The frequency of the MTBC lineages (n = 41974 strains) across 15 

geographic regions (Supplementary Figure 2) was obtained from the SITVITWEB database [44]. Lineages 

were assigned to spoligotype data in accordance with the literature [187]. Unknown spoligotypes or the 

ones with regional frequencies below 1% were excluded from the analysis. The correlation between 

variations in the population coverage and the frequency of MTBC lineages was evaluated with the non-

parametric Kendall’s Tau (τ) test in SPSS Statistics v22. A p-value < 0.05 was applied as threshold for 

statistical significance.  

In vitro HLA-binding assays 

Candidate epitopes were tested for their binding affinity to DRA*01:01 DRB1*01:01 with the ProImmune 

REVEAL® HLA-peptide binding assay. All the peptides were synthetized with high purity (Supplementary 

Table 5). Binding affinity was determined as a function of the signal generated by a fluorescently labelled 

antibody against the native conformation of the HLA-peptide complex. A binding score was calculated for 

each peptide by comparison with a previously validated (both in vitro and in TB patients [155]) CD4+ T 

cell epitope (ESAT-63-17). Measurements were conducted at 0 and 24 h following incubation at 37°C. To 

obtain the stability index of the HLA-peptide complex, approximated half-life times were derived through 

a one-phase dissociation equation and subsequent multiplication by the binding score of each peptide. 

HLA-peptide complexes with resulting values ≥ six were considered to be highly stable.



34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

35 

 

REFERENCES 

1.  O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MPR. The immune response 
in tuberculosis. Annu Rev Immunol. 2013;31: 475–527. doi:10.1146/annurev-immunol-032712-
095939 

2.  Davies PDO, Gordon SB, Davies G, editors. Clinical Tuberculosis. 5th ed. Boca Raton, FL: CRC 
Press; 2014.  

3.  Yang D, Kong Y. The bacterial and host factors associated with extrapulmonary dissemination of 
Mycobacterium tuberculosis. Front Biol. 2015;10(3): 252–261. doi:10.1007/s11515-015-1358-
y 

4.  Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol. 2012;12(8): 581–591. 
doi:10.1038/nri3259 

5.  Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 
1995;346(8986): 1339–1345. doi:10.1016/S0140-6736(95)92348-9 

6.  Kaufmann SHE. Tuberculosis vaccines: time to think about the next generation. Semin Immunol. 
2013;25(2): 172–181. doi:10.1016/j.smim.2013.04.006 

7.  World Health Organization. Global tuberculosis report 2014. Geneva; 2014.  

8.  Bychkov A V., Dorosevich AE, D’Souza JW. Postmortem investigations following human 
immunodeficiency virus infection. Int J Collab Res Intern Med Public Heal. 2009;1(2): 28–46.  

9.  Roberts CA, Buikstra JE. The bioarchaeology of tuberculosis: a global view on a reemerging 
disease. Gainesville, FL: University Press of Florida; 2003.  

10.  Baker O, Lee OY-C, Wu HHT, Besra GS, Minnikin DE, Llewellyn G, et al. Human tuberculosis 
predates domestication in ancient Syria. Tuberculosis (Edinb). 2015;95 Suppl 1: S4–S12. 
doi:10.1016/j.tube.2015.02.001 

11.  Hershkovitz I, Donoghue HD, Minnikin DE, Besra GS, Lee OY-C, Gernaey AM, et al. Detection and 
molecular characterization of 9,000-year-old Mycobacterium tuberculosis from a Neolithic 
settlement in the Eastern Mediterranean. PLoS One. 2008;3(10): e3426. 
doi:10.1371/journal.pone.0003426 

12.  Nicklisch N, Maixner F, Ganslmeier R, Friederich S, Dresely V, Meller H, et al. Rib lesions in 
skeletons from early neolithic sites in Central Germany: on the trail of tuberculosis at the onset of 
agriculture. Am J Phys Anthropol. 2012;149(3): 391–404. doi:10.1002/ajpa.22137 

 



36 

 

13.  Zink AR, Sola C, Reischl U, Grabner W, Rastogi N, Wolf H, et al. Characterization of Mycobacterium 
tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J Clin Microbiol. 
2003;41(1): 359–367.  

14.  Mays S, Taylor GM. A first prehistoric case of tuberculosis from Britain. Int J Osteoarchaeol. 
2003;13(4): 189–196. doi:10.1002/oa.671 

15.  Fletcher HA, Donoghue HD, Holton J, Pap I, Spigelman M. Widespread occurrence of 
Mycobacterium tuberculosis DNA from 18th-19th century Hungarians. Am J Phys Anthropol. 
2003;120(2): 144–152. doi:10.1002/ajpa.10114 

16.  Nerlich AG, Lösch S. Paleopathology of human tuberculosis and the potential role of climate. 
Interdiscip Perspect Infect Dis. 2009;2009: 437187. doi:10.1155/2009/437187 

17.  Spiro SG, Silvestri GA, Agusti A. Clinical Respiratory Medicine. 4th ed. Philadelphia, PA: Saunders; 
2012.  

18.  Sakula A. Robert Koch: centenary of the discovery of the tubercle bacillus, 1882. Can Vet J. 
1983;24(4): 127–31.  

19.  Gangadharam PRJ, Jenkins PA, editors. Mycobacteria: Basic Aspects. 1st ed. New York, NY: 
Chapman & Hall; 1998.  

20.  Smith T. A comparative study of bovine tubercle bacilli and of human bacilli from sputum. J Exp 
Med. 1898;3: 451–511.  

21.  Aranaz A, Liébana E, Gómez-Mampaso E, Galán JC, Cousins D, Ortega A, et al. Mycobacterium 
tuberculosis subsp. caprae subsp. nov.: a taxonomic study of a new member of the 
Mycobacterium tuberculosis complex isolated from goats in Spain. Int J Syst Bacteriol. 
1999;49(3): 1263–1273. doi:10.1099/00207713-49-3-1263 

22.  Bastida R, Loureiro J, Quse V, Bernardelli A, Rodríguez D, Costa E. Tuberculosis in a wild 
subantarctic fur seal from Argentina. J Wildl Dis. 1999;35(4): 796–798. doi:10.7589/0090-
3558-35.4.796 

23.  Frota CC, Hunt DM, Buxton RS, Rickman L, Hinds J, Kremer K, et al. Genome structure in the 
vole bacillus, Mycobacterium microti, a member of the Mycobacterium tuberculosis complex with 
a low virulence for humans. Microbiology. 2004;150(5): 1519–1527.  

24.  Brosch R, Gordon S V., Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, et al. A new 
evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 
2002;99(6): 3684–3689. doi:10.1073/pnas.052548299 

25.  Smith NH, Kremer K, Inwald J, Dale J, Driscoll JR, Gordon S V., et al. Ecotypes of the 
Mycobacterium tuberculosis complex. J Theor Biol. 2006;239(2): 220–225. 
doi:10.1016/j.jtbi.2005.08.036 



 

37 

 

26.  Stead WW. The origin and erratic global spread of tuberculosis: How the past explains the present 
and is the key to the future. Clin Chest Med. 1997;18(1): 65–77. doi:10.1016/S0272-
5231(05)70356-7 

27.  Tortoli E, Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria 
of the 1990s. 2003;16(2): 319–354. doi:10.1128/CMR.16.2.319-354.2003 

28.  O’Reilly LM, Daborn CJ. The epidemiology of Mycobacterium bovis infections in animals and man: 
a review. Tuber Lung Dis. 1995;76 Suppl 1: 1–46. doi:10.1016/0962-8479(95)90591-X 

29.  Gordon S V, Eiglmeier K, Garnier T, Brosch R, Parkhill J, Barrell B, et al. Genomics of 
Mycobacterium bovis. Tuberculosis (Edinb). 2001;81(1/2): 157–163. 
doi:10.1054/tube.2000.0269 

30.  Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C. Variable human minisatellite-like 
regions in the Mycobacterium tuberculosis genome. Mol Microbiol. 2000;36(3): 762–771. 
doi:10.1046/j.1365-2958.2000.01905.x 

31.  Supply P, Warren RM, Bañuls A-L, Lesjean S, Van Der Spuy GD, Lewis L-A, et al. Linkage 
disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis 
in a high tuberculosis incidence area. Mol Microbiol. 2003;47(2): 529–538. doi:10.1046/j.1365-
2958.2003.03315.x 

32.  Cvetnic Z, Katalinic-Jankovic V, Sostaric B, Spicic S, Obrovac M, Marjanovic S, et al. 
Mycobacterium caprae in cattle and humans in Croatia. Int J Tuberc Lung Dis. 2007;11(6): 652–
658.  

33.  Park D, Qin H, Jain S, Preziosi M, Minuto JJ, Mathews WC, et al. Tuberculosis due to 
Mycobacterium bovis in patients coinfected with human immunodeficiency virus. Clin Infect Dis. 
2010;51(11): 1343–1346. doi:10.1086/657118 

34.  Berg S, Smith NH. Why doesn’t bovine tuberculosis transmit between humans? Trends Microbiol. 
2014;22(10): 552–553. doi:10.1016/j.tim.2014.08.007 

35.  Blouin Y, Cazajous G, Dehan C, Soler C, Vong R, Hassan MO, et al. Progenitor “Mycobacterium 
canettii” clone responsible for lymph node tuberculosis epidemic, Djibouti. Emerg Infect Dis. 
2014;20(1): 21–28. doi:10.3201/eid2001.130652 

36.  Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V, et al. Genomic analysis of 
smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium 
tuberculosis. Nat Genet. 2013;45(2): 172–179. doi:10.1038/ng.2517 

37.  Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M, et al. Ancient origin and gene 
mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog. 2005;1(1): e5. 
doi:10.1371/journal.ppat.0010005 



38 

 

38.  Krzywinska E, Krzywinski J, Schorey JS. Naturally occurring horizontal gene transfer and 
homologous recombination in Mycobacterium. Microbiology. 2004;150: 1707–1712. 
doi:10.1099/mic.0.27088-0 

39.  Derbyshire KM, Gray TA. Distributive conjugal transfer: new insights into horizontal gene transfer 
and genetic exchange in mycobacteria. Microbiol Spectr. 2014;2(1): MGM2–0022–2013. 
doi:10.1128/microbiolspec.MGM2-0022-2013 

40.  Bottai D, Stinear TP, Supply P, Brosch R. Mycobacterial pathogenomics and evolution. Microbiol 
Spectr. 2014;2(1): MGM2–0025–2013. doi:10.1128/microbiolspec.MGM2-0025-2013 

41.  Jagielski T, Van Ingen J, Rastogi N, Dziadek J, Mazur PK, Bielecki J. Current methods in the 
molecular typing of Mycobacterium tuberculosis and other mycobacteria. Biomed Res Int. 
2014;2014: 645802. doi:10.1155/2014/645802 

42.  Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, et al. Simultaneous 
detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. 
J Clin Microbiol. 1997;35(4): 907–914.  

43.  Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, et al. Proposal for 
standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem 
repeat typing of Mycobacterium tuberculosis. J Clin Microbiol. 2006;44(12): 4498–4510. 
doi:10.1128/JCM.01392-06 

44.  Demay C, Liens B, Burguière T, Hill V, Couvin D, Millet J, et al. SITVITWEB - A publicly available 
international multimarker database for studying Mycobacterium tuberculosis genetic diversity and 
molecular epidemiology. Infect Genet Evol. 2012;12(4): 755–766. 
doi:10.1016/j.meegid.2012.02.004 

45.  Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, et al. Mycobacterium 
tuberculosis complex genetic diversity: mining the fourth international spoligotyping database 
(SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol. 2006;6: 23. 
doi:10.1186/1471-2180-6-23 

46.  Hirsh AE, Tsolaki AG, DeRiemer K, Feldman MW, Small PM. Stable association between strains 
of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci U S A. 
2004;101(14): 4871–4876. doi:10.1073/pnas.0305627101 

47.  Tsolaki AG, Gagneux S, Pym AS, de la Salmoniere Y-OLG, Kreiswirth BN, Soolingen D Van, et al. 
Genomic deletions classify the Beijing/W strains as a distinct genetic lineage of Mycobacterium 
tuberculosis. J Clin Microbiol. 2005;43(7): 3185–3191. doi:10.1128/JCM.43.7.3185-
3191.2005 

48.  Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, et al. Variable host-
pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103(8): 
2869–2873. doi:10.1073/pnas.0511240103 



 

39 

 

49.  Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, et al. High functional 
diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS 
Biol. 2008;6(12): e311. doi:10.1371/journal.pbio.0060311 

50.  Roetzer A, Diel R, Kohl T a., Rückert C, Nübel U, Blom J, et al. Whole genome sequencing versus 
traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal 
molecular epidemiological study. PLoS Med. 2013;10(2): e1001387. 
doi:10.1371/journal.pmed.1001387 

51.  Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and 
Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 
2013;45(10): 1176–1182. doi:10.1038/ng.2744 

52.  Firdessa R, Berg S, Hailu E, Schelling E, Gumi B, Erenso G, et al. Mycobacterial lineages causing 
pulmonary and extrapulmonary tuberculosis, Ethiopia. Emerg Infect Dis. 2013;19(3): 460–463. 
doi:10.3201/eid1903.120256 

53.  Wirth T, Hildebrand F, Allix-Béguec C, Wölbeling F, Kubica T, Kremer K, et al. Origin, spread and 
demography of the Mycobacterium tuberculosis complex. PLoS Pathog. 2008;4(9): e1000160. 
doi:10.1371/journal.ppat.1000160 

54.  Rasmussen M, Guo X, Wang Y, Lohmueller K, Rasmussen S, Albrechtsen A, et al. An Aboriginal 
Australian genome reveals separate human dispersals into Asia. Science. 2011;334(6052): 94–
98. doi:10.1126/science.1211177 

55.  Oppenheimer S. Out-of-Africa, the peopling of continents and islands: tracing uniparental gene 
trees across the map. Philos Trans R Soc B Biol Sci. 2012;367(1590): 770–784. 
doi:10.1098/rstb.2011.0306 

56.  Comas I, Gagneux S. The past and future of tuberculosis research. PLoS Pathog. 2009;5(10): 
e1000600. doi:10.1371/journal.ppat.1000600 

57.  Yimer SA, Norheim G, Namouchi A, Zegeye ED, Kinander W, Tønjum T, et al. Mycobacterium 
tuberculosis lineage 7 strains are associated with prolonged patient delay in seeking treatment for 
pulmonary tuberculosis in Amhara Region, Ethiopia. J Clin Microbiol. 2015;53(4): 1301–1309. 
doi:10.1128/JCM.03566-14 

58.  Parwati I, Alisjahbana B, Apriani L, Soetikno RD, Ottenhoff TH, van der Zanden AGM, et al. 
Mycobacterium tuberculosis Beijing genotype is an independent risk factor for tuberculosis 
treatment failure in Indonesia. J Infect Dis. 2010;201(4): 553–557. doi:10.1086/650311 

59.  Stavrum R, PrayGod G, Range N, Faurholt-Jepsen D, Jeremiah K, Faurholt-Jepsen M, et al. 
Increased level of acute phase reactants in patients infected with modern Mycobacterium 
tuberculosis genotypes in Mwanza, Tanzania. BMC Infect Dis. 2014;14: 309. doi:10.1186/1471-
2334-14-309 



40 

 

60.  Albanna AS, Reed MB, Kotar K V, Fallow A, McIntosh FA, Behr MA, et al. Reduced transmissibility 
of East African Indian strains of Mycobacterium tuberculosis. PLoS One. 2011;6(9): e25075. 
doi:10.1371/journal.pone.0025075 

61.  Cowley D, Govender D, February B, Wolfe M, Steyn L, Evans J, et al. Recent and rapid emergence 
of W-Beijing strains of Mycobacterium tuberculosis in Cape Town, South Africa. Clin Infect Dis. 
2008;47(10): 1252–1259. doi:10.1086/592575 

62.  Kato-Maeda M, Kim EY, Flores L, Jarlsberg LG, Osmond D, Hopewell PC. Differences among 
sublineages of the East-Asian lineage of Mycobacterium tuberculosis in genotypic clustering. Int J 
Tuberc Lung Dis. 2010;14(5): 538–544.  

63.  Gehre F, Antonio M, Faïhun F, Odoun M, Uwizeye C, de Rijk P, et al. The first phylogeographic 
population structure and analysis of transmission dynamics of M. africanum West African 1--
combining molecular data from Benin, Nigeria and Sierra Leone. PLoS One. 2013;8(10): e77000. 
doi:10.1371/journal.pone.0077000 

64.  Carmona J, Cruz A, Moreira-Teixeira L, Sousa C, Sousa J, Osorio NS, et al. Mycobacterium 
tuberculosis strains are differentially recognized by TLRs with an impact on the immune response. 
PLoS One. 2013;8(6): e67277. doi:10.1371/journal.pone.0067277 

65.  Portevin D, Gagneux S, Comas I, Young D. Human macrophage responses to clinical isolates from 
the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. 
PLoS Pathog. 2011;7(3): e1001307. doi:10.1371/journal.ppat.1001307 

66.  Chen Y-Y, Chang J-R, Huang W-F, Hsu S-C, Kuo S-C, Sun J-R, et al. The pattern of cytokine 
production in vitro induced by ancient and modern Beijing Mycobacterium tuberculosis strains. 
PLoS One. 2014;9(4): e94296. doi:10.1371/journal.pone.0094296 

67.  Reiling N, Homolka S, Walter K, Brandenburg J, Niwinski L, Ernst M, et al. Clade-specific virulence 
patterns of Mycobacterium tuberculosis complex strains in human primary macrophages and 
aerogenically infected mice. MBio. 2013;4(4): e00250–13. doi:10.1128/mBio.00250-13 

68.  Marais BJ, Hesseling a. C, Schaaf HS, Gie RP, Van Helden PD, Warren RM. Mycobacterium 
tuberculosis transmission is not related to household genotype in a setting of high endemicity. J 
Clin Microbiol. 2009;47(5): 1338–1343. doi:10.1128/JCM.02490-08 

69.  Krishnan N, Malaga W, Constant P, Caws M, Thi Hoang Chau T, Salmons J, et al. Mycobacterium 
tuberculosis lineage influences innate immune response and virulence and is associated with 
distinct cell envelope lipid profiles. PLoS One. 2011;6(9): e23870. 
doi:10.1371/journal.pone.0023870 

70.  Jereb J, Etkind SC, Joglar OT, Moore M, Taylor Z. Tuberculosis contact investigations: outcomes 
in selected areas of the United States, 1999. Int J Tuberc Lung Dis. 2003;7(Suppl 3): S384–390.  

71.  Marks SM, Taylor Z, Qualls NL, Shrestha-Kuwahara RJ, Wilce M a., Nguyen CH. Outcomes of 
contact investigations of infectious tuberculosis patients. Am J Respir Crit Care Med. 2000;162(6): 
2033–2038. doi:10.1164/ajrccm.162.6.2004022 



 

41 

 

72.  Thye T, Owusu-Dabo E, Vannberg FO, van Crevel R, Curtis J, Sahiratmadja E, et al. Common 
variants at 11p13 are associated with susceptibility to tuberculosis. Nat Genet. 2012;44(3): 257–
259. doi:10.1038/ng.1080 

73.  Al-Muhsen S, Casanova JL. The genetic heterogeneity of mendelian susceptibility to mycobacterial 
diseases. J Allergy Clin Immunol. 2008;122(6): 1043–1051. doi:10.1016/j.jaci.2008.10.037 

74.  Bustamante J, Boisson-Dupuis S, Abel L, Casanova J-L. Mendelian susceptibility to mycobacterial 
disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin 

Immunol. 2014;26(6): 454–470. doi:10.1016/j.smim.2014.09.008 

75.  Casanova JL. Mendelian susceptibility to mycobacterial infection in man. Swiss Med Wkly. 
2001;131(31): 445–454.  

76.  Stead W, Senner J, Reddick W, Lofgren J. Racial differences in susceptibility to infection by 
Mycobacterium tuberculosis. N Engl J Med. 1990;322(7): 422–427. 
doi:10.1056/NEJM199002153220702 

77.  Coussens AK, Wilkinson RJ, Nikolayevskyy V, Elkington PT, Hanifa Y, Islam K, et al. Ethnic variation 
in inflammatory profile in tuberculosis. PLoS Pathog. 2013;9(7): e1003468. 
doi:10.1371/journal.ppat.1003468 

78.  Möller M, De Wit E, Hoal EG. Past, present and future directions in human genetic susceptibility 
to tuberculosis. FEMS Immunol Med Microbiol. 2010;58(1): 3–26. doi:10.1111/j.1574-
695X.2009.00600.x 

79.  Abel L, El-Baghdadi J, Bousfiha AA, Casanova J-L, Schurr E. Human genetics of tuberculosis: a 
long and winding road. Philos Trans R Soc Lond B Biol Sci. 2014;369(1645): 20130428. 
doi:10.1098/rstb.2013.0428 

80.  Stein CM. Genetic epidemiology of tuberculosis susceptibility: impact of study design. PLoS 
Pathog. 2011;7(1): e1001189. doi:10.1371/journal.ppat.1001189 

81.  Reed MB, Pichler VK, McIntosh F, Mattia A, Fallow A, Masala S, et al. Major Mycobacterium 
tuberculosis lineages associate with patient country of origin. J Clin Microbiol. 2009;47(4): 1119–
1128. doi:10.1128/JCM.02142-08 

82.  Gagneux S. Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci. 
2012;367(1590): 850–859. doi:10.1098/rstb.2011.0316 

83.  De Jong BC, Hill PC, Aiken A, Awine T, Antonio M, Adetifa IM, et al. Progression to active 
tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in the Gambia. 
J Infect Dis. 2008;198(7): 1037–1043. doi:10.1086/591504 

84.  Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NTN, Thuong NTT, et al. The influence of host 
and bacterial genotype on the development of disseminated disease with Mycobacterium 
tuberculosis. PLoS Pathog. 2008;4(3): e1000034. doi:10.1371/journal.ppat.1000034 



42 

 

85.  Herb F, Thye T, Niemann S, Browne ENL, Chinbuah M a., Gyapong J, et al. ALOX5 variants 
associated with susceptibility to human pulmonary tuberculosis. Hum Mol Genet. 2008;17(7): 
1052–1060. doi:10.1093/hmg/ddm378 

86.  Intemann CD, Thye T, Niemann S, Browne ENL, Amanua Chinbuah M, Enimil A, et al. Autophagy 
gene variant IRGM -261T contributes to protection from tuberculosis caused by Mycobacterium 
tuberculosis but not by M. africanum strains. PLoS Pathog. 2009;5(9): e1000577. 
doi:10.1371/journal.ppat.1000577 

87.  Thye T, Niemann S, Walter K, Homolka S, Intemann CD, Chinbuah MA, et al. Variant G57E of 
mannose binding lectin associated with protection against tuberculosis caused by Mycobacterium 
africanum but not by M. tuberculosis. PLoS One. 2011;6(6): e20908. 
doi:10.1371/journal.pone.0020908 

88.  Brites D, Gagneux S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol 
Rev. 2015;264(1): 6–24. doi:10.1111/imr.12264 

89.  Namouchi A, Didelot X, Schöck U, Gicquel B, Rocha EP. After the bottleneck: Genome-wide 
diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and 
natural selection. Genome Res. 2012;22(4): 721–734. doi:10.1101/gr.129544.111 

90.  Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 
2000;15(12): 496–503. doi:10.1016/S0169-5347(00)01994-7 

91.  Nielsen R. Molecular signatures of natural selection. Annu Rev Genet. 2005;39: 197–218. 
doi:10.1146/annurev.genet.39.073003.112420 

92.  Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR. Biological and biomedical 
implications of the co-evolution of pathogens and their hosts. Nat Genet. 2002;32(4): 569–577. 
doi:10.1038/ng1202-569 

93.  Allison AC. Protection afforded by sickle-cell trait against subtertian malareal infection. Br Med J. 
1954;1(4857): 290–294.  

94.  Boucher C a, O’Sullivan E, Mulder JW, Ramautarsing C, Kellam P, Darby G, et al. Ordered 
appearance of zidovudine resistance mutations during treatment of 18 human immunodeficiency 
virus-positive subjects. J Infect Dis. 1992;165(1): 105–110. doi:10.1093/infdis/165.1.105 

95.  Biswas S, Akey JM. Genomic insights into positive selection. Trends Genet. 2006;22(8): 437–
446. doi:10.1016/j.tig.2006.06.005 

96.  Hanchard NA, Rockett KA, Spencer C, Coop G, Pinder M, Jallow M, et al. Screening for recently 
selected alleles by analysis of human haplotype similarity. Am J Hum Genet. 2006;78(1): 153–
159. doi:10.1086/499252 

97.  Fay JC. Weighing the evidence for adaptation at the molecular level. Trends Genet. 2011;27(9): 
343–349. doi:10.1016/j.tig.2011.06.003 



 

43 

 

98.  Zhai W, Nielsen R, Slatkin M. An investigation of the statistical power of neutrality tests based on 
comparative and population genetic data. Mol Biol Evol. 2009;26(2): 273–283. 
doi:10.1093/molbev/msn231 

99.  Wright SI, Charlesworth B. The HKA test revisited: a maximum-likelihood-ratio test of the standard 
neutral model. Genetics. 2004;168(2): 1071–1076. doi:10.1534/genetics.104.026500 

100.  Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and 
nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3(5): 418–426.  

101.  Yang Z, Nielsen R, Goldman N, Pedersen AM. Codon-substitution models for heterogeneous 
selection pressure at amino acid sites. Genetics. 2000;155(1): 431–449.  

102.  Crandall K a, Kelsey CR, Imamichi H, Lane HC, Salzman NP. Parallel evolution of drug resistance 
in HIV: failure of nonsynonymous/synonymous substitution rate ratio to detect selection. Mol Biol 
Evol. 1999;16(3): 372–382. doi:10.1093/oxfordjournals.molbev.a026118 

103.  Bofkin L, Goldman N. Variation in evolutionary processes at different codon positions. Mol Biol 
Evol. 2007;24(2): 513–521. doi:10.1093/molbev/msl178 

104.  Goldman N, Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA 
sequences. Mol Biol Evol. 1994;11(5): 725–736.  

105.  Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8): 1586–
1591. doi:10.1093/molbev/msm088 

106.  Yang Z, Wong WSW, Nielsen R. Bayes empirical bayes inference of amino acid sites under positive 
selection. Mol Biol Evol. 2005;22(4): 1107–1118. doi:10.1093/molbev/msi097 

107.  Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Pond SLK, et al. FUBAR: a Fast, 
Unconstrained Bayesian Approximation for inferring selection. Mol Biol Evol. 2013;30(5): 1196–
1205. doi:10.1093/molbev/mst030 

108.  Anisimova M, Nielsen R, Yang Z. Effect of recombination on the accuracy of the likelihood method 
for detecting positive selection at amino acid sites. Genetics. 2003;164(3): 1229–1236.  

109.  Smith GJD, Naipospos TSP, Nguyen TD, de Jong MD, Vijaykrishna D, Usman TB, et al. Evolution 
and adaptation of H5N1 influenza virus in avian and human hosts in Indonesia and Vietnam. 
Virology. 2006;350(2): 258–268. doi:10.1016/j.virol.2006.03.048 

110.  Smith EE, Sims EH, Spencer DH, Kaul R, Olson M V. Evidence for diversifying selection at the 
pyoverdine locus of Pseudomonas aeruginosa. J Bacteriol. 2005;187(6): 2138–2147. 
doi:10.1128/JB.187.6.2138-2147.2005 

111.  Osório NS, Rodrigues F, Gagneux S, Pedrosa J, Pinto-Carbó M, Castro AG, et al. Evidence for 
diversifying selection in a set of Mycobacterium tuberculosis genes in response to antibiotic- and 
nonantibiotic-related pressure. Mol Biol Evol. 2013;30(6): 1326–1336. 
doi:10.1093/molbev/mst038 



44 

 

112.  Farhat M, Shapiro B, Kieser K, Sultana R, Jacobson K, Victor T, et al. Genomic analysis identifies 
targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet. 
2013;45(10): 1183–1189. doi:10.1038/ng.2747 

113.  Cooper AM. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol. 2009;27: 393–
422. doi:10.1146/annurev.immunol.021908.132703 

114.  Fenner L, Egger M, Bodmer T, Furrer H, Ballif M, Battegay M, et al. HIV infection disrupts the 
sympatric host-pathogen relationship in human tuberculosis. PLoS Genet. 2013;9(3): e1003318. 
doi:10.1371/journal.pgen.1003318 

115.  North R, Jung Y. Immunity to tuberculosis. Annu Rev Immunol. 2004;22: 599–623. 
doi:10.1146/annurev.immunol.22.012703.104635 

116.  Lancioni C, Nyendak M, Kiguli S, Zalwango S, Mori T, Mayanja-Kizza H, et al. CD8+ T cells provide 
an immunologic signature of tuberculosis in young children. Am J Respir Crit Care Med. 
2012;185(2): 206–212. doi:10.1164/rccm.201107-1355OC 

117.  Chen CY, Huang D, Wang RC, Shen L, Zeng G, Yao S, et al. A critical role for CD8 T cells in a 
nonhuman primate model of tuberculosis. PLoS Pathog. 2009;5(4): e1000392. 
doi:10.1371/journal.ppat.1000392 

118.  Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems understanding of MHC class I and 
MHC class II antigen presentation. Nat Rev Immunol. 2011;11(12): 823–836. 
doi:10.1038/nri3084 

119.  Rudolph MG, Stanfield RL, Wilson I a. How TCRs bind MHCs, peptides, and coreceptors. Annu 
Rev Immunol. 2006;24: 419–466. doi:10.1146/annurev.immunol.23.021704.115658 

120.  Huang J, Meyer C, Zhu C. T cell antigen recognition at the cell membrane. Mol Immunol. 
2012;52(3-4): 155–164. doi:10.1016/j.molimm.2012.05.004 

121.  Zuñiga J, Torres-García D, Santos-Mendoza T, Rodriguez-Reyna TS, Granados J, Yunis EJ. Cellular 
and humoral mechanisms involved in the control of tuberculosis. Clin Dev Immunol. 2012;2012: 
193923. doi:10.1155/2012/193923 

122.  Paul S, Kolla R V, Sidney J, Weiskopf D, Fleri W, Kim Y, et al. Evaluating the immunogenicity of 
protein drugs by applying in vitro MHC binding data and the immune epitope database and 
analysis resource. Clin Dev Immunol. 2013;2013: 467852. doi:10.1155/2013/467852 

123.  Patronov A, Doytchinova I. T-cell epitope vaccine design by immunoinformatics. Open Biol. 
2013;3(1): 120139. doi:10.1098/rsob.120139 

124.  De Groot AS, Sbai H, Aubin C Saint, McMurry J, Martin W. Immuno-informatics: Mining genomes 
for vaccine components. Immunol Cell Biol. 2002;80(3): 255–269. doi:10.1046/j.1440-
1711.2002.01092.x 



 

45 

 

125.  Davies MN, Flower DR. Harnessing bioinformatics to discover new vaccines. Drug Discov Today. 
2007;12(9-10): 389–395. doi:10.1016/j.drudis.2007.03.010 

126.  Mustafa AS, Al-Attiyah R, Hanif SNM, Shaban FA. Efficient testing of large pools of Mycobacterium 
tuberculosis RD1 peptides and identification of major antigens and immunodominant peptides 
recognized by human Th1 cells. Clin Vaccine Immunol. 2008;15(6): 916–924. 
doi:10.1128/CVI.00056-08 

127.  Mustafa AS, Shaban F. Mapping of Th1-cell epitope regions of Mycobacterium tuberculosis protein 
MPT64 (Rv1980c) using synthetic peptides and T-cell lines from M. tuberculosis-infected healthy 
humans. Med Princ Pract. 2010;19(2): 122–128. doi:10.1159/000273073 

128.  Brusic V, Petrovsky N. Immunoinformatics and its relevance to understanding human immune 
disease. Expert Rev Clin Immunol. 2005;1(1): 145–157. doi:10.1586/1744666X.1.1.145 

129.  Sette A, Rappuoli R. Reverse vaccinology: developing vaccines in the era of genomics. Immunity. 
2010;33(4): 530–541. doi:10.1016/j.immuni.2010.09.017 

130.  Keogh E, Fikes J, Southwood S, Celis E, Chesnut R, Sette a. Identification of new epitopes from 
four different tumor-associated antigens: recognition of naturally processed epitopes correlates 
with HLA-A*0201-binding affinity. J Immunol. 2001;167(2): 787–796. 
doi:10.4049/jimmunol.167.2.787 

131.  Rosa DS, Ribeiro SP, Cunha-Neto E. CD4+ T cell epitope discovery and rational vaccine design. 
Arch Immunol Ther Exp (Warsz). 2010;58(2): 121–130. doi:10.1007/s00005-010-0067-0 

132.  Trowsdale J, Knight JC. Major histocompatibility complex genomics and human disease. Annu 
Rev Genomics Hum Genet. 2013;14: 301–323. doi:10.1146/annurev-genom-091212-153455 

133.  Gonzalez-Galarza FF, Takeshita LYC, Santos EJM, Kempson F, Maia MHT, Silva a. LSD, et al. 
Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA 
adverse drug reaction associations. Nucleic Acids Res. 2015;43(D1): D784–D788. 
doi:10.1093/nar/gku1166 

134.  Schubert B, Lund O, Nielsen M. Evaluation of peptide selection approaches for epitope-based 
vaccine design. Tissue Antigens. 2013;82(4): 243–251. doi:10.1111/tan.12199 

135.  Bui H-H, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A. Predicting population coverage of 
T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics. 2006;7: 153. 
doi:10.1186/1471-2105-7-153 

136.  Caccamo N, Meraviglia S, La Mendola C, Bosze S, Hudecz F, Ivanyi J, et al. Characterization of 
HLA-DR- and TCR-binding residues of an immunodominant and genetically permissive peptide of 
the 16-kDa protein of Mycobacterium tuberculosis. Eur J Immunol. 2004;34(8): 2220–2229. 
doi:10.1002/eji.200425090 

137.  Höhn H, Kortsik C, Tully G, Nilges K, Necker A, Freitag K, et al. Longitudinal analysis of 
Mycobacterium tuberculosis 19-kDa antigen-specific T cells in patients with pulmonary 



46 

 

tuberculosis: association with disease activity and cross-reactivity to a peptide from HIVenv gp120. 

Eur J Immunol. 2003;33(6): 1613–1623. doi:10.1002/eji.200323480 

138.  Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K, et al. Human T cell epitopes 
of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet. 2010;42(6): 498–
503. doi:10.1038/ng.590 

139.  Ivanyi J. Function and potentials of M. tuberculosis epitopes. Front Immunol. 2014;5: 107. 
doi:10.3389/fimmu.2014.00107 

140.  Kunnath-Velayudhan S, Porcelli SA. Recent advances in defining the immunoproteome of 
Mycobacterium tuberculosis. Front Immunol. 2013;4: 335. doi:10.3389/fimmu.2013.00335 

141.  Axelsson-Robertson R, Magalhaes I, Parida SK, Zumla A, Maeurer M. The immunological footprint 
of Mycobacterium tuberculosis T-cell epitope recognition. J Infect Dis. 2012;205(Suppl 2): S301–
S315. doi:10.1093/infdis/jis198 

142.  Tomar N, De RK, editors. Immunoinformatics: a brief review. Immunoinformatics. 1st ed. New 
York, NY: Springer Science & Business Media; 2014. pp. 23–55. doi:10.1007/978-1-4939-1115-
8_3 

143.  Zhang L, Udaka K, Mamitsuka H, Zhu S. Toward more accurate pan-specific MHC-peptide binding 
prediction: a review of current methods and tools. Brief Bioinform. 2012;13(3): 350–364. 
doi:10.1093/bib/bbr060 

144.  Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, et al. NetMHCpan, a method for MHC 
class I binding prediction beyond humans. Immunogenetics. 2009;61(1): 1–13. 
doi:10.1007/s00251-008-0341-z 

145.  Karosiene E, Rasmussen M, Blicher T, Lund O, Buus S, Nielsen M. NetMHCIIpan-3.0, a common 
pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-
DR, HLA-DP and HLA-DQ. Immunogenetics. 2013;65(10): 711–724. doi:10.1007/s00251-013-
0720-y 

146.  Chaves FA, Lee AH, Nayak JL, Richards KA, Sant AJ. The utility and limitations of current Web-
available algorithms to predict peptides recognized by CD4 T cells in response to pathogen 
infection. J Immunol. 2012;188(9): 4235–4248. doi:10.4049/jimmunol.1103640 

147.  Zhang L, Chen Y, Wong H-S, Zhou S, Mamitsuka H, Zhu S. TEPITOPEpan: extending TEPITOPE 
for peptide binding prediction covering over 700 HLA-DR molecules. PLoS One. 2012;7(2): 
e30483. doi:10.1371/journal.pone.0030483 

148.  Trolle T, Metushi IG, Greenbaum JA, Kim Y, Sidney J, Lund O, et al. Automated benchmarking of 
peptide-MHC class I binding predictions. 2015;31(13): 2174–2181. 
doi:10.1093/bioinformatics/btv123 

149.  Berzofsky JA. Immunodominance in T lymphocyte recognition. Immunol Lett. 1988;18(2): 83–
92. doi:10.1016/0165-2478(88)90046-6 



 

47 

 

150.  Harndahl M, Rasmussen M, Roder G, Dalgaard Pedersen I, Sørensen M, Nielsen M, et al. Peptide-
MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur J 
Immunol. 2012;42(6): 1405–1416. doi:10.1002/eji.201141774 

151.  Lazarski CA, Chaves FA, Jenks SA, Wu S, Richards KA, Weaver JM, et al. The kinetic stability of 
MHC Class II : peptide complexes is a key parameter that dictates immunodominance. Immunity. 

2005;23(1): 29–40. doi:10.1016/j.immuni.2005.05.009 

152.  Yin L, Trenh P, Guce A, Wieczorek M, Lange S, Sticht J, et al. Susceptibility to HLA-DM is 
determined by a dynamic conformation of major histocompatibility complex class II molecule 
bound with peptide. J Biol Chem. 2014;289(34): 23449–23464. doi:10.1074/jbc.M114.585539 

153.  Lazarski CA, Chaves FA, Sant AJ. The impact of DM on MHC class II-restricted antigen 
presentation can be altered by manipulation of MHC-peptide kinetic stability. J Exp Med. 
2006;203(5): 1319–1328. doi:10.1084/jem.20060058 

154.  Brodin P, Rosenkrands I, Andersen P, Cole ST, Brosch R. ESAT-6 proteins: protective antigens 
and virulence factors? Trends Microbiol. 2004;12(11): 500–508. 
doi:10.1016/j.tim.2004.09.007 

155.  Arlehamn CSL, Sidney J, Henderson R, Greenbaum J a, James E a, Moutaftsi M, et al. Dissecting 
mechanisms of immunodominance to the common tuberculosis antigens ESAT-6, CFP10, 
Rv2031c (hspX), Rv2654c (TB7.7), and Rv1038c (EsxJ). J Immunol. 2012;188(10): 5020–5031. 
doi:10.4049/jimmunol.1103556 

156.  Kim A, Sadegh-Nasseri S. Determinants of immunodominance for CD4 T cells. Curr Opin 
Immunol. 2015;34: 9–15. doi:10.1016/j.coi.2014.12.005 

157.  Talaat AM, Lyons R, Howard ST, Johnston SA. The temporal expression profile of Mycobacterium 
tuberculosis infection in mice. Proc Natl Acad Sci U S A. 2004;101(13): 4602–4607. 
doi:10.1073/pnas.0306023101 

158.  Ward SK, Abomoelak B, Marcus S a, Talaat AM. Transcriptional profiling of Mycobacterium 
tuberculosis during infection: lessons learned. Front Microbiol. 2010;1: 121. 
doi:10.3389/fmicb.2010.00121 

159.  Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin 
Immunol. 2014;26(6): 431–444. doi:10.1016/j.smim.2014.09.012 

160.  Vita R, Overton J a., Greenbaum J a., Ponomarenko J, Clark JD, Cantrell JR, et al. The immune 
epitope database (IEDB) 3.0. Nucleic Acids Res. 2014;43(D1): D405–D412. 
doi:10.1093/nar/gku938 

161.  Andersen P, Kaufmann SHE. Novel vaccination strategies against tuberculosis. Cold Spring Harb 
Perspect Med. 2014;4(6): a018523. doi:10.1101/cshperspect.a018523 

162.  Pitt JM, Blankley S, McShane H, O’Garra A. Vaccination against tuberculosis: How can we better 
BCG? Microb Pathog. 2013;58: 2–16. doi:10.1016/j.micpath.2012.12.002 



48 

 

163.  Robinson RT, Orme IM, Cooper AM, Cooper AM. The onset of adaptive immunity in the mouse 
model of tuberculosis and the factors that compromise its expression. Immunol Rev. 2015;264(1): 
46–59. doi:10.1111/imr.12259 

164.  Wang C, Peyron P, Mestre O, Kaplan G, van Soolingen D, Gao Q, et al. Innate immune response 
to Mycobacterium tuberculosis Beijing and other genotypes. PLoS One. 2010;5(10): e13594. 
doi:10.1371/journal.pone.0013594 

165.  Sarkar R, Lenders L, Wilkinson KA, Wilkinson RJ, Nicol MP. Modern lineages of Mycobacterium 
tuberculosis exhibit lineage-specific patterns of growth and cytokine induction in human monocyte-
derived macrophages. PLoS One. 2012;7(8): e43170. doi:10.1371/journal.pone.0043170 

166.  Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 
2015;16(4): 343–353. doi:10.1038/ni.3123 

167.  Yuliwulandari R, Sachrowardi Q, Nakajima H, Kashiwase K, Hirayasu K, Mabuchi A, et al. 
Association of HLA-A, -B, and -DRB1 with pulmonary tuberculosis in western Javanese Indonesia. 
Hum Immunol. 2010;71(7): 697–701. doi:10.1016/j.humimm.2010.04.005 

168.  Wu F, Zhang W, Zhang L, Wu J, Li C, Meng X, et al. NRAMP1, VDR, HLA-DRB1, and HLA-DQB1 
gene polymorphisms in susceptibility to tuberculosis among the Chinese Kazakh population: a 
case-control study. Biomed Res Int. 2013;2013: 484535. doi:10.1155/2013/484535 

169.  Tong X, Chen L, Liu S, Yan Z, Peng S, Zhang Y, et al. Polymorphisms in HLA-DRB1 Gene and the 
risk of tuberculosis: a meta-analysis of 31 studies. Lung. 2015;193(2): 309–318. 
doi:10.1007/s00408-015-9692-z 

170.  Salie M, Van Der Merwe L, Möller M, Daya M, Van Der Spuy GD, Van Helden PD, et al. Associations 
between human leukocyte antigen class I variants and the Mycobacterium tuberculosis subtypes 
causing disease. J Infect Dis. 2014;209(2): 216–223. doi:10.1093/infdis/jit443 

171.  Commandeur S, van den Eeden SJF, Dijkman K, Clark SO, van Meijgaarden KE, Wilson L, et al. 
The in vivo expressed Mycobacterium tuberculosis (IVE-TB) antigen Rv2034 induces CD4+ T-cells 
that protect against pulmonary infection in HLA-DR transgenic mice and guinea pigs. Vaccine. 
2014;32(29): 3580–3588. doi:10.1016/j.vaccine.2014.05.005 

172.  Mogues BT, Goodrich ME, Ryan L, Lacourse R, North RJ. The relative importance of T cell subsets 
in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J 
Exp Med. 2001;193(3): 271–280. doi:10.1084/jem.193.3.271 

173.  Davila J, McNamara LA, Yang Z. Comparison of the predicted population coverage of tuberculosis 
vaccine candidates Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f via a bioinformatics approach. 
PLoS One. 2012;7(7): e40882. doi:10.1371/journal.pone.0040882 

174.  Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale 
protein function classification. Bioinformatics. 2014;30(9): 1236–1240. 
doi:10.1093/bioinformatics/btu031 



 

49 

 

175.  Billerbeck E, Horwitz JA, Labitt RN, Donovan BM, Vega K, Budell WC, et al. Characterization of 
human antiviral adaptive immune responses during hepatotropic virus infection in HLA-transgenic 
human immune system mice. J Immunol. 2013;191(4): 1753–1764. 
doi:10.4049/jimmunol.1201518 

176.  Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J 
Comput Biol. 2000;7(1-2): 203–214. doi:10.1089/10665270050081478 

177.  Karboul A, Gey van Pittius NC, Namouchi A, Vincent V, Sola C, Rastogi N, et al. Insights into the 
evolutionary history of tubercle bacilli as disclosed by genetic rearrangements within a PE_PGRS 
duplicated gene pair. BMC Evol Biol. 2006;6: 107. doi:10.1186/1471-2148-6-107 

178.  McEvoy CRE, Cloete R, Müller B, Schürch AC, van Helden PD, Gagneux S, et al. Comparative 
analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and an 
apparent absence of selective constraints. PLoS One. 2012;7(4): e30593. 
doi:10.1371/journal.pone.0030593 

179.  Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. 
Nucleic Acids Res. 2004;32(5): 1792–1797. doi:10.1093/nar/gkh340 

180.  Kumar S, Stecher G, Peterson D, Tamura K. MEGA-CC: Computing core of molecular evolutionary 
genetics analysis program for automated and iterative data analysis. Bioinformatics. 2012;28(20): 
2685–2686. doi:10.1093/bioinformatics/bts507 

181.  Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: Detection and analysis of 
recombination patterns in virus genomes. Virus Evol. 2015;1(1): ve–vev003. 
doi:10.1093/ve/vev003 

182.  Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic 
analysis tools for evolutionary biology. Bioinformatics. 2010;26(19): 2455–2457. 
doi:10.1093/bioinformatics/btq429 

183.  McKinney DM, Southwood S, Hinz D, Oseroff C, Arlehamn CSL, Schulten V, et al. A strategy to 
determine HLA class II restriction broadly covering the DR, DP, and DQ allelic variants most 
commonly expressed in the general population. Immunogenetics. 2013;65(5): 357–370. 
doi:10.1007/s00251-013-0684-y 

184.  Copin R, Coscollá M, Seiffert S. Sequence diversity in the pe_pgrs genes of Mycobacterium 
tuberculosis is independent of human T cell recognition. MBio. 2014;5(1): e00960–13. 
doi:10.1128/mBio.00960-13 

185.  Zemmour J, Parham P. Distinctive polymorphism at the HLA-C locus: implications for the 
expression of HLA-C. J Exp Med. 1992;176(4): 937–950. doi:10.1084/jem.176.4.937 

186.  Blythe MJ, Zhang Q, Vaughan K, de Castro R, Salimi N, Bui H-H, et al. An analysis of the epitope 
knowledge related to Mycobacteria. Immunome Res. 2007;3: 10. doi:10.1186/1745-7580-3-10 



50 

 

187.  Stucki D, Malla B, Hostettler S, Huna T, Feldmann J, Yeboah-Manu D, et al. Two new rapid SNP-
typing methods for classifying Mycobacterium tuberculosis complex into the main phylogenetic 
lineages. PLoS One. 2012;7(7): e41253. doi:10.1371/journal.pone.0041253  



 

51 

 

SUPPLEMENTARY DATA 

Single-nucleotide substitutions found in iVEGI  

 

Supplementary Table 1. Single-nucleotide substitutions found in iVEGI across 270 MTBC strains from all known lineages. 

Gene/intergenic 
region 

Common 
name 

Genome 
position 

Nucleotide 
substitution 

Type 
Amino acid 
substitution 

SNP frequency (%) 
dbSNPa TBDBb tbvarc 

Lineage 1 Lineage 2 Lineage 3 Lineage 4 Lineage 5 Lineage 6 Lineage 7 

Rv0960 - 1073704 G -> A Nonsynonymous A54T 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0960 - 1073716 C -> T Nonsynonymous R58W 31.3 0.0 0.0 0.0 0.0 0.0 0.0 rs157705827 x x 

Intergenic_Rv0960-
Rv0961 

- 1074039 C -> T - - 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0961 - 1074152 G -> T Nonsynonymous A27S 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0962c lprP 1074558 A -> G Nonsynonymous L186P 0.0 0.0 0.0 3.2 0.0 0.0 0.0 rs157727929 x x 

Intergenic_Rv0962c-
Rv0963c 

- 1075269 C -> T - - 0.0 0.0 0.0 4.6 0.0 0.0 0.0 
rs1577058883; 
rs157727947 

x x 

Intergenic_Rv0962c-
Rv0963c 

- 1075279 C -> T - - 0.0 0.0 0.0 18.3 0.0 0.0 0.0 rs157705884 x x 

Rv0963c - 1075584 C -> T Nonsynonymous G172R 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0963c - 1075618 G -> A Synonymous S160S 22.9 0.0 0.0 0.0 0.0 0.0 0.0 rs157705894 x x 

Rv0963c - 1075766 G -> A Nonsynonymous P111L 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0963c - 1075904 T -> C Nonsynonymous D65G 0.0 8.2 0.0 0.0 0.0 0.0 0.0   x 

Rv0963c - 1075986 C -> G Nonsynonymous A38P 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0963c - 1075997 C -> G Nonsynonymous R34P 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0963c - 1076020 C -> A Nonsynonymous K26N 0.0 0.0 0.0 1.1 0.0 0.0 0.0 rs157705937 x x 

Rv0963c - 1076052 T -> G Synonymous R16R 0.0 0.0 2.5 0.0 0.0 0.0 0.0    
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Rv0964c - 1076196 T -> C Stoplost X161W 0.0 0.0 0.0 0.0 0.0 5.9 0.0    

Rv0964c - 1076309 T -> G Nonsynonymous T124P 0.0 0.0 0.0 6.3 0.0 0.0 0.0 rs157705967 x x 

Rv0964c - 1076532 G -> A Synonymous I49I 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Intergenic_Rv0964c-
Rv0965c 

- 1076689 A -> C - - 0.0 75.0 0.0 0.0 0.0 0.0 0.0 rs157705991 x x 

Rv0965c - 1076880 C -> T Synonymous A106A 0.0 89.8 0.0 0.0 0.0 0.0 0.0 rs157706002 x x 

Rv0965c - 1077102 C -> T Synonymous A32A 0.0 0.0 0.0 0.0 100.0 0.0 0.0 
rs157706012; 
rs157727994 

x x 

Rv0965c - 1077106 C -> A Nonsynonymous R31L 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Intergenic_Rv0965c-
Rv0966c 

- 1077211 C -> T -  0.0 0.0 0.0 0.0 0.0 13.3 0.0    

Rv0966c - 1077280 A -> C Nonsynonymous W186G 0.0 0.0 0.0 0.0 100.0 100.0 0.0 
rs157706020; 
rs157728002 

x x 

Rv0966c - 1077312 G -> A Nonsynonymous A175V 0.0 0.0 0.0 1.1 0.0 0.0 0.0 rs157706021 x x 

Rv0966c - 1077365 G -> A Synonymous H157H 6.3 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0966c - 1077521 C -> T Synonymous P105P 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv0966c - 1077713 C -> T Synonymous Q41Q 0.0 0.0 0.0 0.0 0.0 0.0 100.0   x 

Rv0966c - 1077754 C -> T Nonsynonymous A28T 100.0 0.0 0.0 0.0 0.0 0.0 0.0 rs157706026 x x 

Intergenic_Rv0966c-
Rv0967c 

- 1077911 C -> T - - 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Intergenic_Rv0966c-
Rv0967c 

- 1077917 G -> A - - 0.0 0.0 0.0 0.0 0.0 41.2 0.0 rs157706031   

Intergenic_Rv0966c-
Rv0967c 

- 1077921 C -> T - - 0.0 0.0 0.0 1.1 0.0 5.9 0.0    

Rv0967 - 1077981 A -> G Nonsynonymous K3E 2.1 0.0 0.0 0.0 0.0 0.0 0.0 rs157706035 x x 

Rv0967 - 1078166 G -> A Synonymous T64T 0.0 2.0 0.0 0.0 0.0 0.0 0.0 rs157706036 x x 

Rv0968 - 1078398 G -> A Stogain W3X 17.5 0.0 0.0 0.0 0.0 0.0 0.0 rs157706037 x x 

Rv0969 ctpV 1078777 C -> A Nonsynonymous A12E 0.0 0.0 0.0 3.2 0.0 0.0 0.0    

Rv0969 ctpV 1079274 G -> A Nonsynonymous V178M 0.0 0.0 0.0 2.2 0.0 0.0 0.0    

Rv0969 ctpV 1079457 C -> T Nonsynonymous R239C 21.3 0.0 0.0 0.0 0.0 0.0 0.0 rs15770648 x x 

Rv0969 ctpV 1079473 G -> A Nonsynonymous R244K 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0969 ctpV 1079558 G -> C Nonsynonymous E272D 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0969 ctpV 1079830 G -> T Nonsynonymous G363V 0.0 0.0 0.0 0.0 5.9 0.0 0.0    

Rv0969 ctpV 1079927 A -> C Synonymous T395T 2.1 0.0 0.0 7.5 0.0 0.0 0.0 rs157706050 x x 
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Rv0969 ctpV 1080013 C -> T Nonsynonymous T424I 0.0 8.2 0.0 0.0 0.0 0.0 0.0   x 

Rv0969 ctpV 1080191 T -> C Synonymous P483P 0.0 0.0 0.0 1.1 0.0 0.0 0.0 rs157731275  x 

Rv0969 ctpV 1080192 A -> G Nonsynonymous N484D 2.1 0.0 2.7 100.0 0.0 0.0 0.0 rs157706051 x x 

Rv0969 ctpV 1080290 A -> G Nonsynonymous I516M 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0969 ctpV 1080366 G -> A Nonsynonymous G542R 0.0 0.0 0.0 0.0 0.0 11.8 0.0    

Rv0969 ctpV 1080376 A -> C Nonsynonymous K545T 0.0 0.0 2.7 0.0 0.0 0.0 0.0    

Rv0969 ctpV 1080493 T -> C Nonsynonymous V584A 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0969 ctpV 1080528 G -> A Nonsynonymous A596T 0.0 0.0 0.0 9.7 0.0 0.0 0.0 rs157731276  x 

Rv0969 ctpV 1080542 T -> C Synonymous G600G 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0969 ctpV 1080914 C -> T Synonymous Y724Y 0.0 0.0 0.0 0.0 0.0 11.8 0.0    

Rv0970 - 1081062 A -> G Nonsynonymous D4G 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0970 - 1081200 C -> T Nonsynonymous A50V 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0970 - 1081601 T -> G Nonsynonymous S184A 0.0 2.0 0.0 0.0 0.0 0.0 0.0 
rs157706055; 
rs157728012 

x x 

Rv0970 - 1081681 C -> T Synonymous V210V 0.0 0.0 0.0 3.2 0.0 0.0 0.0 rs157728013 x x 

Rv0971c echA7 1081831 G -> A Synonymous L252L 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0971c echA7 1081882 A -> G Nonsynonymous S235P 0.0 0.0 0.0 0.0 0.0 0.0 100.0   x 

Rv0971c echA7 1082433 G -> A Nonsynonymous A51V 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0971c echA7 1082445 T -> A Nonsynonymous E47V 0.0 0.0 0.0 9.7 0.0 0.0 0.0   x 

Rv0971c echA7 1082578 T -> G Nonsynonymous S3R 0.0 0.0 2.6 0.0 0.0 0.0 0.0    

Rv0972c fadE12 1082891 A -> C Nonsynonymous L287W 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0972c fadE12 1082983 G -> A Synonymous G256G 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv0972c fadE12 1083179 G -> A Nonsynonymous T191I 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv0972c fadE12 1083576 G -> T Nonsynonymous P59T 0.0 0.0 0.0 5.3 0.0 0.0 0.0    

Rv0972c fadE12 1083684 C -> T Nonsynonymous V23M 0.0 0.0 0.0 0.0 0.0 5.9 0.0    

Rv0973c accA2 1083755 A -> G Nonsynonymous S666P 100.0 0.0 0.0 0.0 0.0 0.0 0.0 rs157706062 x x 

Rv0973c accA2 1083944 C -> T Nonsynonymous E603K 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0973c accA2 1084048 G -> C Nonsynonymous P568R 0.0 0.0 5.0 0.0 0.0 0.0 0.0    

Rv0973c accA2 1084091 C -> A Nonsynonymous A554S 0.0 4.2 0.0 0.0 0.0 0.0 0.0   x 
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Rv0973c accA2 1084239 A -> G Synonymous R504R 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv0973c accA2 1084280 A -> G Nonsynonymous W491R 0.0 0.0 5.0 0.0 0.0 0.0 0.0    

Rv0973c accA2 1084409 C -> G Nonsynonymous G448R 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0973c accA2 1084476 C -> T Synonymous L425L 0.0 0.0 0.0 1.1 0.0 0.0 0.0 rs157706065 x x 

Rv0973c accA2 1084567 T -> C Nonsynonymous Y395C 0.0 0.0 5.0 0.0 0.0 0.0 0.0    

Rv0973c accA2 1084812 G -> A Synonymous C313C 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0973c accA2 1084831 T -> C Nonsynonymous Q307R 0.0 2.1 0.0 0.0 0.0 0.0 0.0 rs157706066 x x 

Rv0973c accA2 1084863 T -> C Synonymous E296E 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0973c accA2 1084911 G -> A Synonymous Y280Y 0.0 0.0 15.0 0.0 0.0 0.0 0.0 rs157706067 x x 

Rv0973c accA2 1084967 C -> T Nonsynonymous A262T 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0973c accA2 1085489 C -> A Stogain E88X 0.0 2.1 0.0 0.0 0.0 0.0 0.0    

Rv0973c accA2 1085516 C -> T Nonsynonymous G79S 0.0 0.0 0.0 2.1 0.0 0.0 0.0    

Rv0974c accD2 1085919 C -> T Nonsynonymous G476D 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0974c accD2 1085983 C -> A Nonsynonymous A455S 0.0 0.0 0.0 0.0 0.0 11.8 0.0    

Rv0974c accD2 1086076 G -> C Nonsynonymous P424A 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0974c accD2 1086367 G -> A Nonsynonymous H327Y 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0974c accD2 1086525 G -> T Nonsynonymous P274Q 0.0 0.0 0.0 4.3 0.0 0.0 0.0 rs157706073 x x 

Rv0974c accD2 1086635 C -> A Nonsynonymous L237F 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0974c accD2 1086648 C -> A Nonsynonymous R233L 100.0 0.0 0.0 0.0 0.0 0.0 0.0 rs157706074 x x 

Rv0974c accD2 1086687 G -> A Nonsynonymous S220F 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv0974c accD2 1086778 C -> T Nonsynonymous G190S 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0974c accD2 1086896 T -> A Nonsynonymous K150N 0.0 0.0 0.0 0.0 0.0 5.9 0.0    

Rv0974c accD2 1086902 G -> T Synonymous T148T 0.0 0.0 0.0 0.0 0.0 11.8 0.0    

Rv0974c accD2 1087193 C -> G Nonsynonymous K51N 2.1 0.0 2.5 18.1 0.0 0.0 0.0 rs157706078 x x 

Rv0974c accD2 1087210 G -> T Nonsynonymous H46N 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0974c accD2 1087279 T -> C Nonsynonymous K23E 0.0 0.0 0.0 11.7 0.0 0.0 0.0 
rs157731280; 
rs157733291 

 x 

Rv0975c fadE13 1087478 C -> T Nonsynonymous G340D 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0975c fadE13 1087534 C -> A Nonsynonymous K321N 2.1 0.0 0.0 0.0 0.0 0.0 0.0    
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Rv0975c fadE13 1087699 C -> A Synonymous R266R 0.0 0.0 0.0 2.1 0.0 0.0 0.0   x 

Rv0975c fadE13 1087760 A -> G Nonsynonymous L246P 0.0 0.0 0.0 0.0 11.8 0.0 0.0 rs157706079 x x 

Rv0975c fadE13 1087812 T -> G Nonsynonymous N229H 0.0 0.0 0.0 2.1 0.0 0.0 0.0 rs157731281  x 

Rv0975c fadE13 1087824 C -> A Nonsynonymous V225L 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0975c fadE13 1087852 G -> A Synonymous T215T 16.7 0.0 0.0 0.0 0.0 0.0 0.0   x 

Rv0975c fadE13 1088097 C -> T Nonsynonymous D134N 0.0 0.0 0.0 0.0 11.8 0.0 0.0 rs157706080 x x 

Rv0975c fadE13 1088159 C -> T Nonsynonymous R113Q 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0975c fadE13 1088189 C -> T Nonsynonymous G103D 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0976c - 1088514 C -> T Synonymous E554E 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0976c - 1088600 T -> C Nonsynonymous I526V 0.0 2.0 2.5 0.0 0.0 0.0 0.0    

Rv0976c - 1088676 C -> T Synonymous L500L 0.0 0.0 0.0 3.2 0.0 0.0 0.0    

Rv0976c - 1088909 G -> A Nonsynonymous R423C 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv0976c - 1089078 G -> A Synonymous A366A 0.0 0.0 5.0 0.0 0.0 0.0 0.0    

Rv0976c - 1089421 C -> T Nonsynonymous R252Q 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv0976c - 1089554 T -> C Nonsynonymous T208A 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0976c - 1089922 G -> T Nonsynonymous P85H 0.0 0.0 0.0 1.1 0.0 0.0 0.0 
rs157731282; 
rs157733292 

 x 

Rv0976c - 1090077 G -> A Synonymous Y33Y 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0976c - 1090133 A -> G Nonsynonymous S15P 0.0 0.0 0.0 0.0 0.0 41.2 0.0    

Intergenic_Rv0979c-
Rv0979A 

- 1094885 C -> T - - 0.0 0.0 0.0 1.1 0.0 0.0 0.0 rs157731290  x 

Rv0979A rpmF 1095053 G -> T Nonsynonymous K56N 0.0 0.0 0.0 0.0 0.0 100.0 0.0 rs157706106 x x 

Rv0981 mprA 1096905 A -> C Nonsynonymous E28D 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0981 mprA 1097023 G -> A Nonsynonymous G68S 0.0 100.0 100.0 100.0 0.0 0.0 0.0 rs157706114 x x 

Rv0981 mprA 1097220 C -> T Synonymous S133S 0.0 100.0 100.0 0.0 0.0 0.0 0.0 rs157706115 x x 

Rv0981 mprA 1097328 G -> C Synonymous R169R 4.2 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0981 mprA 1097442 C -> T Synonymous D207D 0.0 89.8 0.0 0.0 0.0 0.0 0.0 rs157706116 x x 

Rv0982 mprB 1097633 C -> T Synonymous A42A 0.0 0.0 0.0 0.0 100.0 0.0 0.0 rs157706117 x x 

Rv0982 mprB 1097894 C -> T Synonymous T129T 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv0982 mprB 1098141 C -> T Nonsynonymous P212S 2.1 0.0 0.0 0.0 0.0 0.0 0.0    
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Rv0982 mprB 1098263 T -> C Synonymous R252R 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0982 mprB 1098266 C -> T Synonymous T253T 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0982 mprB 1098459 G -> A Nonsynonymous V318I 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0982 mprB 1098523 A -> T Nonsynonymous H339L 0.0 0.0 0.0 100.0 0.0 0.0 0.0 rs1577016118 x x 

Rv0982 mprB 1098698 C -> G Synonymous G397G 0.0 0.0 0.0 5.3 0.0 0.0 0.0   x 

Rv0982 mprB 1098710 C -> A Synonymous P401P 0.0 0.0 5.0 0.0 0.0 0.0 0.0    

Rv0982 mprB 1098711 G -> A Nonsynonymous V402M 0.0 0.0 0.0 0.0 0.0 5.9 0.0    

Rv0982 mprB 1098984 G -> A Nonsynonymous V493I 0.0 0.0 7.5 0.0 0.0 0.0 0.0 rs157706119 x x 

Intergenic_Rv0982-
Rv0983 

- 1099058 G -> A - - 0.0 100.0 100.0 0.0 0.0 0.0 0.0 rs157706120 x x 

Rv0983 pepD 1099092 C -> T Synonymous G9G 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0983 pepD 1099212 C -> T Synonymous F49F 18.8 0.0 0.0 0.0 0.0 0.0 0.0 rs157706122 x x 

Rv0983 pepD 1099237 C -> A Nonsynonymous P58T 0.0 0.0 0.0 0.0 0.0 11.8 0.0    

Rv0983 pepD 1099573 T -> C Synonymous L170L 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0983 pepD 1099678 C -> A Nonsynonymous P205T 0.0 2.0 0.0 0.0 0.0 0.0 0.0 rs157706125   

Rv0983 pepD 1099797 C -> A Synonymous G244G 0.0 8.2 0.0 0.0 0.0 0.0 0.0   x 

Rv0983 pepD 1100234 C -> T Nonsynonymous P390L 0.0 0.0 0.0 3.2 0.0 0.0 0.0 rs157706128 x x 

Rv0983 pepD 1100414 G -> A Nonsynonymous G450D 0.0 0.0 27.5 0.0 0.0 0.0 0.0 rs157735240  x 

Rv0984 moaB2 1100589 C -> T Nonsynonymous H44Y 4.2 0.0 0.0 0.0 0.0 0.0 0.0 rs157706130 x x 

Rv0985c mscL 1101092 C -> T Nonsynonymous G130E 0.0 0.0 0.0 4.3 0.0 0.0 0.0 rs157706132 x x 

Rv0985c mscL 1101174 C -> T Nonsynonymous V103I 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv0985c mscL 1101179 C -> T Nonsynonymous G101E 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv0985c mscL 1101317 C -> G Nonsynonymous G55A 0.0 4.2 0.0 0.0 0.0 0.0 0.0    

Rv0985c mscL 1101353 A -> C Nonsynonymous I43S 0.0 0.0 0.0 2.1 0.0 0.0 0.0   x 

Intergenic_Rv0985c-
Rv0986 

- 1101516 G -> T - - 2.1 0.0 0.0 0.0 0.0 0.0 0.0 rs157706135 x x 

Intergenic_Rv0985c-
Rv0986 

- 1101578 C -> G - - 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv0986 - 1101814 A -> C Nonsynonymous Q4H 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0986 - 1102117 G -> A Synonymous V105V 0.0 89.8 0.0 0.0 0.0 0.0 0.0 rs157706139 x x 

Rv0986 - 1102175 G -> A Nonsynonymous V125M 0.0 0.0 0.0 0.0 0.0 11.8 0.0    
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Rv0986 - 1102273 T -> G Nonsynonymous I157M 0.0 0.0 0.0 0.0 0.0 0.0 100.0   x 

Rv0986 - 1102468 C -> A Synonymous G222G 0.0 100.0 0.0 0.0 0.0 0.0 0.0 rs157706141 x x 

Rv0986 - 1102484 G -> T Nonsynonymous V228L 0.0 0.0 0.0 0.0 100.0 100.0 0.0 rs157706142 x x 

Rv0986 - 1102520 A -> G Nonsynonymous T240A 0.0 0.0 2.5 1.1 0.0 0.0 0.0    

Rv0987 - 1102646 G -> A Synonymous A35A 0.0 89.8 0.0 0.0 0.0 0.0 0.0 rs157706143 x x 

Rv0987 - 1102788 G -> T Nonsynonymous V83F 0.0 0.0 0.0 7.4 0.0 0.0 0.0 rs157731291  x 

Rv0987 - 1102805 C -> T Synonymous H88H 0.0 0.0 0.0 0.0 0.0 17.6 0.0    

Rv0987 - 1102924 T -> C Nonsynonymous L128S 4.2 0.0 0.0 0.0 0.0 0.0 0.0   x 

Rv0987 - 1102973 C -> G Synonymous P144P 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0987 - 1103046 G -> C Nonsynonymous V169L 10.4 8.2 0.0 0.0 0.0 0.0 0.0   x 

Rv0987 - 1103126 C -> A Nonsynonymous D195E 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0987 - 1103206 A -> C Nonsynonymous K222T 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0987 - 1103249 C -> T Synonymous A236A 0.0 0.0 0.0 21.3 0.0 0.0 0.0 rs157706148 x x 

Rv0987 - 1103289 G -> C Nonsynonymous V250L 0.0 0.0 0.0 0.0 5.9 0.0 0.0    

Rv0987 - 1103487 G -> A Nonsynonymous G316R 12.5 0.0 0.0 0.0 0.0 0.0 0.0 
rs157706151; 
rs157728037 

x x 

Rv0987 - 1103656 C -> T Nonsynonymous A372V 0.0 73.5 0.0 0.0 0.0 0.0 0.0 rs157706152 x x 

Rv0987 - 1103786 G -> T Nonsynonymous L415F 0.0 0.0 0.0 12.8 0.0 0.0 0.0    

Rv0987 - 1103908 T -> C Nonsynonymous M456T 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0987 - 1103955 C -> T Stogain R472X 0.0 2.0 0.0 0.0 0.0 0.0 0.0 rs157706153 x x 

Rv0987 - 1103995 C -> T Nonsynonymous T485I 22.9 0.0 0.0 0.0 0.0 0.0 0.0 rs157706154 x x 

Rv0987 - 1104044 C -> T Synonymous G501G 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0987 - 1104140 A -> G Synonymous T533T 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0987 - 1104308 A -> G Synonymous R589R 0.0 0.0 0.0 2.1 0.0 0.0 0.0    

Rv0987 - 1104499 A -> G Nonsynonymous D653G 0.0 0.0 0.0 0.0 100.0 0.0 0.0 rs157706158 x x 

Rv0987 - 1104518 G -> A Nonsynonymous M659I 0.0 4.1 0.0 0.0 0.0 0.0 0.0    

Rv0987 - 1104626 C -> G Synonymous A695A 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0987 - 1104634 C -> T Nonsynonymous A698V 16.7 0.0 0.0 0.0 0.0 0.0 0.0 rs157706160 x x 

Rv0987 - 1104654 A -> G Nonsynonymous I705V 0.0 0.0 2.5 0.0 0.0 0.0 0.0    
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Rv0987 - 1104690 G -> T Nonsynonymous V717F 0.0 0.0 0.0 100.0 0.0 0.0 0.0 rs157706161 x x 

Rv0987 - 1104740 C -> A Synonymous A733A 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0987 - 1104928 C -> T Nonsynonymous A796V 16.7 0.0 0.0 0.0 0.0 0.0 0.0   x 

Rv0987 - 1104944 C -> T Synonymous R801R 0.0 8.2 0.0 0.0 0.0 0.0 0.0   x 

Rv0987 - 1104956 C -> T Synonymous V805V 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0987 - 1104967 G -> A Nonsynonymous G809D 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0987 - 1104996 G -> C Nonsynonymous A819P 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0987 - 1105056 C -> T Nonsynonymous P839S 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0987 - 1105102 A -> C Nonsynonymous E854A 0.0 0.0 0.0 12.8 0.0 0.0 0.0   x 

Intergenic_Rv0987-
Rv0988 

- 1105111 G -> T - - 0.0 0.0 0.0 1.1 0.0 0.0 0.0   x 

Rv0988 - 1105216 A -> G Nonsynonymous D34G 0.0 0.0 0.0 0.0 5.9 0.0 0.0    

Rv0988 - 1105284 A -> G Nonsynonymous V57I 0.0 100.0 100.0 100.0 0.0 0.0 0.0 rs157706165 x x 

Rv0988 - 1105342 A -> G Nonsynonymous Y76C 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv0988 - 1105346 C -> A Synonymous T77T 0.0 8.3 0.0 0.0 0.0 0.0 0.0 rs157706166 x x 

Rv0988 - 1105367 C -> T Synonymous D84D 8.3 0.0 0.0 0.0 0.0 0.0 0.0   x 

Rv0988 - 1105424 C -> T Synonymous G103G 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0988 - 1105505 G -> T Synonymous S130S 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0988 - 1105525 C -> T Nonsynonymous A137V 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0988 - 1105557 G -> T Nonsynonymous A148S 0.0 0.0 0.0 0.0 100.0 0.0 0.0 rs157706167 x x 

Rv0988 - 1105587 T -> C Nonsynonymous W158R 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0988 - 1105686 C -> G Nonsynonymous L191A 0.0 68.8 0.0 0.0 0.0 0.0 0.0 rs157706168 x x 

Rv0988 - 1105687 T -> C Nonsynonymous L191A 0.0 68.8 0.0 0.0 0.0 0.0 0.0 rs157706169 x x 

Rv0988 - 1105739 G -> C Synonymous P208P 0.0 0.0 0.0 0.0 0.0 0.0 100.0   x 

Rv0988 - 1105832 C -> G Nonsynonymous S239R 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0988 - 1105877 T -> C Synonymous D254D 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0988 - 1106099 C -> T Synonymous I328I 0.0 0.0 100.0 0.0 0.0 0.0 0.0 rs157706173 x x 

Rv0988 - 1106219 G -> T Nonsynonymous M368I 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Intergenic_Rv0988-
Rv0989c 

- 1106289 G -> T - - 0.0 0.0 0.0 2.1 0.0 0.0 0.0   x 
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Intergenic_Rv0988-
Rv0989c 

- 1106311 G -> A - - 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0989c grcC2 1106409 T -> C Nonsynonymous D325G 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0989c grcC2 1106422 C -> T Nonsynonymous V321I 0.0 0.0 0.0 17.9 0.0 0.0 0.0 rs157706176 x x 

Rv0989c grcC2 1106464 G -> A Nonsynonymous R307C 0.0 8.2 0.0 0.0 0.0 0.0 0.0   x 

Rv0989c grcC2 1106492 C -> T Synonymous A297A 0.0 0.0 5.0 0.0 0.0 0.0 0.0    

Rv0989c grcC2 1106598 G -> C Nonsynonymous A262G 0.0 0.0 0.0 0.0 0.0 23.5 0.0 
rs157706177; 
rs157728040 

x x 

Rv0989c grcC2 1106614 G -> T Nonsynonymous L257M 0.0 12.2 0.0 0.0 0.0 0.0 0.0 
rs157706178; 
rs157728041 

x x 

Rv0989c grcC2 1106652 A -> G Nonsynonymous L244P 0.0 0.0 0.0 9.5 0.0 0.0 0.0    

Rv0989c grcC2 1106838 G -> C Nonsynonymous A182G 0.0 10.2 0.0 0.0 0.0 0.0 0.0 rs157734969  x 

Rv0989c grcC2 1106842 T -> C Nonsynonymous I181V 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0989c grcC2 1106875 G -> C Nonsynonymous L170V 0.0 0.0 5.0 0.0 0.0 0.0 0.0    

Rv0989c grcC2 1106877 T -> C Nonsynonymous Y169C 0.0 0.0 0.0 7.4 0.0 0.0 0.0 rs157731295  x 

Rv0989c grcC2 1106959 C -> T Nonsynonymous A142T 0.0 0.0 0.0 2.1 0.0 0.0 0.0    

Rv0989c grcC2 1106961 A -> G Nonsynonymous V141A 0.0 0.0 2.5 0.0 0.0 0.0 0.0 rs157706180   

Rv0989c grcC2 1106962 C -> G Nonsynonymous V141L 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0989c grcC2 1107024 T -> C Nonsynonymous D120G 0.0 0.0 0.0 0.0 100.0 0.0 0.0 rs157706181 x x 

Rv0989c grcC2 1107077 C -> T Synonymous K102K 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv0989c grcC2 1107134 C -> T Nonsynonymous M83I 4.2 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0989c grcC2 1107320 G -> A Synonymous A21A 0.0 0.0 0.0 0.0 5.9 0.0 0.0    

Intergenic_Rv0989c-
Rv0990c 

- 1107434 A -> T - - 0.0 0.0 0.0 20.0 0.0 0.0 0.0 rs157706182 x x 

Rv0990c - 1107897 G -> A Nonsynonymous A68V 0.0 0.0 0.0 0.0 0.0 100.0 0.0 
rs157706183; 
rs157728042 

x x 

Rv0990c - 1107917 G -> T Nonsynonymous H61Q 0.0 2.0 0.0 21.1 0.0 0.0 0.0 rs157706184 x x 

Rv0990c - 1107940 C -> A Nonsynonymous A54S 2.1 2.0 0.0 100.0 0.0 0.0 0.0 
rs157706185; 
rs157728043 

x x 

Rv0990c - 1107986 C -> T Nonsynonymous M38I 4.2 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0990c - 1108072 G -> A Synonymous L10L 0.0 0.0 0.0 0.0 5.9 0.0 0.0    

Rv0990c - 1108077 G -> A Nonsynonymous P8L 0.0 0.0 0.0 0.0 0.0 5.9 0.0    

Intergenic_Rv0990c-
Rv0991c 

- 1108113 G -> T - - 2.1 0.0 0.0 0.0 0.0 0.0 0.0    
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Rv0991c - 1108199 G -> A Synonymous S102S 0.0 0.0 5.0 0.0 0.0 0.0 0.0    

Rv0991c - 1108325 G -> A Synonymous - 0.0 0.0 0.0 0.0 0.0 5.9 0.0    

Intergenic_Rv0991c-
Rv0992c 

- 1108521 G -> A - - 0.0 69.4 0.0 0.0 0.0 0.0 0.0 rs157706187 x x 

Rv0992c - 1108599 G -> C Nonsynonymous I191M 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0992c - 1108788 C -> T Synonymous A128A 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0992c - 1108939 C -> T Nonsynonymous R78H 2.1 0.0 0.0 0.0 0.0 0.0 0.0 rs157706188 x x 

Rv0992c - 1109163 G -> C Nonsynonymous I3M 0.0 100.0 100.0 100.0 0.0 0.0 0.0 rs157706189 x x 

Rv0993 galU 1109278 C -> T Nonsynonymous R3C 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0993 galU 1109296 C -> T Nonsynonymous P9S 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0993 galU 1109313 C -> G Synonymous V14V 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0993 galU 1109391 T -> G Synonymous T40T 0.0 0.0 0.0 0.0 58.8 0.0 0.0 rs157706190 x x 

Rv0993 galU 1109535 G -> A Synonymous K88K 0.0 0.0 0.0 2.1 0.0 0.0 0.0   x 

Rv0993 galU 1109975 G -> A Nonsynonymous R235Q 0.0 0.0 0.0 6.3 0.0 0.0 0.0 rs157706191 x x 

Rv0993 galU 1110177 T -> G Synonymous G302G 0.0 0.0 0.0 0.0 11.8 0.0 0.0 
rs157706192; 
rs157728045 

x x 

Intergenic_Rv0993-
Rv0994 

- 1110225 G -> A - - 0.0 0.0 0.0 0.0 0.0 5.9 0.0    

Rv0994 moeA1 1110295 T -> G Synonymous A9A 0.0 0.0 2.6 0.0 0.0 0.0 0.0    

Rv0994 moeA1 1110574 G -> T Nonsynonymous R102S 0.0 0.0 0.0 0.0 0.0 5.9 0.0 rs157706193   

Rv0994 moeA1 1110721 T -> C Synonymous R151R 0.0 0.0 69.2 0.0 0.0 0.0 0.0 rs157735264  x 

Rv0994 moeA1 1110750 T -> C Nonsynonymous V161A 6.3 0.0 0.0 0.0 0.0 0.0 0.0 rs157706194 x x 

Rv0994 moeA1 1110916 C -> A Nonsynonymous D216E 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0994 moeA1 1110956 G -> T Nonsynonymous G230C 0.0 100.0 100.0 100.0 0.0 0.0 0.0 rs157706195 x x 

Rv0994 moeA1 1111228 G -> A Synonymous L320L 14.6 0.0 0.0 0.0 0.0 0.0 0.0   x 

Rv0994 moeA1 1111382 G -> A Nonsynonymous D372N 0.0 0.0 0.0 0.0 5.9 0.0 0.0    

Rv0994 moeA1 1111397 C -> T Synonymous L377L 0.0 0.0 0.0 0.0 0.0 5.9 0.0 rs157706196 x x 

Rv0994 moeA1 1111448 A -> G Nonsynonymous T394A 0.0 8.2 0.0 0.0 0.0 0.0 0.0   x 

Rv0994 moeA1 1111462 G -> T Synonymous A398A 0.0 0.0 2.6 0.0 0.0 0.0 0.0    

Rv0994 moeA1 1111469 C -> T Synonymous L401L 14.6 0.0 0.0 0.0 0.0 0.0 0.0 rs157706197 x x 

Rv0994 moeA1 1111518 T -> C Nonsynonymous V417A 97.9 0.0 0.0 0.0 0.0 0.0 0.0 rs1577061698 x x 
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Rv0994 moeA1 1111528 C -> T Synonymous A420A 4.2 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0995 rimJ 1111678 G -> A Nonsynonymous G23S 0.0 69.4 0.0 0.0 0.0 0.0 0.0 
rs157706199; 
rs157733669 

x x 

Rv0995 rimJ 1111784 C -> T Nonsynonymous P58L 0.0 0.0 0.0 2.1 0.0 0.0 0.0 
rs157731297; 
rs157733670 

  

Rv0995 rimJ 1111826 G -> T Nonsynonymous R72L 0.0 0.0 0.0 10.5 0.0 0.0 0.0 
rs157731298; 
rs157733671 

 x 

Rv0995 rimJ 1111852 G -> T Nonsynonymous D81Y 0.0 0.0 100.0 0.0 0.0 0.0 0.0 rs157706200 x x 

Rv0995 rimJ 1111921 G -> A Nonsynonymous G104S 0.0 2.0 0.0 0.0 0.0 0.0 0.0 rs157706201 x x 

Rv0995 rimJ 1111925 A -> G Nonsynonymous Y105C 0.0 0.0 0.0 10.5 0.0 0.0 0.0 
rs157731299; 
rs157733672 

 x 

Rv0995 rimJ 1111993 T -> G Nonsynonymous C128G 6.3 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0995 rimJ 1112027 C -> T Nonsynonymous A139V 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Intergenic_Rv0995-
Rv0996 

- 1112226 C -> A - - 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Intergenic_Rv0995-
Rv0996 

- 1112327 C -> A - - 0.0 0.0 0.0 0.0 0.0 0.0 25.0    

Intergenic_Rv0995-
Rv0996 

- 1112333 T -> A - - 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0996 - 1112530 T -> C Synonymous A49A 0.0 0.0 0.0 1.1 0.0 0.0 0.0 rs157706202 x x 

Rv0996 - 1112630 G -> C Nonsynonymous E83Q 0.0 0.0 0.0 0.0 5.9 0.0 0.0    

Rv0996 - 1112752 G -> A Synonymous P123P 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0996 - 1112880 C -> T Nonsynonymous A166V 8.3 0.0 0.0 0.0 0.0 0.0 0.0   x 

Rv0996 - 1113029 C -> A Nonsynonymous R216S 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0996 - 1113226 C -> G Synonymous T281T 0.0 0.0 0.0 1.1 0.0 0.0 0.0 rs157731301   

Rv0996 - 1113290 C -> G Nonsynonymous Q303E 0.0 100.0 100.0 100.0 0.0 0.0 0.0 rs157706205 x x 

Rv0996 - 1113292 G -> C Nonsynonymous Q303H 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0996 - 1113326 T -> C Nonsynonymous S315P 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0996 - 1113403 G -> A Synonymous A340A 12.5 0.0 0.0 0.0 0.0 0.0 0.0 rs157706207 x x 

Intergenic_Rv0996-
Rv0997 

- 1113733 C -> A - - 0.0 0.0 70.0 0.0 0.0 0.0 0.0 rs157706209 x x 

Intergenic_Rv0996-
Rv0997 

- 1113750 C -> T - - 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Intergenic_Rv0996-
Rv0997 

- 1113783 C -> T - - 4.2 0.0 0.0 0.0 0.0 0.0 0.0    

Intergenic_Rv0996-
Rv0997 

- 1113840 A -> G - - 0.0 0.0 0.0 2.1 0.0 0.0 0.0 rs157706210 x x 
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Intergenic_Rv0996-
Rv0997 

- 1114129 T -> G - - 0.0 0.0 0.0 0.0 100.0 0.0 0.0 rs157706211 x x 

Intergenic_Rv0996-
Rv0997 

- 1114261 G -> C - - 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Intergenic_Rv0996-
Rv0997 

- 1114289 G -> A - - 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0997 - 1114361 C -> T Synonymous G23G 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv0997 - 1114494 G -> A Nonsynonymous G68S 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0997 - 1114503 C -> T Stogain Q71X 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0997 - 1114539 A -> C Nonsynonymous T83P 0.0 2.0 0.0 0.0 0.0 0.0 0.0    

Rv0998 - 1114860 C -> G Nonsynonymous P38R 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0998 - 1114981 C -> T Synonymous I78I 0.0 0.0 0.0 0.0 5.9 0.0 0.0    

Rv0998 - 1115075 G -> A Nonsynonymous G110S 0.0 0.0 0.0 0.0 0.0 29.4 0.0    

Rv0998 - 1115198 G -> T Nonsynonymous A151S 2.1 2.0 2.5 0.0 0.0 0.0 0.0    

Rv0998 - 1115509 C -> T Synonymous I254I 0.0 0.0 27.5 0.0 0.0 0.0 0.0 rs157735268  x 

Rv0999 - 1115796 C -> A Synonymous A10A 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv0999 - 1115857 T -> G Nonsynonymous L31V 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv0999 - 1115880 A -> C Synonymous V38V 0.0 0.0 15.0 0.0 0.0 0.0 0.0 rs157706216   

Rv0999 - 1115884 G -> A Nonsynonymous A40T 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv1000c - 1116592 T -> G Nonsynonymous K186T 0.0 0.0 0.0 2.1 0.0 0.0 0.0   x 

Rv1000c - 1116838 T -> A Nonsynonymous E104V 2.1 0.0 0.0 0.0 0.0 0.0 0.0    

Rv1001 arcA 1117308 C -> T Synonymous L42L 0.0 0.0 0.0 0.0 0.0 100.0 0.0 rs157706220 x x 

Rv1001 arcA 1117405 C -> T Nonsynonymous T74I 97.9 0.0 0.0 0.0 0.0 0.0 0.0 rs157706221 x x 

Rv1001 arcA 1117568 C -> T Synonymous N128N 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv1001 arcA 1117656 C -> T Synonymous L158L 0.0 0.0 0.0 0.0 5.9 0.0 0.0    

Rv1001 arcA 1117758 A -> G Nonsynonymous I192V 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

Rv1001 arcA 1117773 C -> G Nonsynonymous P197A 0.0 0.0 0.0 3.2 0.0 0.0 0.0   x 

Rv1001 arcA 1117990 T -> G Nonsynonymous L269R 0.0 0.0 2.5 0.0 0.0 0.0 0.0    

Rv1001 arcA 1118006 G -> C Synonymous T274T 0.0 0.0 0.0 3.2 0.0 0.0 0.0 
rs157731303; 
rs157733297 

 x 

Rv1001 arcA 1118020 A -> G Nonsynonymous D279G 0.0 0.0 0.0 1.1 0.0 0.0 0.0 
rs157706223; 
rs157728046 

x x 
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Rv1001 arcA 1118270 A -> G Synonymous V362V 0.0 0.0 0.0 0.0 0.0 100.0 0.0 
rs157706228; 
rs157728050 

x x 

Rv1001 arcA 1118293 A -> G Nonsynonymous D370G 0.0 0.0 0.0 1.1 0.0 0.0 0.0    

 
aSherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29: 308–311. doi:10.1093/nar/29.1.308 
bReddy TBK, Riley R, Wymore F, Montgomery P, Decaprio D, Engels R, et al. TB database: An integrated platform for tuberculosis research. Nucleic Acids Res. 2009;37: 499–508. doi:10.1093/nar/gkn652 
cJoshi KR, Dhiman H, Scaria V. tbvar: A comprehensive genome variation resource for Mycobacterium tuberculosis. Database (Oxford). England; 2014;2014: bat083. doi:10.1093/database/bat083
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HLA alleles used in the immunoinformatics analysis 

 
Supplementary Table 2. HLA class I and class II alleles used in the T cell epitope prediction.  

  

HLA  class I 

HLA-A*01:01, HLA-A*02:01, HLA-A*02:02, HLA-A*02:03, 

HLA-A*02:06, HLA-A*02:07, HLA-A*02:22, HLA-A*03:01, 

HLA-A*11:01, HLA-A*23:01, HLA-A*24:02, HLA-A*24:07, 

HLA-A*24:20, HLA-A*26:01, HLA-A*29:02, HLA-A*30:01, 

HLA-A*31:01, HLA-A*31:08, HLA-A*32:01, HLA-A*33:01, 

HLA-A*33:03, HLA-A*34:01, HLA-A*68:01, HLA-A*74:01, 

HLA-B*07:02, HLA-B*07:05, HLA-B*08:01, HLA-B*13:01, 

HLA-B*13:02, HLA-B*14:01, HLA-B*14:02, HLA-B*14:05, 

HLA-B*15:01, HLA-B*15:02, HLA-B*15:03, HLA-B*15:04, 

HLA-B*15:07, HLA-B*15:10, HLA-B*15:11, HLA-B*15:13, 

HLA-B*15:21, HLA-B*15:32, HLA-B*18:01, HLA-B*18:02, 

HLA-B*27:04, HLA-B*27:05, HLA-B*35:01, HLA-B*35:03, 

HLA-B*35:05, HLA-B*35:06, HLA-B*39:01, HLA-B*39:06, 

HLA-B*40:01, HLA-B*40:02, HLA-B*40:06, HLA-B*42:01, 

HLA-B*44:03, HLA-B*44:04, HLA-B*44:06, HLA-B*45:01, 

HLA-B*46:01, HLA-B*48:01, HLA-B*48:03, HLA-B*51:01, 

HLA-B*52:01, HLA-B*53:01, HLA-B*53:03, HLA-B*55:02, 

HLA-B*56:01, HLA-B*57:01, HLA-B*58:01, HLA-B*58:02 

HLA  class II 

DRB1*01:01, DRB1*01:02, DRB1*03:01, DRB1*03:02, 

DRB1*04:01, DRB1*04:02, DRB1*04:03, DRB1*04:04, 

DRB1*04:05, DRB1*04:07, DRB1*04:11, DRB1*07:01, 

DRB1*08:01, DRB1*08:02, DRB1*08:03, DRB1*08:04, 

DRB1*08:07, DRB1*09:01, DRB1*10:01, DRB1*11:01, 

DRB1*11:02, DRB1*11:03, DRB1*11:04, DRB1*12:01, 

DRB1*12:02, DRB1*13:01, DRB1*13:02, DRB1*13:03, 

DRB1*13:04, DRB1*14:01, DRB1*14:02, DRB1*14:03, 

DRB1*14:04, DRB1*14:05, DRB1*14:13, DRB1*15:01, 

DRB1*15:02, DRB1*15:03, DRB1*15:04, DRB1*16:01, 

DRB1*16:02 
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Calculation of the normalized percentage of high binding affinity peptides 

 

Supplementary Figure 1. Example of the calculation of the normalized percentage of predicted peptides with high binding 
affinity to HLA molecules. 
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Geographic regions used for the estimation of the regional population 

coverage and MTBC lineages distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2. Geographic regions used for the estimation of the regional population coverage and MTBC lineages 
distribution. The world map was divided in 15 geographic regions (in different colors), according to the population coverage tool 
(http://tools.iedb.org/tools/population/iedb_input) of The Allele Frequency Net Database [133]. The distribution of the countries was further 
complemented on the basis of the United Nations guidelines (http://unstats.un.org/unsd/methods/m49/m49regin.htm). Northeast Asia and 
East Asia were grouped into Eastern Asia. a No datasets of HLA frequencies were available for Central Asia at the time of the analysis. 



 

67 

 

HLA alleles with predicted high binding affinity peptides encompassing wild-type and variant amino acid residues under 

diversifying selection  

 

Supplementary Table 3. HLA alleles with predicted high binding affinity peptides encompassing wild-type and variant amino acid residues under diversifying selection. 

Amino acid 
substitution 

HLA class I HLA class II 

Wild-type Variant Wild-type Variant 

Number Type Number Type Number Type Number Type 

LprP 
L186P 

29 

HLA-A*24:02, HLA-A*24:07, 
HLA-A*24:20, HLA-A*31:01, 
HLA-A*31:08, HLA-A*33:03, 
HLA-A*68:01, HLA-B*07:02, 
HLA-B*07:05, HLA-B*15:03, 
HLA-B*15:04, HLA-B*15:10, 
HLA-B*15:13, HLA-B*35:01, 
HLA-B*35:03, HLA-B*35:05, 
HLA-B*35:06, HLA-B*39:01, 
HLA-B*39:03, HLA-B*42:01, 
HLA-B*44:06, HLA-B*46:01, 
HLA-B*51:01, HLA-B*53:01, 
HLA-B*53:03, HLA-B*55:02, 
HLA-B*56:01, HLA-B*57:01, 
HLA-B*58:01, HLA-B*58:02 

17 

HLA-B*07:02, HLA-B*07:05, 
HLA-B*35:03, HLA-B*35:06, 
HLA-A*31:01, HLA-A*31:08, 
HLA-A*33:03, HLA-A*68:01, 
HLA-B*15:03, HLA-B*15:10, 
HLA-B*15:13, HLA-B*44:06, 
HLA-B*46:01, HLA-B*53:01, 
HLA-B*57:01, HLA-B*58:01, 

HLA-B*58:02 

3 
DRB1*01:01, DRB1*01:02, 

DRB1*14:13 
2 DRB1*01:01, DRB1*01:02 

AccA2 
S666P 

0 - 0 - 0 - 0 - 

AccD2 
K51N 

3 
HLA-A*31:01, HLA-A*33:01, 

HLA-A*33:03 
4 

HLA-A*31:01, HLA-A*33:01, 
HLA-A*33:03, HLA-B*15:10 

0 - 0 - 
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AccD2 
R233L 

29 

HLA-A*26:01, HLA-A*30:01, 
HLA-A*30:02, HLA-A*68:01, 
HLA-B*07:02, HLA-B*07:05, 
HLA-B*08:01, HLA-B*13:01, 
HLA-B*14:02, HLA-B*14:05, 
HLA-B*15:02, HLA-B*15:03, 
HLA-B*15:04, HLA-B*15:10, 
HLA-B*15:11, HLA-B*15:13, 
HLA-B*15:21, HLA-B*18:01, 
HLA-B*39:01, HLA-B*39:03, 
HLA-B*39:06, HLA-B*40:01, 
HLA-B*40:02, HLA-B*40:06, 
HLA-B*44:03, HLA-B*44:04, 
HLA-B*45:01, HLA-B*48:01, 

HLA-B*48:03 

36 

HLA-A*01:01,HLA-
A*02:01,HLA-A*02:03,HLA-
A*02:06,HLA-A*02:07,HLA-
A*02:22,HLA-A*29:02,HLA-
A*30:02,HLA-B*13:01,HLA-
B*15:04,HLA-B*15:10,HLA-
B*18:01,HLA-B*35:01,HLA-
B*35:03,HLA-B*35:05,HLA-
B*35:06,HLA-B*39:01,HLA-
B*39:03,HLA-B*39:06,HLA-
B*44:03,HLA-B*44:04,HLA-
B*45:01,HLA-B*53:03,HLA-
A*26:01,HLA-B*14:02,HLA-
B*14:05,HLA-B*15:02,HLA-
B*15:03,HLA-B*15:11,HLA-
B*15:13,HLA-B*15:21,HLA-
B*40:01,HLA-B*40:02,HLA-
B*40:06,HLA-B*48:01,HLA-

B*48:03 

2 DRB1*01:01, DRB1*01:02 5 
DRB1*01:01, DRB1*01:02, 
DRB1*12:01, DRB1*12:02, 

DRB1*14:13 

Rv0987 
V169L 

8 

HLA-A*02:03,HLA-
A*02:06,HLA-A*02:22,HLA-
B*13:01,HLA-B*13:02,HLA-
B*15:03,HLA-B*48:01,HLA-

B*48:03 

9 

HLA-A*02:03,HLA-
A*02:06,HLA-A*02:22,HLA-
A*24:07,HLA-B*13:01,HLA-
B*13:02,HLA-B*15:03,HLA-

B*48:01,HLA-B*48:03 

6 
DRB1*01:01, DRB1*01:02, 
DRB1*07:01, DRB1*13:03, 
DRB1*13:04, DRB1*14:13 

9 

DRB1*01:01, DRB1*01:02, 
DRB1*07:01, DRB1*11:04, 
DRB1*12:01, DRB1*12:02, 
DRB1*13:03, DRB1*13:04, 

DRB1*14:13 

Rv0988 
L191A 

10 

HLA-A*02:01, HLA-A*02:03, 
HLA-A*02:06, HLA-A*02:22, 
HLA-B*13:02, HLA-B*48:01, 
HLA-B*48:03, HLA-B*51:01, 
HLA-B*52:01, HLA-B*56:01 

5 
HLA-A*02:06, HLA-B*13:02, 
HLA-B*48:01, HLA-B*48:03, 

HLA-B*52:01 
9 

DRB1*01:01, DRB1*01:02, 
DRB1*07:01, DRB1*11:04, 
DRB1*12:01, DRB1*12:02, 
DRB1*13:03, DRB1*13:04, 

DRB1*14:13 

6 
DRB1*01:01, DRB1*01:02, 
DRB1*07:01, DRB1*13:03, 
DRB1*13:04, DRB1*14:13 

GrcC2 
V141L 

22 

HLA-A*02:01, HLA-A*02:03, 
HLA-A*02:06, HLA-A*02:22, 
HLA-A*26:01, HLA-A*34:01, 
HLA-A*68:02, HLA-B*15:02, 
HLA-B*15:03, HLA-B*15:11, 
HLA-B*15:13, HLA-B*15:21, 
HLA-B*35:01, HLA-B*35:03, 
HLA-B*35:05, HLA-B*35:06, 

25 

HLA-A*02:01, HLA-A*02:03, 
HLA-A*02:06, HLA-A*02:07, 
HLA-A*02:22, HLA-A*34:01, 
HLA-B*35:06, HLA-B*39:01, 
HLA-B*39:03, HLA-A*26:01, 
HLA-A*68:02, HLA-B*15:02, 
HLA-B*15:03, HLA-B*15:11, 
HLA-B*15:13, HLA-B*15:21, 

4 
DRB1*01:01, DRB1*01:02, 
DRB1*11:04, DRB1*14:13 

4 
DRB1*01:01, DRB1*01:02, 
DRB1*11:04, DRB1*14:13 
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HLA-B*44:06, HLA-B*46:01, 
HLA-B*51:01, HLA-B*52:01, 
HLA-B*53:01, HLA-B*53:03 

HLA-B*35:01, HLA-B*35:03, 
HLA-B*35:05, HLA-B*44:06, 
HLA-B*46:01, HLA-B*51:01, 
HLA-B*52:01, HLA-B*53:01, 

HLA-B*53:03 

Rv0990c 
A54S 

7 

HLA-A*02:03, HLA-B*39:01, 
HLA-B*39:06, HLA-B*40:01, 
HLA-B*40:02, HLA-B*44:03, 

HLA-B*44:04 

5 
HLA-A*02:03, HLA-B*39:01, 
HLA-B*40:01, HLA-B*44:03, 

HLA-B*44:04 
4 

DRB1*01:01, DRB1*01:02, 
DRB1*11:04, DRB1*14:13 

4 
DRB1*01:01, DRB1*01:02, 
DRB1*11:04, DRB1*14:13 

Rv0990c 
A68V 

4 
HLA-A*11:01, HLA-B*07:02, 
HLA-B*07:05, HLA-B*15:10 

5 
HLA-A*11:01, HLA-A*68:02, 
HLA-B*07:02, HLA-B*07:05, 

HLA-B*15:10 
0 - 1 DRB1*14:13 

RimJ D81Y 26 

HLA-A*23:01, HLA-A*26:01, 
HLA-A*31:08, HLA-A*32:01, 
HLA-A*34:01, HLA-B*13:01, 
HLA-B*13:02, HLA-B*15:01, 
HLA-B*15:03, HLA-B*15:07, 
HLA-B*15:11, HLA-B*35:01, 
HLA-B*35:05, HLA-B*40:01, 
HLA-B*40:02, HLA-B*40:06, 
HLA-B*44:03, HLA-B*44:04, 
HLA-B*44:06, HLA-B*45:01, 
HLA-B*48:01, HLA-B*48:03, 
HLA-B*51:01, HLA-B*52:01, 
HLA-B*53:01, HLA-B*53:03 

36 

HLA-A*23:01, HLA-A*24:02, 
HLA-A*24:07, HLA-A*24:20, 
HLA-A*26:01, HLA-A*29:02, 
HLA-A*30:02, HLA-A*31:08, 
HLA-A*32:01, HLA-A*34:01, 
HLA-B*15:03, HLA-B*15:04, 
HLA-B*15:13, HLA-B*27:04, 
HLA-B*27:05, HLA-B*35:01, 
HLA-B*35:05, HLA-B*44:06, 
HLA-B*46:01, HLA-B*52:01, 
HLA-B*53:01, HLA-B*53:03, 
HLA-A*23:01, HLA-B*13:01, 
HLA-B*13:02, HLA-B*15:01, 
HLA-B*15:07, HLA-B*15:11, 
HLA-B*40:01, HLA-B*40:02, 
HLA-B*40:06, HLA-B*44:03, 
HLA-B*44:04, HLA-B*48:01, 
HLA-B*48:03, HLA-B*51:01 

1 DRB1*01:02 1 DRB1*01:02 

Rv0996 
Q303E 

6 
HLA-A*30:01, HLA-A*31:01, 
HLA-A*74:01, HLA-B*15:03, 
HLA-B*27:04, HLA-B*27:05 

3 
HLA-A*31:01, HLA-B*27:04, 

HLA-B*27:05 
29 

DRB1*01:01, DRB1*01:02, 
DRB1*03:01, DRB1*03:02, 
DRB1*07:01, DRB1*08:01, 
DRB1*08:02, DRB1*08:03, 
DRB1*08:04, DRB1*08:07, 
DRB1*11:01, DRB1*11:02, 
DRB1*11:03, DRB1*11:04, 

29 

DRB1*01:01, DRB1*01:02, 
DRB1*03:01, DRB1*03:02, 
DRB1*07:01, DRB1*08:01, 
DRB1*08:02, DRB1*08:03, 
DRB1*08:04, DRB1*08:07, 
DRB1*11:01, DRB1*11:02, 
DRB1*11:03, DRB1*11:04, 
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DRB1*12:01, DRB1*12:02, 
DRB1*13:01, DRB1*13:03, 
DRB1*13:04, DRB1*14:01, 
DRB1*14:02, DRB1*14:03, 
DRB1*14:04, DRB1*14:05, 
DRB1*14:13, DRB1*15:01, 
DRB1*15:03, DRB1*15:04, 

DRB1*16:02 

DRB1*12:01, DRB1*12:02, 
DRB1*13:01, DRB1*13:03, 
DRB1*13:04, DRB1*14:01, 
DRB1*14:02, DRB1*14:03, 
DRB1*14:04, DRB1*14:05, 
DRB1*14:13, DRB1*15:01, 
DRB1*15:03, DRB1*15:04, 

DRB1*16:02 

 

 

 

 

 

 

 

 

 

 

 

 



 

71 

 

Regional population coverage for peptides encompassing residues under diversifying selection 

Supplementary Table 4. Predicted population coverage in 15 geographic regions for peptides encompassing wild-type and variant amino acid residues under diversifying selection.  

 Amino acid substitution under diversifying selection 

 AccD2 R233L Rv0987 V169L Rv0988 L191A 

 Variant MTBC strains HLA class II Variant MTBC strains HLA class II Variant MTBC strains HLA class II 

Region Lineage 
Frequency 

(%) 

Wild-type 
population 

coverage (%) 

Variant 
population 

coverage (%) 
Lineage 

Frequency 
(%) 

Wild-type 
population 

coverage (%) 

Variant 
population 

coverage (%) 
Lineage 

Frequency 
(%) 

Wild-type 
population 

coverage (%) 

Variant 
population 

coverage (%) 

North America 1 8.40 17.32 22.93 1 and 2 26.89 36.67 45.20 2 18.49 45.20 36.67 

Central America 1 0.00 3.44 4.19 1 and 2 0.00 15.88 19.01 2 0.00 19.01 15.88 

West Indies 1 0.00 14.95 22.26 1 and 2 3.17 38.43 44.62 2 3.17 44.62 38.43 

South America 1 0.00 6.81 11.13 1 and 2 0.00 19.33 23.38 2 0.00 23.38 19.33 

Europe 1 6.43 17.14 21.24 1 and 2 15.66 41.30 50.00 2 9.29 50.00 41.30 

North Africa 1 2.43 11.00 12.92 1 and 2 7.90 40.32 45.05 2 5.47 45.05 40.32 

West Africa 1 1.85 10.73 13.06 1 and 2 4.55 43.43 47.09 2 2.70 47.09 43.43 

Central Africa 1 0.00 11.64 19.17 1 and 2 0.00 32.30 39.79 2 0.00 39.79 32.30 

East Africa 1 9.93 15.54 26.04 1 and 2 14.37 25.35 36.32 2 4.44 36.32 25.35 

South Africa 1 0.00 0.00 0.00 1 and 2 22.53 0.00 0.00 2 22.53 0.00 0.00 

Southwest Asia 1 7.75 6.64 7.85 1 and 2 18.98 20.64 30.45 2 11.23 30.45 20.64 

South Asia 1 31.74 9.25 15.41 1 and 2 44.94 40.14 46.14 2 13.20 46.14 40.14 

Eastern Asia 1 6.32 6.71 24.60 1 and 2 71.29 15.07 33.15 2 64.97 33.15 15.07 

Southeast Asia 1 42.76 0.78 30.62 1 and 2 88.31 10.12 38.84 2 45.55 38.84 10.12 

Oceania 1 22.30 0.81 15.68 1 and 2 39.72 2.67 18.36 2 17.42 18.36 2.67 
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Supplementary Table 5. Purity of synthesized peptides for the HLA-binding in vitro assays. 

Peptide Type Peptide sequence Purity (%) 

ESAT-63-17 Positive control EQQWNFAGIEAAASA 84.81 

AccD2228-241 Wild-type AEMHARISGLADYF 83.35 

AccD2228-241 Variant AEMHALISGLADYF 90.11 

Rv0987164-177 Wild-type RIALQVKGAPTTVT 81.27 

Rv0987164-177 Variant RIALQLKGAPTTVT 93.62 

Rv0988185-202 Wild-type LTLTQTAPPILQGNAGLS 82.03 

Rv0988185-202 Variant LTLTQTLPPILQGNAGLS 84.11 
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