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General anesthetics (GA) are well known for the ability to induce

a state of reversible loss of consciousness and unresponsiveness to

painful stimuli. However, evidence from animal models and clini-

cal studies show that GA exposure may induce behavioral

changes beyond acute effects. Most research and concerns are

focused on changes in cognition and memory. We will look at

effects of GA on behavior that is mediated by the dopaminergic

system. Pharmacological resemblance of GA with drugs of abuse,

and the complexity and importance of dopaminergic systems in

both reward seeking and addictive illnesses make us believe that

it deserves an overview about what is already known and what

matters to us as healthcare workers and specifically as anesthesi-

ologists. A review of available evidence strongly suggests that

there may be a link between the effects of GA on the brain and

substance abuse, partly explained by their influence on the dopa-

minergic system.

Editorial comment: what this article tells us

This review article points out that general anesthesia may induce behavioral changes mediated via

the dopaminergic system, and that some of the same mechanisms may be involved in substance

abuse and reward seeking behavior.

Development of new drugs and technics in

anesthesia was of paramount importance to the

revolution of modern medicine. The pursuit of

the ultimate perioperative homeostatic balance

and increased awareness of safety issues

allowed us to achieve lower levels of morbidity

and mortality as standard of care.1

We have used GA regularly since 1846, but

we have not been able to build a complete the-

ory that unifies both the molecular effects and

the behavioral response of loss and gain of con-

sciousness. The first theory (Meyer–Overton cor-

relation) stated that lipid solubility of GA was

responsible for their anesthetic effects.2 When
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such a generalistic statement failed to explain

how GA work, then the paradigm moved look-

ing for specific molecular targets. The discovery

that GA could interact with the firefly luciferase

enzyme directed research toward proteic tar-

gets.3 Today, we know that GA target neuro-

transmitter receptors in the whole brain,

inducing fast modulation of membrane poten-

tials and neuronal cell firing, as well as slower

modulation of second messenger cascades and

protein synthesis compounds that are responsi-

ble for fast behavioral changes involving arou-

sal, memory, nociception and fear. Additionally,

research has shown us that exposure to GA can

also be responsible for changes that are not so

short-lived.

Reports of temporary cognitive impairment

and long-term neurodevelopmental impairment

in animal models of anesthetic exposure4–6 as

well as clinical reports of decline in cognitive

performance after surgery/anesthesia in

humans7,8 brought an old question to the

spotlight: can GA exposure change the way

we subsequently behave? Now we know that

factors such as surgical procedure together

with individual factors influence patient cogni-

tive outcome9,10 and that exposure to GA

alone has not been proven to be responsible

for cognitive impairment in humans, even in

groups thought to be particularly susceptible

such as children.11 Most research is focused

on cognitive processes, but one particular clin-

ical study, the ISPOCD, reported both higher

risk of prematurely leaving labor market and

of dependence on social transfer payments in

patients who developed postoperative cognitive

dysfunction,12 suggesting that impairment may

extend beyond cognition. Do GA exert a more

subtle influence on us, not necessarily through

a decline in cognition? To answer this particu-

lar questions, we will focus our discussion on

other dimensions of behavior. The molecular

resemblance of GA with drugs of abuse and

the misuse of GA for recreational purposes13

raise concerns about the possible role of GA

as agents that induce changes in motivational

behavior. From all the neurotransmitters that

are targeted by GA, dopamine (DA) is the

most important in motivational and reward

circuitries, with a strong role in conditioning

behaviors. In this review, we will focus on

the possible link between the effects of GA

and drug abuse and how these mechanisms

may help explain some of the potential effects

of GA on the brain.

Understanding the role of dopamine

DA is a catecholaminergic neurotransmitter

present both in the central nervous system and

in several other tissues such as the cardiovascu-

lar and digestive systems. DA is synthesized by

the hydroxylation of the amino acid L-tyrosine

to L-DOPA by tyrosine hydroxylase (TH) which

is further converted to DA by DOPA decarbox-

ylase (or aromatic L-amino acid decarboxylase).

DA is stored in vesicles in the presynaptic ter-

minal by the action of vesicular monoamine

transporter. DA release from dopaminergic neu-

rons into the synaptic cleft is achieved either

through a calcium-dependent exocytic process

similar to other neurotransmitters or through

membrane DA transporter (DAT). Once in the

synaptic cleft, DA binds to and activates DA

receptors (DAR). According to their biochemical

and pharmacological properties, the receptors

can be divided into two subtype families: D1-

like receptor subfamily that includes the D1

and D5 receptors, and the D2-like receptor sub-

family comprising the D2, D3, and D4 recep-

tors.14 The turnover of extracellular DA involves

both degradation by two main enzymes: monoa-

mine oxidase and catechol-O-methyltransferase

and reuptake by DAT, all critical elements in

DA homeostasis.15,16

Dopaminergic neurotransmission plays a criti-

cal role in processes such as learning, memory,

motivation, reward, risk assessment and loco-

motion.17–19 Conditions that challenge DA bal-

ance may impair these functions. In the brain,

we can find higher content in production areas

like pars compacta of the substantia nigra (SN) and

the ventral tegmental area (VTA). From these,

dopaminergic pathways project to the nucleus

accumbens (NAc), the frontal cortex (FC), and

the striatum (Str).

Parkinson’s disease (PD) is a DA-related

pathology in which there is a state of low DA

levels in SN, characterized by several motor

coordination and involuntary movement disor-

ders. PD treatment is based on the use of DA

precursors such as Levodopa (L-DA) and DA
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agonists. Importantly, several reports show that

the prolonged use of these drugs in PD patients

is related to an increase in compulsive gam-

bling/shopping/eating behavior, hypersexuality,

and hyperphagia disorders.20

Changes in brain DA content induce behav-

ioral modifications, but how does this knowl-

edge correlate with the anesthesia field?

Occupational addiction in anesthesia

Substance abuse in health professionals21 is a

known problem. The literature about this sub-

ject shows that occupational hazards do not

translate in an increase in mortality of anesthesi-

ologists compared either with other specialties

or general population22,23; however, there seem

to be an increased risk of substance abuse and

suicide.24,25

The pharmacokinetic of short-acting drugs

such as propofol, remifentanil, and volatile

anesthetics make them virtually impossible to

trace in routine testing, and unless the health

worker is caught consuming or stealing, only

testing all health workers for drugs of abuse

would give us the real picture.

The anesthesiologist faces professional chal-

lenges such as exposure to stressful situations

and work overload that can lead to isolation,

burnout,26 and depression.27 Physicians under

these conditions may, therefore, develop mal-

adaptative strategies that lead to substance

abuse.28 Stress is a known trigger of changes in

brain reward circuits29 that may enhance the

reinforcing properties of drugs. GA have phar-

macological similarities to drugs of abuse:

reports show characteristics of high psychologi-

cal dependence such as relapse, strong cravings,

and continuous auto-administration irrespective

of negative consequences.30 On the top of the

most misused drugs, we can find opioids and

intravenous anesthetics, benzodiazepines, and

lastly volatile anesthetics. There is also specula-

tion that environmental exposure to GA can

induce changes that in a certain way could lead

to the development of addictive traits.31 The fact

that healthcare professionals exposed to stressful

environments also have easy access to drugs

with abuse and misuse potential turn this issue

not an institutional problem but a public health

one.

May general anesthetics be involved in
development of addiction?

Several drugs used during anesthetic procedures

have a direct effect on the dopaminergic system.

The most well-known and studied substances

that induce DA changes and addiction are opi-

oids, but we will focus specifically on GA.

Acute exposure to most GA produces a mixture

of sensations described as feeling drunk, confu-

sion, sedation, and loss of concentration capac-

ity. It can also induce psychadelic-like effects

such as dissociation, hallucinations, and distor-

tions in perception of reality. Volatile anesthet-

ics are chemically similar to solvent agents often

used as recreational drugs and produce similar

behavioral effects.32,33 It is impossible to talk

about anesthetics and DA without recalling the

origins of anesthesia: the first two substances

used as anesthetics, nitrous oxide and ether,

were used recreationally even before being

introduced in medical practice as stated in his-

torical reports describing “laughing gas par-

ties”.34 In human studies,35–38 subanesthetic

doses of sevoflurane, nitrous oxide, propofol,

and ketamine all correlated with liking and

were rated as something the subject “will try

again”; they also produced dose-related rein-

forcement and abuse-related subjective effects.

Ketamine is a well-known club drug, and users

display riskier behavior.39 The effects of GA

exposure in behavior of animal models have

also been studied and correlates with behavioral

changes similar to drugs of abuse such as anxi-

ety and craving. Nitrous oxide is known to

induce anxiolysis in animal models, and the

effect is reversed by the benzodiazepine antago-

nist flumazenil.40 These reports suggest that

exposure to GA can induce addictive behaviors

both in animal models and in humans.

The impact of general anesthetics on brain
dopamine

As above mentioned, GA act in the whole brain:

they modify neuronal system, the release and

reuptake of neurotransmitters, and the way neu-

rons respond to them. The sum of all these

effects represents the behavioral endpoint of GA

action: loss of consciousness, immobility, and

amnesia. DA is believed to contribute to GA
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effects as the amount of dopaminergic activity

influences the amount of GA needed to induce

anesthesia.41 On the other end, the depletion of

brain DA can induce a state of immobility.42

We will now make considerations on the

modulation of DA in brain by different anes-

thetic agents. Most of the data are based in

microdialysis studies where samples of brain

intersticial fluid are sampled during exposure to

GA alone or with DA modulators in transla-

tional research using rodent and primates.

Halotane

Exposure to halothane in high doses increases

extracellular DA levels in Str43–45 and potentiate

the dopaminergic action of other drugs.46,47 The

level of dopaminergic metabolites is also

increased indicating a higher turnover. The use

of lower anesthetic doses fail to increase DA

levels; however, DA metabolites still increase.

So, there seems to be a complex dose-related

response, but there is always some effect. In the

NAc, there is also an increase in DA.48 So evi-

dence show that halothane seems to induce DA

availability in areas that play an important role

in DA driven behavior.

Isoflurane

Isoflurane anesthesia also induces a dose-depen-

dent increase in Str DA49–51 with lower doses

failing to show changes in brain DA but pro-

ducing changes in metabolites.

Nitrous oxide

The use of this volatile NMDA antagonist

induced a slight DA increase in NAc and a

decrease or no effect in Str.52,53

Xenon

Use of xenon failed to change DA levels in NAc.

There are no works regarding other brain

areas.54

Ketamine

In animal models, the NMDA antagonist seems

to have almost no effect in DA levels when used

in low dosages, but higher subanesthetic and

anesthetic dosages increase DA in Str, NAc and

FC.55–58 This effect is also seen in human

in vivo imaging studies that report an increase

in striatal DA release after an acute challenge

with ketamine.59 But when the exposure is

repeated, there is a reduction in FC dopaminer-

gic function with impairment in working mem-

ory and executive functions.60

Pentobarbital

Pentobarbital induces decreases DA in the NAc,

producing a state of ataxia in rodents. It also

inhibits the effect of L-DOPA in extracellular

DA increase.50 Like other GAs, when given in

lower doses does not change DA levels.58

Propofol

Propofol at lower subanesthetic dosages

decreases DA NAc content while more clinically

relevant higher subanesthetic and anesthetic

dosages of propofol increase NAc DA levels.61

Propofol also has the ability to induce expres-

sion of DeltaFosB in NAc, a protein whose

expression is also increased by drugs of abuse.62

Additionally, propofol exposure decreases DA

levels in Str and in FC.63

Measurements of dopaminergic activity either

in DA production, degradation, and reuptake

can be used to assess dopaminergic pathways.

DA is degraded into 3,4-Dihydroxyphenylacetic

acid (DOPAC) and homovanillic acid (HVA). In

rodents, DOPAC is the major metabolite and

DOPAC accumulation provides an indicator of

dopaminergic neurons activity, while the

DOPAC:DA ratio is an indication of DA turn-

over. In Str, DA metabolite levels are increased

by halothane, isoflurane, sevoflurane, and prop-

ofol exposure.44–46,64 In the NAc, they are

increased after exposure to isoflurane,65 sevoflu-

rane, and propofol. In addition, DAT seems to

be inhibited by most GAs. In fact, studies show

that halothane, isoflurane, propofol, ketamine,

ethomidate, and thiopental inhibit specific

synaptosomal uptake of DA in a concentration-

dependent manner in rat brain.41,66,67 The over-

all effect of exposure to GA is a dose-dependent

increase in DA and its metabolites during acute

exposure.
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What are the implications of changed DA levels
induced by GA?

We will now focus the effect of GA in brain

areas relevant to DA-driven behavior. Striatal

influence of GA seems to be “agent” and “dose-

specific”, but there is no doubt that GA have

an impact on Str DA release. The Str serves as

the entry point for cortical and thalamic inputs

into basal ganglia circuitry. The release of DA

in Str during reward learning tasks is known

to be an important modulator of acquisition of

habit or goal-directed tasks. Disorders that

affect DA such as PD, Huntington’s disease,

and substance abuse produce impairments in

these processes. Exposure to GA specifically

halothane, isoflurane, and ketamine have the

potential to impair those functions through

changes in Str DA.43–47,49–51,55

The NAc is believed to participate in many

functions that have been shown to be important

in reward learning tasks.68 Most drugs of abuse

are known to produce an increase in DA levels

at the NAc, in a manner similar to propofol, ke-

tamine, and halothane.48,52,57

Dopaminergic activity in the prefrontal cortex

(PFC) plays an important role in cognitive func-

tions. DA depletion in PFC impairs working

memory performance tasks in primates69,70 and

the use of DA agonists improves performance in

animals with poor working memory.71,72 Both

human and animal studies suggest that repeated

exposure to noncompetitive NMDA antagonists

reduces PFC dopaminergic function with

impairment in working memory and executive

function.73,74 We can speculate that while acute

exposure to GA with NMDA antagonist activity

induces increase in PFC DA, continuous expo-

sure is prone to decrease PFC DA and impair

working memory and executive function perfor-

mance which is the pattern found in chronic

users. Chronic exposure to GA, such as repeated

anesthetic procedures, theoretically can induce

the same changes. Such as stated earlier, there

are concerns of a similar mechanism responsible

for development of addiction in susceptible

individuals subjected to environmental expo-

sure.

To summarize, increase in DA metabolites

suggests that most GA induce higher DA levels

and turnover in several brain regions, especially

in the Str and in the NAc. Activation of these

particular areas is a hallmark pattern of several

drugs that induce addiction and impair DA dri-

ven behavior.

Conclusion

Review of the literature suggests that general

anesthesia modulates the dopaminergic path-

ways. Behavioral data both in human and ani-

mal models support the possible development

of an addictive trait in subjects exposed to GA.

Some of the molecular features of drugs of abuse

concerning DA are also found in GA such as DA

release and availability in areas such as NAc

and Str. It is likely that all behavior functions

that rely on dopaminergic transmission can be

potentially impaired after GA exposure.

Changes in reward system and memory forma-

tion potentially may impair cognitive abilities

such as reasoning, language comprehension,

planning, and spatial processing. Several clini-

cal trials show that surgery and anesthesia may

cause “postoperative cognitive dysfunction” and

changes in dopaminergic brain systems may

contribute to this phenomenon. However, we

still do not know how much it impacts on our

behavior. The potential to play with reward

mechanism, decision-making processes and cog-

nitive performance impose a need for judicious

use of GA. Further research is needed to answer

all these questions and provide both even better

standard of care to our patients and less occupa-

tional hazards to healthcare workers.
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