37th European Conference on Visual Perception
Belgrade, Serbia
24 – 28 August 2014

Abstracts

Sunday
Invited Talk: Perception Lecture 1

Monday
Symposium: A celebration of the life and scientific work of Ian Howard 2
Symposium: Advances in studying the perception of surface properties 4
Talks: Attention 6
Talks: Art and Vision 9
Talks: Eye Movements 11
Talks: Lightness 13
Posters: Face Perception I 15
Posters: Illusions I 20
Posters: Brain Mechanisms I 22
Posters: Attention I 25
Posters: Perception and Action I 27
Posters: Eye Movements I 30
Posters: Colour and Illumination I 32
Posters: Clinical I 33
Posters: Multisensory Processing I 35
Posters: Sensory Development and Aging I 37
Posters: Motion 39
Posters: Grouping Principles 43
Posters: Depth, 3D, Stereo 47
Posters: Aftereffects 50
Posters: Surface, Texture and Material Perception 53
Posters: Perceptual Learning 54
Posters: Scene Perception 56

Tuesday
Symposium: Putting Vision into Context: a fresh look at contextual modulation 58
Symposium: Motion processing in typical and atypical development: symposium in memory of John Wattam-Bell 60
Talks: Visual Search 63
Talks: Motion 65
Talks: Colour 67
Talks: Biological Motion 69
Posters: Face Perception II 71
Posters: Illusions II 77
Posters: Brain Mechanisms II 79
Posters: Attention II 82
Posters: Perception and Action II 84
Posters: Eye Movements II 86
Posters: Colour and Illumination II 88
Posters: Clinical II 90
Posters: Multisensory Processing II 91
Posters: Sensory Development and Aging II 93
Posters: Visual Search 94
Posters: Visual Memory 98
Posters: Biological Motion 102
Posters: Applications 105
Posters: Object Recognition and Categorization 107
Posters: Spatial Vision 109
Posters: Rivalry 111

Wednesday
Invited Talk: Rank Prize Lecture 113
Symposium: Amodal completion: Michotte’s legacy and new directions fifty years after ‘Les compléments amodaux’ 113
Symposium: Measuring visual awareness - approaches, applications, recommendations 116
Talks: Multisensory Processing 118
Talks: Learning 120
Talks: Face Perception 122
Talks: Development 124
Posters: Face Perception III 126
Posters: Illusions III	131
Posters: Brain Mechanisms III	134
Posters: Attention III	137
Posters: Perception and Action III	140
Posters: Eye Movements III	142
Posters: Colour and Illumination III	145
Posters: Clinical III	147
Posters: Multisensory Processing III	149
Posters: Sensory Development and Aging III	151
Posters: Visual Cognition	152
Posters: Art and Vision	157
Posters: Computational Neuroscience	160
Posters: Lightness and Brightness	163
Posters: New Methods	165
Posters: Binocular Vision	167

Thursday

Talks: Perceptual Mechanisms	169
Talks: Clinical	171
Talks: Perception and Action	173
Talks: Grouping Principles	175

Publisher's note.

In the interests of efficiency, these abstracts have been reproduced as supplied by the Conference with little or no copy editing by Pion. Thus, the English and style may not match those of regular Perception articles.
The European Conference on Visual Perception is an annual event. Previous conferences took place in:

1978 Marburg (D) 1990 Paris (F) 2002 Glasgow (GB)
1979 Noordwijkerhout (NL) 1991 Vilnius (LT) 2003 Paris (F)
1980 Brighton (GB) 1992 Pisa (I) 2004 Budapest (H)
1981 Gouvieux (F) 1993 Edinburgh (GB) 2005 A Coruña (E)
1982 Leuven (B) 1994 Eindhoven (NL) 2006 St Petersburg (RU)
1983 Lucca (I) 1995 Tübingen (D) 2007 Arezzo (I)
1984 Cambridge (GB) 1996 Strasbourg (F) 2008 Utrecht (NL)
1985 Peñíscola (E) 1997 Helsinki (FI) 2009 Regensburg (D)
1986 Bad Nauheim (D) 1998 Oxford (GB) 2010 Lausanne (CH)
1987 Varna (BG) 1999 Trieste (I) 2011 Toulouse (F)
1988 Bristol (GB) 2000 Groningen (NL) 2012 Alghero (I)
1989 Zichron Yaakov (IL) 2001 Kuşadası (TR) 2013 Bremen (D)
we present data from a gaze contingent object recognition paradigm where objects to be recognised are presented such that the participants are constrained to look only at specific image locations that could be either (i) a region that was, or (ii) was not previously fixated during the preceding learning phase. The results demonstrate a significant behavioural advantage when participants view previously fixated image regions compared to viewing image regions that were not previously fixated during the learning phase. These results suggest a functional role of eye movements to extract high resolution information from image features in the recognition process.

◆ **Looking at planar views during active object visual learning: moments of stability**
114 I C Lisboa1, E Sousa2, J A Santos1,2, A F Pereira1 (1CIPsi, School of Psychology, University of Minho, Portugal; 2Centro Algoritmi, University of Minho, Portugal; e-mail: isabel.lisboa@psi.uminho.pt)
The planar bias in active object learning is a well-documented viewpoint selection preference: in adults, and infants, the proportion spent looking at planar views – viewpoints where flat surfaces are shown perpendicular to the viewer – deviates strongly from random selection. One hypothesis of the planar bias’ functional role is that dynamic viewing around them is more informative – movements around planar views reveal more of the objects’ structure; this hypothesis predicts more exploratory behaviours, for instance measurable in higher angular velocities of the main axis of elongation. We asked adults to manipulate 3D objects on a computer, using a mouse, for twenty seconds each, and recorded the object’s 3D orientation and eye fixations (60Hz). We computed, per contiguous frames of dwell activity, inside a bin of the object’s viewing sphere: duration, proportion of time with object not moving, mean angular velocity of the main axis, and number of saccades. Results show that counter to the initial prediction, viewing periods around planar views are more stable: duration is higher, time not moving is higher, main axis speed is lower, and there are more saccades. Put together, these findings suggest focused attention to planar views and learning of a static view.

[This research was funded by Fundação para a Ciência e Tecnologia (FCT) with Portuguese Government funds under the project PTDC/PSI-PCO/121494/2010 “Visual Object Recognition and Children’s Self-Generated Object Views: Developmental Changes in Active Viewing” and under the project Scope: PEst-OE/EEI/UI0319/2014. AFP was also supported by a Marie Curie International Incoming Fellowship PIF-GA-2011-301155.]

◆ **Scene priming and location priming in scene-object consistency effects**
115 N Heise, U Ansorge (Faculty of Psychology, Universität Wien, Austria; e-mail: nils.heise@univie.ac.at)
Object recognition within scenes is better for semantically consistent objects as compared to inconsistent ones (for example: Biederman, Mezzanotte, & Rabinovitz, 1982): This might be due to the fact that visual search is more efficient for consistent objects as they occupy expected places. If solely visual search is responsible for consistency effects, they might be weaker (1) with repeated object locations, and (2) with repeated scene backgrounds. In Experiments 1 and 2, locations of objects were varied within a scene to a different degree (one, two, or four possible locations), and consistency effects were studied as a function of progressive numbers of repetitions of the backgrounds. Because repeating locations and backgrounds could facilitate visual search for objects, these repetitions might alter the consistency effects by lowering of location uncertainty. We a significant consistency effect, but there is no clear support for a modulation of location priming or scene priming on consistency effects. On the other hand our data indicates that the consistency effect might be strongly depended on the eccentricity of the target objects.

◆ **Model for the categorization of bottled soft drinks using their silhouette**
116 C ArceLopera1, A M Arboleda1, K Okajima2 (1Engineering Faculty, Universidad ICESI, Colombia; 2Faculty of Environment and Information Sciences, Yokohama National University, Japan; e-mail: arcelopera.carlos@gmail.com)
In our daily life, we use our senses to acquire information about the objects that surrounds us. However, the information processing that allows the recognition and consecutive classification into categories of those objects remains unclear. In this study, we analyzed quantitatively and tested experimentally the visual properties of bottles silhouettes responsible for categorization in soft drinks. First, we took pictures of all personal bottles of soft drinks available in the local market. Then, we extracted the silhouette and analyzed its physical characteristics using a cluster analysis. The silhouette image analysis revealed the physical characteristics that separate the categories according to the real market.