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Summary. The problem of supplier selection can be easily modeled as a
multiple-criteria decision making (MCDM) problem: businesses express
their preferences with respect to suppliers, which can then be ranked and
selected. This approach has two major pitfalls: first, it does not consider
a dynamic scenario, in which suppliers and their ratings are constantly
changing; second, it only addressed the problem from the point of view
of a single business, and cannot be easily applied when considering more
than one business. To overcome these problems, we introduce a method
for supplier selection that builds upon the dynamic MCDM framework
of Campanella and Ribeiro [1] and, by means of a linear programming
model, can be used in the case of multiple collaborating businesses plan-
ning their next batch of orders together.

1 Introduction

Complex decision making is a process extended in time: real-world decision prob-
lems are dynamic in the sense that they are the outcome of a sequence of deci-
sions or of an exploratory process, during which both alternatives and criteria
may vary. Dynamic decision making problems are characterized by three key
properties:

1. the temporal profile of an alternative matters for comparison with other
alternatives;

2. alternatives are not fixed, since they might be deemed nonviable and dis-
carded, and likewise new options might be taken into consideration and
added;

3. criteria are not fixed, not only because corresponding values might change
over time, but also because new criteria might be considered, or existing
ones removed.

Multiple-criteria decision making (MCDM) methods deal with selection of
alternatives from evaluations over criteria. They model two fundamental aspects
of decision problems:
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1. they capture the relevant quantitative and qualitative criteria – such as cost,
efficiency, and performance – for a specific decision problem;

2. they support the intricate trade-off process when considering different alter-
natives.

They are, in general, methods for eliciting evaluations and aggregating criteria
measurements in order to compose a ranked list of alternatives. However, they
are unable to deal with dynamic situations: they usually assume a fixed set of
alternatives and criteria, and thus cannot be used to adequately model the char-
acteristics of a dynamic decision making process in a changeable environment.

Recently, Campanella and Ribeiro proposed a framework for dynamic MCDM
[1] to address this gap in the decision making literature [2]. This framework was
developed in the context of a specific spatial-temporal decision problem [3, 4]; it
is, however, domain-independent and thus useful for any domain that includes
dynamic decision making. In the present paper, we extend the dynamic MCDM
framework of Campanella and Ribeiro [1] to the problem of supplier selection.
This problem cuts across many different industries for which suppliers play a
key role in the supply chain [5], and in its standard form can be easily stated as
a MCDM problem.

This chapter is organized as follows. In Section 2, we describe the basic
MCDM operations and the dynamic MCDM framework. In Section 3, we dis-
cuss how the problem of supplier selection can be tackled using the proposed
framework, in the case of a single business as well as in the case of multiple col-
laborating businesses served by the same set of suppliers. In Section 4, we work
through an illustrative example to facilitate the understanding and demonstrate
the effectiveness of the proposed method. Finally, in Section 5, we conclude
by suggesting other possible application areas, and by proposing directions for
future research.

2 Dynamic multiple-criteria decision making

In general, the aim of MCDM methods is to identify the best compromise solu-
tion from a set of feasible alternatives assessed with respect to a predefined set
of (usually conflicting) criteria.

The decision making literature contains many approaches to the static version
of this problem [6, 7]. It makes sense that current techniques are geared towards
a one-shot decision; complex decision problems – the kind that benefits from
decision support systems – are often about making one important decision. These
methods, however, are not easily adapted to dynamic decision making, which,
quoting Brehmer [8], can be defined as

. . . decision making under conditions which require a series of deci-
sions, where the decisions are not independent, where the state of the
world changes, both autonomously and as a consequence of the decision
maker’s actions.



Dynamic decision making methods must thus be able to support interdependent
decisions in an evolving environment, in which both criteria and alternatives may
change, and later decisions need to take into account feedback from previous ones.

2.1 Structure of static MCDM methods

Before we introduce the dynamic MCDM framework of Campanella and Ribeiro
[1], it is important to briefly describe the high-level structure of most static
MCDM methods, since it constitutes the foundation upon which the framework
is built. Broadly speaking, we can identify two phases in the decision making
process, namely preference elicitation and aggregation.

Preference elicitation The first step of static MCDM methods is known as
preference elicitation and consists in identifying the available alternatives, fixing
the criteria that will be used in the evaluation, and deriving the preference
structure, which may be expressed using different types of scales [9]. As noted
by Aloysius et al. [10], this process is of paramount importance and may even
directly affect user acceptance of MCDM methods; many different techniques
have thus been proposed in the literature (see, for example, [11] and references
therein).

Once the preference structure is obtained, it is necessary to translate it into
numerical values that express the relative performance of each alternative with
respect to each criterion; these values are usually assumed to belong to the unit
interval I = [0, 1]. Mathematically, a typical MCDM problem with m alternatives
and n criteria is modeled by the matrix



c1 c2 ... cn

a1 x11 x12 . . . x1n

a2 x21 x22 . . . x2n
...

...
...

. . .
...

am xm1 xm2 . . . xmn

 =


x1

x2

...

xm

, (1)

where xij ∈ I represents the level of achievement of alternative ai, i = 1, . . . ,m
with respect to criterion cj , j = 1, . . . , n, with 0 interpreted as “no satisfaction”
and 1 corresponding to “complete satisfaction”.

In the case of imprecise or uncertain data, fuzzy logic can be used to guarantee
normalization and comparability of input variables, which would be represented
by means of fuzzy membership functions [12].

Aggregation After numerical values for each alternative have been elicited,
they can aggregated into another numerical value, also belonging to the unit
interval, that is understood to represent the preferableness of that alternative
relative to all others. Given these values, alternatives may then be ordered, thus
producing a ranking, and the best one can be selected.

Aggregation is achieved by means of an aggregation function (sometimes
improperly called aggregation operator), formally defined as follows [13].



Definition 1 (Aggregation function). An aggregation function f : In → I
is a function of n > 1 variables that maps points x = (x1, . . . , xn) in the unit
hypercube In to single values in the unit interval I and that satisfies, for all
x,y ∈ In, 

f(0, 0, . . . , 0︸ ︷︷ ︸
n times

) = 0

f(1, 1, . . . , 1︸ ︷︷ ︸
n times

) = 1
(preservation of bounds), (2)

x ≤ y⇒ f(x) ≤ f(y) (monotonicity). (3)

Remark 1 (Weight vector). In this context, it is common to introduce a weight
vector w ∈ [0, 1]

n
whose generic element wj , j = 1, . . . ,m is the weight associated

to criterion cj expressing its importance relative to all others. These weights must
satisfy the normalization condition

∑
j wj = 1.

Intuitively, mathematical properties of the function chosen for aggregation
will directly affect output values and, therefore, the final ranking of alterna-
tives. An important property that can be required of aggregation functions is
associativity, defined as follows.

Definition 2 (Associativity). A bivariate aggregation function f : I2 → I is
said to be associative if, for all x1, x2, x3 ∈ I, it holds that

f(f(x1, x2), x3) = f(x1, f(x2, x3)). (4)

Remark 2. By iterative application, any bivariate aggregation function unam-
biguously defines a family of n-ary aggregation functions for n ≥ 2.

It is also common to classify aggregation functions according to their behav-
ior; we have the following definitions [13].

Definition 3 (Conjunctive aggregation function). An aggregation function
is said to be conjunctive if, for every x ∈ In, it holds that f(x) ≤ min(x).

Definition 4 (Averaging aggregation function). An aggregation function is
said to be averaging if, for every x ∈ In, it holds that min(x) ≤ f(x) ≤ max (x).

Definition 5 (Disjunctive aggregation function). An aggregation function
is said to be disjunctive if, for every x ∈ In, it holds that f(x) ≥ max(x).

Definition 6 (Mixed aggregation function). An aggregation function is said
to be mixed if it behaves differently on different parts of its domain, and thus
does not belong to any of the classes hitherto presented.

The literature on aggregation functions is extremely rich, and entire books
have been written on the subject. As a general introduction, we suggest the
books by Beliakov et al. [13] and Torra and Narukawa [14]; other important
references can be found in the paper by Campanella and Ribeiro [1].



2.2 Dynamic MCDM framework

Having briefly presented the structure of static MCDM methods, we shall now
introduce the dynamic MCDM framework proposed by Campanella and Ribeiro
[1]. Its most prominent feature is the addition of feedback to the decision process,
a critical aspect of how humans reach a decision, even in situation where the
problem is fully specified [15]. The operations performed at each decision moment
are schematically depicted in Figure 1, and will be fully described in the rest of
this section.

MCDM method

(Static) ratings

Historical set

Dynamic aggregation Dynamic ratings

Feedback

Fig. 1. Operations performed at each decision moment t ∈ T in the dynamic MCDM
framework of Campanella and Ribeiro [1]: (static) ratings, computed using some
MCDM method, are aggregated with information stored in the historical set to produce
dynamic ratings, which are then used to update the historical set.

To present the framework, let us introduce the following notation. We shall
denote by T = {1, 2, . . .} the (possibly infinite) set of discrete decision moments,
and by At the set of alternatives that are available at each decision moment
t ∈ T . Furthermore, we assume that a static MCDM method is being used
at each decision moment t ∈ T to compute ratings for each available alter-
native in At, and that these (static) ratings are represented by the function
rt : At → I. Note that we are only interested in the final aggregated value asso-
ciated to each available alternative, meaning that criteria and, possibly, weights
may vary among decision moments. Moreover, since we are dealing with a con-
stantly changing set of alternatives, we have replaced the more common matrix
notation presented earlier in the text with an appropriate set notation; when con-
venient, it is of course possible to carry out computations for a single decision
moment in matrix form.

The dynamic nature of the decision process is dealt with by means of a
feedback mechanism, controlled by an aggregation function f that makes use of
an historical set of alternatives – its “memory” – defined as follows.

Definition 7 (Historical set). The historical set of alternatives at decision
moment t ∈ T is a subset of all alternatives that have ever been available up to
and including that decision moment,



Ht ⊆
⋃
s≤t

As, s, t ∈ T . (5)

Remark 3 (Retention policy). In practical applications, the historical set is up-
dated incrementally. Let us define H0 = ∅ by convention; at each decision mo-
ment t ∈ T , the historical set can thus be defined as follows,

Ht ⊆ At ∪Ht−1, t ∈ T . (6)

It is therefore necessary to define a retention policy that can be used to select
alternatives that will be included in the historical set and carried over to the
next decision moment.

Let us now define the dynamic rating function r̃t : At ∪ Ht−1 → I that,
for each decision moment t ∈ T , gives the rating of alternatives that belong to
the current set of alternatives, or that have been carried over from a previous
decision moment. We can distinguish three cases:

1. if the alternative belongs only to the current set of alternatives, meaning
that no historical information is available, its dynamic rating corresponds to
its (static) rating;

2. if the alternative belongs to both the current and historical set of alternatives,
its dynamic rating is obtained by aggregating its (static) rating with its
dynamic rating at the previous decision moment;

3. finally, if the alternative belongs only to the historical set of alternatives,
meaning that no updated information is available, its dynamic rating corre-
sponds to the one it had at the previous decision moment.

More formally, we have the following definition.

Definition 8 (Dynamic rating function). For any alternative a ∈ At∪Ht−1,
the dynamic rating function is defined as follows,

r̃t(a) =


rt(a) a ∈ At \ Ht−1

f(rt(a), r̃t−1(a)) a ∈ At ∩Ht−1

r̃t−1(a) a ∈ Ht−1 \ At

, (7)

where f is some associative aggregation function.

Remark 4. The associativity requirement ensures that repeated pairwise appli-
cation of the aggregation function f will yield, at decision moment t ∈ T ,
the same result as application over the whole set of past (static) ratings
{rs(a), s = 1, . . . , t}; this also means that this computation can be performed
incrementally.

Apart from the associativity requirement, any aggregation function can be
used for dynamic aggregation, which in this way takes into account satisfaction
of criteria not only at the time of decision, but also at previous decision mo-
ments. The dynamic MCDM framework, in fact, provides a way of capturing an



intrinsic part of dynamic decision making problems – the temporal profile of rat-
ings. Choosing appropriate aggregation functions, it is thus possible to reward
alternatives that were consistently rated highly in the past, even if their most
recent rating is somewhat lower than average, or conversely to favor large and
recent increases in rating, ignoring poorer past performance. We will present an
example of this mixed behavior in Section 4.

3 Dynamic MCDM for supplier selection

Supplier selection is a typical decision problem that goes beyond simple optimiza-
tion. Due to its criticality, many authors have focused on the problem of iden-
tifying and analyzing supplier selection criteria. Already in 1966, Dickson [16]
examined different supplier selection strategies by means of questionnaires that
were distributed among selected managers from the United States and Canada.
Clearly, as companies become more and more dependent on suppliers, outcomes
of wrong decisions become more and more severe: for example, on-time delivery
and material costs are both affected by careful selection of suppliers, especially
in industries where raw material accounts for a significant part of the total cost
[17].

The problem of supplier selection can be naturally modeled as a multiple-
criteria decision making problem: businesses express their preferences on sup-
pliers, which are then ranked and selected. In fact, numerous (static) MCDM
methods, ranging from simple weighted averaging to complex mathematical pro-
gramming models, have been applied to the supplier selection problem; among
them, we note the work of Chan [18] (see also [19]), which is based on the
well-known Analytic Hierarchy Process (AHP) of Saaty [20, 21], and the Data
Envelopment Analysis (DEA) method that was originally developed by Charnes
et al. [22] and that is now widely used. Regarding the collaborative aspect of
supplier selection, however, as noted by Shi et al. [23],

. . . only a few studies have explored the multiple-participant charac-
teristic of the supplier selecting process.

Many authors have also considered integrated approaches that combine two or
more techniques, usually in a multiple-step process (for a detailed overview, see
[24]).

While these methods are able to deal with criteria as diverse and competing as
quality, service, reliability, organization, and other technical issues, they are not
as effective in coping with varying supplier performances, and also do not take
into account the possibility that the set of available suppliers might be altered,
for example because some of them went out of business, while others emerged
in the market. Moreover, they do not consider the possibility of a network of
collaborating businesses planning their next batch of orders together. The first
limitation can be easily addressed by understanding that the problem at hand
is a prime example of a dynamic MCDM problem, since businesses periodically
interact with suppliers and express their preferences. As regards the possibility of



planning for more than one business, in the rest of this section we shall present a
further extension to the dynamic MCDM framework of Campanella and Ribeiro
[1] that, by means of a linear programming model, makes it possible to handle
situations in which a number of collaborating businesses face several suppliers.
As before, we shall begin by first considering the simpler case of a single business,
and then extend it to more complex one of multiple businesses.

3.1 Single business

Let us first consider the case in which a single business has to periodically select
one or more suppliers to fulfill its needs for a certain period of time.

As in Section 2, we consider a discrete set of decision moments T = {1, 2, . . .},
and denote by At the set of n alternatives – i.e., suppliers – that are being con-
sidered at decision moment t ∈ T . Note that the number of suppliers needs
not be constant along time, as they can be both removed (for example, because
they went out of business) and added (for example, because new business op-
portunities opened up). At each decision moment t ∈ T , each supplier is also
assumed to be assessed by the business according to some set of criteria (such as
reliability, speed, and cost) that may also change over time; these assessments
are then distilled down to single (static) ratings using some MCDM method,
and further aggregated with information stored in the historical set to produce
dynamic ratings from which a final ranking can be produced.

The dynamic MCDM framework of Campanella and Ribeiro [1] can thus be
applied straightforwardly to the problem of supplier selection, bringing about the
improvements over static MCDM methods that were discussed in the previous
section.

3.2 Multiple businesses

Let us now consider the more complex case of m businesses that are collabo-
ratively planning their orders to a set of n suppliers; the situation is depicted
in Figure 2. Note that we require complete collaboration among businesses, but
not among suppliers; weaker collaborations among businesses could be studied
in the context of game theory, though we do not do so here.

At a fixed decision moment t ∈ T , we assume that each business bj ,
j = 1, . . . ,m, has rated each supplier si, i = 1, . . . , n, using some MCDM
method, and that these ratings have been aggregated with historical information
into dynamic ratings, as described before; in order to avoid a cumbersome no-
tation, these ratings will simply be denoted by r̃t(i, j). Furthermore, we assume
that each business has a certain demand dt(j), j = 1, . . . ,m, and that each sup-
plier has a maximum capacity ct(i), i = 1, . . . , n. The variables of the problem
are represented by the quantities xt(i, j) that business bj , j = 1, . . . ,m, shall
order from supplier si, i = 1, . . . , n at decision moment t ∈ T , as summarized
in Figure 3. Clearly, the allocation of orders to suppliers (encoded by the vari-
ables xt(i, j)) will change over time as a result of varying ratings, demands and
capacities.



s1 s2 s3 . . . sn

b1 b2 b3 . . . bm

Fig. 2. Network of businesses and suppliers: at decision moment t ∈ T , each business
bj , j = 1, . . . ,m, depicted here as a circle, orders a certain quantity xt(i, j) from supplier
si, i = 1, . . . , n, depicted here as a square.
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Iterative process
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Fig. 3. Collaborative model: different variables enter into the construction of the
optimal order quantities xt(i, j).

Before proceeding, let us introduce the following definitions.

Definition 9 (Satisfaction of a business). The satisfaction of a business bj,
j = 1, . . . ,m, at time t ∈ T with respect to a certain allocation of orders to
suppliers is defined as follows,



σt(j) =
∑
i

r̃t(i, j)xt(i, j). (8)

Definition 10 (Total satisfaction). The total satisfaction of all businesses at
time t ∈ T with respect to a certain allocation of orders to suppliers is defined
as follows,

σt =
∑
j

σt(j). (9)

We are now in a position to define the following linear program that maxi-
mizes the total satisfaction, making sure all demands are met and no capacity
is exceeded,

max σt =
∑
j

σt(j)

s.t.
∑
i

xt(i, j) = dt(j) j = 1, . . . ,m, (10)∑
j

xt(i, j) ≤ ct (i) i = 1, . . . , n.

This linear program would then be solved at each decision moment t ∈ T to
determine the optimal order quantities. Note that similar linear programming
models usually consider costs instead of satisfactions, and consequently seek to
minimize the objective function. Using the proposed approach, on the other
hand, each business can consider many more criteria that are then condensed
into a single (static) rating; this rating is then further aggregated with historical
information to yield a dynamic rating that is finally used in the linear program
presented above.

4 Illustrative example

To better understand how the dynamic MCDM framework of Campanella and
Ribeiro [1] can be applied to the supplier selection problem with multiple busi-
nesses, we now work through a small illustrative example.

For simplicity, we consider a fixed set of four suppliers, named s1 through
s4, and three businesses, named b1 through b3. Moreover, we also fix values for
capacities and demands as follows,

c1 = 20, d1 = 30,

c2 = 20, d2 = 20,

c3 = 15, d3 = 25,

c4 = 25.

It is easy to verify that the total capacity exceeds the total demand, so that
the linear program of Equation (10) will always have a solution. To keep the



example small, we consider only three decision moments (which could correspond
to monthly supplier evaluations, for example), and present three matrices each
time, as shown in Figure 4:

1. the first matrix shows the (static) ratings for each pair of business and sup-
plier;

2. the second matrix gives the dynamic ratings obtained using the dynamic
MCDM framework;

3. finally, the third matrix represents the solution to the linear program of
Equation (10).

(Static) ratings Dynamic ratings LP solution

Fig. 4. Layout of matrices presented for each decision moment.

Changes in these matrices are highlighted in bold and indicated by a small
arrow; for example, a value that rose from 0.5 to 0.6 would be written as 0.6↑,
whereas a change in the opposite direction (i.e., from 0.6 to 0.5) would be written
as 0.5↓.

The aggregation function used for dynamic aggregation is as follows,

f(x, y) =
x y (1− e)

x y + e (1− x− y)
, x, y ∈ I, (11)

where e ∈ (0, 1) is the so-called neutral element that was chosen here equal to
1/2. This aggregation function belongs to the class of uninorms [25, 26], which
are associative aggregation function that exhibit an interesting kind of mixed
behavior known as full reinforcement [27]: they are conjunctive when presented
with input values below a given neutral element e ∈ (0, 1)), disjunctive for input
values above e, and averaging otherwise (i.e., when one input value is below e
and the other one is above it). This particular behavior is exemplified in Figure 5
for different values of e.

At the first decision moment, we have the following situation,
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0.2

0.4

0.6

0.8

1

Fig. 5. Contour map of the aggregation function of Equation (11) for three different
values of the neutral element e: from left to right, we have e = 1/4, e = 1/2 and
e = 3/4.



b1 b2 b3

s1 0.40 0.50 0.70

s2 0.60 0.20 0.60

s3 0.70 0.90 0.80

s4 0.90 0.70 0.90





b1 b2 b3

s1 0.40 0.50 0.70

s2 0.60 0.20 0.60

s3 0.70 0.90 0.80

s4 0.90 0.70 0.90





b1 b2 b3

s1 0 5 15

s2 5 0 10

s3 0 15 0

s4 25 0 0


Since no historical information is available, the first and second matrices are of
course equal.

At the second decision moment, we have the following situation,



b1 b2 b3

s1 0.40 0.60↑ 0.70

s2 0.60 0.20 0.50↓

s3 0.80↑ 0.90 0.80

s4 0.80↓ 0.60↓ 0.80↓





b1 b2 b3

s1 0.31↓ 0.60↑ 0.84↑

s2 0.69↑ 0.06↓ 0.60

s3 0.90↑ 0.99↑ 0.94↑

s4 0.97↑ 0.78↑ 0.97↑





b1 b2 b3

s1 0 0↓ 20↑

s2 15↑ 0 0↓

s3 0 15 0

s4 15↓ 5↑ 5↑


We can clearly recognize the mixed behavior of the dynamic aggregation func-
tion in the dynamic ratings it produces: for example, since the value associated
with the pair (s1, b1) was consistently lower than the neutral element, the cor-
responding dynamic rating was brought down; conversely, since the value asso-
ciated with the pair (s2, b1) was consistently higher than the neutral element,
the corresponding dynamic rating was pushed up. This was also reflected in the
amount that business b1 should order from supplier s2, which tripled from the
previous iteration.

Finally, at the third decision moment, we have the following situation,





b1 b2 b3

s1 0.50↑ 0.60 0.70

s2 0.70↑ 0.10↓ 0.40↓

s3 0.90↑ 0.90 0.80

s4 0.80 0.40↓ 0.70↓





b1 b2 b3

s1 0.31 0.69↑ 0.93↑

s2 0.84↑ 0.01↓ 0.50↓

s3 0.99↑ 1.00↑ 0.98↑

s4 0.99↑ 0.70↑ 0.99↑





b1 b2 b3

s1 0 5↑ 15↓

s2 15 0 0

s3 0 15 0

s4 15 0↓ 10↑


The mixed behavior of the chosen dynamic aggregation function is again ev-
ident, even though it is now also being smoothed by the availability of more
data: understandably, as more information becomes available, dynamically ag-
gregated values tend to reflect the underlying trend in (static) ratings, though
modulated in a non-linear fashion that could, for example, make the aggregation
very sensitive to abrupt changes.

Even in our small example, it is interesting to observe how the quantities to
order vary between iterations: for example, the quantity ordered from supplier s4
by business b3 consistently increases throughout the three iterations. Two effects
are behind this change: firstly, b3 rates s4 better than s2 in the second iteration,
and thus is more willing to place orders there; secondly, b1 collaborates with the
two other businesses to maximize total satisfaction, and is thus willing to share
some of the capacity of s4 with them.

5 Conclusions

In this paper we have proposed an extension of the dynamic MCDM framework
of Campanella and Ribeiro [1] to the problem of supplier selection for multi-
ple collaborating businesses. The proposed method uses the dynamic MCDM
framework as the dynamic component for individual decision makers, and a lin-
ear programming model for the collaborative component. It provides a unified
method to assess supplier performances in a context in which businesses share
information about suppliers among themselves, suppliers can appear and disap-
pear, and supplier performances change over time.

As directions for future research, it would be important to understand the
effect of missing or imprecise data and how it could be handled effectively. Re-
garding the supplier selection problem, the linear program could be reformulated
to include more constraints, such as thresholds that would veto suppliers with
consistently low ratings. It would also be interesting to relax the assumption
of complete collaboration among businesses, as well as to apply the dynamic
MCDM framework to the situation in which a number of businesses must jointly
select some suppliers. This problem can actually be restated more broadly as a
consensus problem, which was already identified as closely related to the dynamic
MCDM framework [1].
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