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Abstract

Multithreading RTOS Processor Design

Embedded systems are increasingly more complex computational systems, often
heterogeneous and also with real-time requirements, supporting sophisticated and
demanding software tasks. To deal with this complexity, real-time constraints and
increasingly shorter time-to-market, Real-Time Operating Systems (RTOSes) are
used to provide an abstraction layer on top of the hardware, providing several
mechanisms to simplify and coordinate the system’s behavior. These mechanisms
induce latencies and large CPU time consumption, which consequently increase
overhead and contribute to the system’s performance degradation.

This thesis proposes to study and implement tools and methodologies that, con-
sidering the application’s requirements and the programmable hardware’s restric-
tions, alleviate this overhead through hardware acceleration, by: (1) incorporating
RTOSes’ primitives and structures in the CPU, whenever possible; (2) providing
customization capabilities to enable design space exploration (DSE) while migrat-
ing such primitives and structures, as well as, application specific functionalities
to gateware and (3) offering an agnostic solution to promote portability among
different RTOSes.

The implemented solution contributes to the real-time embedded systems field
by presenting novel micro-architectural features to cope with real-time require-
ments. This thesis presents a co-designed software/hardware multithreaded archi-
tecture that promotes configurability, determinism, performance, energy-efficiency
(to some extent) and portability from the outset. Experimental results demon-
strate that the implemented solution surpasses the state of the art, by providing
a complete and agnostic solution which is independent of any specific RTOS, with
only a small cost on hardware area. Appropriate benchmarking shows the benefits
of the implemented solution on tests targeting FreeRTOS and µCOSII.
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Resumo

Desenho de Processador Multitarefa para Sistemas Opera-
tivos de Tempo Real

Os sistemas embebidos são sistemas computacionais que se têm tornado cada vez
mais complexos, muitas vezes heterogéneos e com requisitos de tempo real, supor-
tando tarefas sofisticadas e exigentes. Para lidar com toda esta complexidade
e simultaneamente não comprometer um time-to-market cada vez mais curto,
recorre-se a sistemas operativos de tempo real (RTOSes). Estes não só fornecem
uma camada de abstração sobre o hardware como também disponibilizam vários
mecanismos para simplificar e coordenar o comportamento do sistema. No en-
tanto, estes mecanismos induzem latências e sobrecarga no processamento, o que
se traduz numa degradação do desempenho do sistema.

Nesta tese propõe-se estudar e implementar ferramentas e metodologias que, con-
siderando os requisitos da aplicação e as restrição do hardware programável, aliviam
esta sobrecarga através de aceleração por hardware, possibilitando: (1) incorpo-
ração de primitivas e estruturas de RTOS no processador; (2) fornecimento de
recursos de customização que permitam a exploração do espaço de projeto durante
a migração de tais primitivas e estruturas, bem como funcionalidades específicas
da aplicação; e (3) uma solução agnóstica para promover a portabilidade entre
diferentes RTOSes.

Nesta tese é apresentada uma arquitetura híbrida de hardware-software que pro-
move configurabilidade, determinismo, desempenho, eficiência energética e porta-
bilidade. A contribuição para a área de sistemas embebidos de tempo real revê-
se nas novas funcionalidades micro-arquiteturais para lidar com os requisitos de
tempo real. Os resultados experimentais demonstram que esta solução supera o
estado da arte ao fornecer uma solução completa e agnóstica. Benchmarks adequa-
dos mostram os benefícios da solução implementada usando FreeRTOS e µCOSII.
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Chapter 1

Introduction

Advances in integrated circuits’ technology have allowed the integration of more
and more tasks and features in embedded systems, leading to a more complex
development process. Instead of creating from scratch, something which has be-
come nearly impossible, embedded system designers follow a platform- and/or chip
generator-based methodologies (Hameed et al., 2010; Shacham et al., 2010, 2012;
Solomatnikov et al., 2009; Shacham, 2011), where Intellectual Property (IP) cores
are used as building blocks from which the final system is implemented. Moreover,
new architectures with novel architectural features must be developed taking into
account configurability and parametrization to promote re-use and application-
specific solutions.

Current applications’ demands pose several challenges to modern embedded sys-
tems which now face a performance barrier that hinders the execution of real-time
operations. These real-time execution requirements lead to the emergence of new
architectures such as multithreading (MT) processors and multicore chips. Al-
though both are able to exploit the concurrency of workload and thus improve
performance throughput and real-time responsiveness, designers need to study
what fits a specific real-time application better, even though they are comple-
mentary solutions since designers can opt for using multithreading, multicore or a
combination of both.

A way to alleviate the complexity of current real-time embedded systems devel-
opment process is to incorporate Real-Time Operating Systems (RTOSes) which
provide several different mechanisms, such as multithreading, semaphores, timers
and interrupts handling in order to simplify and coordinate the systems’ behavior.
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With the increase in application demands (e.g., in terms of functionalities and
real-time) it is hard to find an embedded system without an Operating System
(OS) included in its software (SW) stack.

A well structured RTOS considers the application requirements to generate only
specific functionalities used by the application, avoiding waste of resources. For
instance, the final RTOS image does not need to include mutexes or queues support
if the application does not use them. Nevertheless, RTOSes offer a myriad of
mechanisms to abstract the hardware (HW) layer from the application layer. For
some classes of real-time systems, however, the overhead caused by these RTOS
mechanisms cannot be ignored. For instance, overheads related to scheduling
and context switching eat up a lot of Central Processing Unit (CPU) time, while
the overhead related to interrupt management contributes to interrupt latency,
limiting the system’s response time. A way to lessen these overheads has been
to implement RTOSes with hardware acceleration, since the scheduler and other
mechanisms are excellent candidates for hardware migration.

An important aspect to take into consideration in the development of an embed-
ded system is which processor should be used to run the RTOS, in terms of the
support which it is capable to provide. General-purpose processors may be a good
solution thanks to the great flexibility provided. However, certain applications
require specific processing capabilities which most general-purpose processors may
not possess. To tackle these requirements, Application-Specific Instruction-set
Processors (ASIPs) have emerged as processors completely dedicated to a target
application.

To this purpose, generic Field Programmable Gate Arrays (FPGAs) have been
used as a prototyping and implementation platform in embedded systems, where
the entire embedded system may be implemented, to test and validate its func-
tionalities, and then deployed. This has motivated embedded system designers to
use FPGAs intensively not only as a development platform but also as final prod-
uct, minimizing the development cost and time-to-market. With the widespread
emergence of the new low-cost, high-density and high-performance FPGAs, the
use of FPGA-based platforms becomes even more realistic. FPGAs offer the pos-
sibility of creating customizable hardware with high degree of parallel processing
capabilities, allowing a development methodology that follows a hardware-software
co-design philosophy. Therefore, FPGAs are a good platform candidate to develop
co-designed hybrid embedded systems by easily merging SW and HW domains.
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ASIPs developed over a FPGA platform appear as a great opportunity to im-
plement parameterisable softcores with specialized processing units to efficiently
execute, in terms of performance, energy consumed or resources usage, a partic-
ular range of applications. For instance, a softcore processor can be extended
with new processing units to be used in many applications, such as control sys-
tems applications, signal processing applications, applications with complex num-
bers processing, etc. On the process of designing an ASIP, the system designer
must find a processor architecture that meets the target application. ASIPs im-
plemented in FPGAs offer a great level of configurability, since parameters such
as the bus width, register-file width and type, number of pipeline stages, size and
type of caches, number of threads or number of instructions can be easily modified.
Therefore, measuring the design quality of different architecture configurations in
terms of area, performance and power consumption is essential to find the best
fit solution. In applications with rigid constraints meeting these metrics must be
ensured. However, due to the huge number of parameters, choosing the perfect
ASIP configuration to execute a particular application is not a trivial task.

Design Space Exploration (DSE) helps system’s designer in finding an optimum so-
lution. Using customizable/configurable tools/platforms/artifacts can reduce the
design space, enabling DSE under time-to-market constraints, while maintaining
sufficient solution variety to ensure the development of an adequate implementa-
tion. DSE selects an optimal configuration to a certain application fulfilling one or
more design constraints, taking in consideration several aspects related with the
target application. Hence, new ASIP architectures must be configurable, offering
parametrization capabilities to allow design exploration.

The development of real-time embedded systems towards ASIP architectures with
specific OS hardware support, can take advantages of the configurability provided
by FPGA platforms to provide customization capabilities, allowing DSE to be
performed to create custom tailored solutions suitable for a particular application.

The remainder of this chapter is organized as follows: Section 1.1 describes the
scope of this thesis; Section 1.2 presents the research questions and the method-
ology proposed to answer those questions; Section 1.3 shows the state of art in
different hardware acceleration solutions; Section 1.4 describes the solution envi-
sioned by us; Section 1.5 presents the structure of this thesis.
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1.1 Scope

Hardware multithreading (HW-MT) is a processor-level optimization to improve
area and energy efficiency ideal for applications with some degree of concurrency
where different threads require high coordination and inter-communication to per-
form a specific task. A multithreaded processor ensures multiple thread contexts
within the same core by replicating task-specific registers and connecting a hard-
ware scheduler into the System-on-Chip (SoC). Therefore, two distinct thread
contexts can be switched in hardware without saving and restoring their state in
software. This makes multithreading architectures an optimal platform for real-
time applications where external interrupt events can be serviced with zero-latency.
For low-end systems, where area and energy efficiency are two important metrics,
the multicore approach may fall out of the scope. Multicore architectures require
an interconnection between the cores either using a Network-on-Chip (NoC) or a
shared memory which needs to be fairly large and with high bandwidth. Also, in
idle state, multicore architectures have an amount of leakage current proportional
to the number of cores in the system (Kissell, 2007).

 

HW RTOS

FPGA

Processor 
Architecture

Embedded 
Systems

Figure 1.1: Scope.

Embedded system designers take advantage of RTOSes to develop multithreaded
applications as they provide several Application Programming Interfaces (APIs)
which ease and accelerate the development process and thus decrease the time-to-
market. However, these APIs induce latencies and consume CPU time, which con-
sequently increases overhead and contributes to the system’s performance degra-
dation. The emergence of FPGAs allows designers to exploit hardware-software

4



co-designed applications in order to reduce the overhead of SW-only implementa-
tions and thus improve the system performance of embedded systems (Figure 1.1).
A multitude of approaches try to reduce the RTOS overhead by offloading some of
the RTOS features into the hardware layer. Such approaches present some draw-
backs, as they are restricted to a specific RTOS which requires a huge porting effort
and limits the re-utilization of legacy software. Additionally, some of them tar-
geted purpose-built cores which are usually proprietary. The migration of RTOS
APIs to hardware is usually ensured through a coprocessor approach, where, for in-
stance, the thread scheduler is migrated to hardware performing thread scheduling
for real-time systems. There are two different approaches: (i) on the first one the
thread scheduler can be connected to the system in a loosely-coupled (LC) fashion,
i.e., interfaced through a bus to the core; this solution is adopted in systems using
hardcore processors where no modifications are allowed within the core; (ii) the
second approach is tightly-coupling (TC) the thread scheduler into the processor
datapath. Thus, the processor can also be extended with hardware multithreading
support and perform the APIs and context-switch operations in shorter time.

Nevertheless, hardware multithreading and RTOS hardware support have not been
synergistically applied to take into consideration portability to several different
RTOSes solutions. Focusing on improving performance and determinism while
maintaining portability simultaneously will capture the attention of the indus-
trial community since these solutions will cover a wide spectrum of RTOSes and
will be RTOS-independent, not demanding software developers to have in-depth
knowledge of the RTOS architecture.

The following are important identified requirements for hardware-based RTOS
solutions: (1) low cost and low power consumption; (2) improved real-time pro-
cessing; (3) low-latency execution; (4) portability to ensure legacy software re-use.

The scope of this thesis focuses on low-end single-core multithreaded architec-
tures exploiting FPGA platforms to provide configurable RTOS hardware support
while maintaining an acceptable level of portability. This thesis focuses on the
arrangement between the following three layers and their dependencies: (i) appli-
cation layer; (ii) RTOS layer and (iii) hardware layer. All research will take into
account the impact on the following aspects such as performance, determinism,
hardware costs and memory footprint. Furthermore, this thesis targets low- to
medium-grade embedded systems not requiring virtualization technologies neither
multicore architectures.
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1.2 Research Questions and Methodology

We predict that getting the benefits of hardware offloading without sacrificing
portability to different solutions requires an agnostic approach to the software to
hardware migration. For this reason, this thesis tries to answer to the following
questions:

1. Which (micro)architectural hardware features can be explored to increase
performance without sacrificing determinism and energy-efficiency?

2. How can these features be exploited to full potential without sacrificing soft-
ware flexibility?

3. How can portability be guaranteed across software stacks (RTOSes) while
supporting common functionalities acceleration?

applying the following methodology:

1. Identify which RTOS sub-systems contribute to performance, power and
determinism degradation;

2. Analyze the possibility of migration to hardware of each sub-system accord-
ing to the application demands and analyze the impact in performance, de-
terminism, portability, area, power and scalability;

3. Propose new micro-architectural features and compare them to the state of
art.

1.3 State of Art

Demanding applications require complex hardware. Embedded systems rely on
RTOSes services to abstract this complex hardware from the software layer. The
counterpart of this abstraction is the processing overhead on the CPU. Different
approaches have been proposed in the literature to address this problem. The
following sections present several research works that use different methods to
reduce the impact of RTOSes, such as using a coprocessor approach, implementing
RTOS services in hardware, using hardware-based RTOSes or applying instruction-
set architecture (ISA) customization.
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1.3.1 Operating System Hardware Acceleration

The attempt to make an embedded system capable of providing hardware support
to a RTOS is not recent, as there is a large number of projects/publications focusing
on this subject, typically following a component based model (van Ommering
et al., 2000; Levis et al., 2004). Back in 1991, efforts were being made to integrate
operating systems’ functionalities in hardware, providing microprocessors with the
ability to offer support to the RTOSes’ primitives (Lindh, 1991). The emergence
of high capacity reconfigurable FPGAs at a lower cost, renewed the interest in this
field in recent years (Sindhwani et al., 2004; Panneerselvam and Swift, 2012).

The support to RTOS primitives allows increasing performance in an embedded
system, since actions such as context switching become atomic operations, exe-
cuted with zero latency. This support may be provided through a coprocessor
approach, such as the one presented in (Cooling and Tweedale, 1997), which per-
forms threads scheduling for hard real-time systems. This approach leads to exe-
cution latencies due to the need to access the bus and, as such, will never provide
a null overhead context switching. Another approach is the integration of RTOS
primitives in the processor’s datapath (tightly-coupled), a more efficient solution
since it provides null-overhead context switching, requiring, however, some degree
of flexibility at the processor design level (e.g., as provided by Xtensa and ARC
architectures (Gonzalez, 2000; ARC, 2012)).

The wide availability of softcore processors, both open-source or intellectual prop-
erty (Consortium, 2012), makes this approach much more attractive. Wijesinghe
(2008) presented a processor that supports RTOS primitives. The processor used
was Microblaze, Xilinx Corp. IP, adapted and expanded to provide the required
functionalities. Bahri et al. (2012) offloaded the scheduling and communication
layers from software to hardware achieving significant acceleration. Varela et al.
(2012) developed a loosely-coupled coprocessor scheduler for NIOSII allowing dif-
ferent scheduling algorithm to be used.

The usage of IP processors shortens the time-to-market and provides flexibility,
due to some extension capabilities offered by manufacturers. Their ISAs may
be extended in order to provide specific instructions to the application’s domain
(Labrecque and Steffan, 2007). However, flexibility is limited as these manufactur-
ers allow only the expansion of some ISAs’ aspects, e.g., changes in some datapath’s
functional units such as the Arithmetic Logic Unit (ALU).
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With processors developed from scratch, the flexibility is higher and it’s possible
to develop a specific solution, optimized for the application, although the time-to-
market is substantially higher. In (Dimond et al., 2005), a framework identifies
sets of instructions frequently used in a given application and adds to a standard
processor’s datapath several Custom Computational Units (CCUs), capable of per-
forming these operations. Zaykov et al. (2014) proposed a hardware task-status
manager CCU to reduce the Worst-Case Execution Time (WCET) of the RTOS.
Bloom et al. (2012) introduced hardware data structures to reduce latency and
jitter of data structure operations improving predictability of memory accesses.
Kumar et al. (2012) and Tang and Bergmann (2015) presented coprocessor hard-
ware schedulers connected to the processor bus to improve processing overhead and
timing predictability of the scheduler. Balfour et al. (2008) implemented a cus-
tom processor architecture to speed up the performance of applications. Dittmann
(2006) presented a processor dedicated to an application domain; its ISA was im-
plemented based on an analysis of the domain’s requirements. Iturbe et al. (2010)
and Agron et al. (2006) presented a reliable reconfigurable real-time operating
system (R3TOS) and a multithreaded RTOS kernel for hybrid FPGA/CPU sys-
tems (Hthreads), respectively, where some run-time system components such as
scheduler and thread manager are migrated to hardware.

1.3.2 Application-Specific Instruction-Set Processors

Due to the capabilities of current hardware description languages as well as the
widespread use of FPGAs as prototyping and deployment platform, designing
application-specific processors is becoming more feasible (Zhang et al., 2008; Grad
and Plessl, 2011). Thus, the development of application-specific processors is an
active field of research in the area of embedded systems (Nsame et al., 2014; Mar-
zouqi et al., 2015). A large majority of applications, due to their complexity and
tight constraints, requires specialized processors to execute in an efficiently way
a particular task. ASIPs are application-specific processors which are custom tai-
lored to execute a certain task, or a set of applications, and are often used to tackle
performance issues when general-purpose processors cannot meet the application
demands (Gour and Jain, 2011; Nery et al., 2011) while keeping a fair degree of
flexibility when compared with strict dedicated solutions (i.e., without software
programmability) (Hohenauer and Leupers, 2009). In order to achieve the perfor-
mance required by a specific application, while meeting other design aspects such
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as area or energy consumption, an ASIP must be developed to achieve the required
acceleration or parallelism over a general-purpose processor (Nery et al., 2011).

Since most general-purpose processors lack the requirements for many embedded
systems, such as determinism or real-time predictability, ASIPs have emerged as
processors specifically developed to a target application (Oliveira et al., 2011). In-
dustrial available ASIPs such as ARC (ARC, 2012), LEON3 (Gaisler, 2012) and
Xtensa (Gonzalez, 2000) presented large improvements over traditional processors
for several applications (Nery et al., 2011). All are highly configurable allowing
the implementation of a full range of processors optimized for a specific set of
applications. While some ASIPs are completely dedicated to perform a specific
task others offer more flexibility. The latter ones have a configurable instruction
set where a minimum ISA is available and can be extended to design custom in-
structions using available configurable logic (e.g., Altera’s Nios II (Altera, 2011a),
Xilinx’s MicroBlaze (Xilinx, 2008)). The advent of high-density FPGAs and the
flexibility offered by these softcores open the possibility of customization capabil-
ities since the use of these custom instructions allows the integration of complex
functions in the processor’s datapath (Pothineni et al., 2010).

To meet the computational demand of modern applications, Vassiliadis et al. (Vas-
siliadis et al., 2009) presented a systematic approach to extend an embedded pro-
cessor to support several number and types of CCUs connected in TC or LC
coupled fashions. In (Bordoloi et al., 2009), several studies have demonstrated the
tradeoffs of using different CCU configurations in terms of area and performance
metrics. A CCU is a unit that implements the equivalent of several software in-
structions in hardware to allow faster execution of those instructions and therefore
it provides an increase of performance. There are two types of CCUs, the ones
that are TC to the processor, i.e., the CCUs are integrated in the processor core
and treated as internal units of the processor’s datapath that interact directly with
other functional units. The LC CCUs are the ones connected to the processor as
an external coprocessor; therefore, they are outside of the processor core. The
former allow a deterministic communication of the processor with the CCU. The
latter approach leads to overhead due to bus arbitration but it allows a variable
number of CCUs to be connected. Several studies (Huynh et al., 2010; shuai Lu
et al., 2008; Atasu et al., 2012) have been presented where different methodologies
and approaches were demonstrated in order to efficiently migrate instructions from
an application code to custom instructions implemented in hardware.
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With the advent of Systems-on-a-Chip (SoCs), partitioning functionalities between
hardware and software, has become more and more feasible in commercial RTOS
for a wide range of embedded processors. The growing complexity of today’s sys-
tems have led the researchers to develop tools and programming environments that
allow system designers to use the full potential of new reconfigurable chips. The ex-
isting computational models for hybrid systems created the need to adopt abstrac-
tion computational models that offer a proper abstraction level of the CPU/FPGA
platform distinctions to the programmers.

Andrews et al. (2008) created and developed the architecture, models and tools, to
design systems for real-time applications using hybrid CPU and FPGA systems.
The system includes operating system and middleware layer abstractions that
enable all platforms components to be abstracted into a unified multiprocessor
architecture platform. A programming model (Hthreads), with unified APIs, was
implemented which is fully compliant with the standard pthreads APIs. Thus,
the architecture allows the execution of concurrent threads implemented both in
software and hardware within a hybrid computer processor unit.

Mooney and Blough (2002) introduced a framework for RTOS-SoC co-design that
aids the designers in building a SoC platform architecture and a customizable
hardware-software RTOS. With a graphical user interface, the RTOS features can
be selected as the number of processors and other software/hardware components.
Therefore, complex SoCs with custom configurations of hardware-software RTOS
can be generated by this framework tool to speed up applications using a small
amount of hardware area.

Oliveira et al. (2011) presented a real-time processor architecture optimized for
multitasking real-time embedded systems which efficiently explores modern FPGA
technology. A specialized, parameterized and predictable coprocessor that gives
hardware support for real-time applications was designed to demonstrate that mi-
gration of RTOS functions to hardware allows a faster, predictable and determin-
istic execution, as well as a reduced RTOS overhead. The developed coprocessors
implement the basic RTOS functions, such as task scheduling, interrupt handling,
timing, synchronization tasks, etc.

Interrupt handling is an important OS function which has a large impact on both
performance and predictability in hybrid systems. In (Liu et al., 2011) a hybrid
real-time operating system with two levels of hardware interrupts based on the
Advanced RISC Machine (ARM) architecture was implemented with a scheme to
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improve the latency of real-time interrupts, as well as other aspects related with
performance overhead.

There are other implementations using hardware migration of applications’ func-
tionalities, such as FASTCHART (Lindh, 1991), RTBlaze (Wijesinghe, 2008),
CUSTARD (Dimond et al., 2005), Silicon (Murtaza et al., 2006), etc. However,
only a few support the migration of RTOSes’ functionalities, but always rigidly
without ever exploring the tradeoffs between different project metrics, namely
hardware resources, performance and power consumption.

1.3.3 Design Space Exploration Methodologies

The growing architectural complexity of today’s multiprocessor chips and the need
to reduce the time-to-market, have forced researches to develop tools capable of
performing DSE to find the optimal solution that satisfies all the required metrics
for a specific application range. The size of a constraint-based DSE tool is defined
by the wide number of customizable parameters used to create an ASIP. For a given
application, there are a large number of design alternatives (Radhakrishnan et al.,
2006). This number tends to grow with the advancement of technology, allowing
flexibility to develop more and more complex designs. These parameters can be
tuned to find the optimal configuration in order to meet the required constraints;
examples of such parameters are the performance, cost, energy consumption and
the available silicon die area.

The major work carried out for ASIP DSE is by using a simulator based approach
(Gour and Jain, 2011). However, DSE tools have a problem associated with the
number of required simulations to be executed in order to find the optimal ar-
chitectural configuration for a particular application. The use of "brute force"
approaches to search all the important points in the design space could be com-
pletely unfeasible due to (1) the great number of existent configuration possibilities
and (2) the extremely high simulation time required to simulate all the configu-
rations executing the specific application. Several heuristical approaches have
already been applied to address the DSE challenge but none of them respect all
the application-specific constraints successfully. The following works present the
major contributions to perform efficient DSE and show different approaches and
methodologies to tackle the DSE challenge.

Configuring an ASIP by performing exhaustive exploration of the design space is
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computationally unfeasible due to the increase of the number parameters intro-
duced. In order to tackle this, Hallschmid and Saleh (2008) proposed a method of
modeling the design space using a novel algorithm that uses local regression statis-
tics. The main goals were to find the best configuration of an ASIP, for example
to reduce the energy dissipation, using only simulation of a small portion of the
design space. This proposal brings great benefits to processors developers since
it allows the designers to develop ASIPs without in-depth knowledge of processor
architectures. This solution allows drastically reducing the number of simulations
required to find the optimal configuration.

Beltrame et al. (2009) proposed the Reflective Simulation Platform which is a
transaction-level multiprocessor simulation platform based on the integration of
two languages: SystemC and Python. The reflection technique integrates Sys-
temC components without changing the source-code, thus almost no overhead is
introduced, and at the same time, provides full observability of the SystemC com-
ponents internal structures. Using this approach, the simulation platform offers
fine-grained control of the simulation, enabling the support to evaluate differ-
ent hardware/software configurations of a specific application and allowing com-
plete DSE introducing less than 1% of overhead in the simulation comparing with
SystemC-only simulation.

Palermo et al. (2009) proposed an efficient DSE methodology for application-
specific MPSoCs, ReSPIR, a Response Surface-based Pareto Iterative Refinement.
The novelty of the author’s approach is their methodology’s capability to find a
series of good candidate architectures configurations requiring a minimal number
of simulations. Their methodology combines design of experiments (DoEs) and
Response Surface Modeling (RSM) to manage the system-level constraints. The
DoEs generates a plan of experiments used to create a draft of the design space
to be then explored by simulations. After, a group of RSM techniques is used
to refine the draft created by the DoEs. Basically, the approach is iteratively re-
peated by performing simulation based refinements of the approximate Pareto set
derived from the results given by the RSM model. The RSM techniques explore
the application-specific constraints to find the number of feasible solutions.

Radhakrishnan et al. (2006) explored DSE on ASIPs with heterogeneous multiple
pipelines in order to efficiently exploit the parallelism at instruction level. For a
given application specified in C language and using a simulation approach, the
design system can generate a processor with the number of pipeline stages specif-
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ically suitable to the application. Results shown that performance improvements
can be achieved compared to single-pipeline ASIPs with some overheads in terms
of other metrics, such as area, leakage power, switching activity or code size.

DSE can also be realized through high level synthesis as demonstrated in Ahuja
et al. (2009). Using an already existing compiler (C2R - C to RTL), capable
of automatically translating software code (e.g. in C language) to synthesizable
hardware code, encryption and compression software algorithms were automatic
converted to the corresponding hardware modules. These modules could be con-
nected to the central CPU using a coprocessor approach in order to reduce the
workload of the central CPU. Using such algorithms which automatically generate
the corresponding hardware can dramatically reduce the time to market. Also,
their proposal allows the control of parameters as timing, area and power con-
sumption (e.g., clock gating) at the high level. Thus, different architectures can
be explored at the system level, by changing only the C source code of the func-
tional software model, allowing simulation at several orders of magnitude faster
than the corresponding hardware simulation. In addition, with faster simulations,
an extensive exploration of the parameters can be tested in short time using the
functional model.

Ascia et al. (2004) explored the DSE on parameterized SoC platforms using genetic
algorithms. The strategy focuses on exploration of the architectural parameters
at the system level for the design of embedded systems with tight power consump-
tion and performance constraints. In order to reduce the time-to-market, some
portions of the chip’s architecture are predefined for a specific type of application
and therefore designing a chip from scratch is avoided. Also, evaluating the var-
ious alternatives at lower levels of abstraction require higher design time so the
possibility of estimating with a sufficiently high degree of accuracy the impact of
several design metrics at highest levels is exploited. This approach was successfully
validated for two different parameterized architectures, one based on a Reduced
Instruction Set Computer (RISC) processor and another based on a Very Long
Instruction Word (VLIW) architecture. However, new techniques to improve the
efficiency of DSE are being exploited such as neural networks or mathematical
equations to estimate the variables to be optimized as well as the definition of new
heuristics.

Kim et al. (2005) exploited the DSE challenges specifically in terms of the area
and critical path issues. The main goals were to reduce the hardware cost by

13



sharing critical functional units which occupy large area and to minimize the crit-
ical path by pipelining the critical resources. For fast architecture exploration,
all explorations are performed in a SystemC model. Carrying out performance
estimation at early stage by transaction level simulation enabled early detection
of the optimal architecture specification. Thus, this approach effectively reduced
the hardware cost without any performance degradation.

There are also other frameworks which explore the design space of softcore pro-
cessors such as SPREE (Yiannacouras et al., 2005), UNUM (Dave and Pellauer,
2005), PEAS-III (Kitajima et al., 2001), Xtensa Xplorer Gonzalez (2000) and AR-
Chitect (ARC, 2012) not allowing, however, the gateware acceleration of RTOS
functionalities.

In conclusion, a myriad of parameters must be explored to efficiently perform DSE
at all levels. The overall goal is to minimize the time required to find the optimal
solution for a specific application. From this perspective, there is a need to study
other approaches rather than simulation-only approaches in order to perform faster
and efficient DSE of constraint-based systems.

The optimization techniques used to explore the solution space of softcore pro-
cessors (which functionalities should be implemented in hardware or software) are
presented in (Labrecque and Steffan, 2007; Dimond et al., 2005). There are sev-
eral Architecture Description Languages (ADLs) which aim to provide a high-level
description of a system, which use DSE in order to optimize the design. The most
established ones are LISA (Schliebusch et al., 2002), ArchC (of Computing Uni-
versity of Campinas, 2012) and EXPRESSION (PROGRAM, 2012), while others
have recently been created (Metrolho, 2008). Nevertheless, there is still no ADL
capable of efficiently performing the entire application development process.

1.3.4 Acceleration Methods

RTOS hardware support implemented as hardware accelerators have been used
to achieve power efficiency and to increase the performance and real-time respon-
siveness of RTOSes. However, coupling these hardware accelerators in the system
may induce undesired overheads related with communication (data and signaling)
between the processor and the hardware accelerator (Jääskeläinen et al., 2008;
Panneerselvam and Swift, 2012). There are different approaches to implement and
connect a hardware accelerator (e.g., hardware scheduler) to the processor core.
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The hardware scheduler may be connected as a LC module, i.e., hooked up as a
peripheral device on the SoC bus; or connected as a TC module, i.e., internally-
connected on the core datapath and treated as any other datapath functional unit.

The drawback of the loosely-coupled approach is related to bus arbitration as the
communication and synchronization performance can be compromised in systems
where Direct Memory Access (DMA) based devices may take control of the bus,
blocking or delaying the access to the loosely-coupled hardware scheduler (Tang
and Bergmann, 2015). Also, energy efficiency can be compromised as this approach
is expensive in terms of resources and power consumed by the required dedicated
coprocessor interface (Tang and Bergmann, 2015). Nevertheless, this approach is
applied in multicore approaches where other cores, apart from the main core, are
used as accelerators, which may be connected using an external bus interface or
NoC (Goulding-Hotta et al., 2012).

A more fine-grained approach to connect a hardware accelerator to the processor
is coupling the accelerator as a TC module. This approach allows a hardware
scheduler (as an example) to be visible to programmers as a regular functional
units in the datapath (Jääskeläinen et al., 2008). Communication costs are reduced
comparing with the LC approach since communication can be done directly within
the datapath.

Table 1.1: Gap Analysis.
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Another approach to obtain hardware acceleration is based on HW-MT which
allows several thread contexts to co-exist inside the datapath, speeding up the
processor throughput. Although, many research have implemented HW-MT ar-
chitectures (Oliveira et al., 2011; Koufaty and Marr, 2003; Labrecque and Steffan,
2007) none have addressed the possibility of running available RTOSes on this
architectures, limiting its use to their custom solutions.

1.4 Conclusions

Table 1.1 depicts a gap analysis between the most important recent research com-
pared to our envisioned solution. We conclude that a deterministic and agnostic
co-designed hardware-multithreaded architecture may be the optimal solution for
applications with high-throughput workloads and time-restricted. Any application
invokes RTOS APIs frequently during its execution, therefore implementing sev-
eral RTOS APIs in hardware will reduce power consumption as well as the CPU
time taken by the RTOS, i.e., the system will be power- and performance-efficient
independently of the application running on the platform. Doing so, migrating
RTOS APIs to hardware combined with hardware multithreading support will
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also reduce the interrupt response time and increase the overall system perfor-
mance. Connecting a tightly-coupled thread scheduler in the hardware together
with hardware multithreading support means that all API functions, including
context-switching, are implemented in hardware.

The solution should be able to abstract the architecture to the designer making the
RTOS HW-SW interface transparent to the applications and also independently
of the RTOS used. A real-time system hardware solution ensuring deterministic
execution of RTOSes based on softcore processor will ensure agnosticism by of-
fering hardware multithreading support independently of the RTOS, alleviating
the RTOS overhead through hardware acceleration. Additionally, the architecture
must feature parametrization capabilities allowing DSE to find the optimal config-
uration for a particular application. Figure 1.2 depicts the keys features envisioned
by us.

1.5 Thesis Structure

This thesis is organized as follows:

• Chapter 2 describes the implemented framework based on the ARM archi-
tecture and corresponding software stack used as development, testing and
prototyping platform.

• Chapter 3 presents the micro-architectural extensions applied to the softcore
processor, presented in the Chapter 2, to support hardware multithreading
execution. We describe the main features of the flexible hardware multi-
threading support and its implementation details. Namely, we show how
this implementation is configurable using a set of parameters, maintaining
scalability and portability.

• Chapter 4 presents a novel hardware approach to solve the rate-monotonic
problem found in many RTOS solutions. We describe how our approach
unifies the priority space at the interrupt handling sub-system with enhance-
ments on predictability and minimal hardware cost.

• Chapter 5 presents our portable architecture which provides a unified hardware-
software scheduling, bringing the benefits of HW-MT to the RTOS domain.
We show the benefits of our architecture in terms of performance and deter-

17



minism with very low area usage/performance overhead ratio.

• Chapter 6 presents our agnostic software stack based on a co-designed hardware-
software transparent solution which enables current RTOS solutions to ben-
efit from hardware acceleration without being intrusive to the software layer.

• Chapter 7 describes the integration of the whole system stack with the hard-
ware multithreading support. We present our co-designed architecture and
its impact on memory footprint.

• Chapter 8 concludes this thesis. We present the conclusions of our research
and the limitations encountered during the development of our solution. To
conclude, we suggest the future work towards fulfilling the aforementioned
limitations.
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Chapter 2

Research Platform

This chapter presents the implemented framework based on the ARM architecture
and corresponding software stack used as a development, testing and prototyping
platform. We describe the main reasons behind the choice of ARM architecture,
Xilinx FPGAs and the software stack used.

The remainder of this chapter is organized as follows: Section 2.1 identifies the
platform requirements to realize the proposed work; Section 2.1.1 presents the
AT91SAM9XE SoC Clone deployed in a Xilinx FPGA platform and its implemen-
tation results in terms of occupied area; Section 2.1.2 concludes by describing the
verification methodology used to validate the correctness of the platform.

2.1 Platform Requirements

To accomplish the work proposed by this thesis several platform requirements were
identified in order to find the most suitable development platform. When develop-
ing an embedded system solution, several factors must be taken into consideration
such as processor architecture, portability and flexibility in order to allow micro-
architectural modifications. The following requirements were established:

1. Processor architecture: As one of most widely used architecture in the
embedded world, ARM is selected as the ideal processor architecture. There
is confidence in the ARM Instruction Set Architecture as they have been used
in a myriad of embedded systems throughout the world and are very popular
in today’s embedded system market. As well known, ARM processors family
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offers one of the best balance between processing performance and energy
power consumption making it suitable for embedded systems. Furthermore,
ARM already provides a completely established tool-chain which offers a
collection of programming tools for developing applications and operating
systems.

2. Portability: A portable platform will reduce the time-to-market of embed-
ded systems solutions. Therefore, a commercial ARM-based SoC supporting
several (Real-Time) Operating Systems ports is the adequate SoC platform.

3. Flexibility: In order to apply the micro-architectural extensions proposed
by this thesis, the architecture must be editable. Hence, hardcore processors
are out of the scope. This implies the use of an FPGA-based solution, pro-
moting design re-use to improve productivity, prototyping of new solutions.
Additionally, FPGA-based solutions provide an easy approach to perform
the measurement of each new micro-architectural extension in terms of area,
energy and performance.

Figure 2.1: AT91SAM9XE SoC block diagram.
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Considering the lack of existing solutions complying with the aforementioned re-
quirements, we decided to develop an in-house softcore based on the ATMEL
AT91SAM9XE SoC (Atmel, 2014). The decision of developing the SoC from
scratch arose from the need to apply improvements at both core- and SoC-levels
which would not be possible with an IP module. Due to the availability of FPGA
platform, the first version of the SoC was deployed on a Xilinx Virtex 5 FPGA
using Xilinx ISE Design Suite 14.5. However, the platform was later upgraded to a
Xilinx Kintex 7, using Xilinx Vivado Design Suite 2014.4, which offers more logic
cells to accommodate the new micro-architectural extensions.

2.1.1 AT91SAM9XE SoC Clone

This section describes the implemented ARM architecture. The developed ar-
chitecture is based on the widely used commercial AT91SAM9XE SoC by Atmel
(2014). This SoC implements the ARMv5TE instruction set and it is ready to be
prototyped on a Xilinx Virtex 5 or Kintex 7 FPGA boards. Figure 2.1 depicts

Table 2.1: Detailed hardware utilization results on Xilinx Kintex 7 - XC7K325T.

Module Slice Slice LUTs Slice Registers
(50950 available) (203800 available) (407600 available)

� ARM SoC 14808 47406 26829
� ARM System 8103 26322 8602
� ARM Core 7103 24919 4130
� I. Cache 2358 7903 962
� Front End 3193 10216 1693

Buffer Stage 2 893 1295 363
� ALU 93 217 0

Buffer Stage 3 326 497 79
� D. Cache 1486 4204 649

System CP 400 599 384
� MMU 1501 1403 4472

� Memory Controller 4152 12979 9379
PIT 49 21 136
PM 196 181 435
Remap 2 3 4

� SD Card Controller 1164 3751 4478
System Bus 1552 2742 1455

� AIC 1123 802 2212
� USART 53 53 123
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the top-level view of the implemented architecture. Table 2.1 shows the detailed
hardware cost for each module when deployed on Kintex 7 FPGA Embedded Kit
(XC7K325T) with default synthesis strategy. All the modules were developed
in-house from scratch using Verilog Hardware Description Language (HDL) (Pal-
nitkar, 2003), excluding the Double Data Rate (DDR) Memory Controller which
is provided as an IP core from Xilinx (2014). The SoC in Figure 2.1 integrates
our ARM-compliant processor core, a hardware-based page table walking Memory
Management Unit (MMU) and a sub-set of peripheral devices required to fully
test software-only Operating Systems. The implemented peripheral devices are a
SD-Card Controller, a DDR Controller, a Universal Synchronous Asynchronous
Receiver Transmitter (USART), an Advanced Interrupt Controller (AIC), a Peri-
odic Interval Timer (PIT) and Performance Monitor (PM). All the modules, but
the DDR Controller, are running at 33 MHz.

ARM-compliant Softcore Processor

The implemented ARM softcore processor is completely compliant with the ARMv5-
TE instruction-set (Seal, 2000). Our implementation is based on the micro-
architectural information of the ARM926EJ processor available in Atmel (2010).
Figure 2.1 depicts the internal modules of the processor core which features a 5-
stages pipelined core, a 8 KB 8-way set associative data cache, a 16 KB 16-way set
associative instruction cache (both virtually-tagged/virtually-indexed) and a sys-
tem coprocessor (ARM’s CP15). We also implemented a Thumb to ARM decoder
in order to support THUMB code (Goudge and Segars, 1996).

Clock Synchronization

Clock synchronizers were implemented to avoid metastability events that com-
monly arise from using multiple clock domains on the same chip. A synchroniza-
tion scheme based on the Two-Flip-Flop Synchronizer (Ginosar, 2011) was used to
synchronize the accesses between the memory controller and the remaining SoC
modules.
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Figure 2.2: Address memory layout.

Performance Monitor

To allow a fine-grained measurement of the processor performance, a Performance
Monitor module was developed and integrated as a peripheral device. This module
was designed to count precisely how many clock cycles takes to execute either
one or a set of instructions previously specified, ensuring high-level observability
through the whole system performance. The PM counter is capable of counting
the clock cycles of an instruction, from the time it is being issued by the processor
from the memory until its last pipeline states (write-back) is accomplished. This
module can be configured to provide an interrupt trigger to the AIC when a clock
counting has finished. This way, the code being measured does not need to be
modified, usually with a start timer and stop timer functions, and its counter
value will be easily outputted by an Interrupt Service Routine (ISR). The main
purpose of this module is to measure the latency of a set of instructions and also
their execution jitter when executed more than once.
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Memory Layout

The system memory is organized as depicted in Figure 2.2. On the reset state,
the SD-Card memory is mapped at the address 0x0. This allows a bootloader to
be loaded into the non-volatile memory and perform all the initializations before
running an application. A REMAP feature was implemented in order to modify
the memory layout by swapping the SD-Card and Random Access Memory (RAM)
memory positions. This is useful for applications where the exception vector table
is configured to be at the first memory address positions (and at RAM memory)
thus allowing exceptions and interrupt requests to be quickly handled since the
RAM memory interface is faster than the SD-Card interface. Usually, a bootloader
loaded in the SD-Card memory can be booted, copying all software binary code to
RAM memory, performing the remap command and finally branching to address
0x0 which is now RAM memory.

Cachability of Peripheral Devices

The ARM architecture reference manual specifies as implementation defined the
possibility of allowing caches to be enabled while the MMU is disabled. These
features are configured through the system coprocessor (CP15), while the MMU is
responsible for managing whether an instruction fetch or a data access is treated as
cachable or uncachable. Having the MMU disabled and the data cache enabled will
result on all data accesses being treated as cachable accesses. This will restrict
the access to memory mapped peripheral devices since any access to it will be
cached, i.e., whether read or write operations will not be directly bypassed to the
hardware.

In order to obtain the performance benefits from enabling the data cache in
RTOSes, such as FreeRTOS, where the specific-port for this architecture does not
use MMU, we have implemented a new register on the coprocessor CP15 enabling
setting peripheral devices as uncachable when data cache is enabled and MMU is
disabled. Hence, all data accesses will be treated as cachable while data accesses
to memory mapped peripheral devices will be treated as uncachable. Therefore,
RTOS applications may benefit from increased performance from enabled caches
if necessary.
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2.1.2 Verification

Module Verification

Each module is individually tested and verified to find logical errors. Module-
specific testbenches are performed to validate the functionality of each component
individually. If a module can be stand-alone tested in the hardware, (e.g., SD
CARD reader, DDR3 Memory Controller), then it is also deployed on the platform
and tested again to ensure correctness on the gate-level implementation.

Processor and SoC level Verification

All modules are integrated together after testing them individually. Usually, the
initial tests to validate a processor design consist of short assembly applications
targeting data and control flow of instructions executing through the pipelined
stages (e.g., ALU instructions). For the first steps, these programs are loaded
into the processor using a Register-Transfer Level (RTL) simulator. However,
RTL simulators perform slowly large RTL designs, therefore, after extensive test-
ing, more complex applications are loaded into the processor and executed on the
hardware. Using on-chip debuggers such as Xilinx’s ChipScope Pro (Xilinx, 2012)
it is possible to detect potential faults on the design. To guarantee an error-free
design, elaborated software applications must be used to build complex software
contexts which will increase the design coverage. Operating systems, due to their
complexity, are examples of complex software contexts used for verification pur-
poses (Chen et al., 2013). Therefore, an RTOS or a General Purpose Operating
Systems (GPOS) are good solutions to increase design coverage. In our case, we
have used FreeRTOS (Barry, 2010), µCOSII (Labrosse, 2015) and Linux to prove
the correctness of our design. After successfully running all the mentioned OSes
on our platform we considered our design error-free for the moment, increasing the
degree of confidence on the designed SoC.
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Chapter 3

Hardware Multithreading
Extensions

This chapter presents the micro-architectural extensions applied to the softcore
processor, presented in the Chapter 2, to support hardware multithreading ex-
ecution. We describe the main features of the flexible hardware multithreading
support and its implementation details. Namely, we show how this implementa-
tion is configurable using a set of parameters while maintaining scalability and
portability.

The remainder of this chapter is organized as follow: Section 3.1 presents the hard-
ware extensions made to the single-threaded ARM core datapath to support hard-
ware multithreading (i.e., SMP threading a.k.a Silicon SMP); Section 3.2 briefly
presents the tightly-coupled hardware scheduler which will be more detailed in
Chapter 5; Section 3.3 describes the modifications made to specific instructions
required for multithreaded execution; Section 3.4 and Section 3.5 describe the
hardware support required for delay and synchronization between threads; Sec-
tion 3.6 concludes by presenting the coprocessor instructions used to manage the
hardware multithreading support.

3.1 Hardware Multithreading Support

HW-MT is a processor-level optimization technique used to improve throughput
which can be used to improve real-time responsiveness of real-time systems. This
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feature ensures multiple thread contexts within the same core allowing multiple
distinct thread contexts to be switched in hardware without saving and restoring
them on software. HW-MT has been established as an architectural feature to
maximize throughput in a processor. The idea is to maintain the processor run-
ning at maximum throughput by executing several hardware-supported threads.
HW-MT can increase throughput by up to 25% (Koufaty and Marr, 2003) by hid-
ing idle times such as memory latencies or branch penalties (Sodan et al., 2010).
A HW-MT architecture typically encompasses per thread replication of the archi-
tectural units on a processor (e.g., register-file, status register, program counter,
etc.) and a hardware scheduler in charge of managing threads execution flow.
This approach has been proved to offer better processor utilization (throughput)
when compared to single-threaded cores (Dimond et al., 2005). However, tradi-
tional HW-MT architectures are applied to Server/Desktop applications (Koufaty
and Marr, 2003) and are not suitable for RTOSes commonly used in embedded
systems. HW-MT schedulers use their own thread scheduling algorithm (e.g.,
blocking multithreading (BMT), interleaved multithreading (IMT) or simultaneous
multithreading (SMT)) to explore chip utilization. This hardware level scheduling
diverges from RTOS software scheduling, resulting in a hierarchical scheduling pol-
icy which breaks the expected RTOS execution flow and established static analysis
methods; e.g., MIPS32 SMT-based HW-MT support (Oliveira et al., 2011) requires
equivalent SMT software scheduler.

In our architecture, this is accomplished by replicating thread-specific registers in
the processor datapath such as register-file and status-register. The main require-
ments for the HW-MT support are parameterization (i.e., configurable number of
hardware-supported threads, number of synchronization mechanisms, etc) and OS
agnosticism (i.e., the HW-MT support must be flexible enough to support different
features from different RTOSes, therefore it should be RTOS-independent).

The datapath of the ARM softcore was extended to support multithreading ex-
ecution. All the modifications made to the base single-threaded ARM core are
controlled by software, i.e., by default (on reset state) the processor acts as a reg-
ular single-threaded core, the application may (or may not) use the HW-MT sup-
port. Depending on the application demands, the number of hardware-supported
threads is configurable from 4, 8, 16, 32, 64 and 128 threads at design time, which
are managed by a hardware thread scheduler described in Section 3.2. By default,
ARM architecture uses overlapped banked registers which are visible depending on
the current CPU mode (Seal, 2000). At any moment, 8 unbanked general-purpose
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Table 3.1: ARM mode register view: banked registers are highlighted.

User/

System
Supervisor Abort Undefined Irq Fiq

R0 R0 R0 R0 R0 R0

R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7

R8 R8 R8 R8 R8 R8_fiq

R9 R9 R9 R9 R9 R9_fiq

R10 R10 R10 R10 R10 R10_fiq

R11 R11 R11 R11 R11 R11_fiq

R12 R12 R12 R12 R12 R12_fiq

R13 R13_svc R13_abt R13_und R13_irq R13_fiq

R14 R14_svc R14_abt R14_und R14_irq R14_fiq

R15 R15 R15 R15 R15 R15

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_svc SPSR_abt SPSR_und SPSR_irq SPSR_fiq

CPU Mode

registers (R0-R7), 7 general-purpose banked registers (R8-R14), one or two status
registers and the program counter (PC) are available for usage. Table 3.1 illustrates
the visible registers based on the CPU mode.

To ensure HW-MT support each thread must possess its own general-purpose reg-
isters. However, the replicated registers per thread must match the CPU mode in
which RTOS threads execute, i.e., different RTOSes run their threads in different
CPU modes. For instance, FreeRTOS’s threads and embOS’s threads run in sys-

Table 3.2: Multithreaded ARM mode register view: banked registers are high-
lighted.

TH #1 TH #2 TH #n

User/

System
Supervisor Abort Undefined Irq Fiq

R0 R0 R0 R0 R0 R0 R0 R0 R0

R1 R1 R1 R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7 R7 R7 R7

R8 R8 R8 R8 R8 R8_fiq R8 R8 R8

R9 R9 R9 R9 R9 R9_fiq R9 R9 R9

R10 R10 R10 R10 R10 R10_fiq R10 R10 R10

R11 R11 R11 R11 R11 R11_fiq R11 R11 R11

R12 R12 R12 R12 R12 R12_fiq R12 R12 R12

R13 R13_svc R13_abt R13_und R13_irq R13_fiq R13 R13 R13

R14 R14_svc R14_abt R14_und R14_irq R14_fiq R14 R14 R14

R15 R15 R15 R15 R15 R15 R15 R15 R15

CPSR CPSR CPSR CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_svc SPSR_abt SPSR_und SPSR_irq SPSR_fiq

THREAD

CPU Mode

Software Configurable

TH #0
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Figure 3.1: OS overhead to interrupt latency: Single-threaded CPU versus Multi-
threaded CPU adapted from Sheikh and Driscoll (2011).

tem mode (Barry, 2010; Segger, 2008) while µCOSII’s threads run in supervisor
mode (Labrosse, 2015). In order to offer flexibility and compatibility with several
RTOSes, the replicated registers mode can be configurable by software, matching
RTOSes’ specification. Table 3.2 depicts the visible registers on the HW-MT ARM
architecture.

Another advantage of a HW-MT architecture is related to interrupt handling.
Usually, each time an interrupt is triggered there is an associated OS interrupt
latency overhead (Sheikh and Driscoll, 2011) as the RTOS is in charge of saving
the context of the current thread, finding the interrupt source and starting the
execution of the corresponding ISR. In our HW-MT architecture, a hardware-
supported thread is dedicated to the kernel and so, it is assumed the RTOS kernel
just needs one thread, which is true for FreeRTOS, µCOSII, embOS. Hence, when
an interrupt is triggered, if a hardware-supported thread (excepting the kernel one)
is running, the context of the thread does not need to be saved as it has its own
dedicated registers, shortening the OS interrupt latency overhead. If the running
thread is the one dedicated to the kernel, thus context-switch is performed by
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Figure 3.2: Multithreaded ARM core block diagram.

software as previously done by the RTOS. Figure 3.1 depicts the interrupt handling
on a single-thread processor versus a multithreaded processor. Scalability is also
guaranteed by this dedicated hardware-supported thread. For instance, in area-
constrained platforms, where the RTOS application may create more threads than
the hardware-supported ones, this dedicated thread can be used to run regular
software threads, not limiting the number of created threads to the number of
hardware-supported ones and so, keeping our architecture scalable.

A new signal containing the thread identification was added throughout the pipelined
datapath in order to identify which is the thread being executed on each pipeline
stage. The main usage of this signal is related to hazard detection (i.e., avoiding
incorrect detection of hazards among different threads) and also to the saving of
correct data on the corresponding write-back thread registers. Figure 3.2 presents
a simplified block-diagram of the multithreaded ARM core datapath.

3.2 Tightly-Coupled Scheduler

Thread scheduling has been identified as one of the major performance bottleneck
of RTOSes (Kohout et al., 2003). In order to alleviate the RTOS scheduling
overhead we decided to offload the scheduler to FPGA fabric. Taking advantage
of the HW-MT support, the tightly-coupled approach emerged as the best solution.
A tightly-coupled scheduler can communicate with the processor core in a quick
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Figure 3.3: Tightly-coupled vs loosely-coupled vs software-only scheduler.

and predictable way. Figure 3.3 shows the benefits of a tightly-coupled scheduler
over a loosely-coupled or a software-only scheduler.

Our hardware scheduler is implemented as a tightly-coupled ARM coprocessor. All
the interface between the coprocessor and the core is provided through Move to Co-
processor from ARM Register (MCR) and Move to ARM Register from Coprocessor
(MRC) magic instructions (Hameed et al., 2010). Magic instructions are instructions
that typically interface with custom storage structures, such as designer-defined
register-files (DDRFs), and perform hundreds of operations at once. These in-
structions can have a significant effect on both the energy and performance of an
application by minimizing the communication bandwidth and power at all levels of
the memory hierarchy, (registers, caches and memory) (Hameed et al., 2010). They
alleviate the pressure of fetching multiple instructions (to perform the equivalent
operation) as well as several translations and transactions between the processor
and memory. Our hardware scheduler offers a high degree of configurability. Using
software instructions, it is possible to configure: (1) the scheduling algorithm and
the use of round-robin scheme; (2) configure the thread priority levels, i.e., if low
or high priority values denote low or high priority threads; (3) read or modify the
state of all the threads and (4) enable or disable the scheduling;

A thread is represented in the hardware by a DDRF which stores the priority,
state, handler and stack pointer information of each thread. Figure 3.4 represents
the state machine of a hardware-supported thread. In order to be flexible to any
RTOS, a hardware-supported thread can be created with a configurable initial
state (ready or suspended state) and with any priority. In addition, the thread’s
stack pointer can also be initialized as well as the thread’s parameters.

On a priority-based scheduling algorithm it is necessary to find the highest priority
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Figure 3.4: Hardware threads state machine.

thread. Our hardware scheduler implements a balanced binary tree to find the
highest priority value from all the thread priorities. As explained before, the
priority order is configurable. In RTOSes where a round-robin scheme is used
as a background or tiebreaker scheduler on threads sharing the current highest
priority value, a hardware arbiter with fairness scheme based on Altera (2011b)
was implemented. Figure 3.5 depicts a simplified diagram of the hardware designed
to find the next highest priority thread to be executed next. The balanced binary
tree is in charge of finding the highest priority value which is then compared with
the value of all thread priorities in ready state. The top-priority vector, containing
one bit for each thread, indicates whether or not a thread has the highest priority
and is in ready state. For instance, if the bit 1 and 3 of the top-priority vector is
set to 1, it means that threads 1 and 3 are ready to execute and have the highest
priority. The implemented arbiter with fairness algorithm is fed with the top-
priority vector and with the running thread in order to output the id of the next
thread to be executed. Following the example given on Figure 3.5, the arbiter will
set thread 3 to be executed considering that thread 1 is running when a magic
context-switch command/instruction is issued.

The currently implemented hardware-based scheduler is supported by the following
hardware APIs (hAPIs):

• Create Thread: Initializes a new hardware-supported thread with an initial
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Figure 3.5: Priority-based scheduling logic.

state, priority, stack pointer and arguments;

• Delete Thread: Eliminates a hardware-supported thread, freeing a hardware-
supported thread slot;

• Resume Thread: Sets the state of a thread as ready;

• Suspend Thread: Sets the state of a thread as suspended;

• Set Priority: Modifies the priority of a thread;

• Get Priority: Returns the priority of a thread;

• Start Scheduler: Starts the scheduling algorithm pre-configured;

• Suspend Scheduler: Suspends the scheduling algorithm;

• Delay Thread: Delays a thread by a specific number of OS ticks;

• Create Mutex: Initializes a hardware mutex slot;

• Delete Mutex: Empties a hardware mutex slot;

• Take Mutex: Thread holds a mutex, optionally thread can wait a specific
time (in OS ticks) until mutex becomes available;;

• Give Mutex: Thread releases a mutex;

• Create Semaphore: Initializes a semaphore slot;

• Delete Semaphore: Empties a semaphore slot;
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• Take Semaphore: Thread takes a semaphore, optionally thread can wait
a specific time (in OS ticks) until semaphore becomes available;

• Give Semaphore: Thread gives a semaphore;

The thread execution flow is managed by a priority-based scheduling algorithm,
i.e., the highest priority thread should always be the thread being currently ex-
ecuted. Different RTOSes use different priorities order, meaning that a thread
with priority 0 may be the highest priority thread in some RTOSes or may be the
lowest priority thread in other RTOSes. Our flexible hardware support allows this
property to be software configurable by setting the priorities order accordingly.
Our scheduler allows preemptive or cooperative mode. In preemptive mode, at
each OS tick, the scheduler will preempt the currently running thread if there is
a higher priority thread ready to run. In cooperative mode, the currently running
thread (with the highest priority) executes until it is blocked by some event or it
deliberately yields its execution, allowing another thread to be dispatched. Our
scheduler allows the optional use of round-robin scheme between threads sharing
the highest priority value, which is once again software configurable. This is useful
to support different RTOSes; FreeRTOS uses round-robin scheme while µCOSII
does not allow different threads to have the same priority value.

3.3 Modified Instruction Behavior

In order to accomplish the HW-MT support, the behavior of some ARM instruc-
tions has been modified. However, these modifications are not hardwired, they
still execute as expected by ARM ISA specification and their behavior is only
changed upon software configuration and can be restored back at run-time. The
modified instructions are the Load Multiple (LDM) instruction and Store Multiple
(STM) instruction.

• LDM <Rn>,<register_list>̂ : This form of LDM loads a sub-set registers
from the CPU mode user when the processor is in a privileged mode. This
instruction is commonly used by RTOSes for context switches.

The main use of this instruction is to allow the loading of multiple registers from
consecutive memory locations. The modification made to this instruction relies on
the registers list to be loaded from memory. The behavior of the LDM instruction can
be modified using MCR instructions. These modifications are useful for two different
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occasions: (1) initialize a thread-specific register-file while a new thread is created,
specifically the thread argument (usually stored in register R0) and thread stack
pointer (register R13); and (2) instead of loading to user mode registers as defined
in ARM specification, the loading is done to the current thread-specific register-file
independently of the configured thread CPU mode, as shown in Table 3.2.

• STM <Rn>,<register_list>̂ : This form of STM stores a sub-set of registers
from the CPU mode user to sequential memory locations.

Usually, this instruction is used when the processor is in a privileged mode and it is
necessary to store registers from user mode. If the processor is in a privileged mode,
in our architecture means that the thread 0 is being used. So, the modification
of this instruction allows the registers from the previously executed thread to be
stored instead of the user mode registers from thread 0. For instance, this is useful
when a context-switch is going to be performed and we need to store the return
address of the previously executed thread in memory.

3.4 Delay Timers

One of the features present in many RTOSes is thread delay or thread sleep uti-
lized to block the execution of a thread for a specific number of OS ticks. Blocking
a hardware-supported thread implies specific hardware support in order to deter-
ministically manage the thread state. Usually, this support implies a hardware
timer for each thread; a thread-dedicated timer is loaded with the number of OS
ticks to block a thread; at each OS tick the timer is decremented; when the timer

Thread Delay Logic

Thread State

Blocked State

<

Tick Counter

Thread Time-Stamp

Thread State Output

Figure 3.6: Delay logic for each thread.
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expires the thread state changes to ready.

In order to optimize the hardware cost, we have implemented a different approach,
shown in Figure 3.6. Instead of having a timer for each thread, there is only a
single timer in charge of counting OS ticks. Then each thread possesses a time-
stamp register containing the number of ticks for which the thread must block
until the OS tick timer counter overpasses the time-stamp value. For instance,
supposing that the tick timer counter has counted 20 ticks so far, and the thread
A wants to delay for 5 OS ticks, then the time-stamp register of thread A is loaded
with the value 25. As soon as the OS tick timer counter reaches 25, the thread
A will change to ready state. This approach avoids the use of an array of timers
which is expensive in terms of area for a great number of timers. This feature is
also optional.

Thread Delay Logic

Thread State

Blocked State

<

Tick Counter

Thread Time-Stamp

Thread State Output

(a)
(b)
(c)
(d)

Trigger:
(a) Set thread delay
(b) Set mutex or semaphore blocking time
(c) Reset blocking time, if the mutex or semaphore was given by another thread
(d) Blocking time expired and thread does not want to wait for the mutex or semaphore anymore

Trigger

Figure 3.7: Using delay logic of each thread to support mutex/semaphore blocking
time.

3.5 Synchronization Mechanisms

Mutexes and semaphores are among OS primitives typically provided by RTOSes.
Mutexes are used to ensure mutual exclusion to protect a shared resource while
semaphores are mainly used for synchronization purposes. Usually, mutex and
semaphore APIs allow threads to enter a blocking state while waiting for a specific
event. For example, if a thread A wants to take a mutex already taken by a
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thread B, thread A can set a specific time, in OS ticks, to wait for the mutex to
become available. In order to take advantage of available hardware, the hardware
used to manage thread delay (presented in Section 3.4) is also used to implement
the blocking time of mutex and semaphore APIs. Figure 3.7 depicts the extra
hardware added to thread delays logic to support mutexes and semaphores blocking
time. Apart from this extra hardware, two bits are required for each mutex; one
bit to identify if the mutex is created or not; and another bit to identify if the
mutex is taken or not. Semaphores require two extra registers to hold the initial
semaphore counter and the maximum count value. The number of hardware-
supported mutexes and semaphores is also parameterisable.

3.6 CoProcessor Magic Instructions

Coprocessor instructions are used to configure all the RTOS hardware support.
The MCR and MRC magic instructions offer several instruction fields allowing several
different data to be obtained using the same instruction. The hardware scheduler is
mapped on coprocessor number 14 (CP14) and contains several registers responsible
for different features. Tables 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 present all the available
coprocessor registers and corresponding functionalities.

Table 3.3: Register C0: Hardware-supported threads initialization.

Writing to C0, op0 indicates the user wants to initialize a new thread
Reading from C0, op0 returns the number of created threads
Writing to C0, op1 sets the priority of the new thread
Reading from C0, op1 returns the number of suspended threads
Writing to C0, op2 sets the handler of the new thread
Reading from C0, op2 returns zero
Writing to C0, op3 sets the top of stack of the new thread
Reading from C0, op3 returns zero
Writing to C0, op5 sets the initial top of stack of the new hw thread
Reading from C0, op5 returns zero
Writing to C0, op7 initialize a free thread with settings previously defined
Reading from C0, op7 returns zero
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Table 3.4: Register C1: Hardware-supported threads interface.

Writing to C1, op0 selects the thread using its handler

Reading from C1, op0

returns the handler of the selected thread;
if 0xFFFFFFFF is returned, no thread was
and all actions below are ignored

Writing to C1, op1 sets the priority of the selected thread
Reading from C1, op1 returns the priority of the selected thread

Writing to C1, op2
sets thread state as blocked, suspended, ready
or running

Reading from C1, op2 returns the current state of the selected thread
Writing to C1, op3 sets the top of stack of the selected thread
Reading from C1, op3 returns the top of stack of the selected thread
Writing to C1, op5 sets a new handler for the selected thread
Reading from C1, op5 returns zero

Writing to C1, op6
returns the highest priority value from threads
on ready state

Reading from C1, op6 returns zero
Writing to C1, op7 sets a thread delay for the running thread
Reading from C1, op7 returns zero

Table 3.5: Register C2: Hardware scheduler interface.

Writing to C2, op0 triggers a hardware context switch
Reading from C2, op0 returns zero
Writing to C2, op1 ignored
Reading from C2, op1 returns the handler of the running thread
Writing to C2, op2 ignored
Reading from C2, op2 returns the priority of the running thread
Writing to C2, op5 sets the new top of stack of the running thread
Reading from C2, op5 returns the top of stack of the running thread
Writing to C2, op6 increments the hardware tick counter
Reading from C2, op6 returns zero

Writing to C2, op7
sets the state of the scheduler as running or
suspended

Reading from C2, op7 returns the state of the scheduler
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Table 3.6: Register C3: Configure behavior of LDM/STM instructions.

Writing to C3, op0 modifies the behavior of the LDM/STM instructions

Reading from C3, op0
returns 0 if instructions are not modified,
returns 1 if instructions modified

Writing to C3, op1 sets the mode of the replicated registers
Reading from C3, op1 returns the mode of the replicated registers

Writing to C3, op2

sets how a thread can be identified by itself
(e.g., FreeRTOS uses NULL parameter,
µCOSII uses OS_PRIO_SELF)

Reading from C3, op2 returns how a thread is identified by itself

Writing to C3, op3

Sets the order of priorities:
0: means that priority 0 is the highest priority
1: means that priority 0 is the lowest priority

Reading from C3, op3 returns the order of priorities

Table 3.7: Register C4: Hardware-supported mutexes interface.

Writing to C4, op0 selects a mutex

Reading from C4, op0
returns the handler of the selected mutex,
if 0xFFFFFFFF is returned, the mutex was not found

Writing to C4, op1 trying to take a mutex

Reading from C4, op1

returns true if the selected mutex is taken;
false if selected mutex isn’t taken nor is already
created

Writing to C4, op2 give a mutex
Reading from C4, op2 returns zero

Writing to C4, op5

sets the blocking time that the thread wants to wait
for a mutex already taken

Reading from C4, op5 returns zero
Writing to C4, op6 creates a mutex
Reading from C4, op6 returns zero
Writing to C4, op7 deletes a mutex

Reading from C4, op7
returns the next free mutex slot, if 0xFFFFFFFF

is returned, all mutexes slots are being used
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Table 3.8: Register C5: Hardware-supported semaphores interface.

Writing to C5, op0 selects a semaphore

Reading from C5, op0

returns the handler of the selected semaphore,
if 0xFFFFFFFF is returned, the semaphore was not
found

Writing to C5, op1 trying to take a semaphore

Reading from C5, op1

returns true if the selected semaphore is taken;
false if selected semaphore is not taken nor is
already created

Writing to C5, op2 give a semaphore
Reading from C5, op2 returns zero
Writing to C5, op3 sets the initial semaphore count value
Reading from C5, op3 returns zero
Writing to C5, op4 sets the maximum semaphore count value
Reading from C5, op4 returns zero

Writing to C5, op5
sets the blocking time that the thread wants to
wait for a semaphore already taken

Reading from C5, op5 returns zero
Writing to C5, op6 creates a semaphore
Reading from C5, op6 returns zero
Writing to C5, op7 deletes a semaphore

Reading from C5, op7

returns the next free semaphore slot,
if 0xFFFFFFFF is returned, all semaphores slots
are being used
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Chapter 4

Task-Aware Interrupt Controller:
Priority Space Unification

In the development of real-time systems, predictability is often hindered by tech-
nological factors which break the timing abstractions offered by RTOSes; namely,
the priority space separation between threads and interrupts induces the rate-
monotonic problem. Software approaches have tackled this issue, attempting to
unify the priority space with varying degrees of success.

This chapter presents a hardware approach to the problem by unifying the prio-
rity space at the interrupt handling sub-system while the predictability is greatly
enhanced with minimum software modifications. Our solution provides the inter-
rupt controller with awareness of the currently running task’s priority, making the
solution independent of the used Operating System. We show how our approach
is minimally intrusive at hardware architecture level and provides benefits beyond
the capabilities of previous approaches. Our technique shows a 0.05% run-time
overhead if no interrupts occur, and run-time reduction proportional to the inter-
rupt rate for rates higher than 5 per second, for a interrupt workload around 0.07
mili-seconds. The work presented in this chapter was published in (Gomes et al.,
2015a).

The remainder of this chapter is organized as follows: Section 4.1 introduces the
identified problem and presents our solution and its contributions; Section 4.2
describes the architecture details of our solution; Section 4.3 shows the obtained
results; Section 4.4 concludes this chapter and presents the future work.
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4.1 Introduction

Real-Time Operating Systems’ software flow is typically divided in prioritized
threads, managed by a synchronous scheduling algorithm, and Interrupt Service
Routines, asynchronously triggered by an interrupt controller. Furthermore, in-
terrupts can affect the CPU at any time and therefore they have an inherently
higher priority than threads. However, the priority of an interrupt is not always
a synonym of a real-time operation. Interrupt handlers owned by low priority
threads may preempt threads of any priority, hindering real-time behavior. This
breaks the deterministic execution of a priority-based scheduler and it is known as
rate-monotonic priority inversion (Scheler et al., 2009).

First attempts at overcoming the dual priority space caused by the distinct priori-
ties of threads and Interrupt Service Routines (ISRs) can be found in (Kleiman and
Eykholt, 1995). Kleiman and Eykholt tried to handle interrupts as threads by uni-
fying both into a single synchronization model. Although they use a low-overhead
technique to map interrupts into threads, they still allow an ISR to interrupt a
higher priority thread running on the CPU although for a short period of time.
In (Leyva-del Foyo et al., 2006, 2012), a low-level interrupt handling mechanism
was implemented for both tasks and interrupts. This allows an ISR, when there is
a higher priority thread running, to promptly resume the execution of the corre-
sponding thread and block itself. This solution partially unifies the priority space,
at the cost of increased ISR handling latency. Another approach (Zhang and West,
2006) is reducing the impact of blocking the thread execution and the latency of
interrupt handling by dividing the interrupt service in two parts. The first should
quickly complete all the essential interrupt handling while the second half can be
delayed when there are hard real-time tasks to be performed. The second part will
then be scheduled with a priority consistent with the remaining active threads on
the system. They show how their solution provides significant improvements in
terms of predictability; however, it fails to provide a truly unified priority space.

Scheler et al. (2009) propose the use of a coprocessor to eliminate the likely prio-
rity inversion; however, due to the need for increased synchronization, there is
a trade-off between processing overhead and predictability. Taking advantage of
commodity off-the-shelf hardware, Hofer et al. (2009) implemented the SLOTH
system. SLOTH uses the interrupt system already available on hardware plat-
forms to implement a unified priority space. In contrast to Kleiman and Eykholt
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(1995), SLOTH implements threads as ISRs by mapping threads into interrupt
handlers. Hence, the RTOS scheduler responsibilities are migrated to the inter-
rupt controller where uniform priority can be given to both threads and interrupts.
However, the system presents some limitations using other RTOSes: only static
and unique priorities can be assigned to tasks, which cannot be created at run-time
nor be blocked. Hofer et al. (2009) later overcame some limitations. Pinto et al.
(2014) proved the SLOTH’s portability by implementing the SLOTH concept on
another CPU architecture using FreeRTOS, facing the same limitations.

Our solution provides the interrupt controller with awareness of the currently run-
ning task’s priority. Thus, the interrupt controller is able to mask lower-priority
interrupts. By tackling this issue at the interrupt controller level this solution
continues to be valid for hybrid implementations where parts of the RTOS are im-
plemented in both software and hardware. It is also independent of the Operating
System, i.e, the RTOS APIs do not need to be modified. At the cost of little added
hardware, our solution can overcome all limitations presented in the related work.

The main contribution of this work is the implementation of a Task-Aware In-
terrupt Controller (TAIC) to cope with Real-Time applications by unifying the
priority space. Our concept system presents the following advantages:

1. A unified priority space, allowing an assignment of same-space priorities to
both threads and interrupts.

2. It completely avoids the disturbance caused by interrupts triggered by lower-
priority events and thus no execution time is consumed while a high-priority
thread is running.

3. Interrupt overload can be avoided by adequately balancing the priorities of
interrupts and threads, statically or at run-time.

4. This implementation solves the rate-monotonic priority inversion problem,
independently of the processor architecture and Operating System.

4.2 Architecture Description

Our solution is implemented on an ARM-compliant softcore as described previ-
ously on Chapter 2, prototyped on a Virtex-5 FPGA, running FreeRTOS v7.4.0.
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4.2.1 ARM Advanced Interrupt Controller

The implemented AIC provides up to 32 interrupt sources which can be configured
using an 8-level priority encoder. It supports nested interrupts and integrates an
interrupt vector table where the addresses of the corresponding ISRs are stored.

4.2.2 Task Management in FreeRTOS

FreeRTOS’s workload is typically split in several threads in order to perform a
certain task. Each thread has an assigned priority on which the scheduler will
rely to manage the threads’ execution flow. Each thread is represented by a
designer-defined register-file (DDRF) structure. The DDRF stores the priority of
the thread, the address of the stack’s start address as well other parameters which
are used for thread management. FreeRTOS’s scheduler is in charge of deciding
which task should be executing at a specific time. It can be configured to use a
preemptive or a cooperative scheduling algorithm. The latter is commonly used in
non-real-time applications, where each thread has processor time until completion
of the workload. After completing its work, each thread will relinquish the execu-
tion and allow the processor time to be given to another task based on its priority.
In the preemptive mode, mostly used in real-time applications, the scheduler is
able to suspend a thread at each OS tick and coordinate which is the next ready
thread to run. Each time a thread stops executing, whether suspended, delayed
or relinquished, a context switch is performed. If there are more than one ready
thread with the highest-priority, the scheduler will apply a round-robin scheme.

4.2.3 Interrupt Handling

When an interrupt occurs, the execution of the currently running thread is halted;
the return address and the previous context are saved, and restored only when
the ISR has finished executing. For the purpose of this work the Fast Interrupt
Request (FIQ interrupt) is ignored. FIQ interrupt is usually used for high-priority
applications where, for instance, fast IO communications are required. Therefore,
when configured it is supposed to be used as an interrupt that must be attended
with minimum latency, so the CPU should always suspend its work and attend
the interrupt.
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Figure 4.1: Task-Aware Interrupt Controller.

4.2.4 Task-Aware Interrupt Controller

The TAIC is a wrapper around ARM’s AIC and differs from traditional Inter-
rupt Controllers since it is supplied with information about the threads’ priorities.
This means that the interrupt controller is aware of the priority of code currently
running on the CPU. Figure 4.1 illustrates a block diagram of the TAIC. For
each interrupt source an extra 8-bit register, Interrupt-Thread Priority (ITP), is
provided which holds the priority of the thread that configured the interrupt. An-
other 8-bit register, Running Thread Priority (RTP), which holds the priority of the
currently running thread is also added to the interrupt controller. Therefore, when
an interrupt occurs, TAIC compares the interrupt source priority recognized and
forwarded by ARM’s AIC against the priority of the running thread and decides
whether to interrupt the CPU or not. Hence, the dual priority space is unified
into a single priority scheme between threads and interrupts. The interface with
these registers is explained as follows:

• When the restore-context() is issued, the FreeRTOS’s pxCurrentTCB vari-
able always points to the task control block (TCB) of the next thread. FreeR-
TOS uses pxCurrentTCB to retrieve the task’s stack pointer. The correspond-
ing thread’s priority can be accessed from the memory position addressed by
pxCurrentTCB + 0x2C which is where the priority of thread is stored.

• After getting the priority from the memory, the priority is stored in the RTP

register of the TAIC. This register is memory mapped as any other AIC’s
registers and can be accessed using memory access instructions.

• After finishing the restore-context(), the CPU jumps to the thread’s return
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address and (re-)starts its execution. At this point, the TAIC is already
aware of the priority of the currently running thread.

• Whenever a thread configures an interrupt, which encompasses configuring
the interrupt mode and the handler before enabling it, the TAIC automati-
cally copies the contents of the RTP register (which already holds the priority
of the currently running thread) to the corresponding ITP register. Hence,
the priority of the thread that configured the interrupt is saved.

• When an interrupt occurs, the TAIC compares the value of the corresponding
ITP register with the RTP register: If the ITP register has a priority greater
than or equal to the priority of the running thread, the interrupt is forwarded
to the CPU which will handle it as usually; If the ITP register has a lower
value than the priority of the running thread, the interrupt controller will
not disturb the CPU until the priority of the running thread is decreased or
another thread with lower priority starts the execution.

The vTaskPrioritySet() function sets the priority of any thread at run-time. Al-
though this seems to imply an update of the thread priority in the RTP register,
the update is not required because if a thread is setting its own priority down
it means there might be other tasks of higher priority ready to execute and thus
FreeRTOS forces a manual context-switch. This way, if there is no other threads
to executed, the restore context of the same thread will occur and the RTP register
will be updated as explained before during a restore-context().

Table 4.1: Synthesis results obtained from Xilinx ISE 14.5.

Synthesis Results
Used (Utilization)

SoC (w/ AIC) AIC SoC (w/ TAIC) TAIC
Slices 13306 (77%) 928 (5.4%) 13811 (79%) 1035 (6.0%)
Slice Registers 19233 (27%) 1948 (2.8%) 19497 (28%) 2212 (3.2%)
Slice LUTS 32064 (46%) 1999 (2.9%) 32158 (46%) 2092 (3.0%)
LUTRAM 3339 (18%) 0 (0%) 3339 (18%) 0 (0%)
Block RAM 4 (2%) 0 (0%) 4 (2%) 0 (0%)
Embedded DSPs 15 (23%) 0 (0%) 15 (23%) 0 (0%)
Clock Frequency 33MHz
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4.3 Results and Evaluation

Table 4.1 shows the synthesis results of the implemented ARM-based SoC, the
AIC and the TAIC. Two different experiments were conducted using our ARM
SoC running the FreeRTOS kernel. The experiment 4.3.1 validates the behavior
of our single priority space. The experiment 4.3.2 measures the overhead of our
implementation. For each experiment, tests were performed on the original system
using the AIC, where a dual priority space exists, and on the unified priority
space system, where the TAIC is used as Interrupt Controller. The hardware
configuration for the following measurements are (1) CPU speed of 33 MHz, (2)
caches disabled and (3) Periodic Interval Timer (PIT) timer frequency of 10 ms.

4.3.1 Behavior Evaluation

For the first experiment, we used the following system configuration:

• Four tasks, T1, T2, T3 and T4, each executing a benchmark application
from the MiBench Suite (Guthaus et al., 2001), basicmath_large, bitcount
(2000000 iterations), qsort_large and stringsearch respectively, all running
with the highest priority on the system; thus, will run in a round-robin
fashion. All threads start in a suspended state when the scheduler is started.

• A fifth task T5, with lower-priority (i.e., without real-time requirements),
is configured to echo the data received through the serial port. After the
scheduler is enabled, T5 will configure an ISR to signalize each time data is
received in the serial input buffer. The ISR will inherit the priority of T5
which is lower than the others. The purpose of this interrupt is to analyze
the impact of typical low-priority interrupts in the system.

• After configuring the ISR, T5 enables T1 which will start executing because
of its higher priority. Then, each thread enables the next one sequentially.

For this experiment, the dual priority space problem exists, so whenever such
interrupt occurs the execution of T1, T2, T3 or T4 is halted until the ISR handling
is finished. The execution time of T1-4 reflects the time taken by the system to
execute T1, T2, T3 and T4 plus the ISR handlers. Figure 4.2 depicts the execution
time of the four threads for different interrupt rates. Using our TAIC, T1-4 are able
to execute without disturbance from a low-priority ISR. The ISR is only attended
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Figure 4.2: Execution time of T1+T2+T3+T4 with a low-priority interrupts ratio
on the original vs unified priority systems.

at the end of T1-4’s executions.

4.3.2 Overhead Evaluation

The only change required in the OS code to interface the TAIC was performed
on the context-switch code, specifically on the restore-context() part. FreeR-
TOS has two sources which can trigger Context-Switch, whether by a periodic
PIT interrupt or Software Interrupt (SWI) instruction used for manual context-
switch. The context-switch code is divided in three main parts: (1) save-context()

of the current thread, (2) find highest-priority-thread() to execute and (3)
restore-context() of the thread. Moreover, for a PIT context-switch there is also
the increment of the OS Tick. Our implementation adds four 32-bit instructions to
the restore-context() code of both context-switch trigger sources resulting in a
slight increase in memory footprint by 32 bytes. Table 4.1 highlights the minimal
extra hardware required to support a unified priority space by hardware.

To measure the run-time overhead of our approach, we configured the Performance
Monitor (PM) to measure the time of the original restore-context() code and
the modified one (Figure 4.3) which interfaces with the Interrupt Controller. The
PM peripheral was developed in order to allow measurements with cycle-accurate
granularity of RTOS’s APIs allowing analysis in terms of determinism, latency
and jitter. The measurement was performed for the WCET which occurs when
both caches are disabled. The original restore-context() code takes on average
738 ± 3 clock cycles (22.4 ± 0.08 µs) to execute while the modified one takes on
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portasm.s79 * - Printed on 10-08-2014 18:46:44

Page 1

1   RSEG ICODE:CODE
2   CODE32
3   
4   EXTERN vTaskSwitchContext
5   //EXTERN tm_interrupt_preemption_handler // this line is added only to run thread metrics benchmarks (interrupt processing)
6   
7   PUBLIC vPortYieldProcessor
8   PUBLIC vPortStartFirstTask
9   
10   #include "ISR_Support.h"
11   
12   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
13   ; Starting the first task is just a matter of restoring the context that
14   ; was created by pxPortInitialiseStack().
15   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
16   vPortStartFirstTask:
17   portRESTORE_CONTEXT
18   
19   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
20   ; Manual context switch function.  This is the SWI hander.
21   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
22   vPortYieldProcessor:
23   
24   /* code below is added only to run thread metrics benchmarks (interrupt processing)  */
25   /* STMFD   sp!, {r0, r12}
26   MRS R0, CPSR
27   LDR     r12, [r14, #-4]       ; load the SWI instruction
28   BICS    r12, r12, #0xFF000000  ; keep only the SWI number
29   CMP r12, #1
30   
31   BEQ trap
32   
33   ; it's not a trap, it's a manual contex switch as usually (SWI #0)
34   MSR CPSR, R0
35   LDMFD   sp!, {r0, r12}            ; restore previously saved R12
36   
37   */
38   
39   ADD LR, LR, #4 ; Add 4 to the LR to make the LR appear exactly
40   ; as if the context was saved during and IRQ
41   ; handler.
42   
43   portSAVE_CONTEXT ; Save the context of the current task...
44   
45   
46   LDR R0, =vTaskSwitchContext ; before selecting the next task to execute.
47   mov lr, pc
48   BX R0
49   
50   
51   portRESTORE_CONTEXT
52   
53   
54   
55   ; Restore the context of the selected task.
56   ; Set the LR to the task stack. 
57   LDR R1, =pxCurrentTCB
58   LDR R0, [R1]
59   LDR LR, [R0]
60   ; Set the priority of the task in the Interrupt Controller
61   LDR R2, [R0, #0x2C] ; get thread's priority
62   MOV R3, #0xFFFFFF4C
63   BIC R3, R3, #0xE00 ; set AIC_RTP address (0xFFFFF14C)
64   STR R2, [R3] ; store thread's priority
65   ; The critical nesting depth is the first item on the stack. 
66   ; Load it into the ulCriticalNesting variable. 
67   LDR R0, =ulCriticalNesting
68   LDMFD LR!, {R1}
69   STR R1, [R0]
70   ; Get the SPSR from the stack. 
71   LDMFD LR!, {R0}
72   MSR SPSR_cxsf, R0
73   ; Restore all system mode registers for the task. 
74   LDMFD LR, {R0-R14}^
75   NOP
76   ; Restore the return address. 
77   LDR LR, [LR, #+60]
78   ; And return - correcting the offset in the LR to obtain  
79   ; the correct address. 
80   SUBS PC, LR, #4
81   
82   /*
83   trap: ; SWI #1
84   MSR CPSR, R0
85   LDMFD   sp!, {r0, r12}            ; restore previously saved R12
86   
87   ADD LR, LR, #4 ; Add 4 to the LR to make the LR appear exactly
88   ; as if the context was saved during and IRQ
89   ; handler.
90   portSAVE_CONTEXT ; Save the context of the current task...
91   LDR R0, =tm_interrupt_preemption_handler ; before selecting the next task to execute.

Figure 4.3: Restore context code - added instructions are highlighted.

average 851 ± 3 clock cycles (25.8 ± 0.09 µs) which shows an increase of 15% of
run-time execution for each restore-context() performed by the FreeRTOS. On
a PIT context-switch this only represents a context-switch overhead of 2%.

To obtain the impact of the modified restore-context() in a real application,
we setup only T1-4 to execute with same priority, i.e., there is no ISRs occurring
during the execution of T1-4. As shown in Figure 4.2, for an ISR rate equal to
0, the context-switch overhead has negligible impact in a real application when
there is no low priority ISRs; there is only an increase of 0.047% (for almost 33
minutes of execution) in the time required to executed the tasks due to the extra
four instructions on restore-context() code. Nevertheless, for certain conditions
(e.g., different interrupt rates or interrupt workload), running T1-4 on the unified
systems is even faster than running T1-4 with preemptions as shown in Figure 4.2.
The execution time of the unified system, for different low-priority ISR rates, is
always the same since no low-priority preemption occurs. However, the execution
time of the original system varies with the ISR rate due to the ISR’s latency. In
fact, for an ISR rate greater than 10 the execution time of the original system
becomes greater than the unified system. Hence, by solving the priority inver-
sion, the performance of the real-time tasks is inherently improved, since we avoid
blocking high-priority threads by low-priority events.
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4.4 Conclusions

This chapter described micro-architectural enhancements to an Interrupt Con-
troller to implement a unified priority space. Making the interrupt controller
aware of the priority of what is being executed in the CPU, we successfully showed
how a Task-Aware Interrupt Controller can be used to unify the priority of threads
and interrupts. Therefore, we solve the rate-monotonic priority inversion issue by
giving the Interrupt Controller the ability to only interrupt the CPU if the prio-
rity of the interrupt is greater or equal than the priority of the currently running
thread. This solution is ideal for applications where only low-priority interrupts
will occur. However, for applications where interrupts in a system are high prio-
rity, the user can decide not to configure the TAIC and thus avoid the associated
overhead. Our solution presents negligible hardware and memory usage costs.
Run-time varies, depending on interrupt-rate and interrupt workload; in our ex-
periments, run-time was effectively decreased for interrupt rates higher than 5 per
second. This approach is able to surpass related work by avoiding the limitations
their solutions present to the rate-monotonic priority inversion problem. Com-
pared with SLOTH approach our solution demands no engineering effort, i.e., the
RTOS’s APIs remain intact. Figure 4.4 depicts the behavior exhibited by our sys-
tem and (Leyva-del Foyo et al., 2006); our system does not exhibit the periodic
ISR entry observed in (Leyva-del Foyo et al., 2006); basically, our system behaves

Table 4.2: Context-switch cost of our approach using FreeRTOS vs approach used
in Leyva-del Foyo et al. (2006) using other RTOSes. Caches are enabled.

Hyperkernel 4.3 INTime 1.20 Windows CE.NET QNX 6.1 FreeRTOS
Cost (%) 1.0 11.6 7.2 23.3 3.4
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in the same way SLOTH would behave, without the inherent engineering effort
limitations. The cost of our approach compared with (Leyva-del Foyo et al., 2006)
is depicted on Table 4.2.

Although, in a real-time system, some peripheral device is dedicated most of the
time to a specific thread according to the application design, future work will
focus on allowing a peripheral interrupt to be shared by more than one thread. In
doing so, TAIC will be extended with more resources to register thread ids, and
priorities on shared interrupt lines as well as a mechanisms to de-multiplex shared
interrupts. Moreover, some kind of message-centric approach will be followed
to identify the thread destination as raw data does not apply in a multiplexed
interrupt environment. Finally, future work will focus on improving the Context-
Switch of RTOSes by implementing a new, scalable micro-architectural feature in
our ARM SoC in order to perform the Context-Switch more quickly and more
deterministically.
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Chapter 5

Hardware Multithreading
Applied to the Real-Time Domain

The emergence of hardware multithreading (HW-MT) architectures increased the
performance of MT applications. However, traditional HW-MT architectures
are not suitable for Real-Time Operating Systems as their performance-oriented
scheduling algorithm may conflict with RTOS software scheduling.

This chapter presentsReal-Time SystemHardware forAgnostic andDeterministic
OSes Within Softcore (RT-SHADOWS), a portable architecture which provides
a unified hardware-software scheduling, bringing the benefits of HW-MT to the
RTOS domain. We show that tightly-coupled real-time compliant hardware in-
tegration achieves throughput benefits, maintaining the RTOS scheduling policy
intact while increasing the predictability of RTOSes. Our solution shows, on av-
erage, speed-ups between 3 and 4 times over the native versions with very low
area usage/performance overhead ratio, due to its minimal cost (2% of extra slices
per hardware-supported thread). This work surpasses related work by providing
a complete and agnostic hardware solution which is independent of any specific
RTOS. The work presented in this chapter was published in (Gomes et al., 2015b).

The remainder of this chapter is organized as follows: Section 5.1 introduces the
use of HW-MT support in real-time systems; Section 5.2 presents the problem as-
sociated with applying current HW-MT architectures on existent RTOS solutions;
Section 5.3 describes RT-SHADOWS architecture. Section 5.4 presents the results
and evaluation; Section 5.5 concludes the chapter and presents future work.
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SHADOWS architectures.

5.1 Introduction

Real-Time Operating Systems (RTOSes) aid designers in simplifying and expedit-
ing the development of multithreaded applications by providing several APIs at
the cost of performance overhead (Sheikh and Driscoll, 2011). Research towards al-
leviating this overhead by migrating different functionalities (mainly RTOS sched-
ulers) into hardware has been performed (Naotaka et al., 2014; Labrosse, 2014;
Oliveira et al., 2011). Usually, a hardware scheduler is implemented in FPGA-
fabric and loosely-coupled to the processor using a commercially available bus
(Naotaka et al., 2014; Labrosse, 2014; Bahri et al., 2012). Although these projects
focus on hardware acceleration, there is no concern about portability to other
RTOSes, which limits legacy software re-use. These projects fail to get the atten-
tion of the industrial community (Ong et al., 2013), either because these solutions
do not cover a wide spectrum of RTOSes or are too complex and RTOS-dependent,
which requires in-depth knowledge of the RTOS architecture from software devel-
opers. MAPUSOFT (Craig, 2015) is a software-based solution to provide agnos-
ticism between applications and the OSes, while SEOS (Ong et al., 2013) is a
hardware solution focusing on adaptability for other RTOSes; however, accelera-
tion is only based on a hardware scheduler. To the best of the authors’ knowledge,
no research has applied hardware multithreading (HW-MT) to existent RTOSes,
allowing legacy applications to benefit from shorter and deterministic context-
switch and interrupt handling. Section 3.1 explains in more detail the scheduling
algorithms used by current state of art HW-MT architectures. Figure 5.1 depicts
the two levels of hierarchical scheduling found in traditional HW-MT architectures.

We present a HW-MT solution which provides throughput benefits, maintaining
the RTOS scheduling policy intact and increasing the predictability of RTOSes.
To accomplish this, we have developed RT-SHADOWS, a highly-portable multi-

56



T1 Mutex take 
(success)

T2 Mutex take 
(fail)

tslice tslice

T1.b T2.b T1.c T2.c T1.d

T1

T2

t

t
(a)

(b)T1.a T2.a

T1 Mutex take 
(fail)

T2 Mutex take 
(success)

T1.a T1.b T1.c T1.d T1.e T2.a T2.b

Figure 5.2: Scheduling conflict; (a) RTOS scheduling policy (b) IMT scheduling
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threaded softcore processor which offers hardware multithreading support portable
across RTOSes, as well as higher performance predictable behavior. Our approach
unifies RTOS scheduling and hardware-based thread scheduling, implementing a
holistic multithreaded scheduling which leverages the advantages of HW-MT to the
real-time world. By integrating the RTOS scheduler with the processor scheduler
in a tightly-coupled fashion, the performance advantages of HW-MT are achieved
without sacrificing (often improving) deterministic execution nor invalidating es-
tablished static analysis methods.

The main contribution of this chapter is the implementation of a hardware mul-
tithreading architecture to cope with real-time applications. The main features
of our system architecture are: (1) Unified HW/SW Multithreading Support; (2)
Deterministic Tightly-Coupled Processor Scheduler and (3) Short and Determin-
istic Interrupt Handling (Gomes et al., 2015a); Chapter 6 will address with more
detail two other features: (4) APIs Agnosticism and (5) High Portability.

5.2 Problem Description

Traditional HW-MT architectures apply their own scheduling algorithm (e.g.,
BMT, IMT or SMT) to manage threads execution flow in order to achieve max-
imum performance. Furthermore, RTOSes also apply their own scheduling algo-
rithm which results in a hierarchical scheduling conflict as shown in Figure 5.2,
which depicts an example where the IMT scheduling algorithm would change the
expected behavior of an RTOS execution flow. Running 2 threads in round-robin
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scheme (i.e., both have the same priority), it is expected that T1 starts executing
first and takes the mutex (Figure 5.2 (a)). After the time-slice assigned to T1
is finished, T2 starts executing. As the mutex is already taken by T1, T2 will
fail to take it. In Figure 5.2 (b) we are applying a round-robin scheme but using
an IMT policy at hardware level (i.e., at each clock cycle a different thread is
dispatched). With IMT scheduling, T2 may take the mutex before T1 (Figure
5.2 (b)) which would modify the expected execution flow. RT-SHADOWS takes
advantages of HW-MT architectures using current RTOS solutions by unifying the
two scheduling strategies.

Figure 5.3: RT-SHADOWS top-level architecture.

5.3 RT-SHADOWS Architecture Description

An in-house ARMv5-compliant softcore was extended with new micro-architectural
features to provide parameterisable, deterministic and agnostic HW-MT support.
Figure 5.3 depicts RT-SHADOWS architecture. The number of hardware-supported
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threads is configurable up to 128 threads, depending on the application demands.
For area-constrained platforms, RT-SHADOWS allows the use of regular soft-
ware threads if the number of application’s threads is greater than the number
of hardware-supported ones in order to ensure scalability. Also, the use of delay
timers and synchronization methods (e.g., mutexes and semaphores) is optional.
RT-SHADOWS offers a set of thread management and synchronization APIs com-
monly used in RTOSes. These are application-transparent, i.e., applications use
the standard RTOSes APIs, wrapped into RT-SHADOWS APIs, in order to in-
terface with the HW-MT support. In summary, only OS port-specific files are
modified and no modifications are required on the OS kernel source, ensuring all
the standard APIs remain intact.

5.3.1 Hardware Multithreading Support

Interrupt processing and RTOS services are the most important aspects that de-
fine RTOS performance. Each hardware-supported thread has its own registers,
allowing short and deterministic switching of multiple contexts within the core.
The ARM architecture supports multiple execution modes (e.g., Interrupt Re-
quest (IRQ), Supervisor (SVC), User (USR), etc) which different RTOSes can
leverage. In order to speed-up exception handling, ARM uses banked registers for
each mode. To support multiple RTOSes, our architecture enables banked reg-
isters mode to be software configurable; e.g., FreeRTOS’s threads run in system
(SYS) mode while µCOSII’s threads run in SVC mode, with banked registers’
mode matching RTOS’s specification. In order to ensure a short and predictable
interrupt response time, a hardware-supported thread is dedicated to the kernel.
Hence, the RTOS interrupt latency overhead is decreased as no context of the cur-
rently running thread must be saved. Additionally, our architecture is able to solve
the rate-monotonic priority inversion found in many RTOSes using our task-aware
interrupt controller presented in (Gomes et al., 2015a).

5.3.2 Unified Scheduler

The unified processor scheduler is implemented as a tightly-coupled ARM co-
processor. In contrast to loosely-coupled schedulers, usually connected to a bus
where several peripheral devices may compete for access, communication between
the core and the coprocessor is performed using MCR/MRC instructions, ensuring a
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short and deterministic communication link. This processor scheduler offers a high
level of software configurability: (1) configurable scheduling algorithm (optional
round-robin scheme); (2) configurable order of thread priorities (e.g., ascending or
descending), enabling RTOSes to configure if low or high priority numbers denote
low or high priority threads; and (3) ARM mode of the banked registers. A com-
pact designer-defined register-file is used to store the thread’s information such as
its priority, current state, handler and stack pointer.

5.4 Results and Evaluation

To evaluate our solution in terms of performance and determinism two different
experiments were conducted. Experiment 5.4.1 assesses APIs and shows the ben-
efits of the hardware multithreaded extensions over the native RTOS execution.
Experiment 5.4.2 runs Thread-Metric Benchmark Suite in order to evaluate how
RT-SHADOWS alleviates RTOS overhead. Both experiments were validated on
a Kintex-7 FPGA Embedded Kit (XC7K325T). Figure 5.4 shows the hardware
cost of our approach. On our architecture, each extra hardware-supported thread
requires 2 percent more chip space, compared to the single-thread version.

1 4 8 16 32 64 128
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Number of Threads

 Number of Slices

Figure 5.4: RT-SHADOWS hardware cost for a different number of hardware-
supported threads over the single-threaded version.

5.4.1 API Evaluation

Several measurements were conducted in order to assess the minimum execution
time (Min) and latency variance (Variation), of the most common APIs. Figure 5.5
presents the results on each architecture: (a) FreeRTOS native version; (b) FreeR-
TOS with multithreading extensions (c) µCOSII native version; and (d) µCOSII
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Figure 5.5: Comparison between the performance and jitter results in clock cycles
for each architecture.

with multithreading extensions. A particular API may have different outcomes
depending on multiple parameters such as the current threads’ states or priorities.
Hence, these results translate the values obtained from the variations of these dif-
ferent parameters: (1) number of threads; (2) thread’s priority; (3) consecutive
threads’ priority gap and (4) whether the API triggers a context-switch. These
variations encompassed several corner cases. As depicted, configurations with mul-
tithreading extensions outperform the native versions. Both performance and de-
terminism are significantly increased. RT-SHADOWS reduces the overhead from
56% up to 98%. Also, RT-SHADOWS shows that the variation of the aforemen-
tioned parameters does not interfere with hardware-based APIs’ execution time,
i.e., the hardware latency is constant no matter how many threads are hardware-
supported or created and their priorities. It is also noticeable that µCOSII natively
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Figure 5.6: RTOS interrupt overhead in clock cycles for each architecture.
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has better determinism than FreeRTOS. The dispatching of threads with a huge
gap between their priorities is the main factor behind FreeRTOS indeterminism.
Figure 5.6 depicts OS interrupt overhead of each configuration. This overhead
is measured as the time between CPU interruption until the first instruction of
the corresponding interrupt service routine is issued from memory (Sheikh and
Driscoll, 2011). RT-SHADOWS is able to attend an interrupt request in shorter
time than the native versions. The variation in Figure 5.6 is unnoticeable as all
configurations present very low variation values (maximum 6 clock cycles).

Figure 5.7: Speed-up results running Thread-Metric Benchmark with caches en-
abled.
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5.4.2 Thread-Metric Evaluation

The Thread-Metric Benchmark Suite is a benchmark that measures RTOS real-
time performance developed by Express Logic Inc. (Express Logic, 2015). The
suite consists of 7 benchmarks, each evaluating interrupt processing and RTOS
services. Each benchmark’s score represents the RTOS impact on the running
application, i.e., the greater the score the smaller the impact. These experiments
were conducted with a clock frequency of 33 MHz, 10 ms periodic timer, with and
without caches enabled and the IAR compiler with no optimization. We executed
the benchmark on the FreeRTOS and µCOSII native versions and compared them
over RT-SHADOWS architecture. Figure 5.7 shows how our architecture outper-
forms the native versions. Especially on benchmarks where context-switch and
interrupt handling are exacerbated, RT-SHADOWS is able to show speed-ups
between 3 and 4 times. On the memory and message specific benchmarks, RT-
SHADOWS can still present speed-ups due to the gain obtained on the periodic
context-switch. There is no results for µCOSII running the cooperative scheduling
since this algorithm is not supported. Our system outperforms the native version
with and without caches enabled.

5.5 Conclusions

This chapter described RT-SHADOWS, a co-designed hardware-software archi-
tecture which implements a holistic HW-MT solution, promoting configurability,
determinism, performance and portability. We showed how such a holistic HW-
MT approach can be applied to RTOSes solutions without the need for refactoring
legacy-software. Our solution outperforms native solutions in terms of perfor-
mance and determinism. RT-SHADOWS presents very low area usage/perfor-
mance overhead ratio, due to its minimal cost (2% extra slices per hardware-
supported thread). This work surpasses related work by providing a complete
and agnostic hardware solution which is also RTOS-agnostic. Future work will
encompass the development of new features and refactoring RT-SHADOWS to
allow fine-grained configurations/customizations. Furthermore, future work will
also focus on measuring the energy-efficiency of our approach. The ultimate goal
will be to develop a profiling tool, that through a hardware-software co-design
methodology, explores the migration of software threads to hardware according to
the application and hardware platform demands and constraints.
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Chapter 6

System Stack Agnosticism

The ability to build tailored processor systems exploiting softcores has become
more realistic in applications that can be implemented on FPGAs. To ease this
development process, several electronic design automation (EDA) tools are avail-
able. However, the efficiency of such tools can be limited by static processor ar-
chitectures or architectures with insufficient customization capabilities hindering
the development of tailored solutions (e.g., RTOS solutions) to tackle a particular
metric. In order to fulfill such metrics, configurability of architectural features
became an important aspect to be taken into account.

This chapter presents our agnostic system stack based on a co-designed hardware-
software transparent solution which enables current RTOS solutions to benefit
from hardware acceleration with null portability effort at software application and
RTOS layer. Section 6.1 introduces the associated issue of hardware-based RTOS
solutions regarding adaptability. Section 6.2 describes the agnostic stack and how
transparency at the RTOS- and Application-level is ensured. Also, a feature di-
agram of the customizable hotspots (i.e., variability points) is presented. Section
6.3 concludes this chapter.

6.1 Introduction

The use of Real-Time Operating Systems is an established trend in most real-time
embedded systems for resource management. However, RTOSes induce undesired
overhead and latency into the system. Several researches proved that offloading

65



RTOSes to the hardware layer can bring significant performance and energy im-
provements. But these research outcomes failed to get the attention of industrial
community as RTOS industry shows little interest in hardware-based RTOS solu-
tions due to the high level of difficulty in adaptation process (Ong et al., 2013).
Craig (2015) presented MAPUSOFT OS abstractor, a software-based approach
that promotes re-use through OS agnosticism, allowing applications deployed on a
specific OS to be easily moved to another OS. Ong et al. (2013) described SEOS,
a hardware approach focusing on adaptability for RTOS which eases the hardware
RTOS adaptation. However, MAPUSOFT and SEOS do not offer any hardware
acceleration features, such as HW-MT and tightly-coupled hardware scheduler,
limiting the maximum efficiency (in terms of performance, real-time execution
and power) that can be obtained in systems where these features can be applied.

This work surpasses related work by providing a complete and agnostic system
stack solution which is independent of any specific RTOS. Furthermore, as cus-
tomization is a key to build tailored solutions, our solution leverages customization
capabilities to build parameterisable hardware-based RTOS solutions depending
on the application demands, e.g., custom number of hardware-supported threads,
synchronization mechanisms, etc.
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Figure 6.1: Our envisioned system stack design workflow; In this project, the
middleware and virtualization agnosticism were not addressed.
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6.2 Agnostic Software Stack

The system stack of a real-time embedded system is usually composed by three
main layers: application layer composed by several real-time threads, operating
system layer with real-time characteristics and the hardware platform. However,
some middle- or high-end embedded systems can come with many more layers,
as shown for instance in Figure 6.1. Furthermore, it is possible to have bare-
metal stacks with only two layers (i.e., application and hardware layers). Our
agnostic solution is able to introduce hardware acceleration without affecting the
dependencies among the three main layers. We offer two levels of APP-OS-HW
transparency. (1) The first one is between the application level and RTOS level.
Applications are not aware of whether RTOS APIs are implemented in hardware
or software. The standard RTOS APIs are wrapped in order to interface with the
hardware support, allowing no changes in the OS kernel code. (2) The second one
is between the RTOS and hardware levels. Figure 6.2 shows how our approach
affect the three main layers. Our multithreaded hardware support is portable to
different RTOSes, i.e., it is non-intrusive and independent of the RTOS, allowing
only port-specific files of the RTOS to be automatically modified. This level of
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Figure 6.2: Agnostic system stack.
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Figure 6.3: Agnostic stack feature diagram.

transparency allows legacy-software source code to run on our architecture without
any direct modification from the programmer-side, with better performance and
determinism. Furthermore, RTOS software developers can develop their RTOS
applications without in-depth knowledge of the hardware, following the RTOS
API specification.

To ensure this agnosticism, our hardware support is configurable in order to be able
to match different RTOS specifications. Figure 6.3 depicts a feature diagram of our
architecture, describing the customization hotspots. Our architecture provides two
levels of agnosticism: (1) between the hardware and the RTOS and (2) between
the RTOS and the application.

HW-RTOS Transparency

• HW Threads: identifies the number of hardware-supported threads.

• HW Delay Logic: optional feature to support thread delay/sleep by hard-
ware.
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• HW Mutexes: optional feature which identifies the number of hardware-
supported mutexes if desired. This feature implies the use of HW Delay
Logic.

• HW Semaphores: optional feature which identifies the number of hardware-
supported semaphores if desired. This feature implies the use of HW Delay
Logic.

• Interrupt Controller: selects which interrupt controller to be used. The
default ARM AIC or the TAIC presented in Chapter 4.

• HW Threads CPU Mode: sets the the CPU mode of replicated register
file for each thread.

• HW Scheduler: sets the thread’s priority order either ascendant or descen-
dant. It also sets the HW scheduler algorithm as cooperative or preemptive
with optional round-robin scheme.

• Calling HW Thread Identifier: Some RTOSes allow the calling thread
to use a specific argument to identify itself through an API parameter. On
FreeRTOS, passing NULL as the argument for the thread handler API param-
eter will identify the calling thread while in µCOSII the equivalent identifier
is given by the macro OS_PRIO_SELF.

RTOS-APP Transparency

• RTOS APIs: Set of the standard RTOS depending on the RTOS used.

• Hardware APIs: Set of hardware-based APIs specific for the RTOS used.

The following XMLized snippets represent metadata models for both transparency
levels. These metadata models leverage the automation of system stack design
workflow and ease the porting of new RTOSes to our proposed solution. Source-
level code patching, implemented as XSLT transformer and Perl scripts, has been
experimented to be later embedded into the elaboration time according to our en-
visioned system stack design workflow. Specifically at the hardware level, during
the elaboration time, verilog directives (e.g., `define or parameter) are generated
to control conditionalities (e.g., hAPIs) defined with `ifdef...`endif directives as
well as general RTL parameters (e.g., parameter data_width = 32;). In so doing,
all customizable hotspots will be automatically configured based on inputs pro-
vided by both system (system software and hardware) and applications designers.
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HW-RTOS Transparency XML:

<feature name="HW-RTOS Transparency" type="Mandatory">
<feature name="HW Scheduler" type="Mandatory">

<feature name="Priority Order" type="Mandatory">
<featureGroup type="Alternative">

<feature name="Ascendant"/>
<feature name="Descendant"/>

</featureGroup>
</feature>
<feature name="Algorithm" type="Mandatory">

<featureGroup type="Alternative">
<feature name="Cooperative"/>
<feature name="Preemptive">

<feature name="Round-Robin Scheme" type="Optional"/>
</feature>

</featureGroup>
</feature>

</feature>
<feature name="HW Threads CPU Mode" type="Mandatory">

<featureGroup type="Alternative">
<feature name="SYSTEM"/>
<feature name="SVC"/>

</featureGroup>
</feature>
<feature name="Interrupt Controller" type="Mandatory">

<featureGroup type="Alternative">
<feature name="TAIC" type="Mandatory"/>
<feature name="AIC" type="Mandatory"/>

</featureGroup>
</feature>

<feature min="1" max="*" name="HW Threads" type="Mandatory"/>
<feature min="0" max="*" name="HW Delay Logic" type="Optional"/>
<feature min="0" max="*" name="HW Semaphores" type="Optional"/>
<feature min="0" max="*" name="HW Mutexes" type="Optional"/>

</feature>

RTOS-APP Transparency XML:

<feature name="RTOS-APP Transparency" type="Mandatory">
<featureGroup type="Or">

<feature name="RTOS APIs"/>
<feature name="Hardware APIs">

<feature name="API Wrapping Layer" type="Mandatory"/>
<feature name="API Mapping" type="Mandatory">

<xi:include href="API_Mapping.xml"/>
</feature>

</feature>
</featureGroup>

</feature>
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API Mapping XML:

<feature name="API Mapping" type="Mandatory">
<feature name="Thread Management" type="Mandatory">

<feature name="HW_Create_Thread" type="Mandatory"/>
<feature name="HW_Delete_Thread" type="Mandatory"/>
<feature name="HW_Resume_Thread" type="Mandatory"/>
<feature name="HW_Suspend_Thread" type="Mandatory"/>
<feature name="HW_Priority_Set" type="Mandatory"/>
<feature name="HW_Priority_Get" type="Optional"/>

</feature>
<feature name="Thread Synchronization" type="Optional">

<feature name="HW_Thread_Delay" type="Optional"/>
<feature name="HW_Create_Mutex" type="Optional"/>
<feature name="HW_Delete_Mutex" type="Optional"/>
<feature name="HW_Take_Mutex" type="Optional"/>
<feature name="HW_Give_Mutex" type="Optional"/>
<feature name="HW_Create_Semaphore" type="Optional"/>
<feature name="HW_Delete_Semaphore" type="Optional"/>
<feature name="HW_Take_Semaphore" type="Optional"/>
<feature name="HW_Give_Semaphore" type="Optional"/>

</feature>
<feature name="Scheduler Management" type="Optional">

<feature name="HW_Start_Scheduler" type="Mandatory"/>
<feature name="HW_Stop_Scheduler" type="Optional"/>

</feature>
</feature>

Example of FreeRTOS API Mapping XML:

<feature name="FreeRTOS API Mapping" type="Mandatory">
<feature name="Thread Management" type="Mandatory">

<feature HW_Create_Thread="xTaskGenericCreate"/>
<feature HW_Delete_Thread="vTaskDelete"/>
<feature HW_Resume_Thread="vTaskResume"/>
<feature HW_Suspend_Thread="vTaskSuspend"/>
<feature HW_Priority_Set="vTaskPrioritySet"/>
<feature HW_Priority_Get="uxTaskPriorityGet"/>

</feature>
<feature name="Thread Synchronization">

<feature HW_Thread_Delay="vTaskDelay"/>
<feature HW_Create_Mutex="xSemaphoreCreateMutex"/>
<feature HW_Delete_Mutex="vSemaphoreDelete"/>
<feature HW_Take_Mutex="xSemaphoreTake"/>
<feature HW_Give_Mutex="xSemaphoreGive"/>
<feature HW_Create_Semaphore="xSemaphoreCreateCounting"/>
<feature HW_Delete_Semaphore="vSemaphoreDelete"/>
<feature HW_Take_Semaphore="xSemaphoreTake"/>
<feature HW_Give_Semaphore="xSemaphoreGive"/>

</feature>
<feature name="Scheduler Management">

<feature HW_Start_Scheduler="vTaskStartScheduler"/>
<feature HW_Stop_Scheduler="vTaskEndScheduler"/>
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</feature>
</feature>

Example of µCOSII API Mapping XML:

<feature name="uCOSII API Mapping" type="Mandatory">
<feature name="Thread Management" type="Mandatory">

<feature HW_Create_Thread="OSTaskCreateExt"/>
<feature HW_Delete_Thread="OSTaskDel"/>
<feature HW_Resume_Thread="OSTaskResume"/>
<feature HW_Suspend_Thread="OSTaskSuspend"/>
<feature HW_Priority_Set="OSTaskChangePrio"/>

</feature>
<feature name="Thread Synchronization">

<feature HW_Thread_Delay="OSTimeDly"/>
<feature HW_Create_Mutex="OSMutexCreate"/>
<feature HW_Delete_Mutex="OSMutexDel"/>
<feature HW_Take_Mutex="OSMutexPend"/>
<feature HW_Give_Mutex="OSMutexPost"/>
<feature HW_Create_Semaphore="OSSemCreate"/>
<feature HW_Delete_Semaphore="OSSemDel"/>
<feature HW_Take_Semaphore="OSSemPend"/>
<feature HW_Give_Semaphore="OSSemPost"/>

</feature>
<feature name="Scheduler Management">

<feature HW_Start_Scheduler="OSStart"/>
</feature>

</feature>

6.3 Conclusions

The opportunity to develop an agnostic hardware-support RTOS solution allows
the acceleration of legacy applications, previously running in software-only RTOS
solutions, with a seamless transition from one platform to another. This chap-
ter presented our configurable architecture and its configurable hotspots that can
be used to create different solutions depending on the application requirements.
Also, representing the customization hotspots as XMLized models provides higher
flexibility and customizability for later re-use as well as enabling system stack
design and integration automation. Source-level code patching, implemented as
XSLT transformer and Perl scripts, has been experimented to be later embedded
into the elaboration time according to our envisioned system stack design work-
flow. Future work will encompass more research into code transformers to allow
seamless integration and generation of the system stack architecture during the
elaboration time of our envisioned design workflow.
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Chapter 7

System Integration

This chapter describes the integration of the whole system stack with the hardware
multithreading support. We present our co-designed architecture and its impact
on memory footprint. Section 7.1 introduces the integration of all sub-systems and
how software communicates with the hardware support. Section 7.2 presents the
impact of our approach on memory footprint. Section 7.3 concludes this chapter.

7.1 Introduction

In order to benefit from hardware acceleration without being intrusive to the
software layer we present a co-designed hardware-software transparent solution.
Figure 7.1 depicts the complete system stack encompassing a configuration tool
responsible for specifying the optimal software-hardware solution for a particular
application, i.e., number of hardware-supported threads depending on available
area, hardware synchronization support, etc. Although the configuration tool is
still under development, all the software and hardware platform are parameteris-
able allowing easy custom configurations to be made by a configuration tool.

7.1.1 System Boot

We have developed our own bootloader code to initialize our ARM softcore pro-
cessor. The startup sequence is very dependent on our ARM architecture and
memory mapping, therefore it is implemented in assembly. We followed a simple
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Figure 7.1: Complete agnostic system stack.

layout by locating a non-volatile memory (SD-Card) at address 0x0 and volatile
memory (DDR RAM) upwards. The memory mapping can be accomplished by
performing the remap command, allowing RAM, which is normally faster, to be
located at address 0x0 to speed up the handling of processor exceptions and inter-
rupts through the vector table. Figure 7.2 depicts the memory layout before and
after the remap command. Our bootloader performs the following steps:

1. Enable instruction cache to speedup the kernel code copying process.

2. Initialize USART peripheral for debug purposes.

3. Copy kernel code from SD-CARD to RAM.
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Figure 7.2: Memory remap feature on booting.
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4. Disable interrupts (FIQ and IRQ) and enable supervisor CPU mode.

5. Disable MMU and both caches followed by flushing both of them.

6. Perform remap command using the following assembly code snippet:

1 ; remap memory
2 MOV R0, #0xFFFFFF50
3 BIC R0, R0, #0x200 ; r0 = 0xFFFFFD50
4 STR R0, [R0] ; to enable remap, perform a dummy store to addr 0xFFFFFD50
5 MOV PC, #0x0 ; Call kernel: jump to addr 0x0 which is now the first memory address of RAM

7. Jump to address 0x0 which is now on RAM and start the execution of the
kernel.

Figure 7.3 depicts how the remap is performed on our architecture. Our pipelined
processor implementation assures that the instruction MOV PC, #0x0 will be read
from SD-CARD memory before the remap command is executed. When such
instruction is decoded and executed, all pipeline will be flushed as it performs
an unconditional jump. As the remap was already performed at this point, the
instruction at address 0x0 will be fetched from RAM memory.

Fetch STRsR0 MOVsPC NOP NOP RAM@0x0 RAM@0x4 RAM@0x8

Decode STRsR0 MOVsPC NOP bubble RAM@0x0 RAM@0x4

Execute STRsR0 MOVsPC bubble bubble RAM@0x0

DatasMem.sAccess STRsR0 bubble bubble bubble

PC 0x154 0x158 0x15C 0x160 0x008 0x00C 0x010

0x8000_0000 0x1000_0000

Memory

PCs→ PCs→

0x0000_0000 0x0000_0000

RAM

SD-CARD

Before REMAP

Pipeline

SD-CARD

RAM

After REMAP

Figure 7.3: Pipelined processor during memory remap feature on booting.
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7.1.2 RTOS-level Transparency

Upon RTOS boot, several peripheral devices are configured such as the AIC, PIT,
etc. At this point, the RTOS specificities must be informed to the hardware
multithreading support. The following features must be initialized before the
RTOS starts executing any thread code:

• The behavior of the LDM and STM instructions, as explained in Section 3.3;

• The register mode of the hardware-supported threads, as explained in Section
3.1;

• How does the RTOS identify a caller thread without knowing its id, as ex-
plained in Section 3.2;

• Set how does low or high priority values denote lower or higher priorities, as
explained in Section 3.2;

The following assembly code snippets exemplify how FreeRTOS and µCOSII ini-
tialize all of the aforementioned features. The former was included into the FreeR-
TOS’ LowLevelInit() located in the board_lowlevel.c file:

1 asm volatile ("PUSH {R0}");
2 asm volatile ("MOV R0, #1");
3 // change the behaviour of LDM and STM
4 asm volatile ("MCR p14, 0, R0, c3, c0, 0");
5 // freeRTOS threads run in SYSTEM mode
6 asm volatile ("MOV R0, #0x1F");
7 // set the mode of the replicated registers (i.e., multithreading registers)
8 asm volatile ("MCR p14, 0, R0, c3, c0, 1");
9 // FreeRTOS uses NULL parameter to identify the running/caller thread

10 asm volatile ("MOV R0, #0");
11 //set how the hw identify the running/caller thread without knowing its ID
12 asm volatile ("MCR p14, 0, R0, c3, c0, 2");
13 // sets the order of priorities;
14 asm volatile ("MOV R0, #1");
15 //"0" -> means that priority 0 is the highest
16 //"1" -> means that priority 0 is the lowest priority
17 asm volatile ("MCR p14, 0, R0, c3, c0, 3"); // sets the priority order
18 asm volatile ("POP {R0}");

The latter is the equivalent code snippet for µCOSII and it was included in the
BSP_Init() function located in the bsp.c file:

1 asm volatile ("PUSH {R0}");
2 asm volatile ("MOV R0, #1");
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3 // change the behaviour of LDM and STM
4 asm volatile ("MCR p14, 0, R0, c3, c0, 0");
5 // ucOSII threads run in SVC mode
6 asm volatile ("MOV R0, #0x13");
7 // set the mode of the replicated registers (i.e., multithreading registers)
8 asm volatile ("MCR p14, 0, R0, c3, c0, 1");
9 // ucOSII uses OS_PRIO_SELF (0xFF) parameter to identify the running/caller thread

10 asm volatile ("MOV R0, #0xFF");
11 //set how the hw identify the running/caller thread without knowing its ID
12 asm volatile ("MCR p14, 0, R0, c3, c0, 2");
13 // sets the order of priorities;
14 asm volatile ("MOV R0, #0");
15 //"0" -> means that priority 0 is the highest
16 //"1" -> means that priority 0 is the lowest priority
17 asm volatile ("MCR p14, 0, R0, c3, c0, 3"); // sets the priority order
18 asm volatile ("POP {R0}");

7.1.3 Application-level Transparency

In order to maintain API transparency each standard RTOS API is wrapped into
a hardware-based API. Each RTOS has its own set of hardware-based APIs. Al-
though they are very similar, since they all use the same hardware, there are
minor differences between hAPIs for different RTOSes (e.g., in terms of each API
function prototype or signature).

These are the generic hAPIs; When porting this hAPIs for each RTOS, the header
must be adapted to match to the corresponding standard RTOS API signature or
prototype.

Create Thread: Creates a new thread. It checks for a free hardware slot for the
new thread (line 6), if it fails the equivalent standard RTOS API should be
called and a regular software thread will be created (line 10). If a hardware-
supported thread is created, then the new thread’s stack is initialized (line
16-26), and the thread’s hardware features are configured, such as thread
priority, thread id or handler, initial thread state, thread parameters and
thread stack pointer (line 28-41). Lastly and as a scheduling point is reached,
it verifies if a context-switch is required since the new thread could currently
be the highest priority thread ready to run and should run immediately (line
48).

1 unsigned int HW_Create_Thread( void∗ thread_code, void ∗thread_parameters, unsigned int
thread_priority, unsigned int ∗created_thread)

2 {
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3 unsigned int thread_id;
4 unsigned int scheduler_running;
5 // check if there are hardware-supported threads available
6 asm volatile ("MRC p14, 0, %[value], c2, c0, 6": [value]"+r" (thread_id));
7 // if thread_id is equal to zero all hardware-supported threads are full
8 if(thread_id == 0)
9 { // Create regular software thread

10 /* call RTOS API here */
11 return 0;
12 }
13 else
14 { // return thread_id to application
15 ∗created_thread = thread_id;
16 // top of the stack
17 unsigned int original_top_of_stack = (unsigned int)&ThreadStack[thread_id][

THREAD_STACK_SIZE−1];
18 unsigned int ∗top_of_stack = (unsigned int ∗) original_top_of_stack;
19 // place the return address on the stack, offset is added since returning from ISR

we perform SUB pc, lr, #4
20 ∗top_of_stack = ( void ∗ ) thread_code + 0x4;
21 top_of_stack−−;
22 // used later to load the stack value to R13 register of the thread being created
23 ∗top_of_stack = original_top_of_stack;
24 top_of_stack−−;
25 // used later to load the parameter to R0 register of the thread being created
26 ∗top_of_stack = (int)thread_parameters;
27 ENTER_CRITICAL();
28 // opcode = 0: init the process of creating hardware-supported thread
29 asm volatile ("MCR p14, 0, R0, c0, c0, 0");
30 // opcode = 1: set the new hardware-supported thread’s priority
31 asm volatile ("MCR p14, 0, %[value], c0, c0, 1" : [value]"+r" (thread_priority));
32 // opcode = 2: set the new hardware-supported thread’s handler
33 asm volatile ("MCR p14, 0, %[value], c0, c0, 2": [value]"+r" (∗created_thread ));
34 // opcode = 3: set the new hardware-supported thread’s state
35 asm volatile ("PUSH {R0}");
36 asm volatile ("MOV R0, #4");
37 asm volatile ("MCR p14, 0, R0, c0, c0, 3");
38 // load thread’s R0 and R13 registers
39 asm volatile ("MOV R0, %[value]": [value]"+r" (top_of_stack));
40 asm volatile ("LDMFD R0, {R0,R13}^");
41 asm volatile ("POP {R0}");
42 ∗top_of_stack++; // remove the entry for the R0 register
43 ∗top_of_stack++; // remove the entry for the R13 register
44 // opcode = 5: set the new hardware-supported thread’s current top of stack
45 asm volatile ("MCR p14, 0, %[value], c0, c0, 5": [value]"+r" (top_of_stack));
46 // opcode = 7: initialize a free hardware slot with a new hardware-supported thread
47 asm volatile ("MCR p14, 0, R0, c0, c0, 7");
48 // check if scheduler is running
49 asm volatile ("MRC p14, 0, %[value], c2, c0, 7": [value]"+r" (scheduler_running));
50 if( scheduler_running )
51 {
52 EXIT_CRITICAL(); // if scheduler is running, trigger a context switch
53 asm volatile ("SWI 0"); // to find the thread with highest priority
54 }
55 else
56 EXIT_CRITICAL();

78



57 return 1;
58 }
59 }

Delete Thread: Deletes a thread. It checks if the thread to be deleted is a
software or a hardware-supported one (line 6-10). If hardware-supported,
it selects the thread and change its state to deleted and its hardware slot
becomes available for a new thread; then, it analyzes this scheduling point
by selecting the next higher priority thread ready to run (line 13-26). If
software-supported, the equivalent standard RTOS API should be called
instead (line 31).

1 void HW_Delete_Thread( unsigned int thread_to_delete )
2 {
3 unsigned int HW_thread_id;
4 unsigned int scheduler_running;
5 ENTER_CRITICAL();
6 // check if thread is a hardware-supported one
7 asm volatile ("MCR p14, 0, %[value], c1, c0, 0": [value]"+r" (thread_to_delete));
8 // if a thread is found on hardware, HW_thread_id will have the thread handler
9 asm volatile ("MRC p14, 0, %[value], c1, c0, 0": [value]"+r" (HW_thread_id));

10 if(HW_thread_id != (unsigned int) 0xFFFFFFFF)
11 { // thread is a hardware_supported one
12 // set the thread state as deleted
13 asm volatile ("PUSH {R0}");
14 asm volatile ("MOV R0, #0x00");
15 asm volatile ("MCR p14, 0, R0, c1, c0, 2");
16 asm volatile ("POP {R0}");
17 // check if scheduler is running
18 asm volatile ("MRC p14, 0, %[value], c2, c0, 7": [value]"+r" (scheduler_running));
19 if( scheduler_running )
20 {
21 EXIT_CRITICAL(); // trigger a context switch
22 asm volatile ("SWI 0"); // to find the thread with highest priority
23 }
24 else
25 EXIT_CRITICAL();
26 }
27 else
28 { // thread is not a hardware_supported one
29 EXIT_CRITICAL();
30 // delete a software thread
31 /* call RTOS API here */
32 }
33 }

Resume Thread: Resumes a thread. It checks if the thread to be resumed is a
software or a hardware-supported one (line 6-10). If hardware-supported, it
selects the thread and change its state to ready and then, it analyzes this new
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scheduling point (line 13-26). If software-supported, the equivalent standard
RTOS API should be called instead (line 31).

1 void HW_Resume_Thread( unsigned int thread_to_resume )
2 {
3 unsigned int HW_thread_id;
4 unsigned int scheduler_running;
5 ENTER_CRITICAL();
6 // check if thread is a hardware-supported one
7 asm volatile ("MCR p14, 0, %[value], c1, c0, 0": [value]"+r" (thread_to_resume));
8 // if a thread is found on hardware, HW_thread_id will have the thread handler
9 asm volatile ("MRC p14, 0, %[value], c1, c0, 0": [value]"+r" (HW_thread_id));

10 if(HW_thread_id != (unsigned int) 0xFFFFFFFF)
11 { // thread is a hardware_supported one
12 // set the thread state as ready
13 asm volatile ("PUSH {R0}");
14 asm volatile ("MOV R0, #0x04");
15 asm volatile ("MCR p14, 0, R0, c1, c0, 2");
16 asm volatile ("POP {R0}")
17 // check if scheduler is running
18 asm volatile ("MRC p14, 0, %[value], c2, c0, 7": [value]"+r" (scheduler_running));
19 if( scheduler_running )
20 {
21 EXIT_CRITICAL(); // trigger a context switch
22 asm volatile ("SWI 0"); // to find the thread with highest priority
23 }
24 else
25 EXIT_CRITICAL();
26 }
27 else
28 { // thread is not a hardware_supported one
29 EXIT_CRITICAL();
30 // resume a software thread
31 /* call RTOS API here */
32 }
33 }

Suspend Thread: Suspends a thread. It checks if the thread to be suspended is
a software or a hardware-supported one (line 6-10). If hardware-supported,
the thread’s state is changed to suspended and then, it evaluates this new
scheduling point (line 13-26). If software-supported, the equivalent standard
RTOS API should be called instead (line 31).

1 void HW_Suspend_Thread( unsigned int thread_to_suspend )
2 {
3 unsigned int HW_thread_id;
4 unsigned int scheduler_running;
5 ENTER_CRITICAL();
6 // check if thread is a hardware-supported one
7 asm volatile ("MCR p14, 0, %[value], c1, c0, 0": [value]"+r" (thread_to_suspend));
8 // if a thread is found on hardware, HW_thread_id will have the thread handler
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9 asm volatile ("MRC p14, 0, %[value], c1, c0, 0": [value]"+r" (HW_thread_id));
10 if(HW_thread_id != (unsigned int) 0xFFFFFFFF)
11 { // thread is a hardware_supported one
12 // set the thread state as suspended
13 asm volatile ("PUSH {R0}");
14 asm volatile ("MOV R0, #0x02");
15 asm volatile ("MCR p14, 0, R0, c1, c0, 2");
16 asm volatile ("POP {R0}");
17 // check if scheduler is running
18 asm volatile ("MRC p14, 0, %[value], c2, c0, 7": [value]"+r" (scheduler_running));
19 if( scheduler_running )
20 {
21 EXIT_CRITICAL(); // trigger a context switch
22 asm volatile ("SWI 0"); // to find the thread with highest priority
23 }
24 else
25 EXIT_CRITICAL();
26 }
27 else
28 { // thread is not a hardware_supported one
29 EXIT_CRITICAL();
30 // suspend a software thread
31 /* call RTOS API here */
32 }
33 }

Priority Set: Modifies the priority of a thread. It checks if the thread to change
the priority is a software or a hardware-supported one (line 6-10). If hardware-
supported, it selects the thread and sets its new priority and then, it analyzes
this new scheduling point since a thread may become the highest priority
thread among all those ready to run (line 13-23). If software-supported, the
equivalent standard RTOS API should be called instead (line 28).

1 void HW_Priority_Set( unsigned int thread_id, unsigned int new_priority )
2 {
3 unsigned int HW_thread_id;
4 unsigned int scheduler_running;
5 ENTER_CRITICAL();
6 // check if thread is a hardware-supported one
7 asm volatile ("MCR p14, 0, %[value], c1, c0, 0": [value]"+r" (thread_id));
8 // if a thread is found on hardware, HW_thread_id will have the thread handler
9 asm volatile ("MRC p14, 0, %[value], c1, c0, 0": [value]"+r" (HW_thread_id));

10 if(HW_thread_id != (unsigned int)0xFFFFFFFF)
11 { // thread is a hardware_supported one
12 // set the new priority
13 asm volatile ("MCR p14, 0, %[value], c1, c0, 1": [value]"+r" (new_priority));
14 // check if scheduler is running
15 asm volatile ("MRC p14, 0, %[value], c2, c0, 7": [value]"+r" (scheduler_running));
16 if( scheduler_running )
17 {
18 EXIT_CRITICAL(); // trigger a context switch
19 asm volatile ("SWI 0"); // to find the thread with highest priority
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20 }
21 else
22 EXIT_CRITICAL();
23 }
24 else
25 { // thread is not a hardware_supported one
26 EXIT_CRITICAL();
27 // change software thread priority
28 /* call RTOS API here */
29 }
30 }

Priority Get: Obtains the priority of a thread. It checks if the thread to get the
priority is a software or a hardware-supported one (line 6-10). If hardware-
supported, it selects the thread and gets its priority (line 13-15). If software-
supported, the equivalent standard RTOS API should be called instead. (line
20).

1 unsigned int HW_Priority_Get( unsigned int thread_to_get_prio )
2 {
3 unsigned int HW_thread_id;
4 unsigned int prio_return;
5 ENTER_CRITICAL();
6 // check if thread is a hardware-supported one
7 asm volatile ("MCR p14, 0, %[value], c1, c0, 0": [value]"+r" (thread_to_get_prio));
8 // if a thread is found on hardware, HW_thread_id will have the thread handler
9 asm volatile ("MRC p14, 0, %[value], c1, c0, 0": [value]"+r" (HW_thread_id));

10 if(HW_thread_id != (unsigned int) 0xFFFFFFFF)
11 { // thread is a hardware_supported one
12 // get thread’s priority
13 asm volatile ("MRC p14, 0, %[value], c1, c0, 1": [value]"+r" (prio_return));
14 EXIT_CRITICAL();
15 }
16 else
17 { // thread is not a hardware_supported one
18 EXIT_CRITICAL();
19 // get software thread priority
20 /* call RTOS API here */
21 prio_return = 0;
22 }
23 return prio_return;
24 }

Delay Thread: Delays the calling thread by a specific number of OS ticks. It
checks if the thread delaying itself is a software or a hardware-supported
one (line 8-12). If hardware-supported, sets its delay time (line 14-24); If
the number of specified ticks is zero (line 14-17), then an action must be
performed accordingly with the RTOS specification, otherwise it evaluates
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this new scheduling point. If software-supported, the equivalent standard
RTOS API should be called instead (line 29).

1 void HW_Delay_Thread( unsigned int ticks_to_delay )
2 {
3 // Only the running thread can call this function
4 // NULL for FreeRTOS; OS_PRIO_SELF for uCOSII to get the id of calling thread
5 unsigned int thread_to_sleep = NULL;
6 unsigned int HW_thread_id;
7 ENTER_CRITICAL();
8 // check if thread is a hardware-supported one
9 asm volatile ("MCR p14, 0, %[value], c1, c0, 0": [value]"+r" (thread_to_sleep));

10 // if a thread is found on hardware, HW_thread_id will have the thread handler
11 asm volatile ("MRC p14, 0, %[value], c1, c0, 0": [value]"+r" (HW_thread_id));
12 if(HW_thread_id != (unsigned int) 0xFFFFFFFF)
13 { // thread is a hardware_supported one
14 if(ticks_to_delay == 0)
15 // RTOS specific
16 // FreeRTOS uses asm volatile ("SWI 0");
17 // uCOSII uses return;
18 else
19 { // set the delay time
20 asm volatile ("MCR p14, 0, %[value], c1, c0, 7": [value]"+r" (ticks_to_delay));
21 EXIT_CRITICAL();
22 asm volatile ("SWI 0");
23 }
24 }
25 else
26 { // thread is not a hardware_supported one
27 EXIT_CRITICAL();
28 // delay a software thread
29 /* call RTOS API here */
30 }
31 }

Start Scheduler: Starts the hardware scheduler (line 6) and triggers the execu-
tion of the highest priority thread (line 8-11).

1 void HW_Start_Scheduler( void )
2 {
3 asm volatile("PUSH {R0}");
4 asm volatile("MOV R0, #1");
5 // Start scheduler
6 asm volatile("MCR p14, 0, R0, c2, c0, 7");
7 // Updates the highest priority thread
8 asm volatile("MCR p14, 0, R0, c2, c0, 0");
9 asm volatile("POP {R0}");

10 // trigger a context-switch
11 asm volatile ("SWI 0");
12 }
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Stop Scheduler: Suspends the hardware scheduler (line 7), any triggered context-
switch will not have any effect.

1 void HW_Stop_Scheduler( void )
2 {
3 asm volatile("PUSH {R0}");
4 asm volatile("MOV R0, #0");
5 // Stop scheduling
6 asm volatile("MCR p14, 0, R0, c2, c0, 7");
7 asm volatile("POP {R0}");
8 }

The following hAPIs are related with synchronization mechanisms. There is a
limitation on the use of these mechanisms. These hardware-supported synchro-
nization mechanisms should only be used by hardware-supported threads and the
regular software synchronization mechanisms should only be used by regular soft-
ware threads. Therefore, a hardware-supported thread cannot dispute a mutex or
semaphore with a regular software thread. This limitation only affects the system
if more threads are created than the number of threads supported in hardware.
Also, at this moment, hardware-supported mutexes do not implement the priority
inheritance mechanism.

Create Mutex: Creates a mutex. If the calling thread is a hardware-supported
one (line 9-11), then if there are available mutexes in hardware (line 15-17) a
mutex is created and its handler is returned. If the calling thread is a regular
software thread, then the equivalent standard RTOS API should be called
instead (line 33).

1 void∗ HW_Create_Mutex()
2 {
3 int mutex_id;
4 ENTER_CRITICAL();
5 // only hw-supported threads can use hw-supported mutexes
6 // NULL for FreeRTOS; OS_PRIO_SELF for uCOSII to get the id of calling thread
7 unsigned int calling_thread = NULL;
8 // check if calling thread is a hardware-supported one
9 asm volatile ("MCR p14, 0, %[value], c1, c0, 0": [value]"+r" (calling_thread));

10 // if a thread is found on hardware, HW_thread_id will have the thread handler
11 asm volatile ("MRC p14, 0, %[value], c1, c0, 0": [value]"+r" (HW_thread_id));
12 if(HW_thread_id != (unsigned int) 0xFFFFFFFF)
13 { // thread is a hardware_supported one
14 // check if there are hardware-supported mutexes available
15 asm volatile ("MRC p14, 0, %[value], c4, c0, 7": [value]"+r" (mutex_id));
16 // if mutex_id is equal to 0xFFFF_FFFF all hardware-supported mutexes are full
17 if(mutex_id == 0xFFFFFFFF)
18 {
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19 EXIT_CRITICAL();
20 // no mutexes available, fail to create mutex
21 return (void ∗)0;
22 }
23 else
24 { // create mutex
25 asm volatile ("MCR p14, 0, R0, c4, c0, 6");
26 EXIT_CRITICAL();
27 return (void ∗)(mutex_id);
28 }
29 }else
30 { // thread is not a hardware_supported one
31 EXIT_CRITICAL();
32 // create a software mutex
33 /* call RTOS API here */
34 return (void ∗)0;
35 }
36 }

Delete Mutex: Deletes a mutex. It checks if the mutex to delete is a software or
a hardware-supported one (line 6-10). If hardware-supported, it selects the
mutex and change its state to deleted and its hardware slot becomes available
for a new mutex (line 16). There are two implementations/configurations of
this API depending on the OS used, configuration (1) the deletion is canceled
if there are pending threads waiting for this mutex and (2) mutex is deleted
and if there are pending threads waiting on it then their states are changed
to ready. If software-supported, the equivalent standard RTOS API should
be called (line 12).

1 void HW_Delete_Mutex( unsigned int Mutex )
2 {
3 unsigned int mutex_id = (unsigned int)Mutex;
4 ENTER_CRITICAL();
5 // check if mutex is a hardware-supported one
6 asm volatile ("MCR p14, 0, %[value], c4, c0, 0": [value]"+r" (mutex_id));
7 // if a mutex is found on hardware, mutex_id will have the mutex handler
8 asm volatile ("MRC p14, 0, %[value], c4, c0, 0": [value]"+r" (mutex_id));
9 if(mutex_id == 0xFFFFFFFF)

10 { // mutex is not a hardware_supported one
11 EXIT_CRITICAL();
12 /* call RTOS API here */
13 }
14 else
15 { // mutex is a hardware_supported one
16
17 // configuration 1 - check if it is taken by any task
18 // unsigned int mutex_is_taken;
19 // asm volatile ("MRC p14, 0, %[value], c4, c0, 1": [value]"+r" (mutex_is_taken));
20 // if(mutex_is_taken)
21 // {
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22 // EXIT_CRITICAL();
23 // return; // there are pending threads, do not delete mutex
24 // }
25 // else
26 // {
27 // asm volatile ("MCR p14, 0, R0, c4, c0, 7"); // delete mutex
28 // EXIT_CRITICAL();
29 // }
30
31 // configuration 2
32 // by hardware, if a mutex is deleted then all pending threads
33 // change to ready state
34 asm volatile ("MCR p14, 0, R0, c4, c0, 7"); // delete mutex
35 EXIT_CRITICAL();
36 }
37 }

Take Mutex: Takes a mutex. It checks if the accessed mutex is a software or
a hardware-supported one (line 6-10). If software-supported, the equivalent
standard RTOS API should be called (line 14). If hardware-supported, it
reads the mutex state and verifies if the mutex is already taken (line 21-28).
If mutex is free, then mutex is taken (line 30-32). Otherwise, the thread
can specify the time to wait for the mutex to be released (line 36-60). After
blocking the thread to wait for the mutex to be released, a context-switch is
triggered to find the new highest priority thread ready to run (i.e., this new
scheduling point is evaluated).

1 int HW_Take_Mutex(unsigned int Mutex, unsigned BlockingTime )
2 {
3 unsigned int mutex_id = Mutex;
4 unsigned int mutex_is_taken;
5 ENTER_CRITICAL();
6 // check if mutex is a hardware-supported one
7 asm volatile ("MCR p14, 0, %[value], c4, c0, 0": [value]"+r" (mutex_id));
8 // if a mutex is found on hardware, HW_xTask will have the mutex handler
9 asm volatile ("MRC p14, 0, %[value], c4, c0, 0": [value]"+r" (mutex_id));

10 if(mutex_id == 0xFFFFFFFF)
11 { // mutex is not a hardware_supported one
12 EXIT_CRITICAL();
13 // for this example we call the FreeRTOS API
14 /* call RTOS API here */
15 return 0;
16 }
17 else
18 {
19 while(1)
20 {
21 // is the mutex taken?
22 // reading mutex state, mutex_is_taken will have 0 if mutex is free,
23 // otherwise mutex_is_taken will have the thread id which owns the mutex
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24 asm volatile ("MRC p14, 0, %[value], c4, c0, 1": [value]"+r" (mutex_is_taken));
25
26 if(!mutex_is_taken)
27 { // mutex is not taken, so take mutex
28 asm volatile ("MCR p14, 0, R0, c4, c0, 1");
29 EXIT_CRITICAL();
30 return 1;
31 }
32 else
33 { // mutex is taken
34 if(BlockingTime == 0)
35 {
36 EXIT_CRITICAL();
37 // RTOS specific
38 // FreeRTOS: thread does not want to wait for the mutex to be freed so returns
39 // uCOSII: thread wants to wait forever till mutex is released, do not return
40 }
41 else
42 {
43 // uCOSII specific
44 // if(BlockingTime == 0)
45 // BlockingTime = 0xFFFFFFFF; // thread wants to wait forever for the mutex;
46 // block the thread by setting the time to wait for the mutex to become

available
47 asm volatile ("MCR p14, 0, %[value], c4, c0, 5": [value]"+r" (BlockingTime));
48 EXIT_CRITICAL();
49 // trigger a context switch
50 asm volatile ("SWI 0"); // to find the thread with highest priority
51
52 // thread wakes up again here (due to only two events):
53 // 1- Blocking time is finished and thus thread does not want to wait anymore;

so we set BlockingTime to zero
54 // 2- The mutex was given by another thread and thus this thread can now take

the released mutex
55 BlockingTime = 0;
56 ENTER_CRITICAL();
57 // select the mutex in hw
58 asm volatile ("MCR p14, 0, %[value], c4, c0, 0": [value]"+r" (mutex_id));
59 }
60 }
61 }
62 }
63 }

Give Mutex: Gives a mutex. It checks if the released mutex is a software or
a hardware-supported one (line 6-10). If hardware-supported, the state of
the mutex is set to free, i.e., not taken (line 18) and the scheduling point is
analyzed as this action may unblock a higher priority thread. If software-
supported, the equivalent standard RTOS API should be called (line 13).

1 int HW_Give_Mutex(unsigned Mutex)
2 {
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3 unsigned int mutex_id = Mutex;
4 ENTER_CRITICAL();
5 // check if mutex is a hardware-supported one
6 asm volatile ("MCR p14, 0, %[value], c4, c0, 0": [value]"+r" (mutex_id));
7 // if a mutex is found on hardware, mutex_id will have the mutex handler
8 asm volatile ("MRC p14, 0, %[value], c4, c0, 0": [value]"+r" (mutex_id));
9 if(mutex_id == 0xFFFFFFFF)

10 { // mutex is not a hardware_supported one
11 EXIT_CRITICAL();
12 /* call RTOS API here */
13 return 0;
14 }
15 else
16 { // mutex is a hardware_supported one
17 // give mutex
18 asm volatile ("MCR p14, 0, R0, c4, c0, 2");
19 EXIT_CRITICAL();
20 // trigger a context switch
21 asm volatile ("SWI 0"); // a higher thread may be unblocked
22 return 1;
23 }
24 }

Create Semaphore: Creates a semaphore. If the calling thread is a hardware-
supported one (line 9-11), then if there are available semaphores in hardware
(line 15-17) a semaphore is created, its initial count and maximum count are
initialized and its handler is returned. If the calling thread is a regular
software thread, then the equivalent standard RTOS API should be called
instead (line 20).

1 void ∗HW_Create_Semaphore( unsigned int max_count, unsigned int initial_count )
2 {
3 int semaphore_id;
4 ENTER_CRITICAL();
5 // only hw-supported threads can use hw-supported semaphores
6 // NULL for FreeRTOS; OS_PRIO_SELF for uCOSII to get the id of calling thread
7 unsigned int calling_thread = NULL;
8 // check if calling thread is a hardware-supported one
9 asm volatile ("MCR p14, 0, %[value], c1, c0, 0": [value]"+r" (calling_thread));

10 // if a thread is found on hardware, HW_thread_id will have the thread handler
11 asm volatile ("MRC p14, 0, %[value], c1, c0, 0": [value]"+r" (HW_thread_id));
12 if(HW_thread_id != (unsigned int) 0xFFFFFFFF)
13 { // thread is a hardware_supported one
14 // check if there are hardware-supported semaphores available
15 asm volatile ("MRC p14, 0, %[value], c5, c0, 7": [value]"+r" (semaphore_id));
16 // if semaphore_id is equal to 0xFFFF_FFFF all hardware-supported semaphores are

full
17 if(semaphore_id == 0xFFFFFFFF)
18 {
19 EXIT_CRITICAL();
20 // no semaphores available, fail to create semaphore
21 return (void ∗)0;
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22 }
23 else
24 { // create semaphore
25 asm volatile ("MCR p14, 0, R0, c5, c0, 6");
26 // set the initial semaphore count value
27 asm volatile ("MRC p14, 0, %[value], c5, c0, 3": [value]"+r" (initial_count));
28 // set the maximum semaphore count value
29 asm volatile ("MRC p14, 0, %[value], c5, c0, 4": [value]"+r" (max_count));
30 EXIT_CRITICAL();
31 return (void ∗)(semaphore_id);
32 }
33 }
34 else
35 { // thread is not a hardware_supported one
36 EXIT_CRITICAL();
37 // create a software semaphore
38 /* call RTOS API here */
39 return (void ∗)0;
40 }
41 }

Delete Semaphore: Deletes a semaphore. It checks if the semaphore to delete
is a software or a hardware-supported one (line 5-9). If hardware-supported,
selects the semaphore and change its state to deleted and its hardware slot
becomes available for a new mutex (line 16). There are two implementation-
s/configurations of this API depending on the OS used, configuration (1) the
deletion is canceled if there are pending threads waiting for this semaphore
and (2) semaphore is deleted and if there are pending threads waiting on it
then their states are changed to ready. If software-supported, the equivalent
standard RTOS API should be called instead (line 12).

1 void HW_Delete_Semaphore( unsigned int Semaphore )
2 {
3 unsigned int semaphore_id = (unsigned int)Semaphore;
4 ENTER_CRITICAL();
5 // check if semaphore is a hardware-supported one
6 asm volatile ("MCR p14, 0, %[value], c4, c0, 0": [value]"+r" (semaphore_id));
7 // if a semaphore is found on hardware, semaphore_id will have the semaphore handler
8 asm volatile ("MRC p14, 0, %[value], c4, c0, 0": [value]"+r" (semaphore_id));
9 if(semaphore_id == 0xFFFFFFFF)

10 { // semaphore is not a hardware_supported one
11 EXIT_CRITICAL();
12 /* call RTOS API here */
13 }
14 else
15 { // semaphore is a hardware_supported one
16
17 // configuration 1 - check if it is taken by any task
18 // unsigned int semaphore_is_taken;
19 // asm volatile ("MRC p14, 0, %[value], c4, c0, 1": [value]"+r" (semaphore_is_taken)
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);
20 // if(semaphore_is_taken)
21 // {
22 // EXIT_CRITICAL();
23 // return; // there are pending threads, do not delete semaphore
24 // }
25 // else
26 // {
27 // asm volatile ("MCR p14, 0, R0, c4, c0, 7"); // delete semaphore
28 // EXIT_CRITICAL();
29 // }
30
31 // configuration 2
32 // by hardware, if a semaphore is deleted then all pending threads
33 // change to ready state
34 asm volatile ("MCR p14, 0, R0, c5, c0, 7"); // delete semaphore
35 EXIT_CRITICAL();
36 }
37 }

Take Semaphore: Takes a semaphore. It checks if the accessed semaphore is
a software or a hardware-supported one (line 6-10). If software-supported,
the equivalent standard RTOS API should be called (line 14). If hardware-
supported, it reads the semaphore state and verifies if the semaphore can
be obtained (line 21-27). If semaphore can be obtained, then semaphore
is taken (line 29-31). Otherwise, the thread can specify the time to wait
until semaphore can be obtained (line 35-53). After blocking the thread in
order to wait for the semaphore to be available, the new scheduling point is
processed to find and then run the new highest priority thread ready to run.

1 int HW_Take_Semaphore(unsigned int Semaphore, unsigned int BlockingTime )
2 {
3 unsigned int semaphore_id = xSemaphore;
4 unsigned int semaphore_is_full;
5 ENTER_CRITICAL();
6 // check if semaphore is a hardware-supported one
7 asm volatile ("MCR p14, 0, %[value], c4, c0, 0": [value]"+r" (semaphore_id));
8 // if a semaphore is found on hardware, HW_xTask will have the semaphore handler
9 asm volatile ("MRC p14, 0, %[value], c4, c0, 0": [value]"+r" (semaphore_id));

10 if(semaphore_id == 0xFFFFFFFF)
11 { // semaphore is not a hardware_supported one
12 EXIT_CRITICAL();
13 /* call RTOS API here */
14 return 0;
15 }
16 else
17 {
18 while(1)
19 {
20 // is the semaphore full?
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21 // reading semaphore state, semaphore_is_full will have 0 if semaphore is free,
22 // otherwise semaphore_is_full indicates that it cannot be obtained
23 asm volatile ("MRC p14, 0, %[value], c4, c0, 1": [value]"+r" (semaphore_is_full));
24
25 if(!semaphore_is_full)
26 { // semaphore is not full, so take semaphore
27 asm volatile ("MCR p14, 0, R0, c4, c0, 1");
28 EXIT_CRITICAL();
29 return 1;
30 }
31 else
32 { // semaphore is full
33 if(BlockingTime == 0) // thread does not want to wait for the semaphore to be

freed
34 {
35 EXIT_CRITICAL();
36 // RTOS specific
37 // FreeRTOS: thread does not want to wait for the semaphore to be released so

returns 0
38 // uCOSII: thread wants to wait forever till semaphore is released, do not

return
39 }
40 else
41 { // uCOSII specific
42 // if(BlockingTime == 0)
43 // BlockingTime = 0xFFFFFFFF;// thread wants to wait forever for the semaphore;
44 // block the thread by setting the time to wait for the semaphore to become

available
45 asm volatile ("MCR p14, 0, %[value], c4, c0, 5": [value]"+r" (BlockingTime));
46 EXIT_CRITICAL();
47 // trigger a context switch
48 asm volatile ("SWI 0"); // to find the thread with highest priority
49
50 // thread wakes up again here (due to only two events):
51 // 1- Thread delay is finished and thus thread does not want to wait anymore;

so we set BlockingTime to zero
52 // 2- The semaphore was given by another thread and thus this thread can now

take the free semaphore
53 BlockingTime = 0;
54 ENTER_CRITICAL();
55 // select the semaphore in hw
56 asm volatile ("MCR p14, 0, %[value], c4, c0, 0": [value]"+r" (semaphore_id));
57 }
58 }
59 }
60 }
61 }

Give Semaphore: Gives a semaphore. It checks if the released semaphore is a
software or a hardware-supported one (line 6-10). If hardware-supported,
the semaphore is released (line 19) and a new scheduling point is examined
as this action may unblock a higher priority thread. If software-supported,
the equivalent standard RTOS API should be called (line 13).
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1 int HW_Give_Semaphore(unsigned int Semaphore)
2 {
3 unsigned int semaphore_id = Semaphore;
4 ENTER_CRITICAL();
5 // check if semaphore is a hardware-supported one
6 asm volatile ("MCR p14, 0, %[value], c4, c0, 0": [value]"+r" (semaphore_id));
7 // if a semaphore is found on hardware, semaphore_id will have the semaphore handler
8 asm volatile ("MRC p14, 0, %[value], c4, c0, 0": [value]"+r" (semaphore_id));
9 if(semaphore_id == 0xFFFFFFFF)

10 { // semaphore is not a hardware_supported one
11 EXIT_CRITICAL();
12 // for this example we call the FreeRTOS API
13 /* call RTOS API here */
14 return 0;
15 }
16 else
17 { // semaphore is a hardware_supported one
18 // give semaphore
19 asm volatile ("MCR p14, 0, R0, c4, c0, 2");
20 EXIT_CRITICAL();
21 // trigger a context switch
22 asm volatile ("SWI 0"); // a higher thread may be unblocked
23 return 1;
24 }
25 }

In order to make our hAPIs transparent to the applications, all standard RTOS
APIs are wrapper into our hAPIs. The following "defines" represent the mapping
of the standard FreeRTOS APIs to our hAPIs, and they should be automatically
applied during the elaboration time as previously mentioned in the Chapter 6.

#define xTaskGenericCreate HW_Create_Thread
#define vTaskDelete HW_Delete_Thread
#define vTaskResume HW_Resume_Thread
#define vTaskSuspend HW_Suspend_Thread
#define vTaskPrioritySet HW_Priority_Set
#define uxTaskPriorityGet HW_Priority_Get
#define vTaskStartScheduler HW_Start_Scheduler
#define vTaskEndScheduler HW_Stop_Scheduler
#define vTaskDelay HW_Delay_Thread
#define xSemaphoreCreateMutex HW_Create_Mutex
#define xSemaphoreCreateCounting HW_Create_Semaphore
#define vSemaphoreDelete HW_Delete_SemaphoreMutex
#define xSemaphoreTake HW_Take_SemaphoreMutex
#define xSemaphoreGive HW_Give_SemaphoreMutex

FreeRTOS uses the same function to take, give or delete a semaphore or a mutex.
Therefore, these three functions are mapped into intermediate hAPIs (HW_Delete_-

SemaphoreMutex, HW_Take_SemaphoreMutex, HW_Give_SemaphoreMutex) which only
verify if the resource is a mutex or a semaphore and then forward it to the corre-
sponding hAPI (e.g., HW_Delete_Mutex, or HW_Delete_Semaphore).
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The following "defines" represent the mapping of the standard µCOSII APIs to
our hAPIs.

#define OSTaskCreateExt HW_Create_Thread
#define OSTaskDel HW_Delete_Thread
#define OSTaskResume HW_Resume_Thread
#define OSTaskSuspend HW_Suspend_Thread
#define OSTaskChangePrio HW_Priority_Set
#define OSStart HW_Start_Scheduler
#define OSTimeDly HW_Delay_Thread
#define OSMutexCreate HW_Create_Mutex
#define OSMutexDel HW_Delete_Mutex
#define OSMutexPend HW_Take_Mutex
#define OSMutexPost HW_Give_Mutex
#define OSSemCreate HW_Create_Semaphore
#define OSSemDel HW_Delete_Semaphore
#define OSSemPend HW_Take_Semaphore
#define OSSemPost HW_Give_Semaphore

7.2 Memory Footprint

Memory footprint is an important factor to take into account when deploying a
RTOS solution in memory constrained-devices. The memory footprint is often
characterized by the amount of RAM and Read-Only Memory (ROM) require-
ments of an RTOS application running on a specific embedded system (Sheikh
and Driscoll, 2011). The size of the ROM and RAM are usually affected by the
kernel code, kernel data, run-time library code, data structures and global vari-
ables used. The memory footprint results presented were obtained by analyzing
the memory map files generated by IAR. Since the memory footprint is highly
dependent on the kernel components and runtime libraries used by RTOS applica-
tions, the results were obtained on the Thread-Metric Benchmark Suite. Using the
IAR compiler with no optimizations, we obtained the memory footprint of each
Thread-Metric benchmark application for three scenarios: (a) The native system,
with no hardware support, where only regular software threads execute, i.e., only
the standard software APIs are compiled into the final executable image (b) A
system where only hardware-supported threads execute, i.e., only hAPIs compiled
into the final executable image; and (c) A hybrid system where hardware-supported
threads and regular software threads may co-exist, i.e., both hAPIs and standard
APIs are compiled into the final executable image. Figure 7.4 presents the memory
footprint results for FreeRTOS, for each benchmark application and for each of
the three scenarios. Both, (b) and (c) scenarios present a slight memory footprint
overhead. The maximum value is 6K bytes (5.9%), which is perfectly admissible
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Figure 7.4: FreeRTOS memory footprint for each benchmark on the three scenar-
ios.

in current embedded system platforms. Scenario (b), which only runs hardware-
supported threads, requires less amount of read-only code since the hAPIs code is
smaller than the software APIs code. However, it occupies more read-write data
as it uses static memory to manage the hardware-supported thread’s stack. The
scenario (c) requires more memory space since it contains the software APIs and
hAPIs together.

7.3 Conclusions

This chapter described the integration of the whole system stack. We showed
how our approach causes only 6% of memory footprint overhead for a specific
configuration. We presented the implementation of our hardware-based APIs and
how we abstract those hAPIs from the application level in order to maintain the
RTOS API specification intact. Future work will encompass the implementation
of an exploration tool capable of performing DSE over all the different hardware-
software configurations.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis presented novel micro-architectural enhancements to an ARM softcore
processor promoting configurability, reuse, deterministic execution and energy-
and performance-efficiency. We have shown how to tackle different issues and re-
quirements of real-time systems. Firstly, we demonstrated how the rate-monotonic
problem can be addressed using a novel approach based on a task-aware interrupt
controller which unifies the priority space between threads and interrupts at a neg-
ligible hardware and memory usage cost. Then, we discussed and presented how
real-time systems can take advantage of hardware multithreaded architectures to
run current RTOS solutions, increasing deterministic execution and performance
while maintaining portability as explained in Section 5. We have showed how a
holistic and transparent hardware multithreading approach can be modeled and
designed to support current RTOS solutions without the need to rewrite existent
code.

Our solution, which is based on hardware multithreaded acceleration managed
by a tightly-coupled hardware scheduler, demonstrated promising results in terms
of predictability and performance, presenting very low area usage/performance
overhead ratio. The designer-defined register-files containing all the data struc-
tures offloaded to hardware are easily interfaced by magic instructions allowing
any RTOS application to be ported with low engineering effort to our architecture
and benefit from the provided hardware support.
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Our co-designed hardware-software agnostic solution allows different RTOS ar-
chitectures to take advantage of the transparent hardware support, easing the
adaption process of new RTOS to our solution. Legacy code reuse is ensured
by mapping RTOS APIs into our hardware-based APIs. The flexibility of our
approach was demonstrated by the significant results obtained running FreeRTOS
and µCOSII.

Novel processor architectures can take advantage of the unified scheduling space
due to the small impact of hardware multithreading (2% per extra thread as
demonstrated in Section 5.5,) to boost the performance and predictability of new
and more demanding RTOS applications. This is a great feature to include on
new ASIPs, specifically developed for real-time applications where performance
and determinism are very important aspects.

Current RTOS solutions can be easily adapted/ported to this new architectures as
demonstrated in Section 5.3. RTOS designers may change how RTOSes kernel code
is implemented, developing it taking in consideration the hardware multithreading
support.

The advent of hardware multithreading support for RTOS can change the paradigm
of software-only RTOSes and co-designed hardware-software RTOS implementa-
tions can become in a near future a standard approach.

8.2 Limitations

Some limitations can be found in our architecture:

• Supporting other RTOSes must be partially done in a manual way, i.e., the
remapping of the RTOS’s APIs to our hAPIs is not automatically done. As
previously described, our strategy for agnosticism is based on API mapping
strategy. APIs of existent RTOSes must be mapped to the APIs supported
in hardware. Each time a new RTOS is added to the supported RTOSes
list, the APIs of the desired RTOS must be analyzed and a new XMLized
mapping metamodel instance developed.

• The hardware-supported threads cannot benefit from all the features pro-
vided by the RTOSes as regular software threads. Although, these features
can be easily implemented/upgraded in the hardware, hardware-supported
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threads are limited to the current implemented features.

• There are some limitations when using a configuration where hardware-
supported threads can also be executed as regular software threads (i.e.,
hybrid threads), as hardware-supported threads can only use hardware-
supported synchronization mechanisms and vice-versa.

• Currently, the scheduler only implements a priority-based scheduling algo-
rithm, therefore only RTOSes based on this type of scheduling algorithm can
be run in our architecture.

8.3 Future Work

Future work will encompass the offload of other kernel functionalities to hardware.
Currently, thread management and thread synchronization APIs are supported
but there is space for more services offloading such as the communication related
APIs (e.g., queues mechanisms).

The possibility of supporting dynamic switch of software threads to hardware-
supported threads and vice-versa will be studied. For instance, if a hardware-
supported thread finishes its execution freeing a hardware slot, a software thread
could be transferred to the free hardware slot to take inherent advantages of the
hardware support.

New scheduling algorithms to tackle real-time requirements such as Earliest Dead-
line First (EDF) algorithm will be added, allowing the system to contemplate
deadline constraints.

Future work will focus on verifying the power efficiency of our approach which
was not performed throughout this thesis due to limited time. Appropriate bench-
marking will be realized to approve the benefits of our approach in terms of energy.

Research will be carried out towards code transformers to allow a seamless inte-
gration/adaptation of new RTOS architectures into our agnostic stack. Moreover,
the implementation of an exploration tool capable of performing DSE is expected.

Furthermore, the opportunity to migrate application specific functionalities to
hardware will be studied allowing high-level synthesis (HLS) acceleration. This
will allow integrating our architecture as a front-end for an EDA design flow tool
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such as Vivado design flow.

Ultimately, research will proceed towards the refactoring of our architecture to
allow fine-grain customizations. The ultimate goal should be to develop a profiling
tool which explores the migration of software threads to hardware accordingly to
the application demands and constraints, through a hardware-software co-design
methodology.
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