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ABSTRACT — A parametric study on the most relevant friction force models for multibody 

dynamics is provided in this work. For this, the Dahl, Reset Integrator, LuGre and Gonthier models 

are revisited, and the model parameters are identified. The classic single degree-of-freedom mass-

spring model is utilized to analyze the influence of each of the parameters. The results are 

presented through the friction-displacement and friction-velocity relations. Although some of the 

parameters show different localized effects based on the model used, most of them present similar 

tendencies in terms of the resulting friction forces. This investigation allows for the identification of 

the most relevant parameters which can affect a system’s dynamic response. 

1 Introduction 

Friction is a complex phenomenon which is mainly related to the resistance to relative movement of contacting 

surfaces. Friction properties have been intensively studied, modeled, and used to predict frictional behavior in 

any mechanical system. Static friction, stick-slip, Stribeck effect, viscous friction, frictional lag, pre-sliding 

displacement and break-away force are some of the most important phenomena associated with friction 

modeling. The first major friction model was proposed by Coulomb [1], in which it was stated that friction force 

is proportional to normal load, and opposes the relative motion of the contacting surfaces. However, several 

studies indicated that friction force can reach higher values for null relative velocity, which lead to the definition 

of a higher coefficient of friction for static cases. Furthermore, Stribeck [2] showed experimentally that the 

transition between the static and kinetic friction is a continuous process; i.e., for low velocities, the friction force 

decreases with the increasing of relative velocity. This rise of friction force, when there is a drop in the relative 

velocity, may lead the contact surfaces to stick, and only if the static friction is overcome, the surfaces slide 

again. This phenomenon is the so-called “stick-slip”. Further researches demonstrated that the friction force is 

not only function of the relative velocity, but also of the displacement [3]. For any applied tangential force, a 

displacement occurs and, the contact bond presents a similar behavior compared to an elastic spring, often 

named “pre-sliding displacement”. Moreover, another important characteristic is the “frictional lag”, which 

behaves as an inertia towards the change in friction state. Considering the “Stribeck effect”, the friction force is 

lower for decreasing velocities and higher when the velocity is increasing. 

In order to evaluate the friction forces generated during the contact, several different friction force models 

can be employed [4]. They are typically divided into “static” and “dynamic” models. The first group describes 

the steady-state behavior of friction, which does not allow capturing of the entire friction phenomena. In 

contrast, the second group uses extra-state variables to increase the complexity and flexibility of the models in 

order to include the aforementioned phenomena. These approaches present some differences in terms of captured 

phenomena, number of parameters, and degree of complexity, among others. The choice of a friction model to 

implement in a dynamic simulation is not an easy task. Nevertheless, in order to have more complex friction 

models, it is in general necessary to introduce larger number of parameters to fully describe the physics of the 
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friction phenomena. Sometimes, these parameters are obtained experimentally, which could be a significant 

limitation for modeling approaches that need the determination of many parameters. However, some of them are 

chosen empirically, since they cannot be physically measured. Some studies have been conducted to examine the 

friction modelling through the analysis and comparison of different approaches [4,5], although only few of them 

have been paying attention to the influence of the parameters variation [6]. This work, hence, focuses on the 

study of the parameters of the most significant friction force models utilized in multibody dynamics. Most of 

utilized parameters are shared by several friction force models, but they can result in different behaviors 

depending on the considered approach. It is thus quite important to understand and to quantify the effect of each 

parameter in the evaluation of the friction force and resulting dynamic behavior of the system. 

2 Description of Dynamic Friction Force Models 

This section includes the description of some of the most relevant dynamic friction force models used in the 

context of multibody dynamics. The dynamic friction models generally present a more advanced approach of 

describing the friction phenomena when compared to the static ones, which have limitations in capturing the 

pre-sliding displacement or the frictional lag, just to mention a few. In order to have a detailed description of the 

several friction properties, the dynamic models utilize extra state variables to evaluate the friction force, as well 

as they utilize a high number of parameters which have different effects in the response of the system. 

Dahl [7] established the first dynamic friction model based on the Coulomb’s friction, which was the major 

precursor of the evolution of friction force models. Coulomb [1] stated that the friction force is proportional to 

normal load, opposes to the relative motion, and is independent of contact area and velocity magnitude. 

Moreover, the magnitude of Coulomb’s friction FC can be given by 

 C k NF F  (1) 

where k  is the kinetic coefficient of friction, and NF  denotes the magnitude of the normal contact force. The 

Dahl friction model [7] was developed with the aim of describing the friction behavior of ball bearings. In that 

sense, an analogy with the classical stress-strain curve for materials was considered. Dahl observed that in brittle 

materials, the difference between the stiction and Coulomb friction is difficult to capture. Ductile materials, 

however, are more probable of having the stiction behavior, and then exhibiting a decrease in the stress until the 

Coulomb friction level is reached. Moreover, the friction force was shown to be dependent on relative velocity 

as well as on the displacement. Dahl model states that when the contacting surfaces are subjected to stress, the 

friction force increases until rupture occurs. The stress-strain curve can be described as  
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where F denotes the friction force, x is the displacement, 0  represents the stiffness coefficient, Tv  is the 

relative tangential velocity of the contacting surfaces, and   is a parameter that defines the shape of the material 

curve. This last parameter depends on the material, and usually varies between 0 and 1 for brittle materials, and 

is higher than 1 for ductile materials. From the analysis of Eq. (2), it can be stated that when F tends to FC, the 

derivative tends to zero. Thus, it can be concluded that the magnitude of the friction force does not exceed FC. 

Equation (2) can be transformed into a time derivative. Furthermore, introducing the state variable z, and 

assuming that 0F z , it can be rewritten as 
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It can be observed from Eq. (4) that when the system reaches the steady state, the friction force is 

  C TsgnF F v  (5) 

which is the mathematical expression for the Coulomb friction model. 

Haessig and Friedland [8] proposed an evolution of the Dahl model, which considers that the friction force 

is originated by the elastic and plastic deformations of the surface asperities. This model takes into account the 

phenomenon of static friction for the sticking phase, therefore, the magnitude of static friction is evaluated by 

 S s NF F  (6) 

where s  denotes static coefficient of friction. 

Each contact is modeled as a bond between two bristles. The reset integrator model does not allow for the 

bond to break, which means that when the strain of a connection increases until reaching the rupture point, the 

model ensures that it is kept constant. This model uses the average of bristle deflection, z, to determine the strain 

in the bond and to account the stiction, as follows 
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Similar to other friction models, the reset integrator model is also composed of two state equations, one for 

“sticking mode” and another one for “sliding mode”. The transition between those two phases occurs when the 

deflection reaches its maximum value, z0. This friction force can then be defined as follows 
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where σ1 is the damping coefficient that introduces some physical meaning by having damping oscillations and 

viscous friction effects, a denotes the coefficient pertaining to the stiction, and σ0 is the contact stiffness. The 

values of the stiction coefficient, a, and the maximum deflection, z0, are not independent parameters for this 

model, since they can be obtained by the following relations, respectively, 

 s k 1a     (9) 

 0 C 0z F   (10) 

It is worth noting that this friction force model presents a discontinuity when the analysis changes between 

sticking and sliding situations. 

The LuGre model was originally proposed by Canudas de Wit et al. [9], and can be considered as an 

extension of the Dahl model [7]. This model is capable of capturing the Stribeck and stiction effects. In a simple 

way, this model considers friction as the result of the interactions of the surfaces bristles. When a force is 

applied, the bristles start to deform with spring behavior during the sticking phase. Then if the force is 

sufficiently large, the bodies start to slip. The model is described as 
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where σ0 is the stiffness of the bristles, σ1 denotes the damping of the bristles, f T( )v  is an arbitrary function that 

describes the viscous effect, and g T( )v  is an arbitrary function that accounts for the Stribeck effect as 
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where FC is as before the Coulomb friction, FS denotes the static friction, and Sv  represents the characteristic 

velocity of the Stribeck friction [2]. For f ( Tv ), typically a linear viscous friction is considered, that is 
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  T 2 Tf v v  (14) 

For a constant velocity, that is, when the system reaches the steady state (dz/dt=0), the expression to the friction 

force can be reduced to 

      T T TsgnF g v v f v   (15) 

Gonthier et al. [10] introduced a dynamic friction model based on LuGre’s approach [9]. This model 

considers a force from the bending of the bristles, given by  

 
br 0 1

dz
F z
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where 0  is the stiffness coefficient, and 1  denotes the damping coefficient. To ensure a smooth transition 

between the stick-slip friction regimes, an auxiliary parameter is defined as, 
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where Sv  is the Stribeck velocity. When the bodies are sticking ( 0)s  , the deformation rate will be equal to the 

relative velocity, while for the sliding regime ( 1)s  , the resultant friction force approaches the Coulomb 

regularized friction force, FCR, 
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The Coulomb regularized friction is always along the relative velocity direction, and can be evaluated as 

  CR C Tdir ,F F v v  (19) 

where Tdir ( , )v v  returns the sign of the relative velocity, and it smooths out the velocity oscillations for values 

under a certain tolerance, vϵ, in order to diminish the discontinuities in the vicinity of the null velocity. The 

tolerance velocity is commonly approximated by S0.01v v , and hence 

  

T
T

T

3T

T TT
T

if 

dir ,
3 1

if 
2 2

v
v v

v

v v
v vv

v v
v v v





             

 (20) 

This approach includes a temporal lag associated with the dwell-time dependence. To capture that phenomenon, 

a new state variable is defined as 
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where dw  is the dwell-time dynamics time constant, and br 1 0    is the bristle dynamics time constant. The 

time constants should be set according to the desired time delay, a large one for sticking, and a small time delay 

for sliding. Thus, the maximum friction force can be defined as 

  max C S C dwF F F F s    (22) 

where FC and FS are the Coulomb and static friction, respectively. Thus, this friction force can be expressed as 
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where 2  is the viscous damping coefficient. The use of this model results in a set of ordinary differential 

equations that are quite stiff at low relative velocities and cannot be solved using explicit ODE solvers.  
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3 Single Degree-of-Freedom Spring-Mass Model with Friction 

In this section, the classical 1-DoF mass-spring system shown in Fig. 1 is utilized as an illustrative example of 

application to evaluate the effect of the friction parameters. Since the dynamic response of this system is highly 

dependent of the evaluation of frictional forces, it is commonly used as a benchmark for validation of friction 

force models [4, 5, 8, 10]. The system is constituted by a block with mass m, which is located on a conveyor belt 

with constant velocity bv . The block is connected by a spring element with stiffness ks. The dimensions of the 

block are neglected, since the model only considers one degree of freedom. 

 
Fig. 1: Representation of the 1-DOF spring-mass model with frictional contact 

Before performing the sensitivity analysis on model parameters, a standard simulation was carried out in 

order to be utilized as a reference. The parameters of the spring-mass system are listed in Tab. 1. The initial 

conditions of the simulation consider that the block is located at the origin of the coordinate system, and it is 

moving with equal velocity to the belt. Furthermore, the standard parameters for the described friction force 

models are displayed in Tab. 2. The utilized values have been chosen according to most of the analyses presented 

on the literature. 

Parameter Value Parameter Value 

Mass of the block (m) 1 kg Time step (Δt) 0.00005 s 

Velocity of the belt b( )v  0.1 m/s Simulation time 20 s 

Spring stiffness (ks) 2 N/m Integrator algorithm Runge-Kutta 4th order 

Tab. 1: Simulation parameters for the spring-mass model 

Parameter Symbol Value Parameter Symbol Value 

Kinetic coefficient of friction μk 0.1 Stiffness coefficient σ0 105 N/m 

Static coefficient of friction μs 0.15 Damping coefficient σ1 105/2 Ns/m 

Curve shape parameter α 1 Viscosity coefficient σ2 0.1 Ns/m 

Stribeck velocity vs 0.001 m/s Dwell-time constant τdw 2 s 

Tab. 2: Standard parameters for the friction force models 

 (a)  (b)  

Fig. 2: Friction models behavior: (a) Friction force vs displacement; (b) Friction force vs relative velocity 

The results of the dynamic simulations are analyzed through the plots of the friction force versus 

displacement and friction force versus relative velocity, as depicted in Fig. 2. These plots allow the identification 

of some frictional phenomena, such as the pre-sliding displacement or frictional lag, which cannot be so easily 

recognized by the kinematic outputs as the position or velocity of the block. As it was expected, the Dahl model 
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is the only approach that does not capture the static friction behavior. Although the same stiffness coefficient is 

utilized for all the models, the slope of the pre-sliding displacement is not exactly the same, as shown in Fig. 2a. 

The reset integrator model has an abrupt transition for sliding phase, while the Gonthier, and mainly the LuGre 

approaches present a smoother behavior. From Fig. 2b, it can be observed that the reset integrator model has a 

larger oscillation of the relative velocity and friction force during the sticking phase when compared with 

remaining ones. The frictional lag can be identified in the LuGre and Gonthier models, since they show higher 

friction force when the relative velocity is increasing compared to when it is decreasing. 

In the following, an analysis of the influence of the several parameters of each model is presented. For the 

sake of simplicity, the coefficients of friction, either kinetic or static, are not in the scope of this study, since their 

influences in the friction force have been examined extensively in the literature. Each parameter has been set to 

half and twice the original value in order to study how they affect the output motion of the system. 

 (a)  (b)  

Fig. 3: Influence of curve shape parameter (α) in Dahl model: (a) Fric. Force vs Displacement; (b) Fric. Force vs Rel. Velocity 

 (a)  (b)  

Fig. 4: Influence of stiffness coefficient (σ0) in Dahl model: (a) Fric. Force vs Displacement; (b) Fric. Force vs Rel. Velocity 

 (a)  (b)  

Fig. 5: Influence of stiffness coefficient (σ0) in Reset Integrator model: (a) Fric. Force vs Displacement; (b) Fric. Force vs Rel. Velocity 

As described in Section 2, the Dahl model utilizes three parameters to be fully defined. Since one them is the 

kinetic coefficient of friction, only the curve shape parameter and the stiffness coefficient will be addressed. The 

analysis of the curve shape parameter based on the materials in contact is represented in Figs. 3a and 3b. For a 

low value of α, it should have properties of a brittle material, while for the larger one, a more ductile behavior is 
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expected. This can be corroborated by Fig. 3a, which shows a slower transition between the elastic and plastic 

phases of the contact when this parameter increases. Figures 4a and 4b show the influence of the stiffness 

coefficient σ0 which is associated to the slope of the pre-sliding displacement. Moreover, the increase of this 

coefficient diminishes the velocity oscillations in the sticking phase, as is observed from Fig. 4b. 

 (a)  (b)  

Fig. 6: Influence of damping coefficient (σ1) in Reset Integrator model: (a) Fric. Force vs Displacement; (b) Fric. Force vs Rel. Velocity 

 (a)  (b)  

Fig. 7: Influence of stiffness coefficient (σ0) in LuGre model: (a) Fric. Force vs Displacement; (b) Fric. Force vs Rel. Velocity 

 (a)  (b)  

Fig. 8: Influence of damping coefficient (σ1) in LuGre model: (a) Fric. Force vs Displacement; (b) Fric. Force vs Rel. Velocity 

 (a)  (b)  

Fig. 9: Influence of viscosity coefficient (σ2) in LuGre model: (a) Fric. Force vs Displacement; (b) Fric. Force vs Rel. Velocity 
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The stiffness and damping coefficients (σ0 and σ1) are two of the four parameters utilized by the reset 

integrator model, and their influence is shown in Figs. 5 and 6, respectively. Similar to the previous model, the 

stiffness coefficient affects the slope of the pre-sliding displacement curve. In the friction-velocity relation, with 

the increase of the stiffness, the oscillation of the velocity decreases, but the variation of friction force is higher. 

In what concerns the damping coefficient, it does not affect the friction-displacement relation, although the 

reduction of this parameter largely increases the size of the sticking oscillation cycle, as seen in Fig. 6b. 

 (a)  (b)  

Fig. 10: Influence of Stribeck velocity (vS) in LuGre model: (a) Fric. Force vs Displacement; (b) Fric. Force vs Rel. Velocity 

 (a)  (b)  

Fig. 11: Influence of stiffness coefficient (σ0) in Gonthier model: (a) Fric. Force vs Displacement; (b) Fric. Force vs Rel. Velocity 

 (a)  (b)  

Fig. 12: Influence of damping coefficient (σ1) in Gonthier model: (a) Fric. Force vs Displacement; (b) Fric. Force vs Rel. Velocity 

As presented previously, the LuGre model has six different parameters. The stiffness, damping and viscosity 

coefficients, as well as the Stribeck velocity, will be analyzed. Figure 7a shows that the stiffness coefficient σ0 

produces the same result as in the Dahl and reset integrator models, by controlling the slope of the pre-sliding 

displacement and therefore, increasing the displacement range of the sticking phase. The increase of this 

parameter diminishes the effect of frictional lag by having higher friction force when the velocity approaches 

zero, as shown in Fig. 7b. The damping coefficient σ1 does not change the pre-sliding displacement, although the 

lower the parameter the smoother the transition from sticking to sliding regime, as depicted in Fig. 8a. With a 

high damping coefficient, the friction force can even reach a value lower than the Coulomb friction before 

starting the sliding phase. Similarly to reset integrator model, as observed in Fig. 8b, this parameter has a direct 
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influence in the size of the friction-velocity oscillation in the sticking mode. The viscosity coefficient σ2 does not 

influence the friction-displacement relation, but it mitigates the friction force oscillation in the sticking mode, as 

represented in Fig. 9b. As it was expected, the increase of the Stribeck velocity increases the dimension of the 

sticking phase. Figure 10b shows that, for a high Stribeck velocity vS, it is easier to detect the growth on the 

friction force when the velocity approaches zero. 

 (a)  (b)  

Fig. 13: Influence of viscosity coefficient (σ2) in Gonthier model: (a) Fric. Force vs Displacement; (b) Fric. Force vs Rel. Velocity 

 (a)  (b)  

Fig. 14: Influence of Stribeck velocity (vS) in Gonthier model: (a) Fric. Force vs Displacement; (b) Fric. Force vs Rel. Velocity 

 (a)  (b)  

Fig. 15: Influence of dwell-time constant (τdw) in Gonthier model: (a) Fric. Force vs Displacement; (b) Fric. Force vs Rel. Velocity 

The Gonthier model utilizes seven parameters to be fully implemented. The influence of five of them is 

assessed through the plots of Figs. 11-15. The effects of stiffness coefficient σ0 corroborates the analogous 

parameter in the previous models, as it affects the slope of the pre-sliding displacement. In contrast with LuGre 

model, the increase of the damping coefficient σ1 makes the transition from sticking to sliding smoother, as 

shown in Fig. 12a. Moreover, as in LuGre model, the viscosity coefficient σ2 does not affect the friction-

displacement relation, but it reduces the oscillation of the friction force during the sticking phase. The Stribeck 

velocity vS enlarges the duration of the sticking phase, as depicted in Fig. 14 This parameter also increases the 

oscillation of the relative velocity during the sticking regime. Finally, the dwell-time constant τdw affects the 

maximum value of friction force, as the increase of this parameter diminishes the maximum friction force, but it 

enlarges the duration of sticking phase, as illustrated in Fig. 15. 
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4 Conclusions 

A parametric study on some of the most relevant dynamic friction force models used in the context of multibody 

dynamics has been presented in this work. The models under investigation were first described in detail and their 

parameters were identified in order to enable their correct implementation. The study of the parameters was 

performed based on the analysis of the dynamic response of the single degree-of-freedom spring-mass system 

with frictional contact. From the obtained results, it was observed that some parameters maintain their influence 

independently of the friction model. However, few of them, such as the damping coefficient, have different 

effects based on the utilized friction force model. In general, the stiffness coefficient is related with the slope of 

the pre-sliding displacement curve. The damping coefficient diminishes the friction-velocity oscillations during 

the sticking phase, although when the magnitude of velocity is increasing, it can extend or decrease the static 

friction range. Furthermore, the viscosity coefficient does not produce a significant influence in the presented 

results. The increase of Stribeck velocity typically enlarges the extent of static friction. The parameters in general 

produce mainly localized effects on the resulting friction forces not their steady-state values. Overall, this study 

shows that to correctly model all frictional phenomena in a multibody system, an appropriate friction force 

model must be adopted for which a suitable set of parameters must be selected. 
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