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Abstract  

Biofilms of Staphyloccocus epidermidis and Candida spp. are two of the most 

frequent factors of infection and pathogenesis associated to the use of indwelling 

medical devices. Several strategies have been proposed and/or developed to prevent 

infection. The aim of this study was to compare the effect of sub-inhibitory 

concentrations of anti-microbial agents on biofilm formation. 

Biofilms of three strains of S. epidermidis and two of both Candida albicans and 

Candida dubliniensis where formed in the presence of three antibiotics and two 

antifungal agents respectively. Based in the control samples, the percentage of biofilm 

formation inhibition by the different agents was determined and compared. 

The results showed that the influence of the antibacterial and antifungal agents 

tested is strain dependent, with the effect of the different agents also varying among 

strains, even if they have the same mechanism of action. 
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I. Introduction  

 

In order to invade and infect the human body microorganisms need to form 

resistant and strong structures - the biofilms. Biofilm structures comprise a 

heterogeneous mosaic that is characterized by a basal layer and stacks of 

microcolonies extending up into the aqueous phase; a porous biofilm with mushroom-

like structures interdispersed with water channels; and a dense-confluent biofilm that 

appears more tightly packed, often containing multiple species of microorganisms 

with regions of lower density that may act as transport channels within the biofilm (1). 

Whatever the structure, the microbial cells are always embedded into an extracellular 

polymeric matrix. The role of the biofilm is to resist the cleansing action of fluids, 

which is a mechanism of defence at various anatomical sites, and acting also as a 

reservoir for nutrients.  

Severe problems related to biofilm formation on indwelling medical devices 

have been reported (2, 3), including dysfunctioning of the implanted device to lethal 

sepsis of the patient. The eradication of a biofilm is a complicated issue, because 

microorganisms in a biofilm are more resistant to antimicrobial agents than their 

planktonic counterparts (4). 

  

The major part of the human body colonizers are bacteria, however some yeast 

infections are also found. These microorganisms can colonize either the human cells 

or indwelling devices, being the latter one of the major problems once their use is 

increasing in the last years.  
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Staphylococcus epidermidis and related coagulase-negative staphylococci 

(CoNS) are now considered among the major nosocomial pathogens associated to the 

use of indwelling medical devices and their ability to form biofilms is one of the most 

significant factors of virulence (5). 

Candida albicans and Candida dubliniensis are two pathogenic yeasts that are 

well known for colonization of the oral cavity, and prosthetic devices and responsible 

for Candidiasis, that can be fatal in immunosupressed individuals. 

 

A successful clinical response to therapy typically not only depends on the 

susceptibility of the pathogenic organism but also relies heavily on the host immune 

system, drug penetration and distribution, patient compliance and absence of a 

protected or persistent focus of infection. Microbial resistance of a given pathogen 

must be regarded as a quantifiable variable, determined by measurement of drug 

susceptibility and must be defined with respect to a reference population (6). This 

quantifiable variable can be the minimal inhibitory concentration (MIC), which is the 

lowest drug concentration that avoids visible growth of the microbial pathogen. 

The use of antimicrobial agents has been fully studied in the last years. Several 

therapies have been developed to improve the results obtained with the normal 

therapies (antimicrobial uses in single doses), as controlled release of drugs using 

coated polymers (7). Occasionally, as for example in immunosupressed individuals, 

drugs must be applied in longer treatments in order to prevent any infection. In this 

case, the dose of these agents is typically low, which may result in blood levels that 

are either clinically subinhibitory or less than the in vitro MIC (8). The exposure of 

patients to subinhibitory concentrations of antimicrobial agents may induce various 



 

 

5

changes in bacterial and yeast properties, including morphological or ultrastructure 

changes and inhibition or stimulation of enzyme and toxin production (8, 9).  

In the mouth, the diluent effect of saliva and the cleansing action of the oral 

musculature often tend to reduce the viability of the agents to below that of the 

effective therapeutic concentration (10). Thus, microbial cells in the oral cavity 

experience only a limited exposure to the antimicrobial agent during treatment and the 

concentration of the drug may vary in different niches of the mouth (11). 

One of the main goals of the present work was the comparison of the influence 

of subinhibitory concentrations of antimicrobial agents in the formation of biofilms by 

two distinct types of microorganisms, Staphylococcus epidermidis and Candida 

species. 
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II. Materials and Methods 

 

II.A. Bacteria 

 

II.A.1. Growing conditions 

Three S. epidermidis strains were used, S. epidermidis 9142 is a known producer 

of the major surface polysaccharide promoting CoNS adherence and biofilm 

formation, poly-N-acetyl glucosamine (PNAG); S. epidermidis IE186 was isolated 

from infective endocarditis patients; and S. epidermidis M187 was isolated from 

patients with peritonitis associated with renal dialysis. The strains were kindly 

provided by Dr. G.B. Pier from the Harvard Medical School, Boston, USA. 

Tryptic soy broth (TSB) and tryptic soy agar (TSA) were prepared according to the 

manufacturer’s instructions. All strains were inoculated into 15 ml of TSB from TSA 

plates not older than 2 days. Liquid cultures were grown for 24 (±2) h at 37 ºC in an 

orbital shaker at 130 rpm. The cells were harvested by centrifugation (for 5 min at 

10000 rpm at 4 ºC), then washed and resuspended in a saline solution (0.9% NaCl 

prepared in distilled water) to an optical density equivalent to 1 × 109 cells ml-1.  

 

II.A.2. Antibiotics 

The antibiotics used in this study were cefazolin, vancomycin and dicloxacillin, 

which act as inhibitors of cell wall synthesis and are routinely used to treat 

staphylococcal infections (12, 13). The sub-MIC used was 1/2 of the lowest MIC 

value (14). 
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II.A.3. Biofilm formation 

Formation of bacterial biofilms was performed as described previously (15). 

Briefly, sterilized acrylic squares were placed in 6-well tissue culture plates 

containing 6 ml of TSB supplemented with 0.25% of glucose and the respective 

amount of antibiotic. Then 200 µl of a 0.9% NaCl solution containing 1 × 109 cells 

ml-1 were added and growth was allowed to occur for 48 h at 37 ºC in a shaker at 120 

rpm. Every 8 h the TSB medium containing suspended bacterial cells was removed 

and an equal volume of fresh TSB with 0.25% glucose and antibiotic was added. 

Negative controls were obtained by incubating the surfaces in TSB supplemented with 

0.25% glucose and antibiotics without adding any bacterial cells. All experiments 

were done in quadruplicate with three repeats. 

 

II.A.4. Biofilm quantification 

Bacterial biofilms were quantified by dry-weight determinations, as previously 

described (16) with some modifications. Briefly, the colonized acrylic surfaces were 

removed from the plates and placed at 80 ºC overnight. Then the weight of the surface 

was determined on a digital scale. Surfaces were placed again at 80 ºC for 2 more 

hours and weighed again, to check the stability of the dry weight. Then, the biofilm 

was mechanically removed from the surface, and the surfaces were thoroughly 

cleaned with 0.2% commercial detergent solution. Cleaned surfaces were kept 

overnight at   80 ºC prior to a third weight determination. The difference in the weight 

of the surface with and without the biomass attached is the biofilm dry-weight. 
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II.B. Yeasts 

 
II.B.1. Yeasts growing conditions 

Two strains of Candida albicans and two strains of Candida dubliniensis were 

used in this work. In the case of Candida albicans one strain was from the American 

Type Culture Collection, ATCC 32354 (Candida albicans B311) and the other was a 

clinical isolate (Candida albicans 12A), kindly provided by the Biology Department, 

University of Minho, Portugal. In the case of Candida dubliniensis, the two strains 

were obtained from Centraalbureau voor Schimmelcultures, the Netherlands, CBS 

(Candida dubliniensis 7987 and Candida dubliniensis 7988). 

Yeast cells were grown for 24 h in SDA at 37 ºC, for all the assays. The cells 

were then inoculated in SDB for 18 h at 37 ºC and 150 rpm. After this, 108 cell ml-1 

were diluted 1:10 in artificial saliva growth medium, used as control and in the same 

medium supplemented with subinhibitory concentrations of both antifungal agents. 

Cells were grown in these media for 24 h at 37 ºC and 150 rpm. The cells were then 

harvested by centrifugation for 10 min at 5000 rpm and 4 ºC and washed twice with 

ultrapure sterile water. Saliva growth medium was prepared supplementing artificial 

saliva (in mg l-1: 125.6 NaCl, 963.9 KCl, 189.2 KSCN, 654.5 KH2PO4, 200.0 Urea, 

763.2 Na2SO4.10H2O, 178.0 NH4Cl, 227.8 CaCl2.2H2O, 630.8 NaHCO3) with 2 g l-1 

of glucose, 2 g l-1 of yeast extract and 5 g l-1 of peptone.  

 

II.B.2. Antifungal agents 

The antifungal agents used were: fluconazole (Pentafarma) and amphotericin B 

(ICN). Fluconazole was diluted in water until a subinhibitory concentration (1/2 MIC) 

of 0.25 µg ml-1. In the case of amphotericin B, the first dilution was in DMSO, once it 

is not water soluble, and the further dilutions were made in water to reach a 
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subinhibitory concentration of 0.01 µg ml-1. The antifungal solutions were prepared 

immediately before each experiment. 

 

II.B.3. Biofilm formation 

The biofilms were formed on acrylic coupons (8×8 mm2), that were prepared as 

described previously (17) and placed in the bottom of 24 well microtiter plates. An 

inoculum of 2 ml yeast cell suspension (107 cell ml-1) was added to each well and 

biofilm was formed in artificial saliva growth medium with and without fluconazole 

and amphotericin B. The media were changed each 12 h and the biofilms analysed 

after 78 h of formation. The experiments were performed in triplicate and repeated 

twice.  

 

II.B.4. Biofilm quantification 

After biofilm formation, the coupons were removed from each well and 

immersed in a new microtiter plate containing 1 ml of methanol in each well. 

Methanol was withdrawn after 15 min of contact and the coupons were allowed to dry 

at room temperature. After that, 600 µl of crystal violet were added to each well and 

incubated for 5 min. The coupons were then gently washed in water and immersed in 

1 ml of acetic acid (33 %) to release and dissolve the stain. The absorbance of the 

obtained solution was read at 570 nm. 
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III. Results and Discussion 

 

To accomplish the comparison of the influence of subinhibitory conditions of 

antimicrobial agents on the formation of biofilms by yeasts and bacteria, the 

pathogenic strains and abiotic surfaces were chosen as to be closely related with 

typical sites of infection. Although acrylic was used in both assays, concerning S. 

epidermidis the acrylic used was similar to the one used in some indwelling devices, 

whereas self-polymerised acrylic common in oral prosthetic devices was used with 

Candida species. Biofilms were quantified after 48 h for bacteria and after 78 h for 

yeasts. This difference is due to the time needed to achieve mature biofilms. 

 

The assessment of the effect of subinhibitory concentrations of both antibacterial 

and antifungal agents in biofilm formation was determined by the percentage of 

inhibition of biofilm formation (Tables 1 and 2). 

 

Table 1 –Inhibition of bacterial biofilm formation (in percentage) on acrylic, 

under sub-MICs (1/2 MIC) of the antibiotics: cefazolin, vancomycin and dicloxacillin  

 

 Percentage of biofilm inhibition using 

 cefazolin vancomycin dicloxacillin 

S. epidermidis 9142 43  (± 7) 24  (± 9) 54  (± 9) 

S. epidermidis IE186 55  (± 4) 24  (± 11) 32  (± 2) 

S. epidermidis M187 32  (± 3) 8  (± 3) 60  (± 4) 
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The effect of sub-inhibitory concentrations of vancomycin on biofilm formation 

by all the strains of S. epidermidis was the lowest compared to the other two 

antibiotics used (Table 1). 

 

Table 2 – Inhibition of yeast biofilm formation (in percentage) on acrylic, under 

sub-MICs (1/2 MIC) of amphotericin B and fluconazole  

 

 

 

 

 

 

 

It is interesting to notice that for both antifungal agents the inhibition was higher 

in the biofilms formed by Candida dubliniensis strains (Table 2). When amphotericin 

B was used the highest effect was on Candida dubliniensis 7987, showing that this 

strain presents a different behaviour compared to the other Candida dubliniensis 

strain. The opposite happened in the presence of subMIC of fluconazole, both strains 

of Candida dubliniensis presented similar reductions on the biofilm amounts, but 

Candida albicans 12A had a low inhibition than Candida albicans B311. 

These differences among strains were also present in bacterial biofilms, since 

the percentage of inhibition obtained with the different antibiotics was not similar for 

the three CoNS assayed (Table 1) and it should be emphasized that they all have the 

same mechanism of action, being cell wall synthesis inhibitors. Moreover, each 

antibiotic had a different effect on biofilm inhibition according to the strain targeted. 

 Percentage of biofilm inhibition using 

 amphotericin B fluconazole 

Candida albicans B311 20  (± 1) 31  (± 1) 

Candida albicans 12A 22  (± 9) 21  (± 5) 

Candida dubliniensis 7987 57  (± 4) 38  (± 5) 

Candida dubliniensis 7988 29  (± 1) 57 (± 1) 
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This is a very important issue since almost all the studies concerning the effect of 

antimicrobial agents in both bacteria and yeast biofilms tend to generalize the 

behaviour of a species without concerning the strains differences. It is also very 

interesting to notice that the effect of the different antimicrobial agents varies 

depending on the strain. For instances, amphotericin B is a fungicidal agent while 

fluconazole is fungistatic, but they act differently against the two strains of the two 

species. 

A special remark is due on the method used for biofilm formation. In the present 

work, both bacteria and yeast biofilms were formed in a fed-batch system in order to 

avoid the lack of nutrients (18). The type of biofilm formation, static or dynamic can 

affect considerably the results obtained once the formation of new phenotypes that 

could be able to subvert the inhibitory effect of the antimicrobial agents can happen 

when there is no lack of nutrients (19). On the contrary, static model systems may not 

provide sufficient time for a biofilm variant to develop and the results can be biased. 
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IV. Conclusions 

The main general conclusion from this study is that the effect of sub-inhibitory 

concentrations of anti-microbial agents is dependent on the microorganism at a strain 

level and on the type of drug, even for drugs having the same mechanism of action. 

If biofilm formation is inhibited by subMIC of an antimicrobial agent, the 

subsequent clinical results are also affected. In this way, the anti-biofilm effect of a 

drug may be relevant in assessing the selection of anti-microbial treatment. In the 

other hand, the failure of a prophylactic strategy based on the administration of 

subMIC of antimicrobial agents may have important clinical implications, threatening 

the eradication of the infection and favouring increased resistance against the 

antimicrobial agent. 
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