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Finite Integration Methods for Isospectral Flows
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Abstract In this paper we consider the approximate computation of isospectral flows based on finite integration meth—
ods ( FIM) with radial basis functions ( RBF) interpolation a new algorithm is developed. Our method ensures the
symmetry of the solutions. Numerical experiments demonstrate that the solutions have higher accuracy by our algo—
rithm than by the second order Runge — Kutta( RK2) method.
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1 Introduction

Isospectral flows can be characterized in terms of the matrix differential equation
X'= BX X(0) =X, (1)
where X B € R"" and X, is a given n x n initial matrix and X, = X;. B = B(¢ X) is a matrix func—
tion which is allowed to depend on X and on the time ¢. The square brackets denote the commutator

or Lie bracket on matrices namely B X = BX — XB see for example 1
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Numerical methods for solving (1) have intrigued the researchers for decades see for example
1 2 3 6 and references therein.

We are particularly interested in the case when B is skew — symmetric which frequently appears
in the typical isospectral flows and will assume unless explicitly mentioned that B" = — B through—
out the rest of the present paper.

In this paper we focus on the direct solution to ( 1) by exploiting the finite integration methods.
After briefly reviewing the finite integration method with radial basis function in next section see for
example 7  we develop a new algorithms based on FIM for solving (1) in section 3. Then some
numerical examples are presented in section 4 in which the numerical results demonstrate that our

algorithm yield a much higher degree of accuracy than RK2 method.

2 Finite integration method

In this section we review the FIM with radial basis functions ( RBF)  which can be outlined as
follows. The field variable f{ ) in the interval @ b can be interpolated over a number of randomly

distributed nodes {#,} }_, and nodal values { f,}}_, witht, = aandt, = b as

N 0
f(t) = ;}Ri(t L) o + ;Pq(t)ﬁq with f(tk) =fik=01-N (2)

Q

;-0 18 a set of the polyno-

where { R.(t ¢,) } ", is a set of radial basis functions centred at ¢ {P,(1)}
mial basis {a;} ., and {B,} 3:0 are the coefficients of R( ) and mP( t) respectively. The polynomial
term has to satisfy an extra requirement that guarantees unique approximation of a function as follows

N

ZPq(ti)ai =0¢g=012--0.

=
So we can get the coefficient

a =Ry I-P(P'R;'P) 'P'R;" fb=(P'R;'P) "P'R;'f (3)
wherea = ay o, - ay | b= By B By f= Fo i - Fy " Idenotes the identity
matrix R, = (R(¢t, t;)) P =(P,(t))(g=12 - Qandk i =12 -+ N). Substituting a

bin (3) into (2) yields
JCO) = R()Ry" 1= P(P'R;'P) "P'R;" [+ P(1) (P'R;'P) "P'R;'f = idb(t)ﬁ (4)

where ¢p;(t) =01 .= N are called shape functions which have the Kronecker — delta property
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Consequently we obtain its first order integration easily as

FO) = [T de = 3 (0] (5)

where
b0 = [i(1)dr (6)

k
Let F, = jf( )dt F= F, F, - F," andA = (¢,) withd, = &,(t,) then the dis—

crete finite integration of the first order can be rewritten as

F = Af. (7)
3 Finite integration method for isospectral flows

In this section we consider the computation of isospectral flows (1) with FIM.

Assume that X, is obtained. We first introduce a uniform division to ¢, ¢ for v subinter—

m “m+l

vals that is to say that ¢\ =14, +8k & = (1,,, —t,) /v k=012 -+ pare collocation points

m+1

in the region of t € ¢, ¢t then a direct integration shows that

m  “m+l

=X, = [ (BX,-X,B,)di

m+1 m+l) dt

Oy
O
O

2 ) () (1) p1)
%X 1_X ZJ (Bm+1Xm+1 - X B
0 (8)
O
O

o, - X, = fml(B(”’”X‘”’” - XUV BYAY) d.

m+1 m+1 m+1 m+1
m

Thus we obtain » nodal approximative values { X'” }”_, and their corresponding derivatives

{X*P 17 which are defined by

Ak _ p(k) y(k) (k) p(k)
X m+l Bm+le+l - Xm+le+l‘ ( 9)
Then let
— : (1 (2) ... y(»
Xerl( t) = Hermite ( X/n+1 Xm+1 me+1) ( 10)

be the piecewise hermitian interpolation polynomial of X, ,,(#) of degree2v — 1 at (¢, t,,,). Thus
we just get an approximate function of integral function f{ X t) = BX - XB.

In order to obtain more accurate approximation X, ,, of X(¢,,,) than X, ., we next equally par—
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tition the interval 7, ¢,,, into N subintervals. Lets\” =¢ +Ak A =(1,,, -1,)/N i =01
2 +-+ N are collocation points in the region of t € ¢, t,,, . After we have N + 1 nodal values
0 X XM then by (5) we obtain a sequence of matrices { X'} )_,.

Finally we denote X!, = X, .. Thus we have got a sequence of approximate matrices of
X(t,,) form =01 -+ which are the approximate solutions of (1) at¢ =1 ---

We conclude the above process in the following algorithm.

ALGORITHM FIM with RBF

1. Input X, ¢, <t, <= <t, <t,, < form=01 -

2. partition ¢, t,,, intov, subintervals

3. fork =12 - p_ compute { X'} by (8) and X'¥ by (9)

4. construct hermitian interpolation polynomial of X, ,, () of degree 2y, — 1 at (¢, t,,,) by
(10)

5. randomly partition ¢, t,,, into N, subintervals ¢, " 1y

6. input radial basis functions { R,( ¢ ¢,) } ™, and polynomial basis { P ,(1) } O

q= ()

7. fork =01 =+ N, compute f? =X (") wheret'” = ands™ =1 and form

m

N T
fm+l = f(m+1 ! m+l ”' m+1)
8. computea = o a, - ay | b= By B By by (3)

m+1

9. form """ (1) in (2) and shape functions ¢!"*" in( 4)

A

10 ComPUte (b s ¢ et ( m ) deflned n (6) and A/n+1 = ((/i):(kmﬂ)) ?”1::0

RO e B B Ty (7)

m+1 m+1

11. compute F

ml =

12. set FtV

oo = X,.; (This is the approximation of the solution of (1) att =1,,,).

m+1

4 Examples and numerical results

In our tests the matrix B has the form
B =X(t) -X(¢t)"
Moreover we consider the case of uniformly distributed interpolation collocation points and p,,

=2 as well as equally distributed approximative nodes and N, =10. And we take into account that

R(tt) =,/ +(t-1)° P,(t) =1t"and the free parameterc = 1/N,,  =7. Additionally the

m

typical finite difference method( RK2) is compared to demonstrate the accuracy of the finite integra—
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tion method. We compare the error in relative similarity for three strategies presenting

[ v

e, =

i1 ”i,|

lo: ..

®©

where v; is a vector that is composed of eigenvalues sorted accordingly to increasing size of the ap-—
proximation X; fori =0 1

Example 4.1 We have used the same 10 x 10 randomly generated symmetric matrix X, for
stepsize A =1/10. The Table 4. 1 denotes the numerical results obtained for RK2 method and FIM
( RBF) respectively.

Table 1 Stepsize A =1/5 relative similarity errors ( Er) for different methods

e, RK2 RBF
e 1.0951e —001 4.0797e - 002
e 1.6081e —001 7.4533e - 002
e 4.0796e - 002 1.9994¢ — 003
ey 1.6289¢ — 002 2.3372¢ - 003
es 5.4959¢ — 003 4.7456¢ - 004
e 1.7184e - 003 2.6977e - 004
e 5.1724e - 004 1.4034e — 004
e 2.4323¢ - 004 6.0153¢ — 005
e 1.4415¢ - 004 4.4094¢ - 005
e 8.7037¢ —005 3.3145¢ - 005

Example 4.2 We exploit the same way to obtain X, different from that in example 4.1 for

stepsize A =1/5. The numerical results as follows:

Table 1 Stepsize A =1/5 relative similarity errors ( Er) for different methods

e; RK2 RBF
e 1.8844¢ 001 4.2309¢ - 002
e 6.7262¢ - 002 7.3751e - 002
e 4.0796e — 002 1.6579¢ —003
e 4.6225¢ - 002 2.4193e - 003
es 3.2873¢ - 002 4.6971e - 004
e 2.4049¢ - 002 6.8787¢ — 005
e 1.8045¢ - 002 3.1867¢ —005
e 1.4104e - 002 1.6507¢ 005
e 1. 1694e - 002 9.6746¢ - 006
el 1.0492¢ - 002 5.8707¢ - 006
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It is apparent that we can get more ideal results with FIM than FDM. And in our tests there
are some problems deserve to be mentioned. When A is smaller( for instance A =0.01) the solu-

tion was presented with NAN using RBF and the result with RK2 method is better.
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