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Abstract 
Wine flavour and aroma are the result of yeast metabolism and must compounds 

interactions. During must fermentation thousands of volatile aroma compounds are 

formed, with higher alcohols, acetate esters and ethyl esters being the main aromatic 

compounds contributing to a floral and fruity aroma. The action of yeast, in particular of 

Saccharomyces cerevisiae strains, on the must components will build the architecture of 

the wine flavour and their fermentation bouquet. Only a holistic approach based on 

systems biology, an inter-disciplinary area combining the study of biology, chemistry, 

physics and mathematics, based on data-driven and model-based elucidation of complex 

biological systems, will allow the complete understanding on the vast and dynamical 

relationships between genomics, phenomics and metabolomics. 

In this work a S. cerevisiae collection was constituded comprising 172 strains of 

worldwide geographical origins and different technological applications. This collection 

was characterized regarding 30 physiological traits that are important mostly from an 

oenological point of view. From the different traits studied, growth in the presence of 

potassium bisulphite, growth at 40 ºC, and resistance to ethanol contributed the most to 

strain variability, as shown by the principal component analysis. Computational methods 

were developed in order to assess the importance of phenotypic features to identify 

candidate strains to be used commercially in winemaking. In particular, the probability 

of a strain to be assigned to the group of commercial strains was 27% using the entire 

phenotypic profile and increased to 95%, when only results from the three tests suggested 

by the model were considered. Results show the usefulness of the mentioned approaches 

to simplify strain selection procedures. 

In addition to the phenotypic characterization, we undertook genetic typing of the 

172 S. cerevisiae strains, using 11 polymorphic microsatellites. We found 280 alleles, 

whereas microsatellite ScAAT1 contributed the most to intra-strain variability, together 

with the alleles 20, 9 and 16, from microsatellites ScAAT4, ScAAT5 and ScAAT6, 

respectively. These microsatellite allelic profiles are characteristic for both the phenotype 

and origin of yeast strains. Data were computationally related with the previously 

obtained results of the 30 phenotypic tests, and the phenotypes associated with higher 

number of alleles were the capacity to resist to sulphur dioxide (tested by the capacity to 

grow in the presence of potassium bisulphite) and the presence of galactosidase activity. 
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Our study demonstrated the utility of computational modelling to estimate a strain 

technological group and phenotype from microsatellite allelic combinations as tools for 

preliminary yeast strain selection. 

To better understand the molecular and metabolic bases of aroma production 

during a fermentation process, we used comparative transcriptomic and metabolic 

analysis of four yeast strains from different origins and/or technological applications 

(cachaça, sake, wine, and laboratory), to rationally identify new targets for improving 

aroma production. Results showed that strains from cachaça, sake and wine presented a 

higher production of acetate esters, ethyl esters, acids and higher alcohols, in comparison 

with the laboratory strain S288c. At fermentation time T1 (5 g/L of CO2 released), 

comparative transcriptomics of these three S. cerevisiae strains from different 

fermentative environments in comparison with the laboratory yeast S288c, showed an 

increased expression of genes related with tetracyclic and pentacyclic triterpenes 

metabolism, involved in sterol synthesis. Sake strain showed also an upregulation of 

genes ADH7 and AAD6, involved in the formation of higher alcohols in the Ehrlich 

pathway. For fermentation time point T2 (50 g/L CO2 released), again sake strain, but 

also wine strain, showed an increased expression of genes involved in formation of higher 

alcohols in the Ehrlich pathway, namely ADH7, ADH6 and AAD6, which is in accordance 

with the higher levels of methionol, isobutanol, isoamyl alcohol and phenylethanol 

observed. Our approach revealed successful to integrate data from several technologies 

(HPLC, GC-MS and microarrays) and using different data analysis methods (PCA, 

MFA). The results obtained, increased our knowledge on the association of genes with 

the formation of metabolic compounds that contribute to the wine aroma and flavour, and 

showed differences in the metabolism of cachaça, sake and wine strains not yet addressed, 

and mainly explained by the production of fatty acids, and ethyl and acetate esters. 
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Resumo 
 O aroma e o sabor do vinho resultam das interações entre o metabolismo das 

leveduras e os compostos presentes no mosto. Durante a fermentação do mosto formam-

se milhares de compostos voláteis, sendo que os álcoois superiores, os esteres de acetato 

e os esteres de etilo são os compostos que mais contribuem para o aroma floral e frutado. 

A ação das leveduras, em particular das estirpes de Saccharomyces cerevisiae, nos 

componentes do mosto contribui para a arquitetura do cheiro do vinho e do seu bouquet 

fermentativo. Apenas uma visão holística baseada na biologia de sistemas, uma área 

interdisciplinar que combina o estudo da biologia, química, física e matemática, baseada 

na elucidação de dados e modelos de sistemas biológicos complexos, permitirá uma 

completa compreensão das vastas e dinâmicas relações entre genómica, fenómica e 

metabolómica. 

 No presente trabalho uma coleção de 172 estirpes de S. cerevisiae foi constituída 

com isolados provenientes de diferentes origens geográficas e diferentes aplicações 

tecnológicas. O seu fenótipo foi avaliado considerando 30 testes fenotípicos, selecionados 

de forma a avaliar características importantes do ponto de vista enológico. O crescimento 

na presença de bissulfito de potássio, crescimento a 40 ˚C e resistência ao etanol foram 

os fenótipos que mais contribuíram para a variabilidade entre estirpes, de acordo com o 

revelado pela análise de componentes principais. Foram desenvolvidos métodos 

computacionais com o objetivo de avaliar a importância das características fenotípicas na 

identificação de estirpes candidatas para serem usadas comercialmente na produção de 

vinho. Em particular, a probabilidade de uma estirpe pertencer ao grupo das estirpes 

comerciais foi de 27% usando o perfil fenotípico completo e aumentou para 95% quando 

foram apenas considerados os 3 testes sugeridos pelo modelo. Os resultados mostraram a 

utilidade dos métodos mencionados para simplificar os procedimentos de seleção de 

estirpes. 

 Além da caracterização fenotípica, fez-se a tipagem genética das 172 estirpes de 

S. cerevisiae, usando para isso 11 microssatélites polimórficos. A caracterização genética 

identificou 280 alelos, sendo o microssatélite ScAAT1 o que mais contribuiu para a 

variabilidade entre estirpes, em conjunto com os alelos 20, 9 e 16 dos microssatélites 

ScAAT4, ScAAT5 e ScAAT6, respetivamente. Este perfil alélico de microssatélites 

revelou-se como característico tanto para o fenótipo como para a origem da estirpe de 

levedura. Estes dados foram relacionados computacionalmente com os resultados obtidos 
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previamente para os 30 testes fenotípicos e os fenótipos associados com o maior número 

de alelos foram a capacidade de resistir ao dióxido de enxofre (testado pela capacidade 

de crescer na presença de bissulfito de potássio) e a presença de atividade da 

galactosidase. Este estudo demonstrou a utilidade da modelação computacional para fazer 

uma estimativa do grupo tecnológico de uma estirpe e do seu fenótipo a partir de 

combinações alélicas de microssatélites como ferramentas para seleção preliminar de 

estirpes de leveduras. 

 De forma a contribuir para uma melhor compreensão das bases moleculares e 

metabólicas da produção de aroma durante o processo fermentativo, fez-se transcritómica 

comparativa e análise metabólica de quatro estirpes de levedura com diferentes origens e 

/ou aplicações tecnológicas (cachaça, saké, vinho e laboratório), para identificar novos 

alvos para o melhoramento da produção de aroma. Os resultados mostraram que as 

estirpes de cachaça, saké e vinho apresentaram uma maior produção de esteres de acetato, 

esteres de etilo e álcoois superiores, em comparação com a estirpe laboratorial S288c. No 

tempo de fermentação T1 (5 g/L de CO2 libertado), a transcritómica comparativa das três 

estirpes de S. cerevisiae obtidas em diferentes ambientes fermentativos em comparação 

com a estirpe laboratorial S288c, mostrou um aumento da expressão de genes 

relacionados com o metabolismo dos triterpenos tetracíclicos e pentacíclicos, envolvidos 

na síntese de esteróis. A estirpe de saké mostrou também um aumento na regulação dos 

genes ADH7 e AAD6, envolvidos na formação de álcoois superiores na via de Ehrlich. 

Para o tempo de fermentação T2 (50 g/L de CO2 libertado), mais uma vez a estirpe de 

saké, mas também a estirpe vínica, mostraram um aumento da expressão de genes 

envolvidos na formação de álcoois superiores na via de Ehrlich, nomeadamente ADH7, 

ADH6 e AAD6, o que está de acordo com elevados níveis de metionol, isobutanol, álcool 

isoamilico e feniletanol observados. A nossa abordagem revelou-se bem-sucedida para 

integrar dados de diferentes plataformas (HPLC, GC-MS e microarrays) e usando 

diferentes métodos de análise de dados (PCA, MFA). Os resultados obtidos aumentaram 

o conhecimento sobre a associação de genes com vias de formação de compostos que 

contribuem para o aroma e sabor do vinho, e mostraram diferenças no metabolismo das 

estirpes de cachaça, saké e vinho que não tinham ainda sido investigadas, e 

principalmente explicadas pela produção de ácidos gordos, e esteres de etilo e de acetato. 



 

xi 
 

Table of contents 
 

Acknowledgements/Agradecimentos 

Abstract 

Resumo 

Table of contents 

List of abbreviations, acronyms and initialisms 

List of figures 

List of tables 

 

Chapter I: Motivation, objectives and outline 

Motivation 

Objectives 

Thesis outline 

Chapter II: General introduction 

Saccharomyces cerevisiae and its use in winemaking                              

Phenotypic plasticity of Saccharomyces cerevisiae wine strains 

Methods for the genetic characterization of yeast strains 

The importance of Systems Biology on modern winemaking 

Saccharomyces cerevisiae and wine flavour 

Biotechnological approaches for yeast improvement 

Chapter III: Phenotypic characterization of a S. cerevisiae collection 
comprising strains of worldwide geographical origins and different 
technological applications  

Introduction 

Materials and Methods 

Strain collection 

Phenotypic characterization 

Data analysis 

Results 

v 

vi 

ix 

xi 

xv 

xix 

xxi 

 

1 

3 

3 

4 

7 

9 

11 

14 

18 

24 

38 

 
 
41 

43 

45 

45 

45 

48 

48 



 

xii 
 

Strain collection 

Phenotypic characterization 

Computational analysis 

Discussion 

Chapter IV: Genetic characterization of S. cerevisiae collection and 
establishment of phenotype-genotype associations 

Introduction 

Materials and Methods 

Genetic characterization 

Statistical analysis 

Results 

Discussion 

Chapter V: Integrating transcriptomics and metabolomics for the 
analysis of the aroma profiles of wine, sake, cachaça and laboratory 
Saccharomyces cerevisiae strains 
 

Introduction 

Materials and Methods 

Yeast strain and culture media 

Must fermentations 

Metabolite analysis 

RNA isolation and sample labelling 

Statistical analysis 

Results and Discussion 

Fermentative profiles and metabolic characterization 

Comparative transcriptomics 

Combined transcriptomics and metabolomics analysis 

Conclusions 

 

 

 

48 

49 

56 

59 

 
63 

65 

67 

67 

68 

69 

77 

 
 
81 
 

83 

85 

85 

85 

86 

86 

87 

88 

88 

92 

99 

105 

 

 

 

 



 

xiii 
 

Chapter VI: General conclusions and future perspectives 

 

Chapter VII: References 

 

Chapter VIII: Supporting material 

Supplementary data 

 

Chapter IX: Supporting material 

Published papers 

 

107 

 

113 

 

143 

145 

 

167 

169 

 

 

 





 

xv 
 

List of abbreviations, acronyms and initialisms 
2-D   two-dimensional 

2-DE   two-dimensional gel electrophoresis 

3-MH   3-mercaptohexane-1-ol 

3-MHA  3-mercaptohexyl acetate 

4-MMP  4-mercapto-4-methyl-pentan-2-one 

A640 nm   absorbance (optical density) measured at the wavelength of 640 nm 

APCI   atmospheric pressure chemical ionization 

AUC   area under the ROC curve 

BCAA   branched-chain amino acid 

bp   base pairs 

CE   capillary electrophoresis 

CoA   coenzyme A 

cont.   continuation 

DIMS   direct injection mass spectrometry 

DMS   dimethyl sulfide 

DNA   deoxyribonucleic acid 

e.g.   for example (exempli gratia) 

ESI   electrospray ionization 

FAME   fatty acid methyl ester 

FDR   false discovery rate 

GC   gas chromatography 

GEO   gene expression omnibus 

GMY   genetically modified yeast 

GO   gene ontology  

H   hour 

HPLC   high performance liquid chromatography 

i.e.   that is (is est)   



 

xvi 
 

IGR   information gain ratio 

KNN   k-nearest neighbor 

LC   liquid chromatography 

LM   liquid medium 

MEA   malt extract agar 

MAPK   mitogen-activated protein kinase 

MCFA   medium-chain fatty acid 

MFA   multivariate factorial analysis 

min.   minutes 

MLST   multilocus sequence typing 

MS   mass spectroscopy 

MS300   synthetic must 

mtDNA  mitochondrial DNA 

NAD+    nicotinamide adenine dinucleotide 

NADH   nicotinamide adenine dinucleotide (reduced form) 

NADPH  nicotinamide adenine dinucleotide phosphate 

NMR   nuclear magnetic resonance 

PC   principal component 

PC-1   first principal component 

PC-2   second principal component 

PCA   principal component analysis 

PCR   polymerase chain reaction 

QTL   quantitative trait locus 

RAPD   random amplified polymorphic DNA 

rDNA    ribosomal DNA 

Ref.   reference 

RFLP   restriction fragment length polymorphism 

RNA   ribonucleic acid 



 

xvii 
 

mRNA   messenger RNA 

tRNA   transfer RNA 

ROC   receiver operating characteristics 

RP   reverse phase 

rpm   revolutions per minute 

SCX   strong cation exchange 

SDS   sodium dodecyl sulphate 

SM   solid medium 

SNP   single nucleotide polymorphism  

sPLS-DA  sparse partial least square - discriminant analysis 

SSR   single sequence repeats 

TA   titratable acidity 

TCA   tricarboxylic acid 

TOF   time of flight 

Ty   transposable element of yeasts 

UPGMA  unweighted pair group method with arithmetic mean 

v/v   volume / volume 

w/v   weight / volume 

YNB   yeast nitrogen base 

YPD   yeast extract-peptone-dextrose  

 

 
 
 
 
 
 
 
 
 



 

 
 

 
 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

  

 



 

xix 
 

List of figures
Figure II-1:  Ethanol formation pathway in yeast 
 
Figure II-2: Glycerol formation pathway in yeast 
 
Figure II-3:  Acetaldehyde and diacetyl formation pathway 
 
Figure II-4:  Metabolism of organic acids 
 
Figure II-5:  The biosynthetic and degradation reactions of esters 

 
Figure II-6:  Formation of higher alcohols and volatile acids from sugar and amino 

acids by Ehrlich pathway 
 
Figure II-7:  Acetic acid metabolism 
 
Figure II-8:  Sulfur metabolism in Saccharomyces cerevisiae 
 
Figure III-1:  Geographical location of the isolation sites of the 172 yeast strains used 

throughout this thesis 
 
Figure III-2:  Principal component analysis of phenotypic data for 172 strains: 

A: 30 phenotypic tests (loadings); 
B: 172 strains (scores) distribution 

 
Figure III-3: Dendogram showing phenotypic variation of 172 strains under 30 

growth conditions. 
 

Figure IV-1:  Principal component analysis of microsatellite data: 
A:   distribution of 172 strains according to their allelic combinations 
for 11 loci (scores); 
B:   contribution of microsatellite loci (loadings) to the separation of 
strains shown in panel A 

 
Figure IV-2:  Principal component analysis of a Boolean matrix of 280 alleles from 

11 microsatellites in 172 Saccharomyces cerevisiae strains 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

27 
 
28 
 
29 
 
30 
 
32 
 
34 
 
 
35 
 
38 
 
46 
 
 
52 
 
 
 
54 
 
 
72 
 
 
 
 
 
74 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

xx 
 

Figure V-1: Fermentation profiles of the four strains used in this study in respect to 
debit of CO2 per volume (g/L/h) per time (h-hours).  

 
Figure V-2: Principal component analysis of GC-MS and HPLC data for the four 

strains tested: 
A – four S. cerevisiae strains (scores) analysed by GC-MS and 
HPLC at T1 (5 g/L) 
B – concentration of compounds detected by HPLC and GC-MS at T1 
(5 g/L) 
C - four S. cerevisiae strains (scores) analysed by GC-MS and HPLC 
at T2 (50 g/L) 
D – concentration of compounds detected by HPLC and GC-MS at T2 
(50 g/L) 
 

Figure V-3: Multivariate factorial analysis of GC-MS, HPLC and transcriptomic data 
for the four strains tested, at T1 (5 g/L). Circles 1-4 indicates groups of 
genes and compounds sharing similar results regarding their 
positioning in the image: 
A – distribution of the quantified compounds (red) and genes (green) 
B – distribution of the four tested strains. 
 

Figure V-4: Multivariate factorial analysis of GC-MS, HPLC and transcriptomic data 
for the four strains tested, at T2 (50 g/L). Circles 1-4 indicates groups 
of genes and compounds sharing similar results regarding their 
positioning in the image: 
A – distribution of the quantified compounds (red) and genes (green) 
B – distribution of the four tested strains. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

89 
 
 
91 
 
 
 
 
 
 
 
 
 
 
102 
 
 
 
 
 
 
104 
 
 
 
 
 
 
 
 
 
 
 
 



 

xxi 
 

List of tables 
 
Table II-1: Oenological parameters considered for the selection of 

Saccharomyces cerevisiae wine strains 
 
Table II-2: Aroma and flavour compounds commonly found in wine 
 
Table III-1: Number of strains belonging to different phenotypic classes, regarding 

values of optical density (Class 0: A640=0.1; Class 1: 0.2<A640<0.4; 
Class 2: 0.5<A640<1.0; Class 3: A640<1.0), growth patterns in solid 
media, or colour change in BiGGY medium 

 
Table III-2: Phenotypic tests mostly contributing for the division of strains into 

three clusters, in terms of information gain, obtained with k-means 
clustering algorithm 

 
Table IV-1: Summary of the distribution of alleles (indicated in numbers of 

repetitions) among 172 Saccharomyces cerevisiae strains, from 11 
microsatellite loci 

 
Table V-1.1:  Categorization of genes with significantly decreased expression 

(Bonferroni p<0.05) in Z63, Z23 and VL1 strains in comparison to 
S288c, at T1 (5 g/L of CO2 released) 

 
Table V-1.2:  Categorization of genes with significantly increased expression 

(Bonferroni p<0.05) in Z63, Z23 and VL1 strains in comparison to 
S288c, at T1 (5 g/L of CO2 released) 

 
Table V-2.1: Categorization of genes with significantly decreased expression 

(Bonferroni p<0.05) in Z63, Z23 and VL1 strains in comparison to 
S288c, at T2 (50 g/L of CO2 released) 

 
Table V-2.2: Categorization of genes with significantly increased expression 

(Bonferroni p<0.05) in Z63, Z23 and VL1 strains in comparison to 
S288c, at T2 (50 g/L of CO2 released)  

 
12 
 
 
25 
 
50 
 
 
 
 
56 
 
 
 
70 
 
 
 
 
93 
 
 
 
94 
 
 
 
96 
 
 
 
97 
 
 
 



 

 
 

 



 

 
 

 

 

 

 

 

Chapter I 
_ 
 

 

 

Motivation, objectives and outline 

 
 

 

 

 

 

 

 

 



 
  

 

 



Chapter I | Motivation, objectives and outline 
_______________________________________________________________________ 

 

3 
 

Motivation 

The market value of products derived from fermentations with Saccharomyces 

cerevisiae such as wine, is expected to increase much above the general market growth 

in the future. Winemaking represents today a multi-billion Euro industry that could 

benefit tremendously from system biology research, owing to the direct impact of yeast 

on several key aspect of wine quality, such as for example the production of flavour 

compounds mainly volatile acids, higher alcohols, esters, volatile thiols and phenols. The 

continuous utilization of yeasts for industrial purposes introduced an artificial pressure 

on the strains selected that may have also influenced genome features and novel 

specialization metabolic routes.  

S. cerevisiae was the first sequenced eukaryotic organism, which provided a vast 

amount of knowledge on its molecular and cellular biology. For this reason this yeast is 

considered the model organism par excellence for genetics and genomics studies. 

However, a major improvement is needed regarding the understanding of the variability 

existing between S. cerevisiae strains, which will only be obtained through the integrated 

study of several “omic” approaches.  

 

 

Objectives 

In general, this thesis aims to explore the genetic and phenotypic variability that 

nature has created, in order to elucidate about the genetic bases that shaped inter-strain 

differences of flavour compound formation across wine strains of S. cerevisiae. An 

integrative approach was followed throughout the thesis, englobing genomic, 

transcriptomic, bioanalytical and bioinformatic approaches.  

 

The detailed objectives of the work were: 

- To constitute a genetically diverse S. cerevisiae strain collection, comprising 

isolates from differential technological applications or origins; 

  

- To provide detailed phenotypic and genetic characterization of all strains using 

high-throughput methods;  
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- To conduct computational analysis and develop models that predict associations 

between a strain’s phenotype and genotype; 

 

- To validate the developed models and identify a small sub-group of S. cerevisiae 

strains with most desirable oenological phenotypic traits; 

 

- To identify networks of genes with optimized expression patterns in selected 

strains, establish their relations with the aroma-relevant metabolome fraction 

through combined transcriptomic and metabolomic approaches and incorporate 

gene expression levels and aroma compound production into multivariate 

statistical analysis. 

 

 

Thesis outline 

 Chapter I presents the motivation that lead to the current work, together with its 

objectives, as well as global structure.  

 

 In Chapter II an overview of the state-of-the-art is given, in particular on the use of 

S. cerevisiae in winemaking and as eukaryotic model, on the phenotypic plasticity of 

wine strains and the methods used for yeast genetic characterization, and about the 

importance of Systems Biology in modern winemaking. A special focus is given to 

the relation between S. cerevisiae and wine flavour.  

 

 Chapter III comprehends the constitution of our strain collection, comprising 172 

isolates of S. cerevisiae from different geographical and technological origins. A 

high-throughput method for phenotypic screen was devised to characterize all strains, 

and obtain a global view of the phenotypic diversity of the collection. 

 

 Chapter IV focus on the genetic characterization of the S. cerevisiae isolates using 

a set of 11 highly polymorphic S. cerevisiae specific microsatellite loci. High genetic 



Chapter I | Motivation, objectives and outline 
_______________________________________________________________________ 

 

5 
 

variability was obtained and a set of most informative microsatellites was suggested. 

Computationally methods allowed associating strains phenotype with genotype in 

order to choose a small sub-set of 4 strains to be used in the next chapter, regarding 

transcriptomic and metabolic analysis. 

 

 Chapter V embraces the transcriptomic and metabolomic analysis of four strains 

from different technological applications. Using different data analysis methods we 

successfully integrated data from different technologies (HPLC, GC-MS and 

microarrays) and characterized the strains aroma profile together with the parallel 

gene expression dynamics, which allowed to improve the knowledge of the 

association of some genes with the formation of metabolic compounds. 

 

 In Chapter VI the global conclusions of the work are presented together with 

suggestions for future work. 

 

 Chapter VII lists the bibliographical references cited along the thesis. 

 

 Chapters VIII presents, as supporting material, supplementary data not shown in 

the other chapters, also as the pdf versions of the manuscripts already published. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
  

 

 

 

 
 

Chapter II 
 

 

 

 

General introduction 
 

 

 





Chapter II |General Introduction 
_______________________________________________________________________ 

 

9 
 

Saccharomyces cerevisiae and its use in winemaking 

 
The production of wine is an ancestral process involving interactions between 

microorganisms and grape must (Pretorius 2000; Cavalieri et al. 2003). One of the first 

evidences of these interactions were the discovery of Saccharomyces cerevisiae isolates 

in Egypt, in the residues of the earliest known wine jars (Cavalieri et al. 2003).  

Wine is a natural product that results from different biochemical reactions 

provided by microorganisms present on the surface of the grapes, and can be defined as 

multicomponent liquid solution containing water, ethanol, glycerol and organic acids as 

major components and other minor components such as phenolic compounds that 

contributes to the flavour and aroma of wine (Pizarro et al. 2007). Originally, wine was 

made by spontaneous fermentation taking advantage of the yeast strains present in the 

internal flora (Lambrechts and Pretorius 2000a). 

In 1890, Müller-Thurgau introduced the concept of inoculating wine 

fermentations with pure yeast cultures and, as a result, the quality and quantity of wine 

production were vastly improved in the 20th century (Pretorius 2000). Nowadays, most 

wine fermentations are carried out by inoculating grape must with a pure yeast culture. 

Culture selection depends on the grape cultivar, must composition, general conditions of 

fermentation and on the final product required. From a biotechnological point of view, 

the use of active dry yeast has a high impact on the microbiology of the fermentation 

process. Unlike the natural process, the addition of pure cultures induces a clear 

predominance of the inoculated strain over the endogenous strains (Perez-Gonzalez et al. 

1993; Beltran et al. 2002). In large-scale wine production, where rapid and reliable 

fermentations are essential for consistent wine flavour and predictable quality, the use of 

selected pure yeast inoculum of known properties is preferred (Pretorius 2000). 

Industrial yeast strains of S. cerevisiae differ from most laboratory strains, which 

are either haploid or diploid. Wine industrial strains are predominantly diploid, aneuploid 

and occasionally polyploid (Bakalinsky and Snow 1990; Barre et al. 1993), and show a 

high level of chromosome length polymorphism (Bidenne et al. 1992; Rachidi et al. 

1999). For several decades winemakers have been combining strains of S. cerevisiae on 

the basis of observations that mixed-cultures produce more flavour diversity and balanced 

wines, by introducing a greater range of flavour notes and moderating the intensity of 
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distinctive estery/fruity notes (Ugliano and Henschke 2009). The differences in yeast 

growth patterns of genetically distinct strains, that are observed when they are cultivated 

individually or in mixed cultures, suggest that metabolic interactions can occur between 

different yeasts and can be antagonistic, neutral or stimulatory (Ugliano and Henschke 

2009). 

The chemical composition of the wine is also dependent on the type and quality 

of the grapes. The primarily aim of viticultural practices is producing high quality grapes 

that would reflect varietal flavours and aromas and/or characters typical for a specific 

region or terroir (Styger et al. 2011b). 

Some wines can undergo a secondary fermentation known as malolactic 

fermentation. This process is particularly desirable for high-acid wine produced in cool 

climate regions, as malolatic fermentation involves the deacidification of wine via the 

conversion of the dicarboxylic L-malic acid to the monocarboxylic L-lactic acid and 

carbon dioxide (Styger et al. 2011b). This process is normally carried out by lactic acid 

bacteria, including Oenococcus oeni, Lactobacillus spp., Leuconostoc spp., and 

Pediococcus spp. (Liu 2002). In some wines from warmer regions, malolatic fermentation 

is also important because it changes the composition of the wine and improves its 

organoleptic quality (Styger et al. 2011b). 

The composition of grape must offers culture conditions that are far from optimal 

for most microorganisms and upon inoculation yeast cells must adapt to the low pH (2.9–

3.8) and high osmolarity of the new environment (sugar concentration up to 300 g/L), as 

well as to the high SO2 content (40–100 mg/L) (Pizarro et al. 2007). This adaptation may 

change the metabolite production and as consequence will influence wine quality. 
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Phenotypic plasticity of Saccharomyces cerevisiae wine strains 

 
Worldwide, wine producers use commercial starter yeasts to ensure the 

reproducibility and the predictability of wine quality. The advantages of fermentations 

containing S. cerevisiae starter cultures relies on the fact that they are rapid and produce 

wine with desirable organoleptic characteristics through successive processes and 

harvests (Fleet 1998; Schuller 2010). To select the best starter yeast one should take into 

account the style of the wine and/or the grape variety. To perform strain selection, certain 

oenological criteria are typically used, such as technological (influencing the efficiency 

of the fermentation process) or qualitative criteria (affecting the chemical composition 

and the sensorial profile of wine) (Zambonelli 1998). The most relevant physiological 

tests used to select S. cerevisiae strains were gathered by Schuller (2010) and are 

summarized in the Table II-1. 
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Table II-1: Oenological parameters considered for the selection of Saccharomyces cerevisiae 
wine strains. 

Oenological 
parameters 

Comments 

Fermentation vigor 
Maximum amount of ethanol (%, v/v) produced at the end of the 
fermentation 
Desirable: good ethanol production 

Fermentation rate 
Grams of CO2 produced during the first 48 hours of fermentation  
Desirable: prompt fermentation initiation 

Fermentation 
temperature 

Thermotolerance and cryotolerance is related to oenological 
properties 
Optimum fermentation temperature ranges between 18 and 28°C 

Mode of growth in 
liquid medium 

Dispersed or flocculent growth, sedimentation speed  
Desirable: dispersed yeast growth during, but sedimentation at the 
end of fermentation 

Foam production 
Height of foam produced during fermentation  
Desirable: low foam production 

Volatile acidity, acetic 
acid production 

Selected strains should not release more than 100 - 400 mg/L 
during fermentation  
Desirable: low volatile acidity /acetic acid production 

Malic acid 
degradation or 
production 

Whether degradation or production is desirable depends on the 
characteristics of the must. Malic acid degradation varies between 
0- 20% of the initial concentration, depending on the S. cerevisiae 
strain 

Glycerol production 
Desirable major fermentation by-product (5-8 g/L) contributing to 
wine sweetness, body and fullness 

Acetaldehyde 
production 

Desirable metabolite in sherry, dessert and port wines being an 
important character for selection of strains to be applied in wine 
ageing 

Esters, higher 
alcohols and volatile 
compounds 

Desirable metabolites, markedly influence wine flavour and depend 
on the presence of precursors related to both grape cultivar and 
grape maturity. Limited amounts contribute positively to global 
sensorial characteristics 

SO2 tolerance and 
production 

Antioxidant and antimicrobial agent 
Desirable: high fermentation vigor and rate in the presence of SO2 
concentrations usually applied in winemaking;  
Undesirable: excessive SO2 production 

H2S production 
H2S is detrimental to wine quality, considered as off-flavour with 
very low threshold value (50- 80 μg/L) 

Stress resistance Tolerance to combined acid/osmotic stress 

Copper resistance 
High copper concentrations may cause stuck fermentations  
Desirable: high copper resistance and the ability to reduce the 
copper content 
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Beside these criteria, it should also be taken into account that starter yeasts may 

interact with must microflora. These interactions can be positive or negative and may 

affect the quality of the final wine (Mannazzu et al. 2002). Certain yeasts belonging to 

different genera and species have the capacity to produce killer toxins (proteins and 

glycoproteins) that exert a microbiocidal effect on the other yeasts. The presence of this 

killer phenotype in S. cerevisiae yeasts can have high importance once it can ensure the 

predominance of the selected starter yeast instead of the sensitive must microflora 

(Mannazzu et al. 2002). 

Some studies suggested the natural occurrence of Saccharomyces hybrid strains, 

such as the triple hybrid S. cerevisiae, x S. bayanus x S. kudriavzevii (Gonzalez et al. 

2007). It was also found that S. cerevisiae x S. kudriavzevii hybrids were better adapted 

to fermentations carried out at lower temperatures (14-22 °C) and produced less acetic 

acid and more higher alcohols (Gonzalez et al. 2007). These findings have shown an 

evolutionary adaptation of the strains and an improvement on technological properties of 

the wild yeasts. 

The genetic and metabolic basis responsible for the phenotype diversity among S. 

cerevisiae strains remains unclear, as they are incompletely characterized and also 

because some phenotypes are associated with several genes which increases the 

complexity of these relations. Although some efforts were made in order to complete this 

identification, only specific physiological parameters were characterized, such as ethanol 

resistance (Hu et al. 2007), temperature tolerance (McCusker et al. 1994; Steinmetz et al. 

2002; Sinha et al. 2006), drug responses (Perlstein et al. 2006; Perlstein et al. 2007; Kim 

et al. 2009), sporulation efficiency (Primig et al. 2000; Gerke et al. 2006; Ben-Ari et al. 

2006; Magwene et al. 2011) and morphology (Nogami et al. 2007). 

The emergence of “omics” approaches and high-throughput methods has 

facilitated the analysis and comparison of the different phenotypes among strains and the 

establishment of relations with the genotype.  
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Methods for the genetic characterization of yeast strains 
 

The study of S. cerevisiae genetic diversity has been exploited for many years 

ago, and more recently specifically for the understanding of phenotype-genotype 

relations. Many methods were used for intra-strain genetic characterization in different 

interest areas such as strain selection for their use as pure cultures (Dequin 2001; Cocolin 

et al. 2004), monitorization of population dynamics during fermentation of food and 

beverages (Granchi et al. 1999; Nadal et al. 1999; Pulvirenti et al. 2001; Granchi et al. 

2003) and characterization of clinical isolates (Zerva et al. 1996; McCullough et al. 1998). 

The characterization of wine yeast genotypes was initially done using traditional 

tools, which analysed mainly the spore segregation. With the emergence of the molecular 

techniques this characterization became easier and more accurate (Barnett 1992; Naumov 

et al. 1993). Generally, the redefinition of taxonomic grouping has become possible by 

analysing the similarity of DNA, RNA or cellular proteins. In order to differentiate the 

genera and identify species, several methods were used such as comparison of the entire 

yeast genome, pulsed field electrophoresis for the separation of the entire chromosomes, 

study of ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA) by PCR and 

subsequent analysis of restriction fragments  (Giudici and Pulvirenti 2002), which are 

described in the paragraphs below. 

During many years chromosome pulsed-field gel electrophoresis was the method 

commonly used to separate DNA molecules and to analyse variations in yeast genomes. 

This technique was primarily applied to yeast genomes (Carle and Olson 1985) and 

consists in the electrophoretic separation of chromosomal DNA molecules followed by 

the identification of the bands by DNA-DNA hybridization. This method has shown a 

significant variability in the chromosomal constitution of commercial yeasts (Blondin and 

Vezinhet 1988) and became an advantageous method for strain identification (Degré et 

al. 1989; Vezinhet et al. 1990; Yamamoto et al. 1991; Querol et al. 1992; Guillamón et 

al. 1996; Fernández-Espinar et al. 2001; Schuller et al. 2004). 

Another commonly used method to distinguish and characterize S. cerevisiae 

strains is the restriction fragment length polymorphism (RFLP) analysis of mitochondrial 

DNA (Dubourdieu et al. 1984; Lee and Knudsen 1985; Vezinhet et al. 1990). This method 

consists in the digestion of mtDNA with restriction enzymes creating high polymorphism, 



Chapter II |General Introduction 
_______________________________________________________________________ 

 

15 
 

due to mtDNA being very variable between species and strains, both in size and 

organization, and having both highly conserved species specific regions, but also other 

regions that evolve 10 times more rapidly than nuclear DNA (Vezinhet et al. 1990; Querol 

et al. 1992; Guillamón et al. 1996; Fernández-Espinar et al. 2001; López et al. 2001; 

Martínez et al. 2004; Schuller et al. 2004). 
With the progress of polymerase chain reaction (PCR), S. cerevisiae strains were 

discriminated using quicker methods, based on the detection of polymorphisms in DNA 

fragment sizes or specific banding patterns, without the need of using restriction enzymes. 

These techniques are based on the use of oligonucleotides as primers, which bind to target 

sequences in each yeast DNA strand. One example is random amplified polymorphic 

DNA (RAPD) which is a technique characterized by the use of just one short primer 

(about ten nucleotides) with an arbitrary sequence and a low annealing temperature (37 

ºC) during PCR (Williams et al. 1990). This allows the amplification of diverse fragments 

of DNA distributed along the genome and results in a pattern of amplified PCR products 

of different molecular weights, characteristic of each strain (Bruns et al. 1991; Paffetti et 

al. 1995). This method has the advantage that no information is necessary about the DNA 

sequence in order to design the primer. Conversely, because it depends on an intact DNA 

template sequence, it has some limitations when using degraded DNA samples in the 

amplification. RAPD has been applied with success in several projects regarding yeast 

strains characterization (Baleiras Couto et al. 1995; Quesada and Cenis 1995; Romano et 

al. 1996; Tornai-Lehoczki and Dlauchy 2000; Pérez et al. 2001; Cadez et al. 2002). 

Multi-locus sequence typing (MLST) is another PCR-based method used for 

genetic characterization of yeast isolates using DNA sequences of internal fragments 

(450-500 bp) of multiple housekeeping genes. After PCR and DNA sequencing, strains 

are characterized by their unique allelic profile. MLST is a technique used in molecular 

biology for the typing of multiple loci. MLST was used in the past for identification of 

bacterial pathogens and then to the analysis of S. cerevisiae isolates (Ayoub et al. 2006). 

The main advantage of this method is related with a higher reliability in comparison with 

the electrophoretic methods allowing a high-throughput data debit and an easy sharing of 

results between laboratories. However, it involves high costs and the discriminatory 

power is affected by the fact that yeast housekeeping genes are extremely conserved. 
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Interdelta sequences typing is also a useful tool in genetic characterization of 

yeasts. Retrotransposons Ty1 and Ty2 are flanked by delta sequences (300 bp) (Cameron 

et al. 1979). These delta sequences are found in terminal chromosomal regions, but can 

occur also as single elements dispersed all over the genome. There are near 300 delta 

elements described in the genome of the laboratory strain S288c. In 1993, Ness and co-

workers (Ness et al. 1993) proposed a protocol based on the amplification of interdelta 

regions by PCR, once the number and location of the delta elements have certain 

intraspecific variability. The primers are designed to amplify DNA regions between 

neighbouring delta sequences and the PCR reaction produces a mixture of differently 

sized fragments, specific for each strain. This technique was then optimized by designing 

two new primers (δ12 and δ21) that hybridize very close to the binding sites of primers 

δ1 and δ2, which were initially referred by Ness (Legras and Karst 2003). The use of 

primers δ12 and δ21 or δ12 with δ2 reveals greater polymorphism, with the appearance 

of a higher number of bands, resulting in a higher discriminatory power. It was shown 

that the combination of δ12 with δ2 was able to distinguish twice the number of strains 

that were discriminated by the initial primer pair δ1 and δ2 (Schuller et al. 2004). Also, 

Fernández-Espinar and co-workers have shown that this method requires standardization 

of DNA concentration. Due to the low annealing temperature (43 ˚C), “ghost bands” may 

be present which is another disadvantage (Fernández-Espinar et al. 2001). This can be 

fixed by increasing the annealing temperature to 55 ºC which reduces the number of 

“ghost bands”, but also reduces the total number of bands obtained, and consequently the 

discriminatory power (Ciani et al. 2004). Analysis of PCR profiles obtained by interdelta 

sequences amplification were associated with a good discriminating power for the 

analysis of commercial strains (Lavallée et al. 1994). More recently, however, some 

questions have been raised regarding reproducibility between laboratories and also the 

influence of the DNA concentration in the electrophoretic profile obtained (Franco-

Duarte et al. 2011). Even though with these limitations, this technique continues to be 

widely used in the present to characterize yeast strains (Pramateftaki et al. 2000; Lopes 

et al. 2002; Cappello et al. 2004; Ciani et al. 2004; Demuyter et al. 2004; Pulvirenti et al. 

2004; Xufre et al. 2011; Bleykasten-grosshans et al. 2013). 

Microsatellites or single sequence repeats (SSR) are short DNA sequences that 

have been shown to display a large level of size polymorphism in several eukaryotic 
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genomes (Richard et al. 1999), presenting also a high amount of intra-species variation. 

PCR amplification of these regions is a method highly discriminative for the molecular 

typing of indigenous S. cerevisiae populations (Pérez et al. 2001; Schuller et al. 2004; 

Schuller et al. 2005; Schuller and Casal 2005). High polymorphism, co-dominant 

inheritance, selective neutrality, amplification by PCR-based methods and high 

reproducibility are characteristics of microsatellites that make them good genetic 

markers. In 2001, a set of six polymorphic microsatellite loci (ScAAT1, ScAAT2, 

ScAAT3, ScAAT4, ScAAT5 and ScAAT6) was selected from 51 strains originated from 

spontaneous fermentations and that generated 44 genotypes with a total of 57 alleles 

(Pérez et al. 2001). It was also referred the simplicity of this technique, allowing multiplex 

PCR reaction in reproducible and precise way. Legras and co-workers described in 2005 

another set of microsatellite loci for S. cerevisiae strains typing, which includes the highly 

polymorphic loci ScYOR267c, C4, C5, C11 and ScYPL009c (Legras et al. 2005). The 

use of microsatellites as a tool for identification purposes and as source of variability was 

extrapolated to other species, such as Candida albicans (Sampaio et al. 2003; Garcia-

Hermoso et al. 2010), C. parapsilosis (Sabino et al. 2010), C. glabrata (Foulet et al. 

2005), S. bayanus (Masneuf-Pomarède et al. 2007), and also with clinical applications 

(Correia et al. 2004; Vaz et al. 2011) and for evolutionary studies (Sampaio et al. 2005). 

Also, in several other fields the use of microsatellites as genetic markers has been 

extensively exploited, such as in paternity analyses (Jobling et al. 1997; Dow and Ashley 

1998), in construction of genetic maps (Dib et al. 1996), in population genetic studies 

(Tautz 1989; Estoup et al. 2002) and human diseases research (Desselle et al. 2012; 

Manasatienkij and Rangabpai 2012; Buecher et al. 2013; Heinimann 2013; Choi et al. 

2015).  
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The importance of Systems Biology in modern winemaking 

 
Systems Biology is an inter-disciplinary area combining the study of biology, 

chemistry, physics and mathematics, based on data-driven and model-based elucidation 

of complex biological systems. The term systems biology has been widely used from year 

2000 onwards in the biosciences and in a variety of contexts. Systems biology approaches 

are mainly focused on the systematic study of entire pathways, processes, or interactions 

of complex biological systems, and promote a holistic view of the organism under study. 

The vast majority of the projects based on this subject were initiated in yeasts due to the 

size and the availability of the genome, and also to the easiness of manipulation and 

availability of tools. The objective of this area is the understanding of the genotype–

phenotype relationships as well as the elucidation of the principles and mechanisms 

governing the behaviour of biological systems (Kitano 2002; Stelling 2004). 

The large genome-scale study of relations between phenotypes and their 

molecular structures in genetics and protein interactions is defined by phenomics (Schork 

1997; Freimer and Sabatti 2003; Fernandez-Ricaud et al. 2007; Houle et al. 2010). In 

earlier stage phenomics studied only a few number of phenotypes (Warringer et al. 2003; 

Kvitek et al. 2008; Ratnakumar et al. 2011; Chen et al. 2012). Nevertheless, with 

evolution in instrumentation, technology and computational approaches, phenotypic 

studies became possible in large sets of samples. Organisms that have to adapt to changing 

environmental conditions are difficult to be studied by phenomics because of their 

phenotypic plasticity which is characterized by the capacity of a genotype to reveal 

different phenotypes in different environments (Pigliucci 2001). Some studies have 

identified genes responsible for affecting plasticity and how they interact with each other 

(Mackay 2001; Remold and Lenski 2004; Kent et al. 2009). The phenotypic variation in 

yeast could be qualitative or quantitative. Qualitative traits obey to the Mendelian laws 

and are controlled by a single locus with a small effect. On the other hand, quantitative 

traits include a continuous distribution of a measurable character such as stress tolerance 

(heat and ethanol for example) (Hu et al. 2007; Parts et al. 2011). The majority of studies 

in yeast phenomics are based on quantitative traits controlled by multiple genetic loci and 

are called quantitative trait loci – QTL (Lander and Botstein 1989; Lynch and Walsh 

1998). A QTL is constituted by a cluster of closely linked genes that contribute to the 
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quantitative trait (Mackay 2001). S. cerevisiae provides an ideal model for QTL analysis 

due to high recombination rate, richly annotated genome and the fact that genes can be 

directly manipulated in their genomic context. QTL mapping was used to understand 

several mechanisms in yeasts such as thermotolerance analysis (Steinmetz et al. 2002; 

Sinha et al. 2006), sporulation efficiency (Deutschbauer and Davis 2005) and drug 

resistance (Perlstein et al. 2007). This analysis also helped to understand genotype-

phenotype relations in wine (Marullo et al. 2007; Marullo et al. 2009; Ambroset et al. 

2011; Steyer et al. 2012; Brion et al. 2014) and sake (Katou et al. 2009) fermentations, 

and ethanol production (Hu et al. 2007). 

The entire DNA nucleotide sequence content, including all genes of an organism 

constitutes the genome (Borneman et al. 2007). Since 1996, the S. cerevisiae genome is 

known (Goffeau et al. 1996), and it is constituted by approximately 6000 genes and 16 

chromosomes. Liti and cowokers (Liti et al. 2009) sequenced several S. cerevisiae strains 

which included the reference strain S288c and also several others such as pathogenic, 

baking, wine, food spoilage, natural fermentations and sake strains. In this work, 235,127 

high-quality single nucleotide polymorphisms (SNPs) and 14,051 nucleotide insertions 

or deletion were identified in the S. cerevisiae nuclear genome. In another work from 

2008, important genomic variability was also identified between 16 yeast strains 

(laboratory, commercial and opportunistic human infections origins) in particular in 

subtelomeric regions and in Ty-element insertion sites, suggesting that this type of 

genome variability is the main source of genetic diversity in natural populations of yeast 

(Carreto et al. 2008). It was further shown that wine strains acquired large genomic 

regions from non-Saccharomyces species through horizontal gene transfer, conferring in 

this way molecular adaptation to conditions of high sugar, low nitrogen, and high ethanol 

concentrations (Novo et al. 2009). In 2008, The Australian Wine Research Institute 

completed the genome sequencing of the commercial yeast AWRI1631 and it was shown 

that this strain was substantially different from the laboratory strain (S288c), especially 

at the level of several single nucleotide polymorphisms (SNPs) throughout the genome 

(Borneman et al. 2008). Comparative genomics will become a major tool for the insightful 

interpretation of genomic data within the winemaking context. Until September 2011 

about 74 S. cerevisiae strains have been sequenced, 17 of them being wine yeast strains. 

Several novel sequencing technologies, such as nanopore and pyrosequencing are being 
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optimized, as well as software tools and algorithms for automated genome annotation, 

together aspiring to reduce costs and time frames for genome analysis. Consequently, in 

the near future, many more wine yeast genomes will be sequenced and become available. 

The transcriptome includes the study of the entire cellular RNA complements 

(mRNA, tRNA and other RNA types). The RNA population is very dynamic, being 

dependent both on gene regulation in response to prevailing environmental conditions, 

but also on variation in RNA turnover (Borneman et al. 2007). Transcriptomic approaches 

usually require several convergent technologies, such as DNA sequencing and 

amplification, synthesis of oligonucleotides, fluorescence biochemistry, and 

computational statistics (Rossouw and Bauer 2009b). Gene expression is variable among 

wild-type yeast strains and it was shown that differences in gene expression during 

fermentation affected co-regulated genes and distinguished yeast strains. Besides, 

winemaking strains deal better with stress-imposing environmental conditions and are 

able to manage nutrient deficiencies, such as nitrogen, in a more efficient and resourceful 

way (Carreto et al. 2011). The analysis of large comparative transcriptomic data of five 

industrial wine yeast strains was performed, and various genes/gene sets were identified 

that could be linked to relevant aspects of yeast performance in key areas related to 

flocculation, stress tolerance, and metabolism (Rossouw et al. 2009). The analysis of the 

transcriptomes of two phenotypically diverging wine yeast strains in two different 

fermentation media at three stages of wine fermentation, showed that the intersection of 

transcriptome datasets from fermentations using either synthetic or real grape must can 

help to delineate relevant changes in gene expression, mainly of genes that codify 

membrane transporters, in response to experimental factors such as fermentation stage 

and strain identity (Rossouw and Bauer 2009a). 

In the same way as the transcriptome, the proteome refers to the entire protein 

complement of the cell. As the proteome is produced from translation of the messenger 

RNA portion of the transcriptome, it is also dynamic in nature. However, differences in 

rates of protein production from specific RNA molecules give the proteome a greater 

dynamic range than the transcriptome (Borneman et al. 2007). The analysis of the protein 

complement of the cell or its parts is possible by using two-dimensional gel 

electrophoresis (2DE) or chromatography coupled with various mass spectrometry 

methods. Because genome-scale protein quantification is not yet feasible, several 
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methods for determining relative levels of protein and that allow comparison between 

samples have been developed (Smolka et al. 2001). An important goal of functional 

proteomics is the identification of functional modules based on the knowledge of protein 

action. Protein-protein interactions methods play a crucial role in elucidating the nature 

of these mechanisms. Innovative methods for the cell-wide analysis of protein 

interactions and signalling pathways have been developed (Templin et al. 2004). 

Conversely, the two dimensional gel approaches have some limitations such as the low 

number of proteins identified, the poor gel-to-gel reproducibility, the under-

representation of low-abundant and hydrophobic proteins and the poor dynamic range of 

detection (Fey and Larsen 2001; Rabilloud 2002). The commonly used high-performance 

liquid chromatographic (HPLC) approach for the separation of peptides from protein 

digests in complex proteomic applications is 2D nano-liquid chromatography-mass 

spectrometry (LC/MS). In this approach, a strong cation exchange (SCX) column is used 

for the first dimension and a reversed phase (RP) column for the second (Nägele et al. 

2004). This 2D chromatography approach coupled with tandem mass spectrometry 

(MS/MS) allowed the identification of a total of 1504 yeast proteins in a single analysis 

(Peng et al. 2003). 

The entire complement of small chemicals and metabolites present in the cell, but 

not including DNA, RNA or protein, constitute the metabolome. The composition of the 

metabolome is more dynamic than either the transcriptome or proteome as it is altered by 

the enzymatic action of the proteome, in addition to being directly dependent on the 

composition of both the intra- and extracellular environments (Borneman et al. 2007). 

The metabolome analysis represents the newest tool and some of its applications such as 

metabolic profiling, metabolic fingerprinting (Fiehn 2002; Koek et al. 2006) or metabolic 

footprinting (Allen et al. 2003) have been published. Metabolites are involved in systems 

homeostasis as key regulators. For itself, level changes of specific groups of metabolites 

may be descriptive of systems responses to environmental interventions. Therefore, the 

study of these metabolites is a powerful approach for characterizing complex phenotypes, 

as well as for identifying biomarkers for specific physiological responses. The major 

complication on metabolites study is the rapid time scales of change, or oscillations in the 

levels of metabolites in a pathway, even if this pathway is in a balanced, unperturbed state 

of equilibrium (Rossouw and Bauer 2009b). A considerable progress has been noticeable 
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regarding wine chemical analysis, and it is now possible to quantify a large number of 

chemical compounds (both volatile and non-volatile) with relative accuracy (Villas-Bôas 

et al. 2005). A significant correlation was shown between metabolome and transcriptome 

during the initial phase of growth acceleration of a S. cerevisiae culture, after a glucose 

pulse (Kresnowati et al. 2006). Several methods are available for the determination of the 

metabolic profile of an organism. One example is the gas-chromatography (GC) or liquid-

chromatography (LC) coupled to mass-spectroscopy (MS). GC-MS has been widely used 

in metabolome analysis essentially in complex biological mixtures (Kind and Fiehn 2007; 

Lommen et al. 2007; Mas et al. 2007). This system is composed by a gas supply, an 

injector and a column inside an oven, which are then connected to a mass spectrometer. 

GC analysis can be executed using a constant pressure, a constant flow or a flow program. 

The combined use of GC-MS has several advantages, as for example the high capacity of 

mass spectra to differentiate chemically diverse metabolites, the high separation 

efficiency provided by the GC system, sensitivity, easiness of use, robustness, low cost 

and commercial and public libraries available (Villas-Bôas et al. 2005; Hollywood et al. 

2006; Dettmer et al. 2007; Garcia et al. 2008). However, GC-MS requires volatile samples 

and the majority of metabolites are non-volatile. Also, the steps of derivatization required 

are time-consuming (Halket et al. 2005; Wittmann 2007; Lu et al. 2008). In order to 

optimize the GC-MS performance some technologies could be conjugated with it, such 

as GC-GC time of flight (TOF)-MS (Koek et al. 2008; Mondello et al. 2008). This method 

consists in the conjugation of two different GC columns improving the detection coverage 

and a TOF-MS that provides a very fast scanning rate and an additional sensitivity in the 

detection. On the other hand, this is a very expensive method and not so used regularly. 

Another example of metabolite analysis methods is the combination between LC and MS. 

This revolutionary method allows separation of non-volatile metabolites followed by 

electrospray ionization (ESI) or by atmospheric pressure chemical ionization (APCI) 

(Bakhtiar et al. 2002). In comparison with GC-MS, this technique requires lower 

temperatures and the volatility in the samples is not needed, so the sample preparation is 

easier. LC-MS is mainly used on clinical application (Bakhtiar et al. 2002), however this 

method was also useful in the detection of several commercial compounds, previously 

predicted in the in silico metabolomes of Bacillus subtilis and Escherichia coli, and in the 

determination of the complete metabolome of S. cerevisiae (Werf et al. 2007). Capillary 
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electrophoresis-mass spectrometry (CE-MS) developed in 1989, is an analytical method 

that combines capillary electrophoresis with mass spectrometry detection (Loo et al. 

1989). In comparison with GC and LC, the advantages of CE are the higher separation 

efficiencies, the smaller sample injection volumes, the lower cost of the reagents used and 

the capacity to separate anions, cations and uncharged molecules during a unique run. 

This technique has been widely used to determine the metabolome of some organisms 

with good results in detection and quantification of different metabolites (Perrett and Ross 

1992; Perrett et al. 1994; Lehmann et al. 1997; Perrett et al. 1997; Soga and Imaizumi 

2001; Terabe et al. 2001; Soga et al. 2002) such as analysis of inorganic ions (Kobayashi 

et al. 1998), amino acids (Soga and Heiger 2000), organic acids (Shirao et al. 1994), 

vitamins (Schreiner et al. 2003), carbohydrates (Soga and Heiger 1998), peptides (Perrett 

et al. 1994), nucleotides and nucleosides (Cohen et al. 1987) and thiols (Carru et al. 2003). 

The main disadvantages of CE are the lower sensitivity, because of the small volumes of 

injection, and when coupled to MS the limited number of libraries available. NMR 

spectroscopy is another method frequently used for metabolomics that consists in the 

application of magnetic fields and radio frequency pulses to the nuclei of the atoms. NMR 

active nuclei, such as 1H or 13C when placed in a magnetic field absorb electromagnetic 

radiation and cause nuclear spin and the subsequent emission of radiation (Dunn and Ellis 

2005). This method has the advantageous possibility of being performed in a non-invasive 

manner but has reduced sensitivity and lower detection limit (Pan and Raftery 2007). 

NMR spectroscopy has been widely used in several fields such as the analysis of cold 

stresses in worms, analysis of plant-cell extracts, determination of disease biomarkers and 

determination of biochemical action mode (Dunn and Ellis 2005; Bothwell and Griffin 

2011). Some studies have shown the high applicability of this technique for example for 

the study of different S. cerevisiae strains with similar growth rate which showed different 
1H NMR spectra (Raamsdonk et al. 2001) and for the identification of extracellular 

metabolites profiles and metabolic footprints of S. cerevisiae (Bundy et al. 2007). 

Interactome is the complement of interactions between DNA, RNA, protein and 

metabolites in the cell, so this is extremely complex and highly dynamic. A full study of 

the interactome completed with binding affinities and rate constants, would constitute the 

main objective of systems biology, as it would enable the creation of a complete 

mathematical picture of the cell (Borneman et al. 2007). Comparisons of yeast 
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transcriptomes and proteomes under different conditions have shown that multilevel 

analysis is essential for yeast systems biology (Kolkman et al. 2006). A successful 

systems biology study should culminate on interactomics, which aims to integrate the 

transfer of information between the several steps of analysis with the use of mathematical 

modelling and simulation tools (de Jong 2002). Various statistical methods are available 

to create links between large data sets and phenotypes and it is possible to extract 

probabilistic models that can theoretically capture cellular interactions without prior 

knowledge of an interaction network (Jeong et al. 2000; de Jong et al. 2003). 

In summary, systems biology is an area still in development that contributes to the 

establishment of new tools for strain selection. Strain improvement programs and other 

areas of biotechnology benefits highly with the advances in systems biology studies, and, 

with the development of new biological tools and the improvement of computational 

approaches, soon it will be possible to approach organisms in an holistic manner. 

 

 

 

Saccharomyces cerevisiae and wine flavour 
 

Wine flavour is the result of yeast metabolism and must compounds interactions. 

Systems biology yeast characterization combined with all the knowledge obtained in 

microbiology, physiology and biochemistry of yeasts, will lead to a better understanding 

of wine flavour. Must is constituted by three functional groups of compounds: nutrients, 

flavour precursors and non-precursor flavour-active compounds. The action of yeasts on 

some of these compounds will build the architecture of the wine flavour and their 

fermentation bouquet. A description of each group of compounds contributing to the wine 

flavour and aroma will be detailed in the next topics. Table II-2 presents the main 

chemical groups contributing to wine flavour, together with their optimal wine 

concentrations and formation pathways. 

 

 



 
 

Table II-2: Aroma and flavour compounds commonly found in wine.  nd  - not detectable

Group Sub-group Example of compounds Impact on flavour Optimal 
concentration Formation pathway Sensorial characteristics Ref. 

Alcohols 

- Ethanol Enhance the sensory attributes of wine 8-16 vol. % Alcoholic fermentation hotness; body; viscosity 1, 2, 3 

- Glycerol No direct impact on the aromatic 
characteristics 5-14 g/L Glycolisis and redox reactions viscosity; sweetness; odorless 4, 5, 6, 

7 

Higher 
alcohols 

Propanol 
Positive and negative impact:           

Excessive concentrations  
can result in a strong, pungent smell 

and taste; 
Optimal levels impart fruity characters 

9,0–68 mg/L 

Ehrlich pathway 

pungent, harsh 

8, 9, 10 

Butanol 0,5–8,5 mg/L fusel, spiritous 
Isobutanol 9,0–174 mg/L fusel, spiritous 

Isoamyl alcohol 6,0–490 mg/L harsh, nail polish 
Hexanol 0,3–12,0 mg/L green, grass 

2-Phenylethyl alcohol 4,0–197 mg/L floral, rose 

Non-
volatile 
acids 

- Tartaric acid 
Positive and negative impact 

depending  on concentration; sourness; 
astringency 

90% of tritatable  
acidity Tricarboxylic acid pathway 

and redox reactions 

sourness; astringency 

11, 12, 
13, 14 

- Malic acid sourness; astringency 
- Succinic acid 2 g/L salty, bitter taste 
- Lactic acid > 6g/L sourness; astringency 
- Citric acid nd sourness; astringency 

Volatile 
acids - Acetic acid At higher concentrations negative 

impact 0,4 -1,1 g/L Redox reactions of 
acetaldheyde 

warmth; sourness/sharpness; 
vinegar 15, 16 

Esters 

Acetate esters 

Ethyl acetate 

Significant effect on the fruity flavours 
in wine 

22,5–63,5 mg/L 

Lipid and acetyl-CoA 
metabolism 

nail polish, fruity, solvent 17, 18 

Isoamyl acetate 0,1–3,4 mg/L banana, apple, solvent 17, 19, 
20 

2-Phenylethyl acetate 0–18,5 mg/L roses, honey, apple, sweet, 
floral 

20, 21, 
22 

Hexyl acetate 0–4,8 mg/L sweet, aromatic, fragrant 21, 23 
Isobutyl acetate 0,01–1,6 mg/L banana, sweet, fruity 17, 21 

Ethyl fatty 
acid esters 

Ethyl butanoate 0,01–1,8 mg/L papaya, butter, sweet, apple, 
fragrant, fruity 

17, 19, 
20, 21, 

24 

Ethyl  hexanoate 0,03–3,4 mg/L apple, fruity, sweet, aniseed-
flavored 20, 21 

Ethyl octanoate 0,05–3,8 mg/L sweet soap 8, 25 
Ethyl decanoate 0–2,1 mg/L floral, soap 26 

Branced-chain 
esters 

Ethyl 2-
methylpropanoate 0-0,9 mg/L strawberry like aromas 8, 26, 

27 Ethyl 2-methylbutanoate 
Ethyl 3-methylbutanoate 



 
 

Table II-2 (cont.): 

1-(Guth and Sies 2002);  2- (Gawel et al. 2007a); 3- (Swiegers et al. 2005a); 4- (Noble and Bursick 1984); 5- (Albertyn et al. 1994); 6-(Rankine and Bridson 1971); 7-(Nieuwoudt et al. 2002); 8- (Lambrechts 
and Pretorius 2000b); 9- (Swiegers and Pretorius 2005); 10- (Nykänen et al. 1977); 11- (Whiting 1976); 12- (Thoukis et al. 1965); 13- (Radler 1993); 14- (Coulter et al. 2004); 15-(Dubois 1994); 16- (Corison 
et al. 1979); 17- (Siebert et al. 2005); 18- (Boutou and Chatonnet 2007); 19- (Culleré et al. 2004); 20- (Escudero et al. 2004); 21- (Meilgaard 1975); 22- (Salo 1970); 23- (Etiévant 1991); 24- (Czerny et al. 2008); 
25- (Soles et al. 1982); 26- (Boulton et al. 1998); 27- (Guth 1997); 28- (Schreirer 1979); 29- (Berg et al. 1955); 30- (Martineau et al. 1995); 31- (Sponholz 1993); 32- (Dubois 1983); 33- (Ribéreau-Gayon et al. 
2000a); 34- (Chatonnet et al. 1993); 35- (Mestres et al. 2000); 36- (Fedrizzi et al. 2007); 37- (Strauss et al. 1986); 38- (Francis and Newton 2005); 39- (Winterhalter et al. 1991); 40- (Sabon et al. 2002). 

Group Sub-group Example of compounds Impact on flavour Optimal concentration Formation pathway Sensorial 
characteristics Ref. 

Carbonyl 
compounds 

- Acetaldehyde Associated with oxidation off-flavours 10–75 mg/L Decarboxylation of 
pyruvate 

sherry, nutty, 
bruised apple 28, 29 

- Diacetyl <5 mg/L Malolactic fermentation buttery 30, 31 

Volatile 
phenols 

- 4-ethylphenol Contribute positively to the aroma of 
some wines; higher concentrations of 

ethylphenols contribute to off-flavours 

0,012–6,5 mg/L Decarboxylation of 
hydroxycinnamic acids 

and phenolic acids 

medicinal, barnyard 
32, 

33, 34 
- 4-ethyl guaiacol 0,001–0,44 mg/L phenolic, sweet 
- 4-vinyl phenol 0,04–0,45 mg/L pharmaceutical 
- 4-vinyl guaiacol 0,0014–0,71 mg/L clove-like, phenolic 

Sulfur 
compounds 

Sulfides 

Hydrogen sulfide 

Associated with off-flavours execpt 
the long-chain sulfur compounds 

nd-370 ug/L 

Sulfur metabolism 

rotten egg 

3, 35, 
36 

Dimethyl sulfide nd–480 ug/L asparagus, cabbage, 
cooked corn 

Diethyl sulfide nd–10 ug/L garlic 

Dimethyl disulfide nd–22 ug/L vegetable, cabbage, 
onion-like 

Diethyl disulfide nd–80 ug/L bad smelling, onion 
Sulfur-

containing 
higher alcohols 

3-(methylthio)-1-propanol 
(methionol) nd–4500 ug/L potato, cauliflower, 

cooked cabbage 

Thiols 

Benzothiazole nd–14 ug/L rubber 
Thiazole 0–34 ug/L popcorn, peanut 

4-methylthiazole 0–11 ug/L green hazelnut 

2-furanmethanethiol 0–350 ng/L roasted coffee, burnt 
rubber 

Thiophene-2-thiol 0–11 ug/L 
burned, burned 
rubber, roasted 

coffee 
4-mercapto-4-methylpentan-

2-one (4MMP) nd–0,03 ug/L cat urine, box-tree, 
broom, blackcurrant 

3-mercaptohexan-1-ol 
(3MH) nd–5 ug/L 

box tree, broom, 
passionfruit, 

grapefruit 
3-mercaptohexyl acetate 

(3MHA) nd–0.2 ug/L box tree, broom, 
passion fruit 

Monoterpenoids 
- Linalool 

Powerful odorants 
0,0017–0,010 mg/L Sterol ant terpenes 

biosynthetic pathway 

rose 
3, 37 - Geraniol 0,001–0,044 mg/L rose-like 

- Citronellol 0,015–0,042 mg/L citronella 

C13-
norisoprenoids 

- β-damascenone 

Powerful odorants 

4-7 ug/L 
Acid-catalyzed 

transformation of grape-
derived precursors 

apple, rose, honey 
33, 
38, 

39, 40 

- β-ionone nd violet, flower, and 
raspberry 

- 1,1,6-trimethyl-1,2-
dihydronaphtalene (TDN) nd kerosene-like 
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 Ethanol 

The major products of alcoholic fermentation promoted by S. cerevisiae are ethanol 

and CO2, under oenological conditions. The high sugar concentration of grape must turns 

the yeast metabolism into a fermentative mode (Ugliano and Henschke 2009). The 

production pathway of ethanol from glucose is schematized in Figure II-1. Ethanol 

content can affect the chemical, physical and sensory properties of wine such as the 

hotness, body and viscosity perception, and also the sweetness, acidity, aroma, flavour 

intensity and textural properties (Gawel et al. 2007b; Gawel et al. 2007a). 

Studies have shown that ethanol can influence the relative contribution of aroma 

compounds in different ways. The sensorial aroma perception is also changed by the 

influence of ethanol; when ethanol is present at 14.5–17.2%, the odour has been described 

as herbaceous instead of fruity, as was perceived at low ethanol levels (Goldner et al. 

2009). Reducing the alcohol levels in wine, affects the aromatic bouquet not only by 

strengthening the perceived interactions between woody and fruity wine odorants, but 

also by modifying their chemical proportions (Le Berre et al. 2007). 

 
Figure II-1: Ethanol formation pathway in yeast. 

 

 

 Glycerol 

Glycerol is the major polyol produced during fermentation by S. cerevisiae. The 

impact of glycerol on wine flavour is not clearly understood. Early studies showed that 

the perceived overall flavour profile of a model wine and a white wine was not changed 

by the addition of glycerol, suggesting that glycerol does not play a significant role in 

establishing the aroma bouquet of wine (Lubbers et al. 2001). However, other studies 

have showed some effects of glycerol concentrations on perceivable viscosity (Noble and 

Bursick 1984; Nieuwoudt et al. 2002; Gawel et al. 2007b). Glycerol is formed from the 
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reduction of glycolytic intermediate, dihydroxyacetonephosphate, to glycerol-3-

phosphate followed by dephosphorylation (Figure II-2). The first step is carried out by 

two NADH-dependent glycerol-phosphate dehydrogenase isoenzymes (Gpd1, 2p), 

encoded by GPD1 and GPD2 genes (Albertyn et al. 1994; Eriksson et al. 1995). This step 

is rate limiting for glycerol production since over-expression of either gene increases 

glycerol production. 

 
Figure II-2: Glycerol formation pathway in yeast. 

 

 

 Acetaldehyde and diacetyl 

Acetaldehyde is an important aroma compound that is directly related to alcoholic 

fermentation and constitutes more than 90% of the total aldehyde content of wine 

(Nykänen 1986). Under fermentative conditions, acetaldehyde is formed from pyruvate 

which is decarboxylated by pyruvate decarboxylase (Figure II-3). This enzyme is 

encoded by the genes PDC1,5,6. Acetaldehyde concentration is higher when the 

fermentation rate reaches its maximum, then decreases near the end of fermentation and 

gradually increases again subsequently (Lambrechts and Pretorius 2000b). High 

concentrations of acetaldehyde are generally associated with oxidation off-flavours in dry 

wines (Ugliano and Henschke 2009). 

Diacetyl is formed from acetaldehyde, mainly by lactic acid bacteria during 

malolactic fermentation, but yeasts can also synthesize this compound during alcoholic 

fermentation (Styger et al. 2011b). Still, the majority of diacetyl is further metabolized to 

acetoin and 2,3-butanediol (Bartowsky and Henschke 2004). This compound is 

characterised by a ‘nutty’, ‘toasty’ or ‘buttery’ aroma depending on concentration 

(Martineau et al. 1995). 
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Figure II-3: Acetaldehyde and diacetyl formation pathway. 

 

 

 Non-volatile organic acids 

Wine contains a large number of organic and inorganic acids. Acidity and pH are 

fundamental characteristics to the sensory perception of wine, defining its structure and 

balance. Acids can have positive and negative impacts on aroma and flavour, depending 

on the concentration and type of wine (Swiegers et al. 2005b). Figure II-4 summarizes 

the metabolic production of the most important organic acids. 

The most important non-volatile organic acids are tartaric and malic acids, 

contributing with 90% for the titratable acidity (TA) of grape juice. Also, citric and lactic 

acids contribute to the acidity of grape juice, and succinic and keto acids are present only 

in residual amounts but their concentrations increase in the end of fermentation (Whiting 

1976; Fowles 1992; Radler 1993; Boulton et al. 1998). 

Organic acid metabolism performs an important role in wine as it produces precursors 

for biosynthetic pathways and it aids in the maintenance of redox balance. Tartaric acid, 

one of the major grape acids, is not metabolised by S. cerevisiae but L-malic acid can be 

partially degraded by most strains (Salmon 1987). However, it was shown that the 

commercial S. cerevisiae wine strain Enoferm M2 can increase the malic acid 

concentration of wine (Holgate 1997).  

Succinic acid is the major organic acid produced by yeast metabolism and its 

production is highly variable among strains of S. cerevisiae (Radler 1993; Eglinton et al. 

2000; Coulter et al. 2004). It´s formation pathway involves the reductive branch of the 

tricarboxylic acid (TCA) cycle during anaerobic fermentation (Roustan and Sablayrolles 

2002; Camarasa et al. 2003). Oxalacetate is formed from pyruvate by a carboxylation 

reaction, then is reduced to L-malate and hydrated to form fumarate, being this reduced 
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by fumarate reductase to form succinate (Enomoto et al. 2002). Succinate can also be 

formed by the oxidative decarboxylation of α-ketoglutarate (Camarasa et al. 2003). 

Several fermentation conditions could affect succinic acid accumulation during 

fermentation such as yeast strain, temperature and must clarity, aeration, sugar 

concentartion, nutrient content, assimilable nitrogen, pH, titratable acidity and SO2 

concentration (Coulter et al. 2004). 

Some other organic acids, such as pyruvic and α-ketoglutaric acids, have implications 

in wine stability and quality due to their ability to bind sulphur dioxide and to react with 

phenols (Rankine 1967; Rankine 1968a; Rankine 1968b). The keto acids are produced 

both during the early stages of fermentation via sugar metabolism, or from the 

corresponding amino acids, by the Ehrlich pathway. Strain, nitrogen type and content of 

the medium are the main factors affecting the keto acid production (Rankine 1968b). 

 

Figure II-4: Metabolism of organic acids (adapted from Ugliano & Henschke 2009). 
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 Esters 

Esters can be classified as acetate esters or ethyl esters. In the group of acetate esters, 

the acyl group is derived from acetate (in the form of acetyl-CoA), and the alcohol group 

is ethanol or a complex alcohol derived from amino acid metabolism. The most 

significant acetate esters are ethyl acetate, isoamyl acetate and 2-phenylethyl acetate. The 

second group comprises the medium-chain fatty acid (MCFA) ethyl esters, where the 

alcohol group is ethanol, and the acyl group is derived from activated medium-chain fatty 

acids. Ethyl hexanoate and ethyl octanoate are the most common examples (Cordente et 

al. 2012). 

Figure II-5 shows a simplified scheme of the biosynthetic and degradation pathway 

of esters. The ester formation during fermentation depends on the concentration of the 

co-substrates (the acyl-CoA and the alcohol) and on the activity of enzymes involved in 

their synthesis and hydrolysis (Figure II-5) (Verstrepen et al. 2003; Saerens et al. 2006; 

Saerens et al. 2008). Five distinct proteins were identified and characterized in S. 

cerevisiae - Atf1p, Atf2p, Eht1p, Eeb1p and Iah1p -, being the alcohol acetyltransferase 

Atf1p described as the protein with the greatest activity and the most studied one (Lilly 

et al. 2000; Lilly et al. 2006a; Saerens et al. 2010). Overexpression of ATF1 during wine 

fermentation results in a significant increase in acetate ester production, whereas ATF2 

appears to play a minor role in ester formation (Lilly et al. 2000; Verstrepen et al. 2003; 

Lilly et al. 2006a). Overexpression of ATF1 in yeast led to high production of ethyl acetate 

but this fact did not improve the fermentation bouquet and aroma of young wines, 

conversely, a higher hydrolysis during bottle aging was observed which caused a 

significant decrease in the levels of acetate esters, particularly ethyl acetate (Lilly et al. 

2000). On the other hand, the deletion of both ATF1 and ATF2 completely stops the 

formation of isoamyl acetate (Verstrepen et al. 2003). 

The formation of acetate ester by yeast is regulated by the IAH1-encoded esterase. 

IAH1 regulates the accumulation of isoamyl acetate and other esters during fermentation, 

and consequently determines the flavour quality of wine (Lilly et al. 2006a). Yeast strains 

deficient in IAH1 accumulate much higher amounts of isoamyl acetate (Fukuda et al. 

1998) and its overexpression results in a significant decrease in the concentration of many 

esters, including isoamyl acetate, hexyl acetate, ethyl acetate, and 2-phenylethyl acetate, 

compared to control strains (Lilly et al. 2006a). 
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The availability of acetyl-CoA is also an important factor that contributes to the 

acetate ester formation. In a study using an Escherichia coli strain expressing the ATF2 

yeast gene, an increase of the levels of both CoA and acetyl-CoA was observed, which 

were responsible for an increase in the production of isoamyl acetate and by its turn, to 

an overexpression of the bacterial pantothenate kinase (panK) gene, which regulates CoA 

biosynthesis (Vadali et al. 2004). 

 

 
Figure II-5: The biosynthetic and degradation reactions of esters (adapted from Ugliano & 

Henschke 2009). 

 

 

 Higher alcohols  

Higher alcohols, also called fusel alcohols, are the most important compounds formed 

from amino acids produced by yeast during alcoholic fermentation (Ugliano and 

Henschke 2009; Styger et al. 2011b). These compounds are characterized by containing 

more than two carbon atoms and include the branched-chain alcohols 2-methylpropanol 

(isobutanol), 2-methylbutanol (amyl alcohol), and 3-methylbutanol (isoamyl alcohol), 

and the aromatic alcohols 2-phenylethanol and tyrosol (Ugliano and Henschke 2009). 

Particularly, 2- phenylethanol is considered one of the most important aromatic alcohols 

contributing to wine flavour (Ehrlich 1907; Hazelwood et al. 2008; Styger et al. 2011a). 

At high concentrations higher alcohols impart off-flavours, but lower concentrations 

make a crucial contribution to the flavour and aroma of wine (Nykänen 1986; Lambrechts 

and Pretorius 2000b).  

Higher alcohols are formed by decarboxylation and subsequent reduction of α-keto-

acids produced as intermediates of amino acids biosynthesis and catabolism (Figure II-

6). The process in which the amino acids are catabolized into higher alcohols is called 

Ehrlich pathway (Ehrlich 1907). This pathway impacts directly or indirectly on the 

synthesis of other aroma compounds (Lilly et al. 2006b; Hazelwood et al. 2008).  
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The transamination step of Ehrlich pathway is carried out by aminotransferases: the 

mitochondrial and cytosolic branched-chain amino acid (BCAA) aminotransferases and 

the aromatic amino acid aminotransferases I and II. The mitochondrial and cytosolic 

branched-chain amino acid (BCAA) aminotransferases are encoded by the genes BAT1 

and BAT2, respectively. The aromatic amino acid aminotransferases I and II are encoded 

by the genes ARO8 and ARO9, respectively (Eden et al. 1996; Kispal et al. 1996; Iraqui 

et al. 1998). In the following step, pyruvate decarboxylases, encoded by PDC1, PDC5, 

and PDC6, convert α-keto-acids into the correspondent aldehydes, which are then 

reduced to alcohols by alcohol dehydrogenases (Schure et al. 1998; Yoshimoto et al. 

2001; Ugliano and Henschke 2009). Studies have shown that when the BAT1 gene is 

overexpressed in a commercial wine yeast -VIN13-, increased concentrations of 3-

methybutanol, 2-methylpropanol and 2-methylpropanoic acid are produced (Lilly et al. 

2006a; Lilly et al. 2006b). On the other hand, if BAT2 gene is deleted the formation of 

these compounds is decreased. 

The last step of the Ehrlich pathway includes the reduction or oxidation of the fusel 

aldehydes to produce higher alcohols or fusel acids, respectively. The reduction of fusel 

aldehydes is carried out by alcohol dehydrogenases (Adh1p to Adh7p) (Larroy et al. 2002; 

Dickinson et al. 2003; Kondo et al. 2012), by the formaldehyde dehydrogenase Sfa1p 

(Hauser et al. 2007),  by the NADPH-dependent aldo-keto reductase Ypr1p (Ford and 

Ellis 2002) and by one of the putative aryl-alcohol dehydrogenases (Aad6p) (Styger et al. 

2011a). In 2011, a study has screened and characterized the ten genes with highest 

importance on higher alcohol formation, from which PAD1, SPE1, OYE2 and HOM2 

were the ones that present the most significant results (Styger et al. 2011a). At industrial 

scale, this knowledge provides excellent tools for the improvement of the wine flavour 

and aroma. 

The production of n-propanol is directly related with the initial amounts of nitrogen 

available and with the yeast growth, and appears not to be influenced by the structurally-

related amino acids threonine and α-aminobutyric acid, therefore the production of this 

alcohol is not made via Ehrlich pathway (Rapp and Versini 1996). 
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Figure II-6: Formation of higher alcohols and volatile acids from sugar and amino acids by 

Ehrlich pathway (adapted from Ugliano & Henschke 2009). 

 

 

 Volatile fatty acids 

Volatile fatty acids are present in wine in different forms: straight chain fatty acids 

usually referred to as short chain (C2–C4), medium chain (C6–C10), long chain (C12–

C18), and a group of branched-chain fatty acids that include 2-methyl propanoic, 2-

methyl butanoic, and 3-methyl butanoic acids (Ugliano and Henschke 2009). 

Volatile fatty acids are produced via Ehrlich pathway like higher alcohols. During the 

last stage of Ehrlich pathway the aldehyde formed can be reduced via NADH-dependent 

reaction to its respective higher alcohol or it can be oxidized via a NAD+-dependent 

reaction into a volatile carboxylic acid (Styger et al. 2011b). These reactions are catalysed 

by an alcohol dehydrogenase and by an aldehyde dehydrogenase, respectively (Dickinson 

et al. 2003; Vuralhan et al. 2005) – Figure II-7. 

Acetic acid is the most important volatile fatty acid produced during alcoholic 

fermentation contributing with 90% of the total wine volatile acidity (Ugliano and 

Henschke 2009). At elevated concentrations it imparts a vinegar-like character to wine. 

Commonly, excessive concentrations of acetic acid in wine are largely the result of the 

metabolism of ethanol by aerobic acetic acid bacteria and not produced by 
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Saccharomyces strains. This volatile fatty acid is formed by the action of aldehyde 

dehydrogenases from acetaldehyde, which is derived by the decarboxylation of pyruvate 

(Ugliano and Henschke 2009). The cytosolic acetaldehyde dehydrogenases are encoded 

by ALD6, ALD2 and ALD3, whereas the mitochondrial isoforms are encoded by ALD4 

and ALD5 (Navarro-Avino et al. 1999; Remize and Andrieu 2000; Pigeau and Inglis 

2007). The major isoforms involved in the production of acetic acid in wine are ALD6, 

ALD4 and ALD5 (Saint-Prix et al. 2004).  

 
Figure II-7: Acetic acid metabolism (adapted from Ugliano & Henschke 2009). 

 

 

 Volatile sulfur compounds 

Volatile sulfur compounds are potent aroma compounds that have very low sensory 

threshold values, ranging from ng/L to g/L, and generally confer a negative sensory 

contribution to wine (Rauhut 1993; Mestres et al. 2000; Vermeulen et al. 2005). In wine, 

sulfur compounds appear in different categories: sulphides, polysulfides, heterocyclic 

compounds, thioesters and thiols (Swiegers et al. 2005b). In generally, sulfur compounds 

are associated with negative descriptors such as cabbage, rotten egg, sulfurous, garlic, 

onion and rubber (Rauhut 1993; Mestres et al. 2000; Vermeulen et al. 2005). On the other 

hand, there are some sulfur compounds contributing with positive aromas to wine, as for 

instance strawberry, passionfruit and grapefruit (Tominaga et al. 1996; Tominaga et al. 

1998a; Tominaga et al. 1998b). Dimethylsulfide (DMS) is considered to be an exception 

since at low concentrations the asparagus, corn, molasses aromas can be considered 

pleasant in some type of wine (Ugliano and Henschke 2009). The development of sulfur 

compounds by yeasts involves different pathways such as, the metabolism of grape-
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derived sulfur-containing precursors, the degradation of sulfur-containing amino acids 

and degradation of sulfur-containing pesticides (Mestres et al. 2000) – Figure II-8. 

Generally, the research has focused its studies on H2S metabolism in yeast, particularly 

in response to changes in nutrient composition (Eschenbruch and Bonish 1976; Henschke 

and Jiranek 1991; Rauhut 1993; Linderholm et al. 2006; Swiegers et al. 2007).  

 

Hydrogen sulfide 

Hydrogen sulfide is a highly volatile thiol that imparts a ‘rotten egg’ aroma and has a 

very low odour threshold. Because of the frequent occurrence of this compound and the 

low aroma threshold (50–80 μg/L), it is one of the most common problems associated 

with the winery (Rankine 1963; Rauhut 1993). This sulfur compound can be formed from 

inorganic sulfur, sulfate and sulphite, or from organic sulfur compounds, cysteine and 

glutathione (Rankine 1963; Eschenbruch and Bonish 1976; Rauhut 1993; Spiropoulos et 

al. 2000). Sulfate is accumulated by two transporters, Sul1p and Sul2p, activated with 

ATP and reduced to H2S by the sulfate reductive assimilation pathway. In the last step of 

this pathway, sulphite is reduced to H2S by sulphite reductase which is encoded by MET5 

and MET10 genes (Ugliano and Henschke 2009). When present in the must, sulphite 

enters the cell by diffusion across the plasma membrane (Stratford and Rose 1986) and 

can be directly reduced to sulfide (Stratford and Rose 1985; Jiranek et al. 1996; Hallinan 

et al. 1999). 

The formation of H2S and other volatile compounds by degradation of the sulfur 

amino acids cysteine and methionine has been observed in laboratorial conditions. 

However, their roles under fermentative conditions are less clear (Eschenbruch and 

Bonish 1976; Jiranek and Langridge 1995; Moreira et al. 2002; Perpète et al. 2006). In 

nitrogen absence and depending on amino acid composition of the medium, cysteine is 

accumulated and degraded to H2S, pyruvate and ammonia by cysteine desulfydrase 

(Tokuyama et al. 1973). Cysteine can also be a precursor for dimethylsulfide (DMS) and 

2-mercaptoethanol (Ribéreau-Gayon et al. 2000b; Moreira et al. 2002). 

Under winemaking conditions, nutrient supplementation does not eliminated the risk 

of H2S production (Henschke and Jiranek 1991; Park et al. 2000; Spiropoulos et al. 2000). 

Some studies have shown the complexity of regulation of the sulfate reductive pathway 

(Spiropoulos et al. 2000; Linderholm et al. 2006; Linderholm et al. 2008). In order to 
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lower excess levels of H2S into acceptable concentrations, sulfite reductase activity could 

be monitored. However, no commercial strains have been developed yet with this aim 

(Zambonelli and Mutinelli 1975; Sutherland et al. 2003). Overexpression of genes 

involved in H2S sequestration (MET17) and S-amino acid biosynthesis (CYS4 and MET6) 

suggests that metabolic flux might be a limiting factor in order to control H2S liberation 

(Ugliano and Henschke 2009). 

 

Volatile sulfur compounds 

S. cerevisiae has the capacity to produce negative volatile sulfur compounds such as 

H2S, as described previously. The conditions that favour H2S production also favour the 

production of other volatile sulfur compounds, such as methanethiol and 

methanethioacetate (Rauhut et al. 1996), suggesting the relation with the methionine 

catabolism (Ugliano and Henschke 2009). Some sulfur-containing flavour compounds 

contribute positively to wine (Swiegers and Pretorius 2005), such as furfurylthiol (‘roast 

coffee’ aroma) (Tominaga et al. 2000), the ‘fruity’ polyfunctional thiols 3-

mercaptohexan-1-ol (3MH), 4-mercapto-4-methyl-pentan-2-one (4MMP), and 3-

mercaptohexyl acetate (3MHA), that impart ‘passionfruit’, ‘grapefruit’, ‘gooseberry’, 

‘guava’ and ‘box hedge’ aromas (Swiegers and Pretorius 2005; Dubourdieu et al. 2006). 

However, there are some volatile organic compounds that contribute negatively to wine, 

including methanethiol (‘cooked cabbage’ aroma), dimethylsulfide, dimethyldisulfide 

and dimethyltrisulfide (‘cabbage’, ‘cauliflower’ and ‘garlic’ aromas), and 

methylthioesters (‘cooked cauliflower’, ‘cheesy’ and ‘chives’ aromas) (Cordente et al. 

2012). Yeasts that have more capacity to produce H2S also produce higher concentrations 

of thioacetic acid esters of methanethiol and ethanethiol (Rauhut et al. 1996). 
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Figure II-8: Sulfur metabolism in Saccharomyces cerevisiae (adapted from Ugliano & Henschke 
2009). 

 

 

 

Biotechnological approaches for yeast improvement 

 
Today, industrial biotechnology represents a well-established field with 

significant government, corporate and academic investment. Yeast has been extensively 

used for making bread, wine, beer, sake and some other fermentative products. Yeast also 

played an important role as a model organism in biochemistry, genetics and molecular 

biology. Nowadays, the need for new wine yeasts derives from both producer- and 

consumer-oriented requirements that aims for strains with improved technological 

properties and that leads to better and more diversified products. 

Wine improvement can be achieved by targeting some important organoleptical 

and sensorial properties, such as higher ethanol tolerance, improved wholesomeness or 

lower ethanol content (Blondin and Dequin 1998; Dequin 2001; Verstrepen et al. 2006). 
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Several approaches has been evaluated with the last years with the objective of obtain 

strain improvement. With the emergency of molecular genetics and genomics, it became 

possible to develop genetically modified yeasts strains (GMY) for the biofuel, bakery and 

beverage industries. However, wine yeast strains obtained by these techniques are still 

perceived in a very controversial manner by consumers and probably will not receive 

approval to become commercialized (Schuller 2010). The improvement of aromatic 

profile of wine has been extensively exploited and several approaches have been carried 

out to develop S. cerevisiae strains able to produce higher amounts of the desirable 

compounds that contribute to wine aroma and flavour. Constitutive expression or 

overexpression of enzymes such as endoglucanases, arabinofuranosidases, 

endoxylanases, which catalyze the cleavage of glycosylated precursors, lead to the 

production of fruity wines (Perez-Gonzalez et al. 1993; Ganga et al. 1999; Manzanares et 

al. 2003). Swiegers and co-workers developed a S. cerevisiae strain which expresses 

tryptophanase with strong lyase activity that released 25 times more volatile thiols and 

displayed an intense passionfruit aroma on produced wines (Swiegers et al. 2007). 

Overexpression of alcohol acetyltransferase gene (ATF1) and ethanol hexanoyl 

transferase gene (EHT1) increased the concentrations of acetate and ethyl esters, 

respectively (Lilly et al. 2006a). It is known that glycerol contribute to the viscosity and 

sweetness of wine and its presence in wine is desirable. Overexpession of glycerol-3-

phosphate dehydrogenase encoding gene GPD1 increased glycerol production and 

slightly decreased ethanol formation (Michnick et al. 1997).  

Another method used nowadays to obtain improved yeast strains is based on the 

use of quantitative traits controlled by multiple genetic loci, referred to as quantitative 

trait loci – QTL -, as detailed previously in this section.  

Due to the controversy raised by the use of GMY, several approaches have 

emerged analysing the diversity that nature has created. Therefore, the study of the natural 

variability of yeasts is mandatory, in order to search for strains with desirable traits, and 

to produce wine without resort to genetic engineering. The diversifying selection that 

yeasts undergo after expansion into new environments and during adaptation to stressful 

conditions was shown to lead to strain diversity (Diezmann and Dietrich 2009; Dunn et 

al. 2012; Borneman et al. 2013), resulting many times in adaptive genomic changes, such 

as gene amplifications, chromosomal-length variations, chromosomal rearrangements 
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(especially amplifications and deletions) and copy-number increases (Dunham et al. 

2002; Pérez-Ortín et al. 2002; Carro et al. 2003; Schacherer et al. 2007; Carreto et al. 

2008; Borneman et al. 2008; Diezmann and Dietrich 2009; Liti et al. 2009; Dunn et al. 

2012; Salinas et al. 2012; Bleykasten-grosshans et al. 2013; Ibáñez et al. 2014). This 

search for optimal natural strains and the limitations of the use of genetic modified yeasts 

requires the interconnection of different “omics” approaches which allow a holistic view 

of the different biological systems.  
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Introduction 
 

The use of commercial starter yeasts to guarantee the control of the fermentation 

process and the reproducibility and predictability of wine quality is a common practice in 

commercial wine production. The advantages of fermentations containing 

Saccharomyces cerevisiae starter cultures relies on the fact that they are rapid and produce 

wine with desirable organoleptic characteristics through successive fermentations and 

harvests (Fleet 1998; Schuller 2010). Currently, there are about 200 commercial S. 

cerevisiae winemaking strains available, and it is a common practice among wineries to 

use commercial starter yeasts that were obtained in other winemaking regions. 

S. cerevisiae strains from diverse natural habitats harbor a vast amount of 

phenotypic diversity (Camarasa et al. 2011), driven by interactions between yeast and the 

respective environment. In grape juice fermentations, strains are exposed to a wide array 

of biotic and abiotic stressors (Bisson 1999), which may lead to strain selection and 

generate naturally arising strain diversity. Outside the wineries, this diversifying selection 

occurs due to unique pressures imposed after expansion into new habitats (Frezier and 

Dubourdieu 1992; Sabate et al. 1998; Lopes et al. 2002; Schuller et al. 2005; Valero et al. 

2007). This agrees with findings showing that wine and sake strains are phenotypically 

more diverse than would be expected from their genetic relatedness (Kvitek et al. 2008). 

Recent phylogenetic analyses of S. cerevisiae strains showed that the species as a 

whole consists of both “domesticated” and “wild” populations. DNA sequence analysis 

revealed that domesticated strains derived from two independent clades, corresponding 

to strains from winemaking and sake. “Wild” populations are mostly associated with oak 

trees, nectars or insects (Greig and Leu 2009; Liti et al. 2009; Schacherer et al. 2009a). 

Although some S. cerevisiae strains are specialized for the production of alcoholic 

beverages, they were derived from natural populations that were not associated with 

industrial fermentations. This was proposed once that the oldest lineages and the majority 

of variation were found in strains from sources unrelated to wine production (Fay and 

Benavides 2005b). 

The phenotypic diversity of S. cerevisiae strains has been explored for decades in 

strain selection programs to choose the ones that enhance the wine´s sensorial 

characteristics and confer typical attributes to specific wines. These strains are used as 

commercial ones by winemakers to efficiently ferment grape musts and produce desirable 
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metabolites, associated with reduced off-flavours (Briones et al. 1995; Ramírez et al. 

1998). Strain selection approaches are mentioned in many studies aiming to characterize 

S. cerevisiae isolates obtained from winemaking regions worldwide. The most relevant 

physiological tests refer to fermentation rate and optimum fermentation temperature, 

stress resistance (ethanol, osmotic and acidic), killer phenotype, sulphur dioxide (SO2) 

tolerance and production, hydrogen sulphide (H2S) production, glycerol and acetic acid 

production, synthesis of higher alcohols (e.g. isoamyl alcohol, n-propanol, isobutanol), 

-galactosidase and proteolytic enzyme activity, copper resistance, foam production and 

flocculation (Mannazzu et al. 2002). 

In a previous work from our laboratory (Franco-Duarte et al. 2009) the phenotypic 

and genetic variability of 103 S. cerevisiae strains from the Vinho Verde wine region 

(Northwest Portugal) was evaluated using mainly taxonomic tests of nterest in 

winemaking. Several data mining procedures to estimate a strain´s phenotypic behavior 

based on its genotypic data were then applied. This study was, to our best knowledge, the 

first attempt to computationally associate genotypic and phenotypic data of S. cerevisiae 

strains. We used subgroup discovery techniques to successfully identify strains with 

similar genetic characteristics (microsatellite alleles) that exhibited similar phenotypes. 

Within the present study we expanded the strain collection to 172 isolates from 

worldwide geographical origins and technological groups (wine, bread, sake, etc.) and 

included 30 tests with biotechnological relevance for the selection of winemaking strains. 

Our objective was to gain a deeper understanding of the phenotypic diversity of a global 

strain collection and to infer computational models that predict the biotechnological 

potential or geographic origin of a strain from its phenotypic profile. 
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Material and Methods 
 
Strain collection 

A S. cerevisiae strain collection was constituted, comprising 172 strains with 

different geographical origins and technological applications or origins (Figure III-1 and 

Supplementary data S1). This collection includes strains used for winemaking 

(commercial and natural isolates that were obtained from winemaking environments), 

brewing, bakery, distillery (sake, cachaça) and ethanol production, laboratory strains and 

also strains from particular environments (e.g. pathogenic strains, isolates from fruits, soil 

and oak exudates). All strains were coded (Zn) and stored at -80 ˚C in cryotubes 

containing 1 mL glycerol (30% v/v). 

 

 

Phenotypic characterization 

Phenotypic screening was performed considering two sets of tests, including a 

wide range of physiological traits that are also important from an oenological point of 

view.  

In a first set of phenotypic tests, strains were inoculated into replicate wells of 96-

well microplates. Isolates were grown overnight in YPD medium (yeast extract 1% w/v, 

peptone 1% w/v, glucose 2% w/v), and the optical density (A640) was then determined 

and adjusted to 1.0. After washing with peptone (1% w/v), 15 μL of this suspension were 

inoculated in quadruplicate in microplate wells containing 135 μL of white grape must of 

the variety Loureiro, to a cellular density of 5×106 cells/mL (A640 = 0.1). Final optical 

density was determined after 22 h (30 ˚C, 200 rpm) in a microplate spectrophotometer. 

All microplates were carefully sealed with parafilm, and no evaporation was observed for 

incubation temperatures of 30 ˚C and 40 ˚C. 

 



 

 
 

 

Figure III-1: Geographical location of the isolation sites of the 172 yeast strains used throughout this thesis. 
Underlined identifiers indicate the original designation of sequenced strains (Liti et al. 2009).  
Symbols represent strains’ technological applications or origin:  - wine and vine;  - commercial wine strain;  - clinical;  - natural isolates;  

 - sake;  - other fermented beverages;  - beer;  - baker;  - laboratory;  - unknown biological origin.
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This approach included the following tests: growth at various temperatures (18, 

30 and 40 ˚C), evaluation of ethanol resistance (6, 10 and 14%, v/v), tolerance to several 

stress conditions caused by extreme pH values (2 and 8), osmotic/saline stress (0.75 M 

KCl and 1.5 M NaCl). Growth was also assessed in the presence of potassium bisulphite 

(KHSO3, 150 and 300 mg/L), copper sulphate (CuSO4, 5 mM), sodium dodecyl sulphate 

(SDS, 0.01%, w/v), the fungicides iprodion (0.05 and 0.1 mg/mL) and procymidon (0.05 

and 0.1 mg/mL), as well as cycloheximide (0.05 and 0.1 μg/mL). These tests were carried 

out using Loureiro grape must supplemented with the mentioned compounds. The growth 

in finished wines was determined by adding glucose (0.5 and 1%, w/v) to a commercial 

white wine (12.5% v/v alcohol content). Galactosidase activity was evaluated by adding 

galactose (5% w/v) to Yeast Nitrogen Base (YNB, DifcoTM, Ref. 239210), using test tubes 

with 5 mL culture medium and 5×106 cells/mL, followed by 5 to 6 days of incubation at 

26 ˚C. 

Other tests were performed using solid media. Overnight cultures were prepared 

as previously described, adjusted to an optical density (A640) of 10.0 and washed. One μL 

of this suspension was placed on the surface of the culture media mentioned below. 

Hydrogen sulphide production was evaluated using BiGGY medium (SIGMA-

ALDRICH, Ref. 73608) (Jiranek et al. 1995), followed by incubation at 27 ˚C for 3 days. 

The colony colour, which represents the amount of H2S produced was then analysed, 

attributing a score from 0 (no colour change) to 3 (dark brown colony). Ethanol resistance 

(12%, v/v) and the combined resistance to ethanol (12, 14, 16 and 18%, v/v) and sodium 

bisulphite (Na2S2O5; 75 and 100 mg/L) was evaluated by adding the mentioned 

compounds to Malt Extract Agar (MEA, SIGMA-ALDRICH, Ref. 38954), and growth 

was visually scored after incubation (2 days at 27 ˚C). 

All phenotypic results were assigned to a class between 0 and 3 (0: no growth 

(A640 = 0.1) or no visible growth on solid media or no colour change of the BiGGY 

medium; 3: at least 1.5 fold increase of A640, extensive growth on solid media or a dark 

brown colony formed in the BiGGY medium; scores 1 and 2 corresponded to the 

respective intermediate values) as shown in Table III-1. 
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Data analysis 

The phenotypic variability was evaluated by principal component analysis (PCA), 

available in the Unscrambler X software (Camo). The BioNumerics software (Applied 

Maths) was used for clustering, dendogram drawing and calculation of cophenetic 

correlation coefficients. Mann-Whitney test was applied to the phenotypic data set, 

including Bonferroni correction, to find relevant associations between phenotypic data 

and the strain’s technological or geographical group. A set of standard predictive data-

mining methods, such as naïve Bayesian classifier and k nearest-neighbors algorithm (Tan 

et al. 2006), as implemented in the Orange data mining suite (Demsar et al. 2004; Curk 

et al. 2005), were used for the inference of prediction models. For prediction scoring, area 

under the receiver operating characteristics (ROC) curve (AUC) was used (Hanley and 

McNeil 1982), which estimates the probability that the predictive model would correctly 

differentiate between distinct locations or distinct technological applications or origins, 

given the associated pairs of strains. 

 

 

Results 

 
Strain collection  

A S. cerevisiae collection was constituted with 172 strains obtained from different 

geographical origins as shown in the map in Figure III-1. As detailed in Supplementary 

data S1, the technological applications or environments from where the strains were 

derived were: wine and vine (74 isolates), commercial wine strains (47 isolates), other 

fermented beverages (12 isolates), other natural environments – soil woodland, plants and 

insects (12 isolates), clinical (9 isolates), sake (6 isolates), bread (4 isolates), laboratory 

(3 isolates), beer (1 isolate), and four isolates with unknown origin.  

The number of strains belonging to each group of technological applications or 

environment varies between 1 and 74. To assess a possible influence of a sample bias, 

due to an unequal number of representatives from each group, we determined the 95% 

confidence intervals for average Manhattan distance (Efron and Tibshirani 1995) between 

two strains in a selected group (composed by at least 5 strains). The distance was 

estimated based on the strains’ entire phenotypic profile. The lower and upper bound of 



Chapter III | Phenotypic characterization of a S. cerevisiae collection comprising strains  
of worldwide geographical origins and different technological applications  

_______________________________________________________________________ 
 

49 
 

each confidence interval were determined by percentiles of average distances for 10000 

bootstraps samples. For example, with this analysis we showed that while the group of 

commercial strains (47 isolates) includes 31 commercial strains isolated in France, this 

should not bias our statistical analysis on utility of strains. Namely, the 95% confidence 

interval for average distances between pairwise combinations of commercial strains from 

France (6.37, 8.01) overlaps with the confidence interval of commercial strains from other 

geographical origins (4.97, 8.13). The inclusion of a higher number of strains from France 

does not change the limits of the confidence interval of the group of commercial strains. 

A similar result was observed for the group of wine and vine strains that includes 

numerous strains from Portugal: the 95% confidence interval for average distances 

between pairwise combinations of strains from Portugal (8.12, 9.83) overlaps with the 

same interval for wine and vine strains from other geographical locations (8.06, 9.59). 

 

Phenotypic characterization 

A phenotypic screen was devised to evaluate strain specific patterns for a set of 

physiological tests, including also tests that are important for winemaking strain selection. 

The first group of tests was performed in microplates using supplemented grape must, 

whereas a high reproducibility was obtained between experimental replicates. The second 

set of tests consisted in the evaluation of growth in solid culture media (BiGGY medium, 

Malt Extract Agar supplemented with ethanol and sodium metabisulphite). Galactosidase 

activity was evaluated by growth evaluation using Yeast Nitrogen Base supplemented 

with galactose, as indicated in the materials and methods section. After incubation, 

growth was evaluated by visual scoring (solid media) or by A640 determination (liquid 

media). Table III-1 summarizes the number of strains belonging to each of the 

phenotypic classes. 

Similarities between strains were evident, but each strain showed a unique 

phenotypic profile. 
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Table III-1: Number of strains belonging to different phenotypic classes, regarding values of 
optical density (Class 0: A640=0.1; Class 1: 0.2<A640<0.4; Class 2: 0.5<A640<1.0; Class 3: 
A640>1.0), growth patterns in solid media, or colour change in BiGGY medium. 
 

Phenotypic test Type of 
medium 

Phenotypic class of growth 
0 1 2 3 

30 ˚C liquid (must) 0 0 4 168 
18 ˚C liquid (must) 51 120 1 0 
40 ˚C liquid (must) 28 14 80 50 
pH 2 liquid (must) 101 68 3 0 
pH 8  liquid (must) 0 0 19 153 
KCl (0.75 M) liquid (must) 0 2 146 24 
NaCl (1.5 M) liquid (must) 84 79 9 0 
CuSO4  (5 mM) liquid (must) 124 45 3 0 
SDS (0.01% w/v) liquid (must) 139 32 1 0 
Ethanol 6 % (v/v) liquid (must) 0 2 36 134 
Ethanol 10 % (v/v) liquid (must) 17 28 85 42 
Ethanol 14 % (v/v)  liquid (must) 82 35 50 5 
Ethanol 12 % (v/v)  solid (MEA) 150 20 1 1 
Ethanol 12 % (v/v) + Na2S2O5 (75 mg/L) solid (MEA) 159 13 0 0 
Ethanol 12 % (v/v) + Na2S2O5 (100 mg/L) solid (MEA) 169 3 0 0 
Ethanol 14 % (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 148 24 0 0 
Ethanol 16 % (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 163 9 0 0 
Ethanol 18 % (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 165 7 0 0 
KHSO3 (150 mg/L) liquid (must) 34 11 26 101 
KHSO3 (300 mg/L) liquid (must) 57 19 29 67 
Wine supplemented with glucose (0.5% w/v) liquid  103 45 24 0 
Wine supplemented with glucose (1% w/v) liquid  115 41 16 0 
Iprodion (0.05 mg/mL) liquid (must) 1 0 28 143 
Iprodion (0.1 mg/mL) liquid (must) 1 1 13 157 
Procymidon (0.05 mg/mL) liquid (must) 0 0 7 165 
Procymidon (0.1 mg/mL) liquid (must) 1 0 9 162 
Cycloheximide (0.05 μg/mL) liquid (must) 3 0 7 162 
Cycloheximide (0.1 μg/mL) liquid (must) 2 1 19 150 
H2S production solid (BiGGY)   1 11 105 55 
Galactosidase activity liquid (YNB) 0 21 98 53 
 
MEA: Malt Extract Agar 
YNB: Yeast Nitrogen Base 
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A total of 5160 phenotypic data points was obtained, from 172 strains and 30 tests. 

The concentrations of the added compounds were chosen to obtain a wide range of 

tolerance patterns. As expected, all strains grew well at 30 ˚C, contrary to the growth at 

40 ˚C, where a large phenotypic diversity was observed. The temperature of 18 ˚C 

revealed to be very limitative for the strains growth, with only one strain being capable 

of ferment must with final optical density above 0.4 (class higher then 2). Most strains 

were able to grow well at pH 8, contrarily to the pH value of 2. NaCl and CuSO4 added 

to the must revealed to be very limited (only 9 strains in class 2 for NaCl, three strains for 

CuSO4, and zero in class 3 for both cases), contrary to the KCl with 146 strains growing 

until class 2 of growth. Similar results were obtained when strains were exposed to SDS 

detergent in the medium, once that the large majority of strains (132) didn´t show any 

growth when this compound was present in the medium. As expected, cellular growth 

decreased with increasing concentrations of ethanol (6 - 14% v/v, liquid media), whereas 

only five isolates were able to grow well at the highest ethanol concentration of 14% 

(v/v). When ethanol was combined with sodium metabisulphite in solid culture media, 

growth was reduced with increasing concentrations of ethanol (12 to 18%, v/v) or sodium 

metabisulphite (50 to 100 mg/L). Resistance to sulphur dioxide, which is an antioxidant 

and bacteriostatic agent used in vinification, was tested by growth in the presence of wine 

must supplemented with potassium bisulphite (KHSO3). For the concentrations of 150 

and 300 mg/L, 101 and 67 strains achieved the highest class of growth, respectively. 

Resistance to the fungicides iprodion, procymidon and to cycloheximide was rather high 

at the indicated concentrations. Hydrogen sulphide production was tested using BiGGY 

medium. The majority of the strains were intermediate H2S producers with the exception 

of one strain (from the group of wine and vine strains) that did not produce detectable 

levels of H2S. 

A global view of strain´s phenotypic diversity is shown in Figures III-2 and III-

3. Principal component analysis (PCA) of phenotypic data (Figure III-2) show the 

segregation of all 172 strains (scores) and the loadings for phenotypic variables in the 

first two principal components.  
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Figure III-2: Principal component analysis of phenotypic data for 172 strains: 
A:  30 phenotypic tests (loadings).  
B:  172 strains (scores) distribution. Symbols represent strains’ technological applications or 
origin:  - wine and vine;  - commercial wine strain;  - clinical;  - natural isolates;  - sake; 

 - other fermented beverages;  - beer;  - bread;  - laboratory;  - unknown biological 
origin. 
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The phenotypes responsible for the highest strain variability (Figure III-2A) were 

associated with growth patterns in the presence of potassium bisulphite (KHSO3), at 40 

˚C, in a finished wine supplemented with glucose (0.5%, w/v), and resistance to ethanol 

in liquid media (10 and 14%, v/v). PC-1 (31%) and PC-2 (15%) explained 46% of strain 

variability and segregated strains by phenotypic behavior into some patterns, as shown in 

Figure III-2B. The group of sake strains ( ) and the group of natural strains ( ) tended 

to be separated by the second principal component, accumulating in the lower part of the 

PCA, indicating that they were influenced by the presence of ethanol in the medium 

(higher resistance), and by the growth in the presence of potassium bisulphite (300 mg/L, 

lower resistance). 
Strains isolated from vines or wine ( ) showed a heterogeneous phenotypic 

behaviour since they were dispersed throughout the PCA plot for both components. A 

similar tendency was observed for commercial strains ( ); however, the majority of 

strains tended to concentrate in the upper part of the PCA, indicative of a trend to higher 

KHSO3 resistance and lower ethanol resistance. The nine clinical strains ( ) were 

distributed in both PCA components, showing no discriminant results in any of the 

phenotypic tests. 

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) algorithm was 

used to hierarchical cluster the 172 strains. The dissimilarity between two strains was 

measured using Euclidean distance (Figure III-3). The combined phenotypes of wine 

strains did not separate this group of strains that were rather scattered throughout all the 

clusters. Commercial strains ( ) tended to be more predominant in the clusters shown in 

the lower part of the dendogram, where some of the clusters are constituted only by 

commercial strains. Remaining groups show no individual grouping, which confirmed 

the results of the PCA. 
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Figure III-3: Dendogram showing phenotypic variation of 172 strains under 30 growth 
conditions. 

Strains are organized according to UPGMA-based hierarchical clustering (cophenetic 
correlation factor = 0.75), using Euclidean distance correlation to estimate phenotypic 
profile similarities. Symbols represent strains’ technological applications or origin:  – 
wine and vine;  – commercial wine strain;  – clinical;  – natural isolates;  – sake; 

 – other fermented beverages;  – beer;  – baker;  – laboratory;  – unknown 
biological origin. 

 

 

We further analysed phenotypic diversity through k-means clustering algorithm. 

Using silhouette score (Rousseeuw 1987) we identified 3 distinct clusters (Table III-2), 

composed of 38, 90 and 44 strains, respectively. The phenotypes that most distinguished 

the strains, as indicated by high values of information gain to classify strains into clusters, 

were growth at the highest and lowest temperatures tested (18 and 40 ˚C). Cluster 2 was 

constituted of strains that didn´t grow at both 18 and 40 ˚C, whereas cluster 1 and 3 

included strains that grew at both temperatures, but with more pronounced growth at 40 

˚C, in particular for strains of cluster 3. Other tests that were also relevant for the cluster 

separation included growth in the presence of NaCl (1.5M), KHSO3 (150 and 300 mg/L), 

ethanol 6% (v/v) and at pH 2. The strain cluster membership is displayed in the 

phenotypic data PCA visualization (Supplementary data S3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



PhD Thesis | Inês Mendes 
_______________________________________________________________________ 

56 
 

Table III-2: Phenotypic tests mostly contributing for the division of strains into three clusters, in 
terms of information gain, obtained with k-means clustering algorithm. 
Numbers in the last three columns represent the most characteristic value in terms of phenotypic 
class of strains included in the clusters, for the mentioned phenotypic tests. 
 

Phenotypic test Information gain Cluster 

1 2 3 

18 ˚C 0.33 1 0 1 

40 ˚C 0.33 2 0 3 

NaCl (1.5M) 0.26 0 0 1 

KHSO3 (300 mg/L) 0.23 3 0 3 

Ethanol 6% (v/v) – liquid medium 0.23 3 2 3 

pH 2 0.21 0 0 1 

KHSO3 (150 mg/L) 0.21 3 0 3 

Total number of strains  38 90 44 

 
 

 

Computational analysis 

Phenotypic results of the 172 S. cerevisiae strains was further used in statistical 

tests in order to search for relationships with the strains origin. Mann-Whitney test is 

mostly used to identify statistically significant associations between two data sets in 

which data instances in each group are measured on ordinal level and when there are an 

unequal number of members in the classes to be compared. This test was used to search 

for relationships between phenotypic results for the 172 strains and their shared 

geographical origin or technological application group. This test was used as described in 

(Mendes et al. 2013) and revealed 300 associations between phenotypes and 

technological application or origin of strains, whereas statistical significance was found 

for 11 associations (Bonferroni adjusted p-value lower than 0.1). In this analysis the most 

significant associations between a phenotypic class and a technological group were 

reported, together with the results of the computation of the probability of each 

phenotypic class (0-3) according to its contribution to the observed association (Mendes 
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et al. 2013 – Table 3). The reported results identified two associations for the resistance 

to iprodion, whereas class 3 and 2 were associated with strains collected from 

wine/vineyards and with commercial strains, respectively. Capacity to grow in the 

presence of potassium bisulphite (150 mg/L, classes 2 and 3) was associated with 

commercial wine strains. Natural isolates (87% – 89%) were associated with class 2 of 

growth in wine supplemented with glucose, both at 0.5 and 1% (w/v), contrarily to 57% 

of commercial strains that were unable to grow in wine supplemented with glucose (0.5%, 

w/v). The lower ability of commercial strains to grow at higher ethanol concentrations 

was also supported by the finding of one significant association for absent growth (class 

0) in liquid medium containing ethanol (14%, v/v). About half of the strains included in 

this group shared the inability to grow in must containing SDS (0.01%, w/v) and CuSO4 

(5 mM), but grew well in cycloheximide supplemented must (76% of strains, class 2).  

The results present in this work were also used in the same publication to construct 

a model that would predict a strain´s technological group from its phenotypic profile. K-

nearest neighbor algorithm (kNN) and naïve Bayesian classifiers (Tan et al. 2006), as 

implemented in the Orange data mining suite were used for modelling, and the predictive 

performance of both classifiers was evaluated in terms of area under the Receiver-

Operating-Characteristics (ROC) curve, using 5-fold cross validation (Hanley and 

McNeil 1982). In Table 4 of (Mendes et al. 2013) a confusion matrix is shown considering 

naïve Bayesian classifications in test data sets of cross-validation. Cross validated AUC 

score was 0.70. Correct assignments were found for the larger groups of commercial wine 

strains and strains obtained from wine and vineyards, where 36 (77%) and 54 (73%) 

strains, respectively, were accurately allocated. The same computational technique was 

also used to explore which phenotypes mostly contributed to the assignment of a strain to 

the commercial wine group. In Figure 3 of the same publication a nomogram is 

represented that shows naïve Bayesian classifier results (Mozina et al. 2004). Three 

phenotypes were considered by the classifier as the ones contributing more positively to 

build the model, having the remaining ones a smaller impact. To predict the commercial 

potential of a strain, the contribution of each phenotype was scored in the scale from -100 

to 100, and the individual scores were summed-up to readout the probability of the 

predicted class. For the present data set, growth in must containing the fungicide iprodion 

(0.05 mg/mL), in cycloheximide (0.1 μg/mL) and in the presence of potassium bisulphite 
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(150 mg/L) were the three features with the most relevant contribution for the 

mathematical assignment of a strain to the commercial group. The probability of a strain 

to be assigned to the group of commercial strains is 0.27 (27%) when considering the 

strains entire phenotypic profile and increases to 0.95 (95%) when only the three 

phenotypic results mentioned in panel A are taken into consideration, as shown in the 

probability scale present in panel B. 
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Discussion 
Franco-Duarte et al. (2009) performed a genotypic and phenotypic 

characterization of 103 S. cerevisiae strains from a Vinho Verde Portuguese winemaking 

region and developed computational techniques to relate both set of data. Subgroups were 

found for strains sharing allelic combinations and specific phenotypes such as low ethanol 

resistance, growth at 30 ˚C and growth in media containing galactose, raffinose or urea. 

In the present work, we extended the work to a phenotypically more heterogeneous strain 

collection comprising 172 S. cerevisiae isolates from worldwide origins, and used 

computational methods to relate the phenotype with the strain´s origins and to make 

predictions about a strain´s biotechnological potential based on phenotypic data. The 

group of phenotypic tests used herein was based on approaches that are generally applied 

for the selection of S. cerevisiae winemaking strains (Mannazzu et al. 2002). 

The collection of 172 strains from worldwide geographical origins revealed a high 

phenotypic diversity (Figures III-2 and S2, and Table III-2), which is in agreement with 

previous studies (Brandolini et al. 2002; Agnolucci et al. 2007; Kvitek et al. 2008; Franco-

Duarte et al. 2009; Salinas et al. 2010; Camarasa et al. 2011; Warringer et al. 2011). A 

significantly higher phenotypic diversity was observed in the present study compared to 

our results from 2009 using 103 Portuguese wine yeast strains (Franco-Duarte et al. 

2009). In particular, the inclusion of new tests compared to our previous study allowed a 

more detailed analysis of the phenotypic variability of strains associated with winemaking 

environments. Recent studies aimed to describe the elements that shaped the genomes of 

S. cerevisiae strains, suggesting that populations comprise distinct domesticated and 

natural groups, as well as mosaics within these groups, based on strain´s origin and 

application (Schacherer et al. 2007; Liti et al. 2009; Goddard et al. 2010). Clinical isolates 

for example, do not derive from a common ancestor, but rather represent multiple events 

in which environmental strains opportunistically colonize humans (Schacherer et al. 

2007; Muller and McCusker 2009). 

Genetic rearrangements and intra-strain variation are characteristic for this species 

(Dunn and Ellis 2005; Valero et al. 2007), which might explain the rather high phenotypic 

variability that was described in recent studies. Camarasa et al. (2011) showed that some 

phenotypes (resistance to high sugar concentrations, ability to complete fermentation and 

low acetate production) were able to distinguish groups of strains according to their 
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ecological niches, providing evidence for phenotypic evolution driven by environmental 

adaptation. This high phenotypic variation in stressful conditions was also revealed by 

Kvitek et al. (2008) showing the existence of unique features shared by strains from 

similar habitats. Our data are in agreement with the previously mentioned studies 

regarding the high phenotypic diversity. They also confirm the findings of Legras and co-

workers (Legras et al. 2007a), that found population substructures of S. cerevisiae strains 

according to their technological application or origin, using multilocus microsatellite 

typing. In the work of Legras, only 28% of the diversity was associated with geographical 

origins, which suggests local domestication events. We herein investigated the utility of 

data mining to improve our understanding of relations between phenotypes and the 

strains’ technological application or origin. The developed models can also be useful to 

optimize screening tests and to find commercial wine yeast candidates from strain 

collections. 

The present work produced results that were analysed using statiscal methods, 

being the main outcomes already published (Mendes et al. 2013). Using Mann-Whitney 

test, 11 significant associations were found between a particular phenotypic result and a 

technological group. The most significant results were found for the resistance to 

iprodion, growth in potassium bisulphite and in wine supplemented with glucose. 

Iprodion is a dicarboximide contact fungicide used to control a wide variety of fungal 

pests on vegetables, ornamentals, pome and stone fruit, root crops, cotton and sunflowers. 

S. cerevisiae shows higher resistance to this fungicide than other yeast species such as 

Candida albicans. In this species, iprodion stimulates glycerol synthesis and inhibits the 

cell growth for several days, contrarily to S. cerevisiae where a low toxicity was observed 

(Ochiai et al. 2002; Čadež et al. 2010). Our results showed that iprodion resistance (0.05 

mg/mL) was higher in strains from wine and vineyards in comparison to commercial wine 

strains. The higher iprodion resistance among strains obtained from wineries and 

vineyards might be explained by the evolution of this trait upon recurrent exposure, which 

does not apply for commercial wine strains that are added to clarified musts that should 

not contain this fungicide. The low ethanol resistance of commercial wine strains in liquid 

media containing 14% (v/v) ethanol was somehow unexpected, because these strains are 

usually selected for high ethanol resistance. This could be explained by the fact that the 

mathematical relations were observed for ethanol concentrations above the values that 
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usually occur in wines (10-13%, v/v). Results showed also that commercial strains tended 

to a better growth in media containing potassium bisulphite, a compound used as wine 

antiseptic and antioxidant, reflecting also an adaptive mechanism among this group of 

strains. 

We found that the large phenotypic variability between strains could be associated 

with the technological application or origin of the strains rather than their geographical 

origin, once that no relevant relations were found for the last analysis (data not shown). 

The naïve Bayesian classifier was used to assign a strain to their technological group, 

based on their phenotypic profile (Mendes et al. 2013). This association was achieved for 

the majority of strains belonging to the commercial and wine and vine groups (77% and 

73%, respectively). The cross-validated performance of this method yielded an AUC 

score of 0.70, that is considered as moderate (Hanley and McNeil 1982) and lies in 

between the values of an arbitrary and perfect classification (AUC=0.5 and 1.0, 

respectively). Poor results were obtained for the remaining groups, which is due to the 

corresponding small number of isolates. These results demonstrate the potential of the 

predictive models to classify strains based on results of phenotypic screens. Bayesian 

classifier used the strains phenotypic profiles for prediction of commercial strains, and 

identified 3 of the 30 phenotypic tests (growth in musts containing iprodion (0.05 

mg/mL), cycloheximide (0.1 μg/mL) or potassium bisulphite (150 mg/L)) as the ones 

providing more information for the assignment of strains to the commercial group. When 

using only 3 tests, rather than the entire phenotypic profile, the probability of a strain to 

be classified as commercial increases significantly (from 27% to 95%). 

In conclusion, our results demonstrate the usefulness of computational approaches 

to describe phenotypic variability among groups of S. cerevisiae strains that also might 

occur as adaptive mechanisms in specific environments. The herein developed models 

can make predictions about the biotechnological potential of strains and simplify the 

selection of candidate strains to be used as commercial wine strains. 
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Introduction 
 

Studies relating yeast genetic and phenotypic variability will help to increase our 

understanding of the high diversity of strains, particularly in what regards the highly 

variable wine strains. They should also elucidate genetic adaptations involved in 

phenotypes that are relevant for survival in stressful industrial environments. The increase 

in knowledge obtained in these studies may also contribute towards strain improvement 

strategies through breeding and genetic engineering (Dequin and Casaregola 2011; 

Roberts and Oliver 2011; Borneman et al. 2013). S. cerevisiae species consists of both 

“domesticated” and “wild” populations, whereby the genetic divergence is associated 

with both ecology and geography. Sequence comparison of 70 S. cerevisiae isolates 

confirmed the existence of five well defined lineages and some mosaics, suggesting the 

occurrence of two domestication events during the history of association with human 

activities, one for sake strains and one for wine yeasts (Liti et al. 2009; Schacherer et al. 

2009b; Liti and Schacherer 2011). S. cerevisiae isolates associated with vineyards and 

wine production form a genetically differentiated group, distinct from ‘wild’ strains 

isolated from soil and oak tree habitats, and also from strains derived from other 

fermentations, such as palm wine and sake or clinical strains. Recent research indicates 

that wine strains were domesticated from wild S. cerevisiae (Fay and Benavides 2005a; 

Legras et al. 2007b), followed by dispersal, and the diversifying selection imposed after 

yeast expansion into new environments due to unique pressures lead to strain diversity 

(Diezmann and Dietrich 2009; Dunn et al. 2012; Borneman et al. 2013). The interactions 

between S. cerevisiae and humans are considered as a driver of yeast evolution and the 

development of genetically, ecologically and geographically divergent groups (Legras et 

al. 2007b; Goddard et al. 2010; Sicard and Legras 2011). The limited knowledge about 

the mechanisms responsible for the fixation of specific genetic variants due to ecological 

pressures can be extended by combining genetic and phenotypic characteristics. Recent 

studies show that groups of strains can be distinguished on the basis of specific traits that 

were shaped by the species´ population history. Wine and sake strains are phenotypically 

more diverse than would be expected from their genetic relatedness, and the contrary is 

the case for strains collected from oak-trees (Kvitek et al. 2008). Wine yeasts and other 

strains accustomed to growing in the presence of musts with high sugar concentrations 
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are able to efficiently ferment synthetic grape musts, contrary to isolates from oak trees 

or plants that occur in environments with low sugar concentrations. Commercial wine 

yeasts were differentiated by their fermentative performances as well as their low acetate 

production (Camarasa et al. 2011). West African population shared low-performance 

alleles conferring unique phenotypes regarding mitotic proliferation under different stress 

resistance environments. Other phenotypes differentiated lineages from Malaysia, North 

America and Europe, whereby the frequency of population specific traits could be 

mapped onto a corresponding population genomics tree based on low coverage genome 

sequence data (Warringer et al. 2011). 

The global genetic architecture underlying phenotypic variation arising from 

populations adapting to different niches is very complex. Most phenotypic traits of 

interest in S. cerevisiae strains are quantitative, controlled by multiple genetic loci 

referred to as quantitative trait loci (QTL). Genome regions associated with a given trait 

can be detected by QTL analysis, using pedigree information or known population 

structure to make specific crosses for particular phenotypes. The crosses are then 

genotyped using single nucleotide polymorphisms (SNPs) or other markers across the 

whole genome and statistical associations of the linkage disequilibrium between genotype 

and phenotype are identified (Dequin and Casaregola 2011; Liti and Louis 2012; Swinnen 

et al. 2012; Salinas et al. 2012b; Borneman et al. 2013). QTL mapping was successfully 

applied to dissect phenotypes that are relevant in winemaking such as fermentation traits 

(Ambroset et al. 2011a) or aromatic compounds production (Katou et al. 2009; Steyer et 

al. 2012). QTLs that were relevant for oenological traits and wine metabolites were 

mapped to genes related to mitochondrial metabolism, sugar transport and nitrogen 

metabolism. Strong epistatic interactions were shown to occur between genes involved in 

succinic acid production (Salinas et al. 2012b). The genotype-phenotype landscape has 

also been explored by several studies using statistical and probabilistic models (O’Connor 

and Mundy 2009; MacDonald and Beiko 2010; Mehmood et al. 2011), as well as gene 

knockout approaches (Hillenmeyer et al. 2008). 

Current methods to infer genomic variation and determine relationships between 

S. cerevisiae strains include microsatellite analyses (Legras et al. 2005a; Franco-Duarte 

et al. 2009; Muller and McCusker 2009; Richards et al. 2009), detection of genetic 

alterations using comparative genome hybridization - aCGH (Winzeler et al. 2003; Kvitek 
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et al. 2008; Carreto et al. 2008; Dunn et al. 2012), and SNPs detection by tiling arrays 

(Schacherer et al. 2009b). 

In a previous work Franco-Duarte et al. (2009) evaluated the phenotypic and 

genetic variability of 103 S. cerevisiae strains that were isolated from vineyards of the 

Vinho Verde wine region (Northwest Portugal). A set of 11 polymorphic microsatellite 

loci were used and through subgroup discovery-based data mining successfully identified 

strains with similar genetic characteristics (microsatellite alleles) that exhibited similar, 

mostly taxonomic phenotypes, allowing also to make predictions about the phenotypic 

traits of strains. In the present study, we aim to established computational associations in 

a larger collection of diverse S. cerevisiae strains (172) obtained from worldwide 

geographical origins and distinct technological uses (winemaking, brewing, bakery, 

distillery, laboratory, natural, etc.). In the study we use 30 physiological traits, most of 

them being important from an oenological point of view. 

 

 

 

Material and Methods 

 
Genetic characterization 

The established collection (Chapter III) was characterized genetically, in adition 

to the previous phenotypic characterization. For this, after cultivation of a frozen aliquot 

of yeast cells in 1 mL YPD medium (yeast extract 1% w/v, peptone 1% w/v, glucose 2% 

w/v) during 36 h at 28 ̊ C (160 rpm), DNA was isolation as previously described (Schuller 

et al. 2004) and used for microsatellite analysis. 

Genetic characterization was performed using eleven highly polymorphic S. 

cerevisiae specific microsatellite loci: ScAAT1, ScAAT2, ScAAT3, ScAAT4, ScAAT5, 

ScAAT6, ScYPL009c, ScYOR267c, C4, C5 and C11 (Field and Wills 1998; Techera et 

al. 2001; Pérez et al. 2001; Legras et al. 2005b; Schuller et al. 2007; Schuller et al. 2012). 

Multiplex PCR mixtures and cycling conditions were optimized and performed in 96-

well PCR plates as previously described (Franco-Duarte et al. 2009). 
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Statistical analysis 

We have estimated the number of repeats for the alleles from each locus based on 

the genome sequence of strain S288c available in the Saccharomyces Genome Database 

(http://www.yeastgenome.org) and the results obtained for the size of microsatellite 

amplicons of this strain. Principal component analysis (PCA), available in the The 

Unscrambler® X software (Camo) was used for microsatellite variability analysis. A set 

of standard predictive datamining methods, as implemented in the Orange data mining 

suite (Demšar et al. 2013) were used to study the relations between the genetic 

constitutions of strains and their geographical origins or technological applications. 

Alleles that were present in less than five strains were removed, and k-nearest neighbour 

algorithm (kNN) (Tan et al. 2006) was used for inference. The modelling approach was 

tested in 5-fold cross validation, each time fitting the model on 80% of the data and testing 

it on the remaining 20%. Results were reported in terms of cross-validated area under the 

receiver operating characteristics curve (AUC), which estimates the probability that the 

predictive model would correctly differentiate between distinct technological applications 

of the strains (Hanley and McNeil 1982). The strength of associations between 

microsatellites and specific phenotypes was scored using information gain ratio as 

implemented in the Orange data mining suite, using default parameters, and significant 

findings were confirmed by permutation tests and estimation of false discovery rate. 

Detailed description of the computation data analysis can be found in (Franco-Duarte et 

al. 2014).  
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Results 

 
The S. cerevisiae collection described in chapter III, was used in the present 

chapter for genetic characterization. All 172 strains were characterized regarding allelic 

combinations for previously described microsatellites ScAAT1, ScAAT2, ScAAT3, 

ScAAT4, ScAAT5, ScAAT6, ScYPL009c, ScYOR267c, C4, C5 and C11 (Field and 

Wills 1998; Techera et al. 2001; Pérez et al. 2001; Legras et al. 2005b; Schuller et al. 

2007; Schuller and Casal 2007; Schuller et al. 2012). As shown in Table IV-1, a total of 

280 alleles were obtained, and microsatellites ScAAT1 and ScAAT5 were the most and 

least polymorphic with 39 and 6 alleles, respectively. 
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Table IV-1: Summary of the distribution of alleles (indicated in numbers of repetitions) among 172 Saccharomyces cerevisiae strains, from 11 microsatellite loci. 

1 a - Techera et al. 2001; b - Pérez et al. 2001 c - Field and Wills 1998; d - Legras et al. 2005

Microsatellite 
designation 

Total number of alleles 
(range of allele sizes in 

number of repeats) 

Most 
frequent 

alleles 

Number of strains in 
which the allele was 

obtained 

Most variable alleles (number 
of repetitions) identified by 

PCA (Fig. IV-2) 

Percentage of most variable 
alleles among the total 

number of alleles per locus 
References 1 

ScAAT1 39 
(6-54) 

24 27 17; 21; 26; 28; 29; 34 15 a; b 16 21 

ScAAT2 18 
(5-22) 

15 58 

6; 8; 12; 13; 14 28 b 16 33 
14 34 
13 21 

ScAAT3 19 
(3-49) 

16 45 
11; 14; 16; 17; 21; 22 32 b; c 14 32 

22 28 

ScAAT4 17 
(1-27) 

20 100 7; 9; 10; 11; 20; 21 35 b 11 22 

ScAAT5 6 
(2-49) 

9 80 
8; 9; 10; 11 67 b 10 63 

8 37 

ScAAT6 10 
(12-44) 

16 124 16; 17; 25; 26; 28 50 b 17 40 

C4 9 
(16-61) 

21 52 
20; 21; 22; 23; 24 56 d 24 44 

22 31 

C5 19 
(3-38) 

4 31 

3; 12; 13 16 d 3 25 
12 23 
13 22 

C11 18 
(1-47) 

13 42 
15; 23; 24 17 d 14 24 

24 28 

ScYPL009c 13 
(57-86) 

80 47 

55; 58; 69; 70; 71; 72 46 a; c 
81 45 
82 28 
79 23 
65 20 

ScYOR267c 12 
(37-100) 

52 52 52; 56; 62; 63; 67 42 a; c 56 24 
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Figure IV-1 shows the principal component analysis (PCA) plot of the microsatellite 

data illustrating the genetic diversity of the collection. Some patterns of genetic relatedness 

between strains sharing the same technological origin became evident as shown in the panel 

A. Sake strains ( ) were located in the right part of the PCA plot, due to larger sizes of 

alleles of loci ScYOR267c and C4. For this group of strains, we have identified nine unique 

alleles, from which three were present in more than one strain and belong to three different 

loci (ScAAT6, C4 and ScYOR267c). Strains from fermented beverages other than wine were 

separated by PC-2, being located in the upper part of the PCA plot, indicating that they share 

a combination between smaller alleles of microsatellite C4 and bigger alleles of 

ScYOR267c. These twelve strains are marked in the PCA plot inside the area surrounded by 

a dotted line. Twelve unique alleles were found for these strains, two of them (C4-58 and 

ScYPL009c- 57) being present in six of the twelve strains. On the contrary, the group of 

wine strains (both natural isolates and commercial strains), showed heterogeneous 

distribution across the two components, being preferentially located in the left side of the 

PCA plot. The nine clinical strains were distributed across both components with no 

discriminant results in any locus. The 172 strains (scores) were also segregated in the first 

two components of the PCA constructed from the allelic combination for 11 loci. Loci 

ScYOR267c and C4 had the highest weight in strain variability, followed by ScYPL009c 

and ScAAT4, although within a smaller extent (panel B). 
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Figure IV-1: Principal component analysis of microsatellite data: 

A: distribution of 172 strains according to their allelic combinations for 11 loci (scores); 
Symbols represent strains’ technological applications or origin:  - wine and vine;  - 
commercial wine strain;  - clinical;  - natural isolates;  - sake;  - other fermented 
beverages;  - beer;  - bread;  - laboratory;  - unknown biological origin. Sake strains 
and strains from other fermented beverages are surrounded by full-lined and dotted lines, 
respectively.  
B: contribution of microsatellite loci (loadings) to the separation of strains shown in panel A.
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To reveal the weight of different alleles on the strains’ genetic variability, the profile 

of the 11 microsatellites was represented for each strain as a vector where the values 0, 1 

and 2 corresponded to the absence of an allele, the presence of a heterozygous allele or the 

presence of two copies of the allele, respectively. We assumed that all strains were diploid, 

because aneuploidy loci were rarely detected (< 3%). In addition, the DNA content of a 

representative set of homozygous strains corresponded to a diploid strain (flow cytometry 

analysis, data not shown). A total of 48160 data points were generated and the segregation 

of the 280 alleles in the two components of the PCA is shown in Figure IV-2. Alleles 

ScAAT4-20, ScAAT5-9 and ScAAT6-16 had highest weight in strain variability due to their 

positioning in the right and upper part of the PCA plot. Among the 11 microsatellite loci, 54 

alleles were identified by PCA as contributing to the highest strain variability among 172 

strains (Table IV-1). Loci ScAAT3, ScAAT4 and ScAAT5 were the ones with higher 

number of variable alleles (4), in opposition to loci ScAAT1, C5 and C11 with 1 allele each. 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV-2: Principal component analysis of a Boolean matrix of 280 alleles from 11 microsatellites in 172 Saccharomyces cerevisiae strains.
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In order to investigate further the relationships between strains, considering the 

microsatellite allelic variation found, we used the computational methods described in 

(Franco-Duarte et al., 2014). The results, summarized in the following paragraphs, showed 

that by using using computation models interesting assotiations could be made between the 

strains genetic and the phenotypic data (obtained in the previous chapter). In a first attempt 

we have examined the relations between strains technological group and the corresponding 

genotypes and scored them for their predictive value. Computational models were 

constructed to predict the strains’ technological application or origin from microsatellite 

data. Details about the construction of the models and the data cleaning can be found in the 

methods section of (Franco-Duarte et al., 2014). With these models, a confusion matrix was 

obtained (Table 2 – Franco-Duarte et al., 2014) with the kNN cross-validation 

classifications. Results show that for the strains derived from winemaking environments 

(commercial and natural wine strains), 47% and 72% of strains were correctly assigned, 

respectively. Interestingly, the majority of “false” assignments didn´t fall out of the wine 

strains group, occurring for commercial wine strains that were assigned to the natural wine 

strains (21 of 47 strains) or natural wine strains that were catalogued as commercial wine 

strains (16 of 74 strains). If all wine strains were grouped in one single category, the 

proportion of correct assignments would increase to 93% (112 of 121 strains). For the groups 

of strains isolated from sake, natural environments, other fermented beverages and bread, 

the proportion of correct assignments were 67%, 42%, 50% and 50% respectively. The high 

number of correct assignments even for small groups of strains, and a very high AUC score, 

both reinforce the validity of the modelling technique, confirming a strong relation between 

our genotype profiles and strain groups. On the other side and with only 22% of correct 

assignments, our approach was not successful on the identification of clinical strains, which 

was expected due to the absence of a common ancestor for this group and since pathogenic 

S. cerevisiae strains arise from different origins (Liti and Schacherer 2011). 
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Next, a major achievement obtained with the genetic and phenotypic characteriation 

results obtained in the present work, was the identification of subsets of strains sharing 

similar phenotypic results and allelic combinations. To test the associations between 

phenotypic results and microsatellite alleles we analysed pairwise relationships between 

corresponding variables (each microsatellite variable versus each phenotypic feature). 

Information gain ratio (IGR) was computed, between microsatellite predictor and binarized 

phenotypic response variable, and repeated again using permutated phenotypic data as 

described in the methods section of (Franco-Duarte et al., 2014). p-values were reported 

after correction using false discovery rate (FDR) procedure, and the pairs for which FDR 

was below 0.2 were identified (Figure 3 – Franco-Duarte et al., 2014). Significant 

associations were obtained between microsatellites ScAAT1, ScAAT2, ScAAT5, ScAAT6, 

ScYPL009c, C4 and C5, and for 13 phenotypic classes. For the classes in which significant 

associations with microsatellite alleles were found, between 1 and 8 relations were 

established with a particular microsatellite allele (numbers following black circles). For nine 

phenotypic tests and classes a single association was established: “40 ˚C = 1”, “40 ˚C = 3”, 

“SDS (0.01%, w/v) = 0”, “KHSO3 (150 mg/L) = 2”, “Ethanol 10%, v/v (liquid medium)= 

0”, “Ethanol 10%, v/v (liquid medium)= 2”, “Ethanol 10%, v/v (liquid medium)= 3”, 

“Ethanol 12%, v/v + Na2S2O5 75 mg/L (solid medium) =1” and “wine supplemented with 

glucose 1% = 0”. The phenotypes with the highest number of allelic associations were 

“KHSO3 (300 mg/L) = 3” and “galactosidase activity = 1”, with 8 associated alleles each. 

Twenty-two microsatellite alleles had an association with at least one phenotype. For two 

alleles, three significant associations were obtained (ScAAT2-13 and C4-21), being the 

highest number of associations with phenotypes (7) found for microsatellites ScAAT1 and 

ScAAT2, in opposition to ScAAT5, ScAAT6 and ScYPL009c with only 3 links established, 

each. These numbers are not related with the total number of alleles and the range of allele 

sizes shown in Table IV-2. 
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Discussion 

 
In the present work, we aimed to assess if associations could be made between strains 

genotypes and phenotypes in a worldwide collection of 172 S. cerevisiae strains from 

different geographical origins and technological uses (winemaking, brewing, bakery, 

distillery, laboratory, natural, etc.). The established collection revealed high genetic diversity 

(Figure IV-1, Figure IV-2 and Table IV-1), with a total of 280 alleles obtained with 11 

polymorphic microsatellites. Microsatellite ScAAT1 was the most polymorphic one with 39 

alleles, followed by ScAAT3 and C5 with 19 alleles each, confirming the data of our 

previous study (Franco-Duarte et al. 2009). PCA components of Figure IV-2 explains only 

a small part of the total variance (PC-1 – 7% and PC-2 – 5%) which seems to indicate that 

all the microsatellite alleles are important to differentiate between strains, but also revealed 

a group of 54 alleles that are the most relevant to explain variability among strains. Herein, 

we also observed some patterns of distribution according to the strains technological 

application or origin, when considering the PCA of genetic data, in particular for sake strains 

and strains from fermented beverages other than wine. Clinical strains, that are opportunistic 

environmental strains colonizing human tissues (Schacherer et al. 2007; Muller and 

McCusker 2009) didn´t show any discriminant distribution with PCA, which was expected, 

because they do not share a common ancestor (Liti and Schacherer 2011). Sake strains and 

strains obtained from fermented beverages other than wine showed some unique alleles in 

loci ScAAT6, C4, ScYOR267c and ScAAT1, ScAAT5, ScAAT6, C4, ScYPL009c, 

ScYOR267c respectively. These results highlight the existence of alleles that are 

representative of a specific technological group, which justifies the approach used in this 

research. 

In our study, we demonstrate that strains’ allelic combination and the respective 

technological application or origin (Table IV-2) are strongly related, as the later can be 

predicted from the proposed genotypic characterization. Regarding winemaking strains 

(both natural and commercial) the approach was able to predict the technological application 

or origin for 93% of the strains. The AUC score of the model was 0.802, between the values 

of an arbitrary and perfect classification (AUC=0.5 and 1.0, respectively) and can be 

considered as moderately high (Mozina et al. 2004). These results demonstrate the potential 

of the approach to predict the technological origin of a strain from the entire microsatellite 
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profile, even for groups of strains with small sample size (sake or bread, 6 and 4 strains, 

respectively). The genetic and phenotypic profile of strains obtained with 11 markers and 30 

phenotypic tests was used to computationally score and rank genotype-phenotype 

associations. Associations were scored using information gain ratio (Quinlan 1986) and 

significant results were shown in form of p-value after false discovery rate procedure. Thirty 

two associations, representing thirteen phenotypic classes and 22 microsatellite alleles were 

significantly established. The phenotypic classes with more associations were related with 

high capacity to resist to the presence of KHSO3 during fermentation, and to the 

galactosidase activity. These two phenotypes were associated with 8 alleles each. These 

results are valuable to select strains that are resistant to sulphur dioxide, an antioxidant and 

bacteriostatic agent used in vinification (Beech and Thomas 1985), and that were tested by 

the capacity of strains to grow in a medium supplemented with KHSO3. The association 

between 8 alleles and the strains moderate galactosidase activity, although not directly 

related with winemaking, could be also a beneficial criterion to choose S. cerevisiae strains 

capable of hydrolyse galactose, in alternative to the use of glucose as carbon source, pointing 

to an improved evolutionary capacity of these strains. The most polymorphic locus ScAAT1, 

revealed also the highest number of associations with phenotypes, but this was not observed 

for other polymorphic loci. Seven phenotype-genotype associations were found for each of 

the alleles ScAAT2–13 and C4–21, which can be considered as the most informative to 

predict strains’ biotechnological potential regarding the associated phenotypes. 

The prediction of the technological group from allelic combinations and the presence 

of statistically significant associations between phenotypes and alleles both demonstrate that 

computational approaches can be successfully used to relate genotype and phenotype of 

yeast strains. Microsatellite analysis revealed to be an efficient marker to evaluate genetic 

relatedness in yeasts and can be employed in the industry as a quick and cheap analysis. 

Although microsatellite analysis is the most accurate method for S. cerevisiae strain 

characterization, the 11 tested microsatellites are spread on only 9 chromosomes and might 

provide for a rather coarse representation of a genotype. Taking into account that the 

discovered associations apply to a smaller fraction of the genome, this study could be 

beneficially complemented with an extended search to monitor other genomic regions. These 

findings may become particularly important for the simplification of strain selection 
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programs, by partially replacing phenotypic screens through a preliminary selection based 

on the strain’s microsatellite allelic combinations.
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The work presented in this chapter is being prepared to be submitted: 

Inês Mendes, Isabelle Sanchez, Ricardo Franco-Duarte, Jean-Roch Mouret, Carole 

Camarasa, Dorit Schuller, Sylvie Dequin, Maria João Sousa (2015) Integrating 

transcriptomic and metabolomic for the analysis of the aroma profiles of wine, sake, 

cachaça and laboratory Saccharomyces cerevisiae strains. To be submitted.
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Introduction 
 

Wine flavour is the result of the interactions between grape must components and 

compounds originated from microbial metabolism. Grape must is constituted by three 

functional groups of compounds: nutrients, flavour precursors and flavour-active non-

precursors. The action of yeasts on some of these compounds, will build the architecture of 

the wine flavour and their fermentation bouquet. Over the past 30 years, the huge increase 

in the understanding of Saccharomyces cerevisiae metabolism, namely of industrial yeast 

strains (Chambers and Pretorius 2010) has revealed its crucial role in the development of the 

wine secondary aroma, with higher alcohols, acetate esters and ethyl esters being the main 

aromatic compounds contributing to a floral and fruity aroma (Lambrechts and Pretorius 

2000b). Generally, wine yeast strains can be responsible for “fruity”, “floral”, “neutral”, or 

“cheesy”–“rancid” wine aromas, depending on their capacity to produce esters, higher 

alcohols, and volatile fatty acids (Cordente et al. 2012). The selection of the best wine yeast 

depends essentially on its oenological/phenotypic characteristics, such as fermentative rate, 

tolerance to ethanol and to SO2, response to temperature, flocculent characteristics, the 

presence of killer factor, ethanol yield, malic acid metabolism and the production of several 

fermentation by-products, such as acetic acid, H2S, higher alcohols, glycerol and 

acetaldehyde (Robinson 1994; Mannazzu et al. 2002; Schuller 2010; Bird 2013). Some 

studies showed that wine strains adapt to specific oenological environments during their 

selection for biotechnological purposes, which is reflected in their transcriptome, proteome 

and metabolome (Rossouw et al. 2008; Rossouw et al. 2009; Rossouw et al. 2010). Many 

researchers have studied the influence in the fermentation process of manipulating single 

genes through their deletion or over-expression, in order to clarify pathways involved in 

winemaking (Teixeira et al. 2009; Gómez-Pastor et al. 2010; López-Malo et al. 2013; Si et 

al. 2014). Nevertheless, the genomes of wine strains frequently show heterozygosity, SNPs 

and variation in gene copy number that makes difficult to perform whole-genome screenings 

(Pretorius 2000; Borneman et al. 2011; Borneman et al. 2012). On the other hand, 

transcriptome studies have been implemented using industrial yeast strains under 

winemaking conditions. These studies include gene expression analyses during alcoholic 

fermentation (Rossignol et al. 2003; Varela et al. 2005; Marks et al. 2008; Rossouw et al. 

2009) and during exposure to a diversity of stresses such as high ethanol concentrations 
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(Alexandre et al. 2001), low temperature (Pizarro et al. 2008), and high-sugar concentrations 

(Erasmus et al. 2003). Gene expression is variable among wild-type yeast strains and it was 

shown that differences in gene expression during fermentation affected co-regulated genes 

and distinguished yeast strains (Carreto et al. 2011). Besides, winemaking strains deal better 

with stress-imposing environmental conditions and are able to manage nutrient deficiencies, 

such as nitrogen, in a more efficient and resourceful way suggesting a better adaptation to 

the specific stresses imposed. In order to understand the wine yeast aromatic profile, several 

metabolomics tools are available and are commonly used. The study of metabolome includes 

the analysis of a wide variety of chemical compounds, usually present at very low 

concentrations, which is a major barrier for appropriate bioanalytical approaches. The 

analysis of the metabolic profile has been performed using several analytical platforms, such 

as gas-chromatography (GC) or liquid-chromatography (LC) coupled to mass-spectroscopy 

(MS) (Birkemeyer et al. 2003; Kleijn et al. 2007; Fiehn 2008), capillary electrophoresis (CE) 

coupled to MS (Soga et al. 2003; Tanaka et al. 2007; Monton and Soga 2007; Ramautar et 

al. 2009), infrared and Raman spectroscopy (Ellis and Goodacre 2006), nuclear magnetic 

resonance (NMR) spectroscopy (Salek et al. 2007; Barton et al. 2008; Bjerrum et al. 2010) 

and direct injection MS (DIMS) (Allen et al. 2003; MacKenzie et al. 2008). GC-MS analysis 

has been one of the best accepted approaches to study wine metabolome, with several 

advantages: sensitivity, robustness, easiness of use, low cost and ample linear range (Villas-

Bôas et al. 2005; Hollywood et al. 2006; Dettmer et al. 2007; Garcia et al. 2008). GC-MS 

combines advantages of both technologies: while MS provides individual mass spectra that 

can differentiate between chemically diverse metabolites, GC has high separation efficiency. 

The integration of the several “omic” approaches could be used to understand the variability 

existing within S. cerevisiae strains and to explore the molecular mechanisms underlying 

that variability. 

In the present work we performed a comparative transcriptomic analysis of four S. 

cerevisiae strains from different origins and/or technological applications, wine, sake, 

cachaça and laboratory, at two time points during a must fermentation process and analysed 

the aroma profile of each strain in order to establish a correlation between gene expression 

and metabolite production. 
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Material and Methods 

 
Yeast strains and culture media 

Four Saccharomyces cerevisiae strains were used in this study, in particular the 

commercial strain Zymaflore® VL1 (Laffort oenologie®), the cachaça strain Z63 (kindly 

provided by Rogélio Brandão), the sake strain Z23 (K11, kindly provided by Gianni Liti) 

(Liti et al. 2009) and the laboratory strain S288c. Strains were chosen from a larger collection 

as being from heterogeneous origins in order to elucidate differences between the groups. 

Strains were grown at 28 °C, and routinely maintained at 4 °C on YPD plates containing 2% 

glucose (w/v), 2% peptone, 1% yeast extract and 2% agar, and in glycerol (30% v/v) stocks 

at -80 °C. 

In this study, we used a natural must and a synthetic culture medium. The natural 

must was harvested in 2012 in the south of France (Maccabeu), flash-pasteurized and stored 

under sterile conditions. It contained 211 g/L of sugar and 213 mg/L of assimilable nitrogen. 

As a synthetic must, the MS300 (MS) medium (Bely et al. 1990) was used due to the fact 

that it mimics the grape musts to prepare the cells for fermentation. We inoculated 50 mL 

flasks containing 30 mL of YPD with cells from a Petri dish with YPD and incubated them 

overnight at 28 °C under stirring. Cells were then transferred to 1 L flasks containing 500 

mL of MS medium in a final concentration of 2×106 cells/mL and incubated at 28 °C with 

continuous stirring. The fermentation cultures in MS medium were inoculated with 2×106 

cells/mL in 1.1 L fermentors containing 900 mL of natural must. 

 

Must fermentations 

Fermentations were performed in 1.1 L fermenters (NH verre) equipped with a 

fermentor condenser, at 20 °C, stirred continuously (100 rpm) and linked to a mass flow 

meter that measured the CO2 release rate online. CO2 release was determined by automatic 

measurements of fermentor weight every 20 min. The rate of CO2 production, dCO2/dt, is 

the first derivative of the amount of CO2 produced over time and was calculated 

automatically by polynomial smoothing of the CO2 production curve (Sablayrolles et al. 

1987). Fermentation experiments were performed in triplicate. 
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Metabolite analysis 

Glucose, glycerol, ethanol, pyruvate, succinic, acetic and α-ketoglutaric acids levels 

were analysed by high-pressure liquid chromatography (HPLC), with an Rezex ROA - 

Organic Acid column (Phenomenex) at 45 °C. The column was eluted with 4 mM H2SO4 at 

a flow rate of 0.6 mL/min. Dual detection was performed with a refractometer and a UV 

detector (Agilent).  

Volatile aroma compounds analysed by GC-MS after extraction as previously 

described (Rollero et al. 2014). Briefly, deuterated internal standards (100 μg/L) were added 

to samples (5 mL) before twice extraction using 1 mL of dichloromethane. The organic 

phases were dried over anhydrous sodium sulphate and concentrated under nitrogen flux. 

Extracts were analysed with a Hewlett Packard (Agilent Technologies, Santa Clara, 

California, USA) 6890 gas chromatograph coupled to a HP 5973 mass spectrometer. 

 

RNA isolation and sample labelling 

Cells were harvested by centrifugation (8000 rpm, 4 minutes at 4 °C), at two time 

points: 5 g/L and 50 g/L of CO2 released. Total RNA was isolated using Trizol (TRI 

Reagent®, Sigma-Aldrich®), purified by isopropanol precipitation and then again with 

RNeasy kit (Qiagen). Cy3-labeled total RNA was synthesized with the One colour RNA 

Spike-In kit (Agilent Technologies) and purified with RNeasy kit (Qiagen). Quality and 

quantity of RNA were controlled at each step by spectrometry (NanoDrop 1000, Thermo 

Scientific) and using the Agilent Bioanalyzer 2100. Agilent gene expression microarrays 

8x15k were used for the microarray hybridization, with one-colour method (Agilent 

Technologies, Santa Clara, CA, USA). Probe preparation and hybridization to Affymetrix 

Genechip microarrays were performed according to Affymetrix instructions. 600 ng of 

labelled RNA were hybridized for 17 h in 65 °C in a rotative hybridization oven (Corning) 

using the Expression Hybridization kit (Agilent Technologies, 5188–5242). Plates were 

washed with Expression Wash Buffer kit (Agilent Technologies, 5188–5325 5188–5326). 

Array pictures were analysed on a GenePix 4000B laser Scanner (Axon Instruments) and 

with the GenePix PRO7 software.  
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Statistical analysis 

Statistical analyses were performed using R software, version 3.0.3 (The R Core 

Team 2013).To obtain a general overview of the production of volatiles compounds during 

the fermentation for each stage of fermentation (T1 and T2), principal component analysis 

(PCA) was performed using the FactoMineR package (Husson et al. 2012).  

The limma package (Smyth and Speed 2003) was used to import and normalize the 

global microarray data (quantile method for normalization between arrays). For each studied 

time of released CO2 (T1 and T2) and based on this normalized dataset of 6200 expression 

data for the 4 strains, we used a sparse partial least square – discriminant analysis (sPLS-

DA), an exploratory approach in a supervised context in order to select the most important 

transcripts relative to the 4 strains (Lê Cao et al. 2011). We tuned the number of dimensions 

of the sPLS-DA to 2 and the number of variables to choose on these 2 dimensions to 400 

(200 for each).  

A functional analysis was performed on the selected transcripts by time point, in 

order to highlight significant functional groups according to the Gene Ontology (GO) 

process terms using the GeneCodis program with the FDR method at a p value cutoff of 0.05 

(Nogales-Cadenas et al. 2009).  

Always for each time point, a multivariate factorial analysis (MFA) was then 

performed to obtain an overview of the dataset, which consisted in 433 variables measured 

for 4 strains (S288c, VL1, cachaça, sake). The data set included a set of individuals described 

by two types of variables: the normalized expression of the 400 transcripts selected by the 

sPLA-DA according to the 4 strains, and the 33 volatile compounds produced during the 

fermentation by the 4 strains. The MFA takes into account the structure of the two groups of 

data and balances the influence of each group of variables. This enables the study of links 

between expression data and volatile compounds production (Husson et al. 2012). 

Microarray data accession numbers. The complete data set is available through the 

Gene Expression Omnibus (GEO) database. The microarray description is under GEO 

accession number GPL16244. 
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Results and discussion 
 

Fermentative profiles and metabolic characterization 

Four Saccharomyces cerevisiae strains were used in this study; three isolated from 

different fermentative environments, namely cachaça Z63, sake Z23, the commercial wine 

yeast VL1, and the laboratory reference strain S288c. These strains were previously 

characterized genetically and phenotypically (Mendes et al. 2013; Franco-Duarte et al. 2014) 

and were selected from a larger yeast collection based on their dissimilarities (Mendes et al. 

2013). Triplicate fermentations were carried out with each of the four strains using natural 

must Maccabeu. The fermentation performance of the strains is presented in Figure V-1, in 

which each curve represents the average debit of CO2 from the three replicates for each 

strain. With the exception of the laboratory strain, for which a slower fermentation and a 

lower maximum fermentation rate were obtained, the remaining three strains present a 

similar fermentative profile with a Vmax between 1.2 and 1.4 fg/L/h of CO2 released.



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V-1: Fermentation profiles of the four strains used in this study in respect to debit of CO2 per volume (g/L/h) per time (h-hours). Values are the 
averages from 3 biological replicates. Fermentations were carried out at 20 ºC (100 rpm) using Maccabeu grape must. 
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In order to obtain a characterization of their metabolic profile, high-performance 

liquid chromatography (HPLC) and gas chromatography – mass spectrometry (GC-MS) 

analysis were performed with samples from two time points of fermentation: exponential 

phase (T1, 5 g/L of CO2 released) and stationary phase (T2, 50 g/L CO2 released). Thirty-

eight compounds were quantified including 11 ethyl esters, 7 acetate esters, 3 organic acids, 

5 higher alcohols, 9 volatile fatty acids,  propanol, succinic acid, acetic acid, pyruvate and 

alpha-ketoglutarate (Supplementary data S5).   

PCA analysis based on the compounds quantified both by HPLC and GC-MS 

(Figure V-2) showed intra-strain differences, with a discrimination of the laboratory strain 

from the other three strains at T1 (Figure V-2A) and T2 (Figure V-2C). Circles of 

correlation (Figures V-2B, V-2D) show the contribution of each quantified metabolic 

compounds to the separation of the strains in the scores plot. Only the first two components 

were considered, since they explain a high percentage of the variability found between 

isolates and between compounds: 83.6% and 84.3% for T1 and T2, respectively. At T1 

(Figures V-2A and V-2B), a clear differentiation between laboratory strain and the other 

three strains was obtained according to the first axis. Productions of acetate esters (green) 

and of some higher alcohols (blue) were positive contributors to this axis while formation of 

medium chain fatty acids (hexanoic, octanoic and decanoic acids) was negatively involved. 

Strain Z63, having its origin in the fermentative beverage cachaça, distinguished along the 

second axis, by a higher production of ethyl decanoate, ethyl octanoate and ethyl butanoate 

compared with other tested strains. 

At time-point T2, corresponding to the stationary phase of fermentation, a similar 

scenario was observed, with a clear separation of laboratory strain S288c from the others 

according to the first axis and a separation of strain Z23 (sake) from strains Z63 and VL1 

along the second one. However, the major contributors to the two axes differed between the 

two time points. During the stationary phase, fermentation by strains Z63, Z23 and VL1 

produced higher amounts of almost all metabolites assessed then the laboratory strain: 

acetate esters, ethyl esters, the majority of the acids apart from decanoic and propanoic acids 

and most of higher alcohols except propanol (first axis). From the three ethyl esters produced 

highly by cachaça strain at T1, only ethyl butanoate was again responsible for the separation 

of this strain from strains VL1 and Z63 (second axis). 
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Figure V-2: Principal component analysis of GC-MS and HPLC data for the four strains tested: 

A – four S. cerevisiae strains (scores) analysed by GC-MS and HPLC at T1 (5 g/L) 

B – concentration of compounds detected by HPLC and GC-MS at T1 (5 g/L) 

C - four S. cerevisiae strains (scores) analysed by GC-MS and HPLC at T2 (50 g/L) 

D – concentration of compounds detected by HPLC and GC-MS at T2 (50 g/L) 
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Our results show that at the two time points considered in this work, the compounds 

contributing the most to the strains separation in comparison with S288c were the acetate 

and ethyl esters and the higher alcohols. It is well known that higher alcohols have positive 

effect on wine aroma as well (Swiegers et al. 2005b; Cordente et al. 2012). In the same way 

esters, produced by yeasts during alcoholic fermentation, have a significant influence on the 

fruity aromas of the final product, both in the case of ethyl fatty acid esters and acetate esters 

(Mason and Dufour 2000; Ribéreau-Gayon et al. 2000a). So, the results indicate that must 

fermentations carried with yeasts isolated from any of the three wild fermentative 

environments will be characterized by a higher development of the “yeast bouquet” and 

originate wines with much more complex aroma and flavour, than the laboratory strain used 

as reference. In addition, sake strain will give the wine aroma profile most close to the wine 

strain. In the case of volatile fatty acids, their concentration varied from 82 to 220 mg/L at 

T1 and 81 to 289 mg/L at T2, influencing also the PCA position of the analysed strains. The 

concentration of volatile acids is of particular relevance once they are associated with 

unpleasant odors and tastes in concentrations above 300 mg/L, such as a pungent smell and 

taste. In concentrations below that level, volatile acids can have a positive impact with fruity 

and floral aromas (González-Álvarez et al. 2011), mainly due to the inhibition of their esters 

hydrolysis.  

 

Comparative transcriptomics  

 Comparative transcriptomics of the three S. cerevisiae strains isolated from the 

different fermentative environments in comparison with the reference yeast S288c was 

conducted using Affymetrix Genechip microarrays, containing 70 mer probes targeting the 

sequences of the laboratory strain S288c. mRNA samples were collected at the two time 

points T1 and T2, as explained in the previous section.  

Tables V-1.1, V-1.2, V-2.1 and V-2.2 summarize the main findings obtained with 

transcriptomic characterization of the three fermentation isolates, in comparison with 

laboratory strain S288c. Results were analysed using Funspec with Bonferroni correction 

(p<0.05), and down or upregulated genes are indicated for the three strains in comparison 

with S288c, both at T1 (Tables V-1.1 and V-1.2) and T2 (Tables V-2.1 and V2.2). Genes 

were categorized in accordance with MIPS Functional Catalogue (Ruepp et al. 2004), and 

the ones common to the three strains are underlined. 



 

 
 

Table V-1.1: Categorization of genes with significantly decreased expression (Bonferroni p<0.05) in Z63, Z23 and VL1 strains in comparison to S288c, at 
T1 (5 g/L of CO2 released). Genes common to the three strains are underlined.  

MIPS functional 
category 

Strain 

Z63 Z23 VL1 

pheromone response, mating-
type determination, sex-

specific proteins 

AFR1 ASG7 BAR1 DIG1 EXG1 
FAR1  FUS1 FUS3 GIC2 GPA1 
HO MFA1 MFA2 PHO81 PRY1 

RDH54 SPA2  SST2 STE18 STE2 
STE23 STE4 STE5 STE6 UBC4 

AGA1 ASG7 BAR1 DIG1 FAR1 FUS1 
FUS3 GIC2 GPA1 HO HSP82 MFA1 

MFA2 PHO81 PRY1 RDH54 SST2 
STE18 STE2 STE23 STE4 STE5 STE6 

AFR1 ASG7 ASH1 BAR1 BEM1 CLN2 
DIG1 FAR1 FUS1 FUS3 GFA1 GIC2 

GPA1 HO MCK1 MFA1 MFA2 
PHO81 PRY1 RDH54 SAG1 SAN1 

SIR2 SST2 STE18 STE2 STE23 STE4 
STE5 STE6 

degradation of asparagine ASP3-1 ASP3-2 ASP3-3 ASP3-4 ASP1 ASP3-1 ASP3-2 ASP3-3 ASP3-4 ASP1 ASP3-1 ASP3-2 ASP3-3 ASP3-4 

metabolism of aspartate ASP3-1 ASP3-2 ASP3-3 ASP3-4 ASP1 ASP3-1 ASP3-2 ASP3-3 ASP3-4 ASP1 ASP3-1 ASP3-2 ASP3-3 ASP3-4 



 

 
 

Table V-1.2: Categorization of genes with significantly increased expression (Bonferroni p<0.05) in Z63, Z23 and VL1 strains in comparison to S288c, at T1 (5 
g/L of CO2 released). Genes common to the three strains are underlined. 

MIPS functional 
category 

Strain 

Z63 Z23 VL1 

electron transport and 
membrane-associated 
energy conservation 

ATP20 COR1 COX1 COX13 COX3 COX5A 
COX6 COX7 CYB2 CYC1 CYC7 MCR1  NDE1  

NDI1  QCR10 QCR2 QCR6 QCR7 QCR8 
QCR9 RIP1 

COB COX1 COX3 COX5A CYB2 CYC1 CYC7 
NDE1 NDI1 QCR8 QCR9 RIP1 

 

ATP20 COX1 COX13 COX5A COX6 COX7 
CYB2 CYC1 CYC7 NDI1 QCR10 QCR7 QCR8 

QCR9 RIP1 

aerobic respiration 

COR1 COX1 COX13 COX23 COX3 COX5A 
COX6 COX7 CYT1 ISF1 MAM33 MBR1 
NDE1 NDI1 PET10 PET9 QCR10 QCR2 

QCR6 QCR7 QCR8 QCR9 RIP1 

COB COX1 COX16 COX23 COX3 COX5A 
CYT1 MAM33 NDE1 NDI1 QCR8 QCR9 RIP1 

YDR115W 

COX1 COX13 COX16 COX23 COX5A COX6 
COX7 CYT1 MRPL1 NDI1 QCR10 QCR7 

QCR8 QCR9 RIP1 YDR115W 

tetracyclic and 
pentacyclic triterpenes 

(cholesterin, steroids and 
hopanoids) metabolism 

ARE2 ERG1 ERG10 ERG13 ERG2 ERG27 
ERG28 ERG5 ERG7 ERG9 HMG1 IDI1 

MCR1 MVD1 NSG2 OSH6 

ARE2 ERG1 ERG13 ERG2 ERG28 ERG5 
ERG9 HMG1 IDI1 MVD1 NSG2 OSH6 

ARE2 ERG1 ERG2 ERG27 ERG28 ERG5 
ERG9 HMG1 IDI1 MVD1 NSG2 

mitochondrion 

CYB2 HSP10 MBR1 MDM35 MDV1 MNP1 
MRM2 MRP2 MRP21 MRPL13 MRPL20 

MRPL23 MRPL32 MRPL35 MRPL37 
MRPL38 MRPL39 MRPL40 MRPL44 MRPL6 
MRPL9 MRPS28 NDE1 NDI1 RSM25 TIM10 

YMR31 
 
 

CYB2 HSP10 MNP1 MRP13 MRP2 MRP21 
MRPL10 MRPL13 MRPL19 MRPL20 
MRPL23 MRPL27 MRPL32 MRPL35 

MRPL37 MRPL38 MRPL39 MRPL4 MRPL40 
MRPL44 MRPL6 MRPL8 MRPL9 MRPS16 
MRPS28 NAM9 NDE1 NDI1 RML2 RSM18 
RSM19 RSM25 RSM26 TIM10 YDR115W 

YMR31 

CYB2 GET1 HSP10 MDM35 MDV1 MNP1 
MRM2 MRP13 MRP2 MRP21 MRP49 MRPL1 

MRPL10 MRPL13 MRPL20 MRPL23 
MRPL27 MRPL32 MRPL35 MRPL36 
MRPL37 MRPL38 MRPL39 MRPL40 

MRPL44 MRPL49 MRPL6 MRPL9 MRPS16 
MRPS28 NDI1 PET18 RSM18 RSM19 RSM25 
RSM26 SAM37 TIM10 TIM12 TIM9 YDR115W 

YMR31 



 

 
 

Table V-1.2 (cont.) 

MIPS functional 
category 

Strain 

Z63 Z23 VL1 

ribosomal proteins - 

MNP1 MRP13 MRP2 MRP21 MRPL10 
MRPL13 MRPL19 MRPL20 MRPL23 
MRPL27 MRPL32 MRPL35 MRPL37 

MRPL38 MRPL39 MRPL4 MRPL40 MRPL44 
MRPL6 MRPL8 MRPL9 MRPS16 MRPS28 

NAM9 RML2 RPL19A RPL22A RPL34A 
RPL36A RPS10B RPS14B RPS17A RPS21B 

RPS24A RPS27A RSM18 RSM19 RSM25 
RSM26 YDR115W YMR31 

MNP1 MRP13 MRP2 MRP21 MRP49 MRPL1 
MRPL10 MRPL13 MRPL20 MRPL23 
MRPL27 MRPL32 MRPL35 MRPL36 
MRPL37 MRPL38 MRPL39 MRPL40 

MRPL44 MRPL49 MRPL6 MRPL9 MRPS16 
MRPS28 RPL11A RPL11B RPL18B RPL19A 
RPL19B RPL20B RPL22A RPL23A RPL26A 
RPL27A RPL30 RPL33B RPL34A RPL35B 
RPL36A RPL38 RPL40A RPL43B RPL9B 
RPP1A RPS10A RPS10B RPS14B RPS16A 
RPS17A RPS18B RPS21A RPS21B RPS24A 
RPS24B RPS25A RPS26A RPS27A RPS30A 

RPS30B RPS6B RPS8B RPS9A RSM18 RSM19 
RSM25 RSM26 SWS2 YDR115W YMR31 

fermentation - 
AAD16 AAD4 AAD6 ADH7 ALD2 MSC7 

YPL088W 
 



 

 
 

Table V-2.1: Categorization of genes with significantly decreased expression (Bonferroni p<0.05) in Z63, Z23 and VL1 strains in comparison to S288c, at 
T2 (50 g/L of CO2 released).  

MIPS functional 
category 

Strain 

Z63 Z23 VL1 

degradation of asparagine - ASP1 ASP3-1  ASP3-2  ASP3-3 ASP3-4 ASP1 ASP3-1 ASP3-2  ASP3-3 ASP3-4 

metabolism of aspartate - ASP1 ASP3-1 ASP3-2 ASP3-3 ASP3-4 ASP1 ASP3-1 ASP3-2 ASP3-3 ASP3-4 

ribosomal proteins - 

MDN1 PIH1 RPL11A RPL11B RPL12A 
RPL13A RPL15A RPL16A RPL16B 
RPL22A RPL22B RPL23A RPL30 
RPL32 RPL33B RPL34A RPL43A 

RPL8A RPS0B RPS11A RPS13 RPS18B 
RPS1B RPS24A RPS24B RPS27A 

RPS29B RPS4A RPS5 RPS6A 

- 



 

 
 

Table V-2.2: Categorization of genes with significantly increased expression (Bonferroni p<0.05) in Z63, Z23 and VL1 strains in comparison to S288c, at T2 
(50 g/L of CO2 released).  

MIPS functional  
category 

Strain 

Z63 Z23 VL1 

electron transport and 
membrane-associated energy 

conservation 
- - 

ATP20 COR1 COX1 COX5A COX6 COX7 
CYB2 CYC1 CYC7 NDI1 PMA2 QCR2 

QCR7 RIP1 
tetracyclic and pentacyclic 

triterpenes (cholesterin, 
steroids and hopanoids) 

metabolism 

ARE2 ERG1 ERG10 ERG13 ERG2 ERG20 
ERG24 ERG27 ERG28 ERG5 ERG6 

ERG9 HMG1 IDI1 MVD1 NCP1 
- 

ARE2 ERG1 ERG10 ERG12 ERG13 ERG2 
ERG20 ERG24 ERG25 ERG26 ERG27 

ERG28 ERG5 ERG6 ERG7 ERG9 HMG1 
IDI1 MVD1 NCP1 

mitochondrion 

CLU1 HOT13 HSP10 MDH1 MDM35 
MRP2 MRP49 MRPL11 MRPL13 

MRPL20 MRPL23 MRPL27 MRPL32 
MRPL35 MRPL38 MRPL4 MRPL6 

MRPL8 MRPS28 NDI1 PET18 PNT1 

- - 

fermentation - 
AAD15 AAD3 AAD4 AAD6 ADH7 ALD2 

ALD6 
AAD15 AAD3 AAD4 AAD6 ADH6 ADH7 

ALD6 MSC7 
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Regarding time point 1, analysis of Table V-1.1 shows that one group of genes 

related with the functions “pheromone response, mating-type determination, sex-specific 

proteins”, was downregulated in all three strains. Since the 3 isolates used in the present 

work are diploid (Schuller et al. 2007; Liti et al. 2009; Franco-Duarte et al. 2014), and the 

laboratory strain S288c used for comparison is haploid (Goffeau et al. 1996), differences in 

ploidy could thus underlie the differences in expression of the genes related with the mating 

and the pheromone response. Genes involved in the degradation of asparagine/metabolism 

of aspartate (ASP3-1, ASP3-2, ASP3-3 and ASP3-4) were also downregulated in the three 

isolates, and ASP1 coding for cytosolic L-asparaginase was downregulated in Z23 and VL1 

strains. This could be related with the fact that some S. cerevisiae strains, including some 

wine and sake strains, had lost the ASP3 locus (League et al. 2012). 

Genes with significantly increased expression at T1, include a group of genes related 

with tetracyclic and pentacyclic triterpenes metabolism (cholesterin, steroids and hopanoids) 

that was upregulated in the 3 strains comparatively to the laboratory strain (Table V-1.2). 

Most of these genes are involved in sterol synthesis namely ergosterol, which by contributing 

to the fluidity of the yeast membrane, allows a more efficient activity of membrane 

transporters and increased tolerance to ethanol (Alexandre et al. 1994), correlating with the 

superior fermentation performances of strains. The higher sterol biosynthesis could also 

divert acetyl CoA from fatty acid biosynthesis, so the lower levels of these genes in S288c 

strain could explain the higher production of medium chain fatty acids (MCFA) by this strain 

(Figure V-2B). Several genes involved in aerobic respiration, electron transport and 

mitochondrion were also upregulated in the three mentioned strains in comparison with 

S288c (Table V-1.2), suggesting a less strict glucose repression in the strains isolated from 

the fermentative environments. The higher respiratory capacity might also be associated with 

the higher production of fusel acids (Figure V-2), due to lower need to reoxidize NADH 

through the Ehrlich pathway (Cordente et al. 2012). Also, at T1, the increased expression in 

Z23 of genes related with aldehyde oxidation, namely AAD4, AAD6, AAD16 and ADH7, 

could be related with the higher production of fusel alchools in this strain specialy of 

isoamylalcohol, phenylethanol, isobutanol and methionol (marked in blue in Figure V-2B). 

 Regarding time point T2 (Table V-2.1), there were no common downregulated 

genes in the three characterized strains. Genes related with ribosomal proteins were 

downregulated only in sake strain (Table V-2.1). The differences in the expression of these 
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genes, observed also at T1 for Z23 and VL1 strains, could be related with the different 

fermentative profile and the different metabolic stage of each strain, at this time point. 

Regarding upregulated genes (Table V-2.2), a group of genes involved in the 

synthesis of sterols was still upregulated for the cachaça (Z63) and wine (VL1) strains. For 

the sake strain (Z23) these genes were similarly expressed when compared to the laboratory 

strain suggesting that sake strain could be in an earlier metabolic stage, in comparison with 

the other strains, requiring less sterol synthesis, which is in also agreement with the observed 

repression of ribosomal genes. Also at T2 it is visible that some genes upregulated in strains 

Z23 and VL1 (ADH7, ADH6 and AAD6) are involved in the Ehrlich pathway and so related 

with the formation of specific compounds, such as higher alcohols. In accordance with these 

results, metabolic analysis showed an increase of the same higher alcohols for T2 in 

comparison with T1, namely: methionol, isobutanol, isoamyl alcohol and phenylethanol. 

The only alcohols that seem not to be included in this association are amylalcohol and 

propanol which were equal or less produced, respectively, in these strains in relation to 

S288c. The differential production of acetate esters by the two groups of strains (marked in 

orange in Figures V-2B and V-2D) could be related with the differences in expression of 

ALD6, which was overexpressed in strains Z23 and VL1. This gene is involved in the 

formation of acetic acid that can then be converted into acetyl-CoA and subsequently 

incorporated in acetate esters. As for the downregulated genes, at T2 there were no common 

upregulated genes for the three strains. This is opposite to the observed at T1 and may reflect 

that the differentiation of the strains, isolated from different fermentation processes, is 

especially important enduring the multistress stationary phase of fermentation where each 

strain developed different adaptive mechanisms in response to the specific fermentation 

conditions (Liti et al. 2009). 

 

Combined transcriptomics and metabolomics analysis 

Aiming to unravel new associations between genes and aromatic compounds 

production we next performed a combined analysis of transcriptomic and metabolic data 

sets. A supervised exploratory approach sPLS-DA was carried out from gene expression 

data in order to select the 400 most differential expressed genes (200 for each axis) at each 

time point (from the 6200 S. cerevisiae probes present in the microarray). At the two time 

points, multivariate factorial analysis (MFA) was then performed from expression levels of 
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the 400 chosen genes and the 33 metabolic variables (Figures 3 and 4). Genes clustered into 

four main groups together with metabolites, allowing a clear separation of the strains on the 

basis of their genes expression and metabolic profiles. GeneCodis (Carmona-Saez et al. 

2007; Nogales-Cadenas et al. 2009; Tabas-Madrid et al. 2012) was used to determine 

biological annotations with statistical relevance associated with the genes present in each 

group (Supplementary data S6 and S7). 

During the growth phase (T1, Figure V-3), the reference strain S288c differed from 

the other yeasts (sake, cachaça and wine strains) by an higher expression level of genes of 

group 3 associated with an important production of propanol, glycerol and medium chain 

fatty acid, and conversely, a lower expression of genes of group 1, connected with a limited 

formation of isobutanol, methionol, isobutylacetate and phenylethanol. Genes of group 1 

were identified as coding for ribosomal proteins (RPL14B, RPS24A, RPS25B, RPL30, 

RPS26B, MRPL23, RPS17B, RPL40B and RPL26A), involved in the structural integrity of 

ribosome. The association of genes coding for ribosomal proteins, with the differential 

production of higher alcohols and the ester isobutyl acetate (Supplementary data S6), could 

suggest an impact of higher growth rates and on the production of these compounds. It is 

well known that the formation of higher alcohols depends of the reduction from the 

respective aldehyde with the oxidation of NADH into NAD+ (Ehrlich 1907). Consequently, 

the need for rapid production of oxidised NAD+ could have an important regulatory role in 

the formation of these compounds, explaining their higher formation by cachaça, wine and 

sake strains compared with the laboratory yeast. Regarding group 3, it contains genes 

associated with MAPK signalling pathway, cysteine and methionine metabolism and ABC 

transporters. The presence in this group of ATM1, coding for a mitochondrial exporter of Fe-

S clusters and of genes from metabolism of cysteine, usually the limiting component in 

glutathione synthesis, suggests a more important response of S288c to oxidative stress 

compared with the other yeasts, generating a limitation of reductive power in this strain. This 

decrease may be the driving factor of the formation of several volatile fatty acids such as 

octanoic acid, decanoic acid, hexanoic acid, butyric acid and dodecanoic acid, which was 

increased in the laboratory strain. It is also tempting to speculate that PDR5 may be involved 

in the export of the fatty acids. These differences between the laboratorial strain and strains 

from other environments were expected, and already shown previously (Camarasa et al. 

2011), and constitute the basis for the strain selection to be used in this work, allowing the 
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better exploration of differences between phenotype and genotype, which was not possible 

with an homogenous group of strains. Interestingly, MFA revealed that cachaça yeast 

differentiated from the other strains by an increased production of ethyl esters, namely 

ethylbutanoate, ethyldecanoate and ethyloctanoate while VL1 and Z23 exhibited higher 

capacities of production of hexylacetate, propylacetate, 2-phenylethylacetate, amylalcohol, 

isovaleric acid, isoamylacetate, amylacetate, ethlpropionate, propanoic acid and 

isoamylalcohol (Supplementary data S6). In addition, genes that were more expressed 

specifically in Z63 are related with metabolism of butanoate, tyrosine, beta-alanine and fatty 

acids, and also associated with glycolysis and gluconeogenesis. Thus, the overexpression of 

genes involved in the butanoate and more general fatty acid metabolism, may directly 

explain the increased production of ethylbutanoate and of the other ethyl esters. Finally, no 

relevant biological annotation was found among the genes overexpressed in wine and sake 

yeast (group 4), pointing to a role of each of the genes individually. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V-3: Multivariate factorial analysis of GC-MS, HPLC and transcriptomic data for the four strains tested, at T1 (5 g/L). Circles 1-4 indicates groups 

of genes and compounds sharing similar results regarding their positioning in the image: 

A – distribution of the quantified compounds (red) and genes (green) 

B – distribution of the four tested strains.
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At T2 (Figure V-4), a clear separation was also observed between strain S288c and 

the other strains, being this related with overexpression of genes from groups 1 and 2  versus 

downregulation of those of group 3 and 4 in the lab strain. In addition, S288c is characterised 

by an important formation of unpleasant or neutral compounds, in particular acids that 

contribute with unpleasant odors to wine. This is in accordance to the origin of S288c strain, 

not being associated with fermentative environments, in opposition to the other three tested 

strains. Genes from group 1, such as TDH3, FBP26, SLT2, MIG2 and GDH1, which 

clustered with acids formation, were associated with central carbon metabolism and its 

regulation, cation transport and cell wall.  Thus, the maintain of ionic homeostasis in the 

interaction with the environment may appear as a determining factor in the production of the 

unpleasant acids. Consequently, the manipulation of specific cation homeostasis and cell 

wall integrity pathway could be a way of avoiding/reducing their production. Genes from 

group 2 included once again the term “ribosomes” but associated with the formation of 

propanol, amylalcohol, alpha-ketoglutarate and pyruvate in addition to the production of 

higher alcohol, as evidenced at T1. The other biological annotations were associated with 

genes included purine or pyrimidine metabolism, and no clear scenario could be established 

between genes functions and the compounds produced. Genes from groups 3 and 4 were 

clearly related with the central carbon metabolism and formation of aroma compounds and 

are associated with marked increased concentrations of higher alcohols and ethyl and acetate 

esters for the fermentative yeasts, including several acetate and ethyl esters that contribute 

to the “floral” and “fruity” characteristics of wine (Supplementary data S7). Specifically, 

wine and cachaça strains were characterised by an overexpression of genes from group 3 

combined with a downregulation of those of group 2. Group 3 included a set of 17 genes 

related with biosynthesis of secondary metabolites, which clearly related with the production 

of the metabolic compounds, being more specifically associated with the terms “steroid 

biosynthesis” “propanoate metabolism” (ALD6, ACS2 and ERG10), “valine, leucine, 

isoleucine and lysine degradation” (ALD6, ERG10, ERG13), fatty acid metabolism (FAA1, 

ALD6 and ERG10). This could be associated to an increase production of valeric acid but 

also succinate, methionol and isobutanol. Group 4 genes, which differentiated sake strain 

from the others, were mainly associated with the production of a high variety of acetate and 

ethyl ethers. Functional categories more significantly associated with this group of genes 

were c-compound metabolism and oxidation-reduction process. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V-4: Multivariate factorial analysis of GC-MS, HPLC and transcriptomic data for the four strains tested, at T2 (50 g/L). Circles 1-4 indicates 

groups of genes and compounds sharing similar results regarding their positioning in the image: 

A – distribution of the quantified compounds (red) and genes (green) 

B – distribution of the four tested strains.
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Conclusions 
The main objective of this work was the characterization and comparison of four S. 

cerevisiae strains, with different origins and technological applications, previously 

characterized genetically and phenotypically. Results have shown differences between the 

analysed strains, in terms of fermentative profile, gene expression and metabolite 

production. These differences were observed both at T1 (5 g/L of CO2 released), in which a 

higher production of acetate esters and some higher alcohols was detected for strains Z63 

(cachaça), Z23 (sake) and VL1 (wine), and at T2 (50 g/L of CO2 released) with a higher 

production by the same strains not only of acetate esters and higher alcohols, as in T1, but 

also of ethyl esters and acids. These differences in metabolite production could be related 

with gene expression levels, with a significantly increased expression at T1 of genes 

associated with tetracycic and pentacyclic triterpenes metabolism, and also with aerobic 

respiration, electron transport and mitochondria in the three strains, in comparison with 

S288c. The higher mitochondrial activity may be associate with increased ketoacids 

production and so to the flavour compounds. The results presented also suggest growth rates 

and redox and cation homeostasis as major players in the differential production of 

metabolites.  

The present work shed light in the understanding of differences between cachaça, 

sake and wine strains metabolism, which was not yet addressed in detail. Although the three 

strains are known for presenting a similar metabolism related with fermentative conditions, 

significant differences were found, mainly between cachaça and sake strains, in comparison 

with the wine strain. At T1 of fermentation, strain Z63 (cachaça) showed major differences 

from sake and wine strains, mainly regarding the production of ethyl esters ethyl decanoate 

and ethyl octanoate. These differences were associated with the expression of genes related 

with the metabolism of butanoate, tyrosine, beta-alanine and fatty acids. At T2, a different 

scenario was found in which the sake strain (Z23) had the most distinct behaviour. At this 

point this strain showed a higher production of several acetate and ethyl esters and an 

increase in the expression of genes of c-compound metabolism and oxidation-reduction 

process. On the contrary, wine and cachaça strains showed an upregulation of genes related 

with steroid biosynthesis, propanoate metabolism, valine, leucine, isoleucine and lysine 

degradation, and fatty acid metabolism. 
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In summary, the integration of several technologies (HPLC, GC-MS, microarrays) 

applied to fermentation results of four strains with diverse origins and technological 

applications, analysed using several data analysis methods (PCA, MFA) revealed successful 

to understand and clarify the genes and the pathways that lead to the formation of metabolic 

compounds that contribute to the wine aroma and flavour. The knowledge here obtained has 

the potential to be deeply explored and extended to other strains and other metabolic 

pathways, within an approach using aroma production as the primary selection criteria. The 

majority of the genes identified in this work as having their expression changed in correlation 

with the aroma compounds produced, play a central role in the metabolism of S. cerevisiae, 

namely ADH6, ADH7, AAD6, ALD2, ALD6, FAA1, ACS2, ERG10 and ERG13. These genes 

are potential targets for gene deletion/overexpression programs using these and/or other 

strains, in order to better understand their role and their correlation with the aroma 

production network of S. cerevisiae. The information now obtained may be useful both for 

strain improvement and to drive the selection of yeast strains with improved aromatic 

properties. 
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Winemaking industry faces the need to strengthen the reputation of quality wine and 

to contribute to an improved wine image, especially concerning the Portuguese and 

European market. Winemaking industry could benefit massively from “system-level” 

research for the development of novel starter Saccharomyces cerevisiae strains, owing to the 

direct impact of yeast on several key areas such as flavour compounds synthesis. The market 

value of products derived from yeast fermentations, with particular emphasis in the use of 

Saccharomyces cerevisiae for wine production, is expected to increase much above the 

general market growth in the future. Winemaking represents today a multi-billion Euro 

industry, and all the research done, mainly regarding new methods for the study of systems 

biology, could have a huge impact in the development and modernization of wine production 
Wine flavour is the result of yeast metabolism and must compounds interactions and 

only an integrated approach through systems biology characterization will allow a more 

comprehensive understanding of the enhanced flavour compounds synthesis. During must 

fermentation thousands of volatile aroma compounds are formed, with higher alcohols, 

acetate esters and ethyl esters being the main aromatic compounds contributing to a floral 

and fruity aroma. The action of yeast, in particular of S. cerevisiae strains, on the must 

components will build the architecture of the wine flavour and their fermentation bouquet. 

 In this thesis, Saccharomyces cerevisiae strains from different technological 

applications and geographical origins were used and a phenotypic, genetic, metabolomic and 

transcriptomic characterization was performed. The following paragraphs summarize the 

main findings of our research and also include personal perspectives for future approaches 

and for the application of the knowledge obtained.  

A total of 172 S. cerevisiae strains were obtained worldwide from different 

technological applications or environments, constituting the core strain collection of this 

thesis. A complete phenotypic characterization was performed, using 30 traits that are 

important from an oenological point of view. The battery of phenotypic tests has revealed 

successful to illustrate the high strain diversity and three tests were pointed as contributing 

the most for strain variability: growth in the presence of potassium bisulphite, growth at 40 

ºC and resistance to ethanol. Mathematical models were used and showed associations 

between the phenotypic profile of a strain and its technological group, and a simple and 

quicker method to identify a promising strain to be used in biotechnology (commercial 

strain) was developed allowing to greatly simplify strain selection procedures.  
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Our next goal was the genetic characterization of the strain collection. For this 

purpose we characterize the strains using amplification of 11 microsatellites, specific of S. 

cerevisiae. A high genetic variability was obtained, with the revelation of 280 alleles, being 

the microsatellite ScAAT1 the one contributing the most to intra-strain variability. 

Microsatellite amplification revealed to be an efficient method to characterize strain genetic 

diversity and the obtained microsatellite allelic profiles showed to be unique of each strain. 

Mathematical associations were found between microsatellite allelic profiles and the 

phenotype and the origin of the strains. The phenotypes associated with higher number of 

alleles were the capacity to resist to sulphur dioxide (tested by the capacity to grow in the 

presence of potassium bisulphite) and the presence of galactosidase activity. Results 

demonstrate once again the utility of these models as tools for preliminary yeast strain 

selection.  

After phenotypic and genetic characterization 4 isolates were chosen from the entire 

collection, as the most interesting to perform metabolic characterization, due to their 

phenotypic and genetic heterogeneity and their different technological origins: strain Z63 

isolated from cachaça fermentations, strain Z23 used to produce the fermentative beverage 

sake, strain VL1 a commercial wine strain, and the laboratory strain S288c. The objective of 

this part of work was to better understand the molecular and metabolic bases of aroma 

production during a fermentation process, using comparative transcriptomic and metabolic 

analysis, to rationally identify new gene targets for improving aroma production. For this, 

we used several methodologies to characterize strain aroma production and associated genes, 

such as HPLC, GC-MS and microarrays, the results being analysed using mathematical 

approaches such as PCA and MFA. This approached has revealed successful to understand 

the pathways that lead to the formation of metabolic compounds, contributing to the wine 

aroma and flavour. The results confirmed differences between the three tested strains in 

comparison with the laboratory strain S288c, regarding  fermentative profile, gene 

expression and metabolite production at two fermentation time points (5 and 50 g/L of CO2 

released). These results were in line with a previous work where wine strains were described 

to be phenotypically closer to sake strains then to laboratory strains (Camarasa et al. 2011). 

Strains from cachaça, sake and wine (VL1) showed a higher production of acetate esters, 

ethyl esters, acids and higher alcohols, in comparison with the laboratory strain. Phenotypic 

variation between S. cerevisiae strains caused by environmental exposure/adaptation was 



Chapter VI | General Conclusions and Future Perspectives 
_______________________________________________________________________ 

 

111 
 

shown previously (Camarasa et al. 2011; Brion et al. 2013; Barbosa et al. 2014). In this work 

we extended this knowledge by associating gene groups to the differential production of 

aromatic compounds by strains from four different environments: laboratory, and wine, 

cachaça and sake fermentations. Multiple factorial analyses combining data from gene 

expression and metabolic characterization, for both time points of fermentation, confirmed 

the separation of cachaça, sake and wine strains from the laboratory strain, as 

expected(Camarasa et al. 2011). Most relevant results showed that, at T1 of fermentation, 

cachaça strain differentiated from the other strains by an increased production of ethyl esters, 

namely ethylbutanoate, ethyldecanoate and ethyloctanoate while VL1 and sake strains 

exhibited higher capacities of production of hexylacetate, propylacetate, 2-

phenylethylacetate, amylalcohol, isovaleric acid, isoamylacetate, amylacetate, 

ethlpropionate, propanoic acid and isoamylalcohol. Regarding gene expression, these 

differences were justified mainly by an overexpression of genes related with butanoate, 

tyrosine, beta-alanine and fatty acids in the cachaça strain. Conversely, at T2, differences 

were focused in the higher production by sake strain, in comparison with cachaça and wine 

strains, of several acetate and ethyl esters, together with an increase in the expression of 

genes of c-compound metabolism and oxidation-reduction process. 

 As a final viewpoint, data obtained in this thesis, will certainly be useful in 

biotechnological field such as for simplification of the laborious strain selection 

programmes, strain improvement, and to select yeast strains with improved aromatic 

properties. 

 In the future this work should be continued and new windows of opportunity are now 

open by this knowledge, in particular: 

 Develop new methods to establish relations between gene expression patterns 

and metabolites formation pathways, in order to study new networks of genes with 

interest in winemaking and in particular in the aroma metabolome; 

 To assess the impact of different must matrixes on the aroma and gene 

expression profiles of these strains; 

 To construct genetically modified winemaking strains by allele replacement 

using genes implicated in flavour formation and evaluate at industrial scale their 

properties; 



PhD Thesis | Inês Mendes 
_______________________________________________________________________ 
 

112 
 

 Expand the current characterization to the proteome level in order to find 

associations with the transcriptome and metabolome of these strains; 

 Give particular emphasis to the computational models focusing in predictive 

methodologies that by being adequate for high-throughput data analysis will be each 

time more mandatory in order to do research with this type of “omics” data. 
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Supplementary data S1 

Geographical origin and technological application/origin of the 172 Saccharomyces cerevisiae strains.  

Strain 
Code 

Geographical 
Origin Technological application or origin Provided 

by (Liti et al. 2009) 

Z1 France Laboratory Liti, G. 97 Y55 

Z2 USA Laboratory Liti, G. 17 SK1 

Z3 Italy Clinical Liti, G. 303 YJM978 

Z4 Italy Clinical Liti, G. 304 YJM981 

Z5 Italy Clinical Liti, G. 308 YJM975 

Z6 UK Clinical Liti, G. 284 322134S 

Z7 UK Clinical Liti, G. 287 378604X 

Z8 UK Clinical Liti, G. 288 273614N 

Z9 Finland Natural isolate Liti, G. 84 DBVPG1788 

Z10 Netherlands Natural isolate Liti, G. 91 DBVPG1373 

Z11 France Commercial wine strain Liti, G. 174 YIIc17_E5 

Z12 Netherlands Other fermented beverages Liti, G. 155 DBVPG6040 

Z13 Ireland Beer Liti, G. 248 NCYC361 

Z14 USA Natural isolate Liti, G. 182 YPS606 

Z15 USA Natural isolate Liti, G. 104 YPS128 

Z16 Australia Bread Liti, G. 258 YS2 

Z17 Netherlands Bread Liti, G. 259 YS4 

Z18 Singapore Bread Liti, G. 262 YS9 

Z19 USA Wine and vine Liti, G. 181 BC187 

Z20 Malaysia Natural isolate Liti, G. 278 UWOPS03-461.4 

Z21 Malaysia Natural isolate Liti, G. 279 UWOPS05-217.3 

Z22 Malaysia Natural isolate Liti, G. 280 UWOPS05-227.2 

Z23 Japan Saké Liti, G. 251 K11 

Z24 Indonesia Saké Liti, G. 252 Y9 

Z25 USA Wine and vine Liti, G. 345 RM11 

Z26 Ethiopia Bread Liti, G. 92 DBVPG1853 

Z27 Ivory Coast Other fermented beverages Liti, G. 253 Y12 

Z28 West Africa Other fermented beverages Liti, G. 247 NCYC110 

Z29 West Africa Other fermented beverages Liti, G. 60 DBVPG6044 

Z30 Unknown geographical origin Unknown biological origin Liti, G. 3 DBVPG6765 

Z31 Portugal Unknown biological origin Liti, G. OV 382 

Z32 Chile Wine and vine Liti, G. 220 L-1374 

Z33 Chile Wine and vine Liti, G. 221 L-1528 

Z34 Hawaii Natural isolate Liti, G. 271 UWOPS87-2421 

Z35 Australia Natural isolate Liti, G. 150 DBVPG1106 

Z36 Bahamas Natural isolate Liti, G. 270 UWOPS83-787.3 

Z37 Portugal Clinical Carreto, L. 

Z38 Portugal Clinical Carreto, L. 

Z39 Portugal Clinical Carreto, L. 

Z40 Portugal – Bairrada Wine and vine Carreto, L. 

Z41 Portugal – Bairrada Wine and vine Carreto, L. 
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Strain 
Code 

Geographical 
Origin Technological application or origin Provided 

by (Liti et al. 2009) 

Z42 Portugal – Bairrada Wine and vine Carreto, L. 

Z43 Portugal – Bairrada Wine and vine Carreto, L. 

Z44 France Commercial wine strain – MAC2338 

Z45 France - Rhône Valley Commercial wine strain – JCY254 Lalvin 

Z46 France Commercial wine strain – Fermol Rouge AEB 

Z47 USA Commercial wine strain – Lalvin 522 

Z48 Japan Saké Goto-Yakamoto, N. 

Z49 Japan Saké Goto-Yakamoto, N. 

Z50 Japan Saké Goto-Yakamoto, N. 

Z51 Japan Saké Goto-Yakamoto, N. 

Z52 Unknown geographical origin Natural isolate Kurtzman, C.P. 

Z53 Africa Other fermented beverages Kurtzman, C.P. 

Z54 Indonesia Natural isolate Kurtzman, C.P. 

Z55 West Africa Other fermented beverages Kurtzman, C.P. 

Z56 French Guiana Unknown biological origin Kurtzman, C.P. 

Z57 Turkey Wine and vine Kurtzman, C.P. 

Z58 Indonesia Other fermented beverages Kurtzman, C.P. 

Z59 Philippines Other fermented beverages Kurtzman, C.P. 

Z60 Ivory Coast Other fermented beverages Kurtzman, C.P. 

Z61 Brazil Other fermented beverages Brandão, R. 

Z62 Brazil Other fermented beverages Brandão, R. 

Z63 Brazil Other fermented beverages Brandão, R. 

Z64 Turkey Wine and vine Huseyin, E.  

Z65 Turkey Wine and vine Huseyin, E.  

Z66 Turkey Wine and vine Huseyin, E.  

Z67 Turkey Wine and vine Huseyin, E.  

Z68 Turkey Wine and vine Huseyin, E.  

Z69 Turkey Wine and vine Huseyin, E.  

Z70 Turkey Wine and vine Huseyin, E.  

Z71 Turkey Wine and vine Huseyin, E.  

Z72 France Wine and vine 

Z73 France Wine and vine 

Z74 France Wine and vine 

Z75 France Wine and vine 

Z76 France Wine and vine 

Z77 France Wine and vine 

Z78 France Wine and vine 

Z79 France Wine and vine 

Z80 France Wine and vine 

Z81 France Wine and vine 

Z82 France Wine and vine 

Z83 France Wine and vine 

Z84 France Wine and vine 
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Strain 
Code 

Geographical 
Origin Technological application or origin Provided 

by (Liti et al. 2009) 

Z85 France – Bordeaux Commercial wine strain – VL3  

Z86 Unknown geographical origin Laboratory – S288c  

Z87 Unknown geographical origin Unknown biological origin  

Z88 Portugal – Vinho Verde Wine and vine 

Z89 Portugal – Vinho Verde Wine and vine 

Z90 Portugal – Vinho Verde Wine and vine 

Z91 Portugal – Vinho Verde Wine and vine 

Z92 Portugal – Vinho Verde Wine and vine 

Z93 Portugal – Vinho Verde Wine and vine 

Z94 Portugal – Vinho Verde Wine and vine 

Z95 Portugal – Vinho Verde Wine and vine 

Z96 Portugal – Vinho Verde Wine and vine 

Z97 Portugal – Vinho Verde Wine and vine 

Z98 Portugal – Vinho Verde Wine and vine 

Z99 Portugal – Vinho Verde Wine and vine 

Z100 Portugal – Vinho Verde Wine and vine 

Z101 Portugal – Vinho Verde Wine and vine 

Z102 Portugal – Vinho Verde Wine and vine 

Z103 Portugal – Vinho Verde Wine and vine 

Z104 Portugal – Vinho Verde Wine and vine 

Z105 Portugal – Vinho Verde Wine and vine 

Z106 Portugal – Bairrada Wine and vine 

Z107 Portugal – Bairrada Wine and vine 

Z108 Portugal – Bairrada Wine and vine 

Z109 Portugal – Bairrada Wine and vine 

Z110 Portugal – Bairrada Wine and vine 

Z111 Portugal – Vinho Verde Wine and vine 

Z112 Portugal – Vinho Verde Wine and vine 

Z113 Portugal – Vinho Verde Wine and vine 

Z114 Portugal – Vinho Verde Wine and vine 

Z115 Portugal – Vinho Verde Wine and vine 

Z116 Portugal – Vinho Verde Wine and vine 

Z117 Portugal – Vinho Verde Wine and vine 

Z118 Portugal – Vinho Verde Wine and vine 

Z119 Portugal – Vinho Verde Wine and vine 

Z120 Portugal – Vinho Verde Wine and vine 

Z121 Portugal – Vinho Verde Wine and vine 

Z122 Portugal – Vinho Verde Wine and vine 

Z123 Portugal – Vinho Verde Wine and vine 

Z124 Portugal – Vinho Verde Wine and vine 

Z125 Portugal – Vinho Verde Wine and vine 

Z126 Portugal – Vinho Verde Wine and vine 

Z128 Portugal – Vinho Verde Wine and vine 

Z129 Portugal – Vinho Verde Wine and vine 
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Strain 
Code 

Geographical 
Origin Technological application or origin Provided 

by (Liti et al. 2009) 

Z130 Minho Commercial wine strain – Lalvin QA23 

Z131 Sangiovese (=grape variety) Commercial wine strain – Lalvin BM 45 

Z132 France – Bordelais Commercial wine strain – Maurivin AWRI R2 

Z133 France – Vallée du Rhône Commercial wine strain – Lalvin ICV D80 

Z134 France – Languedoc Commercial wine strain – K1 

Z135 South Africa – Stellenbosch Commercial wine strain – Anchor Vin13 

Z136 France – Vallée du Rhône Commercial wine strain – ICV D47 

Z137 France – Languedoc Commercial wine strain – ICV D254 

Z138 Spain – Valencia Commercial wine strain – Enolevure K34 

Z139 France – Champagne Commercial wine strain – Uvaline BL 

Z140 France – Val de Loire Commercial wine strain – Uvaline Arôme 

Z141 France – Champagne Commercial wine strain – Maurivin PDM 

Z142 France – Bordeaux-Gironde Commercial wine strain – Zymaflore 

Z143 France – Limoux Languedoc Commercial wine strain – Vitilevure 
Chardonnay 

Z144 France – Bordeaux-Gironde Commercial wine strain – Zymaflore  

Z145 France – Bordelais Commercial wine strain – Zymaflore F10 

Z146 France – Bordeaux-Gironde Commercial wine strain – Zymaflore F15 

Z147 Portugal – Dão Commercial wine strain – Zymaflore QD145 

Z148 Portugal – Bairrada Commercial wine strain – Zymaflore BA11 

Z149 Unknown geographical origin Commercial wine strain – Siha 3 

Z150 Unknown geographical origin Commercial wine strain – Siha 6 

Z151 Germany – Pfalz Commercial wine strain – Siha 7 

Z152 Germany – Baden Commercial wine strain – Siha 8 

Z153 Unknown geographical origin Commercial wine strain – Fermol Premier 

Z154 Unknown geographical origin Commercial wine strain – Fermol Reims 
Champagne 

Z155 Unknown geographical origin Commercial wine strain – Uvaferm 228 

Z156 France – Alsace Commercial wine strain – Uvaferm CS 2 

Z157 France – Champagne Commercial wine strain – Lalvin EC1118 

Z158 France – Burgund Commercial wine strain – Lalvin Bourgoblanc 
Cy3079 

Z159 Unknown geographical origin Commercial wine strain – ALB 

Z160 France – Vallée du Rhône Commercial wine strain – Uvaferm L 2056 

Z161 France – Alsace Commercial wine strain – Fermichamp 

Z162 France – Champagne Commercial wine strain – Fermicru LS2 

Z163 South Africa – Stellenbosch Commercial wine strain – Anchor Vin 13 

Z164 France – Narbonne Commercial wine strain – Uvaferm 71 B 

Z165 France – Bordeaux Commercial wine strain – Uvaferm BDX 

Z166 France – Bourgogne Commercial wine strain – Levuline BRG 

Z167 France – Rhone Valley Commercial wine strain – Lalvin ICV D254 

Z168 France – Rhone Valley Commercial wine strain – Lalvin ICV D47 

Z169 Unknown geographical origin Commercial wine strain – Danstil 493 EDV 

Z184 France Commercial wine strain – VL1 

Z185 Portugal – Bairrada Wine and vine 
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Strain 
Code 

Geographical 
Origin Technological application or origin Provided 

by (Liti et al. 2009) 

Z186 Portugal – Bairrada Wine and vine 

Z187 Portugal – Douro Wine and vine 
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Supplementary data S2 

 

 

 

 

 

 

 

 

 

 

PCA representation of the three strain clusters, obtained with k-means clustering 
algorithm. The symbols represent the belonging of the 172 strains shown in the 
phenotypic data PCA (Figure III-2B) to each cluster:  – cluster 1 (38 strains);     

 – cluster 2 (90 strains);  – cluster 3 (44 strains). 

 

 

 

 

 

 

 

 

 



 

 Supplementary data S3 

Statistical p-values (adjusted) of associations between phenotypic classes and microsatellite alleles. Shaded cells indicate significant associations (false 
discovery rate below 0.2). 

18 ˚C = 0 18 ˚C = 1 40 ˚C = 0 40 ˚C = 1 40 ˚C = 2 40 ˚C = 3 H2S production = 1 H2S production = 2 H2S production = 3 
ScAAT1-16 0.181 0.181 0.098 0.065 0.186 0.172 0.097 0.129 0.113 
ScAAT1-22 0.117 0.117 0.043 0.007 0.123 0.039 0.133 0.090 0.157 
ScAAT1-24 0.020 0.019 0.030 0.136 0.105 0.055 0.095 0.147 0.168 
ScAAT1-27 0.136 0.108 0.034 0.078 0.181 0.050 0.102 0.067 0.114 
ScAAT1-31 0.025 0.023 0.045 0.137 0.177 0.113 0.197 0.098 0.136 
ScAAT1-32 0.046 0.080 0.092 0.094 0.124 0.029 0.108 0.093 0.119 
ScAAT2-13 0.161 0.182 0.015 0.176 0.089 0.003 0.099 0.197 0.170 
ScAAT2-14 0.010 0.011 0.069 0.003 0.149 0.006 0.072 0.039 0.081 
ScAAT2-15 0.107 0.093 0.054 0.167 0.080 0.027 0.060 0.038 0.083 
ScAAT2-16 0.160 0.127 0.019 0.120 0.180 0.072 0.197 0.143 0.166 
ScAAT3-14 0.072 0.066 0.066 0.176 0.133 0.153 0.147 0.137 0.172 
ScAAT3-16 0.145 0.128 0.176 0.185 0.186 0.170 0.174 0.096 0.145 
ScAAT3-22 0.068 0.120 0.034 0.128 0.186 0.048 0.197 0.131 0.138 
ScAAT4-11 0.102 0.101 0.185 0.095 0.145 0.144 0.173 0.120 0.073 
ScAAT4-20 0.103 0.119 0.185 0.031 0.153 0.134 0.091 0.167 0.097 
ScAAT5-8 0.076 0.081 0.175 0.147 0.186 0.186 0.126 0.030 0.016 
ScAAT5-9 0.025 0.025 0.049 0.069 0.140 0.016 0.009 0.088 0.181 
ScAAT5-10 0.096 0.101 0.052 0.083 0.142 0.062 0.040 0.023 0.042 
ScAAT5-21 0.025 0.044 0.024 0.012 0.180 0.010 0.078 0.014 0.035 
ScAAT5-22 0.104 0.148 0.131 0.048 0.099 0.033 0.155 0.152 0.175 
ScAAT6-16 0.033 0.058 0.018 0.013 0.182 0.010 0.059 0.029 0.083 
ScAAT6-17 0.135 0.168 0.121 0.042 0.099 0.031 0.156 0.181 0.198 
C4-21 0.173 0.178 0.184 0.179 0.054 0.044 0.163 0.198 0.182 
C4-22 0.141 0.129 0.185 0.082 0.184 0.183 0.147 0.198 0.171 
C4-24 0.134 0.162 0.074 0.142 0.041 0.003 0.030 0.057 0.162 
C5-4 0.030 0.027 0.003 0.170 0.186 0.040 0.122 0.079 0.100 
C5-5 0.115 0.127 0.039 0.070 0.176 0.054 0.063 0.068 0.089 
C5-10 0.150 0.142 0.101 0.038 0.088 0.177 0.110 0.165 0.198 
C5-12 0.172 0.172 0.185 0.091 0.133 0.047 0.173 0.125 0.136 
C5-13 0.120 0.173 0.026 0.159 0.148 0.098 0.130 0.183 0.150 
C5-18 0.141 0.142 0.127 0.186 0.036 0.027 0.197 0.119 0.080 
C11-13 0.125 0.139 0.100 0.123 0.127 0.065 0.093 0.087 0.102 
C11-24 0.115 0.111 0.093 0.108 0.184 0.083 0.060 0.014 0.041 
C11-25 0.153 0.166 0.174 0.175 0.010 0.011 0.138 0.095 0.124 
ScYOR267c-52 0.182 0.182 0.105 0.128 0.159 0.091 0.048 0.059 0.136 
ScYOR267c-63 0.096 0.095 0.185 0.094 0.106 0.118 0.174 0.033 0.043 
ScYPL009c-79 0.090 0.086 0.103 0.148 0.186 0.133 0.040 0.092 0.090 
ScYPL009c-80 0.056 0.049 0.119 0.180 0.042 0.032 0.174 0.154 0.135 
ScYPL009c-81 0.070 0.062 0.160 0.021 0.106 0.050 0.117 0.066 0.115 
ScYPL009c-82 0.115 0.111 0.141 0.129 0.032 0.042 0.149 0.118 0.073 



 

 

  
CuSO4 = 0 CuSO4 = 1 Cycloheximide  

(0.05 μg/mL) = 3 
Cycloheximide  
(0.1 μg/mL) = 2 

Cycloheximide  
(0.1 μg/mL) = 3 

Ethanol 10% (v/v)  
(LM) = 0 

Ethanol 10% (v/v)  
(LM) = 1 

ScAAT1-16 0.058 0.096 0.173 0.194 0.194 0.001 0.179 
ScAAT1-22 0.011 0.013 0.136 0.004 0.007 0.077 0.147 
ScAAT1-24 0.188 0.183 0.143 0.066 0.007 0.110 0.160 
ScAAT1-27 0.152 0.152 0.194 0.149 0.102 0.162 0.053 
ScAAT1-31 0.176 0.106 0.152 0.082 0.072 0.085 0.190 
ScAAT1-32 0.076 0.075 0.057 0.162 0.135 0.189 0.070 
ScAAT2-13 0.188 0.071 0.149 0.077 0.076 0.044 0.036 
ScAAT2-14 0.009 0.015 0.103 0.033 0.012 0.129 0.107 
ScAAT2-15 0.004 0.008 0.056 0.120 0.141 0.047 0.115 
ScAAT2-16 0.110 0.108 0.020 0.022 0.013 0.039 0.064 
ScAAT3-14 0.169 0.188 0.050 0.063 0.074 0.070 0.190 
ScAAT3-16 0.188 0.184 0.088 0.082 0.069 0.122 0.129 
ScAAT3-22 0.055 0.044 0.161 0.081 0.058 0.027 0.073 
ScAAT4-11 0.090 0.103 0.112 0.012 0.037 0.189 0.150 
ScAAT4-20 0.155 0.173 0.155 0.053 0.078 0.148 0.106 
ScAAT5-8 0.146 0.143 0.090 0.009 0.008 0.095 0.077 
ScAAT5-9 0.094 0.117 0.194 0.103 0.082 0.156 0.062 
ScAAT5-10 0.175 0.179 0.178 0.064 0.043 0.127 0.038 
ScAAT5-21 0.188 0.177 0.078 0.020 0.030 0.084 0.041 
ScAAT5-22 0.044 0.067 0.114 0.067 0.050 0.190 0.082 
ScAAT6-16 0.185 0.188 0.097 0.029 0.048 0.080 0.073 
ScAAT6-17 0.064 0.093 0.128 0.065 0.047 0.190 0.108 
C4-21 0.116 0.113 0.146 0.065 0.096 0.099 0.165 
C4-22 0.017 0.021 0.059 0.069 0.044 0.111 0.145 
C4-24 0.166 0.114 0.175 0.172 0.194 0.181 0.112 
C5-4 0.122 0.125 0.059 0.165 0.118 0.098 0.190 
C5-5 0.126 0.090 0.174 0.118 0.106 0.040 0.163 
C5-10 0.087 0.088 0.144 0.107 0.164 0.190 0.139 
C5-12 0.140 0.113 0.017 0.040 0.056 0.190 0.057 
C5-13 0.164 0.115 0.173 0.038 0.026 0.169 0.190 
C5-18 0.031 0.030 0.003 0.034 0.018 0.089 0.190 
C11-13 0.043 0.057 0.155 0.005 0.004 0.168 0.029 
C11-24 0.004 0.007 0.065 0.046 0.029 0.189 0.160 
C11-25 0.153 0.177 0.139 0.126 0.128 0.023 0.190 
ScYOR267c-52 0.064 0.100 0.164 0.073 0.052 0.170 0.067 
ScYOR267c-63 0.055 0.088 0.114 0.026 0.047 0.090 0.191 
ScYPL009c-79 0.182 0.153 0.194 0.105 0.176 0.040 0.014 
ScYPL009c-80 0.093 0.070 0.174 0.181 0.194 0.028 0.158 
ScYPL009c-81 0.088 0.071 0.194 0.108 0.156 0.138 0.190 
ScYPL009c-82 0.040 0.073 0.161 0.008 0.015 0.177 0.047 



 

  
Ethanol 10% (v/v)  

(LM) = 2 
Ethanol 10% (v/v)  

(LM) = 3 
Ethanol 14% (v/v)  

(LM) = 0 
Ethanol 14% (v/v)  

(LM) = 1 
Ethanol 14% (v/v)  

(LM) = 2 
Ethanol 6% (v/v)  

(LM) = 2 
ScAAT1-16 0.067 0.040 0.023 0.139 0.033 0.037 
ScAAT1-22 0.125 0.152 0.123 0.108 0.039 0.156 
ScAAT1-24 0.166 0.061 0.160 0.081 0.161 0.157 
ScAAT1-27 0.072 0.062 0.050 0.153 0.122 0.027 
ScAAT1-31 0.178 0.172 0.154 0.135 0.054 0.028 
ScAAT1-32 0.107 0.006 0.078 0.109 0.015 0.050 
ScAAT2-13 0.124 0.007 0.025 0.191 0.032 0.016 
ScAAT2-14 0.140 0.027 0.007 0.146 0.009 0.160 
ScAAT2-15 0.011 0.111 0.117 0.084 0.159 0.132 
ScAAT2-16 0.035 0.119 0.080 0.125 0.102 0.010 
ScAAT3-14 0.056 0.034 0.019 0.191 0.013 0.182 
ScAAT3-16 0.010 0.061 0.147 0.100 0.166 0.132 
ScAAT3-22 0.021 0.085 0.157 0.191 0.161 0.008 
ScAAT4-11 0.129 0.191 0.191 0.067 0.038 0.159 
ScAAT4-20 0.146 0.027 0.029 0.102 0.087 0.021 
ScAAT5-8 0.036 0.026 0.011 0.120 0.024 0.115 
ScAAT5-9 0.051 0.004 0.106 0.156 0.137 0.010 
ScAAT5-10 0.066 0.016 0.158 0.136 0.103 0.045 
ScAAT5-21 0.051 0.005 0.068 0.129 0.122 0.032 
ScAAT5-22 0.107 0.016 0.061 0.158 0.128 0.086 
ScAAT6-16 0.029 0.005 0.092 0.162 0.103 0.022 
ScAAT6-17 0.076 0.013 0.063 0.144 0.117 0.062 
C4-21 0.112 0.003 0.084 0.148 0.048 0.111 
C4-22 0.073 0.028 0.044 0.166 0.033 0.084 
C4-24 0.044 0.012 0.110 0.035 0.125 0.154 
C5-4 0.133 0.135 0.078 0.037 0.191 0.019 
C5-5 0.039 0.035 0.022 0.169 0.020 0.121 
C5-10 0.051 0.084 0.050 0.152 0.064 0.130 
C5-12 0.142 0.057 0.183 0.113 0.119 0.159 
C5-13 0.167 0.162 0.057 0.022 0.131 0.020 
C5-18 0.109 0.191 0.017 0.041 0.074 0.163 
C11-13 0.123 0.026 0.088 0.191 0.096 0.126 
C11-24 0.157 0.118 0.074 0.171 0.030 0.063 
C11-25 0.003 0.023 0.094 0.056 0.083 0.070 
ScYOR267c-52 0.083 0.131 0.145 0.104 0.056 0.144 
ScYOR267c-63 0.041 0.014 0.094 0.178 0.044 0.151 
ScYPL009c-79 0.0005 0.019 0.079 0.097 0.024 0.180 
ScYPL009c-80 0.072 0.098 0.070 0.049 0.141 0.162 
ScYPL009c-81 0.060 0.005 0.069 0.149 0.078 0.189 
ScYPL009c-82 0.011 0.0008 0.006 0.157 0.019 0.022 



 

  
Ethanol 6% (v/v)  

(LM) = 3 
Ethanol 12% (v/v) +  
Na2S2O5 (50 mg/L) 

Ethanol 14% (v/v) +  
Na2S2O5 (50 mg/L) 

Ethanol 16% (v/v) +  
Na2S2O5 (50 mg/L) Galactosidase activity = 1 

ScAAT1-16 0.033 0.198 0.198 0.175 0.141 
ScAAT1-22 0.154 0.150 0.148 0.138 0.066 
ScAAT1-24 0.149 0.022 0.085 0.143 0.091 
ScAAT1-27 0.021 0.071 0.075 0.198 0.003 
ScAAT1-31 0.025 0.072 0.056 0.153 0.124 
ScAAT1-32 0.046 0.134 0.102 0.198 0.001 
ScAAT2-13 0.013 0.076 0.098 0.198 0.002 
ScAAT2-14 0.176 0.018 0.026 0.160 0.167 
ScAAT2-15 0.136 0.091 0.093 0.071 0.133 
ScAAT2-16 0.040 0.017 0.067 0.199 0.001 
ScAAT3-14 0.176 0.086 0.103 0.199 0.045 
ScAAT3-16 0.125 0.075 0.182 0.199 0.062 
ScAAT3-22 0.036 0.144 0.091 0.199 0.004 
ScAAT4-11 0.189 0.110 0.198 0.113 0.084 
ScAAT4-20 0.011 0.058 0.104 0.053 0.025 
ScAAT5-8 0.116 0.168 0.198 0.146 0.015 
ScAAT5-9 0.012 0.096 0.071 0.152 0.035 
ScAAT5-10 0.048 0.150 0.062 0.149 0.020 
ScAAT5-21 0.032 0.067 0.074 0.152 0.025 
ScAAT5-22 0.074 0.154 0.181 0.146 0.006 
ScAAT6-16 0.024 0.099 0.108 0.130 0.026 
ScAAT6-17 0.054 0.143 0.171 0.145 0.007 
C4-21 0.087 0.090 0.085 0.111 0.0002 
C4-22 0.081 0.016 0.145 0.199 0.092 
C4-24 0.120 0.054 0.067 0.110 0.028 
C5-4 0.012 0.016 0.022 0.068 0.166 
C5-5 0.098 0.107 0.122 0.134 0.0009 
C5-10 0.130 0.164 0.198 0.144 0.051 
C5-12 0.159 0.035 0.033 0.088 0.0148 
C5-13 0.009 0.077 0.121 0.050 0.002 
C5-18 0.162 0.156 0.154 0.140 0.104 
C11-13 0.144 0.165 0.051 0.013 0.004 
C11-24 0.069 0.165 0.105 0.142 0.072 
C11-25 0.054 0.052 0.047 0.141 0.085 
ScYOR267c-52 0.155 0.138 0.037 0.060 0.149 
ScYOR267c-63 0.177 0.083 0.130 0.114 0.135 
ScYPL009c-79 0.151 0.023 0.021 0.112 0.146 
ScYPL009c-80 0.163 0.100 0.183 0.199 0.002 
ScYPL009c-81 0.189 0.055 0.066 0.155 0.046 
ScYPL009c-82 0.021 0.117 0.157 0.082 0.200 



   
Galactosidase 

activity = 2 
Galactosidase 

activity = 3 
Iprodion 

(0.05 mg/mL) = 2 
Iprodion 

(0.05 mg/mL) = 3 
Iprodion  

(0.1 mg/mL) = 2 
Iprodion  

(0.1 mg/mL) = 3 
KCl  

(0.75 M) = 2 
KCl  

(0.75 M) = 3 
KHSO3  

(150 mg/L) = 0 
ScAAT1-16 0.081 0.018 0.019 0.018 0.066 0.121 0.150 0.177 0.107 
ScAAT1-22 0.124 0.200 0.014 0.042 0.192 0.192 0.187 0.187 0.108 
ScAAT1-24 0.029 0.079 0.167 0.104 0.192 0.192 0.161 0.179 0.011 
ScAAT1-27 0.031 0.050 0.180 0.180 0.192 0.192 0.179 0.151 0.027 
ScAAT1-31 0.178 0.098 0.170 0.191 0.192 0.192 0.083 0.071 0.105 
ScAAT1-32 0.053 0.017 0.116 0.116 0.192 0.193 0.116 0.150 0.018 
ScAAT2-13 0.042 0.151 0.059 0.059 0.177 0.164 0.187 0.187 0.009 
ScAAT2-14 0.167 0.153 0.037 0.053 0.039 0.034 0.075 0.086 0.115 
ScAAT2-15 0.150 0.091 0.184 0.191 0.053 0.032 0.170 0.162 0.078 
ScAAT2-16 0.019 0.059 0.127 0.131 0.192 0.158 0.143 0.130 0.008 
ScAAT3-14 0.124 0.114 0.171 0.171 0.192 0.193 0.169 0.145 0.095 
ScAAT3-16 0.200 0.117 0.074 0.049 0.102 0.092 0.082 0.138 0.121 
ScAAT3-22 0.031 0.183 0.134 0.133 0.139 0.111 0.069 0.063 0.075 
ScAAT4-11 0.129 0.041 0.093 0.092 0.071 0.064 0.078 0.084 0.106 
ScAAT4-20 0.073 0.121 0.119 0.100 0.073 0.043 0.106 0.085 0.109 
ScAAT5-8 0.170 0.101 0.048 0.061 0.147 0.109 0.065 0.120 0.157 
ScAAT5-9 0.054 0.141 0.117 0.146 0.048 0.037 0.175 0.144 0.055 
ScAAT5-10 0.185 0.027 0.117 0.124 0.132 0.154 0.012 0.020 0.090 
ScAAT5-21 0.120 0.060 0.152 0.142 0.164 0.183 0.005 0.008 0.010 
ScAAT5-22 0.159 0.067 0.138 0.144 0.112 0.078 0.164 0.181 0.095 
ScAAT6-16 0.109 0.081 0.126 0.125 0.182 0.193 0.020 0.034 0.007 
ScAAT6-17 0.184 0.046 0.130 0.130 0.112 0.077 0.149 0.163 0.079 
C4-21 0.008 0.158 0.051 0.032 0.134 0.114 0.107 0.124 0.180 
C4-22 0.184 0.087 0.145 0.139 0.089 0.065 0.143 0.145 0.123 
C4-24 0.178 0.076 0.039 0.036 0.175 0.122 0.143 0.134 0.097 
C5-4 0.128 0.057 0.130 0.137 0.104 0.080 0.052 0.060 0.069 
C5-5 0.057 0.095 0.110 0.105 0.161 0.134 0.006 0.007 0.068 
C5-10 0.045 0.132 0.075 0.077 0.105 0.094 0.123 0.090 0.080 
C5-12 0.009 0.019 0.151 0.151 0.127 0.129 0.175 0.187 0.139 
C5-13 0.160 0.035 0.013 0.054 0.160 0.148 0.134 0.135 0.086 
C5-18 0.139 0.052 0.127 0.191 0.137 0.139 0.014 0.014 0.108 
C11-13 0.182 0.030 0.045 0.048 0.096 0.079 0.130 0.127 0.045 
C11-24 0.028 0.091 0.082 0.082 0.138 0.126 0.014 0.015 0.163 
C11-25 0.167 0.121 0.011 0.012 0.087 0.085 0.187 0.187 0.160 
ScYOR267c-52 0.185 0.178 0.070 0.131 0.192 0.181 0.047 0.039 0.080 
ScYOR267c-63 0.200 0.149 0.113 0.114 0.171 0.169 0.116 0.085 0.131 
ScYPL009c-79 0.097 0.150 0.095 0.103 0.121 0.097 0.051 0.058 0.167 
ScYPL009c-80 0.045 0.061 0.036 0.031 0.164 0.168 0.103 0.103 0.087 
ScYPL009c-81 0.061 0.055 0.068 0.057 0.164 0.180 0.025 0.037 0.153 
ScYPL009c-82 0.042 0.054 0.023 0.019 0.093 0.101 0.047 0.035 0.119 



 

 
KHSO3 

(150 mg/L) = 1 
KHSO3 

(150 mg/L) = 2 
KHSO3  

(150 mg/L) = 3 
KHSO3  

(300 mg/L) = 0 
KHSO3  

(300 mg/L) = 1 
KHSO3  

(300 mg/L) = 2 
KHSO3  

(300 mg/L) = 3 
NaCl  

(1.5 M) = 0 
NaCl  

(1.5 M) = 1 
ScAAT1-16 0.172 0.194 0.083 0.012 0.195 0.082 0.159 0.071 0.111 
ScAAT1-22 0.132 0.094 0.158 0.085 0.136 0.063 0.002 0.065 0.093 
ScAAT1-24 0.064 0.194 0.014 0.006 0.151 0.151 0.001 0.059 0.110 
ScAAT1-27 0.103 0.079 0.012 0.001 0.150 0.165 0.006 0.089 0.051 
ScAAT1-31 0.066 0.053 0.043 0.100 0.083 0.124 0.015 0.156 0.187 
ScAAT1-32 0.041 0.140 0.092 0.004 0.036 0.165 0.002 0.123 0.086 
ScAAT2-13 0.099 0.195 0.012 0.002 0.124 0.138 0.0006 0.165 0.148 
ScAAT2-14 0.084 0.118 0.085 0.075 0.115 0.007 0.003 0.118 0.165 
ScAAT2-15 0.076 0.063 0.007 0.032 0.128 0.010 0.003 0.029 0.151 
ScAAT2-16 0.043 0.154 0.016 0.067 0.026 0.141 0.033 0.075 0.052 
ScAAT3-14 0.058 0.195 0.089 0.068 0.088 0.129 0.158 0.099 0.045 
ScAAT3-16 0.116 0.139 0.135 0.089 0.070 0.089 0.105 0.179 0.185 
ScAAT3-22 0.097 0.167 0.106 0.073 0.021 0.133 0.004 0.048 0.094 
ScAAT4-11 0.172 0.115 0.195 0.140 0.083 0.028 0.043 0.122 0.079 
ScAAT4-20 0.035 0.131 0.018 0.029 0.058 0.016 0.051 0.003 0.020 
ScAAT5-8 0.039 0.126 0.032 0.034 0.195 0.099 0.010 0.111 0.181 
ScAAT5-9 0.028 0.161 0.019 0.021 0.064 0.054 0.057 0.126 0.081 
ScAAT5-10 0.059 0.156 0.018 0.038 0.068 0.080 0.065 0.080 0.076 
ScAAT5-21 0.017 0.065 0.004 0.003 0.043 0.040 0.011 0.057 0.068 
ScAAT5-22 0.055 0.195 0.047 0.0003 0.123 0.031 0.0003 0.021 0.055 
ScAAT6-16 0.009 0.071 0.006 0.004 0.062 0.041 0.011 0.046 0.044 
ScAAT6-17 0.046 0.195 0.063 0.002 0.113 0.031 0.0004 0.024 0.055 
C4-21 0.013 0.093 0.034 0.002 0.126 0.155 0.0008 0.037 0.068 
C4-22 0.046 0.001 0.030 0.019 0.177 0.164 0.026 0.018 0.082 
C4-24 0.046 0.043 0.005 0.009 0.074 0.195 0.004 0.173 0.185 
C5-4 0.078 0.136 0.049 0.055 0.109 0.163 0.036 0.020 0.030 
C5-5 0.022 0.043 0.008 0.005 0.147 0.069 0.0083 0.123 0.128 
C5-10 0.194 0.102 0.034 0.163 0.195 0.077 0.196 0.017 0.032 
C5-12 0.079 0.072 0.055 0.017 0.195 0.179 0.028 0.155 0.183 
C5-13 0.130 0.053 0.012 0.006 0.111 0.116 0.013 0.183 0.176 
C5-18 0.115 0.064 0.023 0.096 0.086 0.155 0.151 0.066 0.053 
C11-13 0.052 0.095 0.062 0.195 0.114 0.069 0.115 0.187 0.168 
C11-24 0.060 0.179 0.149 0.040 0.151 0.109 0.118 0.124 0.172 
C11-25 0.137 0.084 0.122 0.144 0.160 0.137 0.113 0.048 0.116 
ScYOR267c-52 0.014 0.177 0.052 0.048 0.132 0.116 0.017 0.073 0.038 
ScYOR267c-63 0.112 0.141 0.163 0.181 0.140 0.099 0.081 0.072 0.049 
ScYPL009c-79 0.131 0.108 0.029 0.033 0.156 0.075 0.023 0.026 0.027 
ScYPL009c-80 0.056 0.167 0.085 0.038 0.021 0.164 0.024 0.179 0.131 
ScYPL009c-81 0.045 0.075 0.020 0.023 0.171 0.183 0.009 0.097 0.081 
ScYPL009c-82 0.122 0.039 0.058 0.195 0.151 0.118 0.099 0.017 0.022 



 
 

NaCl  
(1.5 M) = 2 pH 2 = 0 pH 2 = 1 Procymidon 

(0.1 mg/mL) = 2 
Procymidon 

(0.1 mg/mL) = 3 
SDS  

(0.01% w/v) = 0 
SDS  

(0.01% w/v) = 1 
Ethanol 12% (v/v) + 

Na2S2O5 (75 mg/L) = 0 
Ethanol 12% (v/v) + 

Na2S2O5 (75 mg/L) = 1 
ScAAT1-16 0.187 0.102 0.123 0.042 0.046 0.107 0.116 0.162 0.172 
ScAAT1-22 0.138 0.158 0.158 0.137 0.135 0.108 0.109 0.100 0.132 
ScAAT1-24 0.113 0.042 0.071 0.170 0.193 0.162 0.171 0.074 0.123 
ScAAT1-27 0.119 0.060 0.068 0.119 0.105 0.107 0.114 0.092 0.044 
ScAAT1-31 0.069 0.091 0.098 0.193 0.193 0.122 0.189 0.138 0.152 
ScAAT1-32 0.143 0.024 0.028 0.143 0.121 0.036 0.035 0.199 0.199 
ScAAT2-13 0.112 0.089 0.101 0.112 0.101 0.165 0.165 0.177 0.199 
ScAAT2-14 0.126 0.051 0.069 0.193 0.193 0.065 0.068 0.109 0.135 
ScAAT2-15 0.005 0.020 0.024 0.173 0.174 0.184 0.189 0.053 0.045 
ScAAT2-16 0.159 0.047 0.065 0.193 0.193 0.166 0.174 0.134 0.093 
ScAAT3-14 0.074 0.055 0.092 0.169 0.169 0.049 0.049 0.199 0.089 
ScAAT3-16 0.052 0.168 0.166 0.155 0.143 0.159 0.123 0.109 0.090 
ScAAT3-22 0.104 0.186 0.171 0.080 0.076 0.171 0.172 0.199 0.200 
ScAAT4-11 0.113 0.100 0.099 0.176 0.174 0.178 0.178 0.071 0.098 
ScAAT4-20 0.031 0.056 0.079 0.042 0.025 0.009 0.008 0.140 0.120 
ScAAT5-8 0.074 0.081 0.106 0.168 0.168 0.168 0.120 0.091 0.039 
ScAAT5-9 0.060 0.023 0.037 0.094 0.139 0.007 0.006 0.085 0.131 
ScAAT5-10 0.148 0.056 0.058 0.056 0.045 0.022 0.029 0.131 0.105 
ScAAT5-21 0.187 0.080 0.098 0.141 0.117 0.031 0.043 0.061 0.077 
ScAAT5-22 0.101 0.037 0.050 0.146 0.137 0.188 0.189 0.088 0.110 
ScAAT6-16 0.17 0.083 0.114 0.152 0.117 0.011 0.018 0.124 0.141 
ScAAT6-17 0.100 0.041 0.061 0.145 0.110 0.183 0.189 0.076 0.107 
C4-21 0.094 0.122 0.133 0.175 0.146 0.142 0.157 0.070 0.076 
C4-22 0.030 0.049 0.033 0.041 0.070 0.086 0.140 0.155 0.157 
C4-24 0.169 0.182 0.185 0.110 0.107 0.106 0.117 0.175 0.200 
C5-4 0.187 0.186 0.184 0.064 0.059 0.188 0.189 0.005 0.002 
C5-5 0.102 0.028 0.132 0.084 0.082 0.002 0.016 0.127 0.125 
C5-10 0.188 0.017 0.012 0.144 0.144 0.142 0.163 0.106 0.111 
C5-12 0.176 0.058 0.075 0.175 0.174 0.158 0.157 0.061 0.078 
C5-13 0.112 0.186 0.160 0.140 0.194 0.188 0.189 0.169 0.105 
C5-18 0.024 0.063 0.063 0.193 0.056 0.046 0.046 0.109 0.116 
C11-13 0.135 0.045 0.049 0.041 0.034 0.047 0.051 0.101 0.042 
C11-24 0.104 0.033 0.038 0.170 0.161 0.014 0.015 0.199 0.200 
C11-25 0.041 0.180 0.186 0.015 0.013 0.188 0.161 0.087 0.137 
ScYOR267c-52 0.156 0.058 0.038 0.031 0.008 0.064 0.073 0.180 0.140 
ScYOR267c-63 0.178 0.032 0.027 0.178 0.177 0.086 0.086 0.096 0.112 
ScYPL009c-79 0.173 0.156 0.154 0.112 0.084 0.089 0.024 0.061 0.081 
ScYPL009c-80 0.073 0.079 0.100 0.193 0.174 0.188 0.189 0.129 0.174 
ScYPL009c-81 0.128 0.125 0.147 0.128 0.123 0.165 0.170 0.127 0.134 
ScYPL009c-82 0.142 0.087 0.077 0.095 0.094 0.025 0.022 0.022 0.076 



 

  

Wine supplemented 
with  

glucose (0.5% w/v) = 0 

Wine supplemented 
with  

glucose (0.5% w/v) = 1 

Wine supplemented 
with  

glucose (0.5% w/v) = 2 

Wine supplemented 
with  

glucose (1% w/v) = 2 

Wine supplemented 
with  

glucose (1% w/v) = 1 

Wine supplemented 
with  

glucose (1% w/v) = 2 
ScAAT1-16 0.040 0.161 0.025 0.006 0.014 0.121 
ScAAT1-22 0.158 0.153 0.049 0.196 0.111 0.092 
ScAAT1-24 0.170 0.183 0.157 0.169 0.092 0.098 
ScAAT1-27 0.087 0.120 0.179 0.064 0.101 0.197 
ScAAT1-31 0.179 0.148 0.171 0.136 0.109 0.016 
ScAAT1-32 0.037 0.094 0.196 0.022 0.006 0.079 
ScAAT2-13 0.054 0.105 0.091 0.110 0.118 0.016 
ScAAT2-14 0.005 0.078 0.005 0.001 0.010 0.018 
ScAAT2-15 0.100 0.028 0.089 0.171 0.197 0.164 
ScAAT2-16 0.035 0.026 0.032 0.052 0.137 0.086 
ScAAT3-14 0.058 0.038 0.130 0.097 0.128 0.159 
ScAAT3-16 0.166 0.149 0.196 0.154 0.159 0.079 
ScAAT3-22 0.196 0.146 0.156 0.121 0.059 0.052 
ScAAT4-11 0.150 0.196 0.104 0.050 0.063 0.148 
ScAAT4-20 0.026 0.036 0.148 0.013 0.023 0.146 
ScAAT5-8 0.053 0.044 0.051 0.154 0.153 0.101 
ScAAT5-9 0.095 0.184 0.057 0.166 0.067 0.004 
ScAAT5-10 0.070 0.126 0.042 0.168 0.096 0.099 
ScAAT5-21 0.002 0.008 0.097 0.017 0.050 0.060 
ScAAT5-22 0.170 0.172 0.087 0.127 0.184 0.077 
ScAAT6-16 0.002 0.015 0.062 0.028 0.038 0.147 
ScAAT6-17 0.196 0.163 0.104 0.157 0.197 0.077 
C4-21 0.114 0.063 0.142 0.156 0.176 0.132 
C4-22 0.126 0.140 0.010 0.132 0.182 0.133 
C4-24 0.196 0.154 0.129 0.059 0.104 0.084 
C5-4 0.173 0.163 0.196 0.132 0.167 0.052 
C5-5 0.072 0.075 0.178 0.143 0.047 0.061 
C5-10 0.142 0.091 0.133 0.024 0.030 0.150 
C5-12 0.196 0.147 0.162 0.197 0.161 0.086 
C5-13 0.066 0.074 0.135 0.060 0.034 0.089 
C5-18 0.088 0.037 0.155 0.067 0.049 0.197 
C11-13 0.144 0.167 0.034 0.118 0.184 0.071 
C11-24 0.051 0.121 0.053 0.090 0.100 0.197 
C11-25 0.180 0.196 0.196 0.134 0.197 0.125 
ScYOR267c-52 0.137 0.062 0.096 0.035 0.061 0.102 
ScYOR267c-63 0.031 0.180 0.036 0.018 0.062 0.168 
ScYPL009c-79 0.092 0.097 0.133 0.138 0.134 0.169 
ScYPL009c-80 0.132 0.169 0.152 0.119 0.060 0.113 
ScYPL009c-81 0.088 0.119 0.166 0.139 0.147 0.104 
ScYPL009c-82 0.036 0.153 0.021 0.027 0.173 0.009 
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Supplementary data S4 

Concentration (mg/L) of aromatic compounds determined by GC-MS for the four Saccharomyces cerevisiae strains at two time-points 

Strain Z63 S288c Z23 VL1 

Time points T1 T2 T1 T2 T1 T2 T1 T2 
Ethyl acetate n.d. 13.54 ± 2.79 n.d. 7.044 ± 4.738 n.d. 17.42 ± 2.96 n.d. 10.26 ± 3.43 
Ethyl propionate 0.082 ± 0.011 0.255 ± 0.096 n.d. 0.182 ± 0.075 0.111 ± 0.015 0.267 ± 0.045 0.109 ± 0.024 0.147 ± 0.053 
Propyl acetate 0.013 ± 0.001 0.130 ± 0.034 0.012 ± 0.001 0.076 ± 0.039 0.019 ± 0.004 0.100 ± 0.017 0.014 ± 0.003 0.071 ± 0.011 
2-methylpropyl acetate 0.016 ± 0.0002 0.194 ± 0.060 n.d. 0.032 ± 0.018 0.024 ± 0.004 0.150 ± 0.030 0.019 ± 0.003 0.147 ± 0.023 
Ethyl butanoate 0.007 ± 0.001 0.202 ± 0.059 0.003 ± 0.004 0.134 ± 0.059 n.d. 0.144 ± 0.015 0.002 ± 0.004 0.087 ± 0.013  
Propanol 4.21 ±  0.021 14.22 ± 2.17 7.89 ± 1.25 17.119 ± 1.845 6.125 ± 0.491 7.05 ± 0.45 6.225 ± 0.438 7.57 ± 0.24 
Ethyl 2-methylbutanoate n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
Ethyl 3-methylbutanoate n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
2-methylpropanol 5.00 ± 0.020 1.873 ± 0.438 2.79 ± 0.58 10.214 ± 0.478 5.817 ± 0.233 17.17 ± 1.87 6.388 ± 0.273 28.22 ± 1.38 
2-methylbutylacetate 0.001 ± 0.0002 28.17 ± 5.03 n.d. 0.005 ± 0.001 0.002 ± 0.0002 0.010 ± 0.002 0.0012 ± 0.0004 0.0078 ± 0.0015 
3-methylbutylacetate 0.064 ± 0.006 0.011 ± 0.003 0.04 ± 0.01 0.756 ± 0.272 0.195 ± 0.019 2.047 ± 0.337 0.108 ± 0.034 1.473 ± 0.270 
Ethyl valerate n.d. 1.873 ± 0.438 n.d. 0.024 ± 0.011 n.d. 0.074 ± 0.012 n.d. 0.053 ± 0.010 
Isoamyl alcohol 24.19 ± 1.37 141.2 ± 20.3 31.13 ± 5.98 92.872 ± 2.905 46.28 ± 2.44 132.49 ± 10.43 38.766 ± 0.504 125.59 ± 14.48 
Ethyl hexanoate 0.063 ± 0.019 0.756 ± 0.160 0.040 ± 0.001 0.439 ± 0.159 0.083 ± 0.005 0.775 ± 0.049 0.073 ± 0.011 0.474 ± 0.112 
2-methylbutanol 0.035 ± 0.005 0.029 ± 0.003 0.049 ± 0.009 0.024 ± 0.001 0.043 ± 0.007 0.020 ± 0.002 0.044 ± 0.004 0.0195 ± 0.0021 
Hexyl acetate 0.113 ± 0.006 0.288 ± 0.034 0.025 ± 0.035 0.111 ± 0.040 0.273 ± 0.037 0.258 ± 0.019 0.171 ± 0.046 0.167 ± 0.021 
Ethyl lactate n.d. 0.690 ± 0.177 n.d. 0.308 ± 0.032 n.d. 0.549 ± 0.051 n.d. 0.513 ± 0.103 
Ethyl octanoate 0.169 ± 0.078 1.508 ± 0.323 0.069 ± 0.007 0.728 ± 0.139 0.096 ± 0.019 1.439 ± 0.046 0.069 ± 0.028 1.238 ± 0.261 
Propanoic acid 0.084 ± 0.015 0.211 ± 0.043 0.198 ± 0.047 0.231 ± 0.034 0.160 ± 0.014 0.167 ± 0.015 0.153 ± 0.015 0.144 ± 0.014 
Isobutyric acid 0.20 ± 0.007 0.295 ± 0.035 0.116 ± 0.003 0.124 ± 0.028 0.200 ± 0.037 0.344 ± 0.027 0.155 ± 0.016 0.288 ± 0.043 
Butyric acid 0.184 ± 0.016 0.598 ± 0.045 0.252 ± 0.004 0.476 ± 0.102 0.176 ± 0.023 0.565 ± 0.031 0.180 ± 0.013 0.584 ± 0.058 
Ethyl decanoate 0.04 ± 0.01 0.644 ± 0.127 0.033 ± 0.003 0.373 ± 0.023 0.033 ± 0.004 0.810 ±  0.099 0.019 ± 0.003 0.618 ± 0.104 
3-methylbutanoic acid 0.09 ± 0.0001 0.219 ± 0.023 0.095 ± 0.002 0.188 ± 0.038 0.139 ± 0.028 0.350 ± 0.032 0.101 ± 0.009 0.255 ± 0.056 
2-methylbutanoic acid 0.06 ± 0.002 0.134 ± 0.015 0.050 ± 0.002 0.115 ± 0.025 0.078 ± 0.018 0.179 ± 0.022 0.057 ± 0.005 0.122 ± 0.030 
Methionol 0.07 ±  0.002 0.295 ± 0.060 0.032 ± 0.005 0.035 ± 0.003 0.070 ± 0.011 0.157 ± 0.020 0.068 ± 0.011 0.226 ± 0.053 
Valeric acid 0.002 ± 0.003 0.007 ± 0.002 0.002 ± 0.002 0.003 ± 0.002 0.002 ± 0.0004 0.004 ± 0.002 0.003 ± 0.004 0.005 ± 0.001 
2-phenylethyl acetate 0.02 ± 0.023 0.282 ± 0.032 0.009 ± 0.001 0.063 ± 0.010 0.088 ± 0.020 0.320 ± 0.017 0.043 ± 0.014 0.347 ± 0.037 
Hexanoic acid 0.74 ± 0.110 4.133 ± 0.304 0.976 ± 0.003 2.500 ± 0.526 0.650 ± 0.148 3.99 ± 0.52 0.570 ± 0.032 3.55 ± 0.60 
ethyl dodecanoate 0.01 ± 0.001 0.097 ± 0.040 0.012 ± 0.003 0.048 ± 0.012 0.014 ± 0.002 0.138 ± 0.029 0.003 ± 0.0002 0.209 ± 0.051 
2-phenylethanol 1.59 ± 0.029 5.535 ± 0.866 0.954 ± 0.057 2.312 ± 0.307 1.988 ± 0.220 7.95 ± 0.74 1.524 ± 0.084 6.71 ± 0.66 
Octanoic acid 0.54 ± 0.031 3.671 ± 0.422 0.941 ± 0.021 2.333 ± 0.452 0.254 ± 0.053 3.73 ± 0.55 0.100 ± 0.028 2.58 ± 0.46 



 

 

 

Strain Z63 S288c Z23 VL1 

Time points T1 T2 T1 T2 T1 T2 T1 T2 

Dodecanoic acid n.d. 0.031 ± 0.021 0.025 ± 0.012 0.028 ± 0.011 0.009 ± 0.002 0.029 ± 0.008 0.001 ± 0.002 0.030 ± 0.007 
Glycerol 1718.37 ± 401.81 5319.69 66.95 2067.32 ± 54.02 3889.33 ± 88.99 2097.71 ± 28.53 4979.84 ± 206.59 1772.08 ± 13.29 4534.07 ± 80.17 
Succinate 362.37 ± 88.14 665.36 ± 16.34 366.96 ± 6.49 383.79 ± 7.94 357.82 ± 3.88 558.63 ± 36.22 327.17 ± 3.62 578.86 ± 8.58 
Acetate 83.60 ± 18.43 88.38 ± 2.08 217.46 ± 5.13 284.42 ± 0.99 134.80 ± 5.93 197.28 ± 15.84 91.51 ± 3.31 71.99 ± 10.31 
Pyruvate 69.64 ± 16.74 65.72 ± 0.19 87.51 ± 1.61 n.d. 73.25 ± 2.50 53.42 ± 3.19 68.93 ± 1.01 n.d. 
Alpha-ketoglutarate 117.66 ± 41.75 125.74 ± 1.18 172.23 ± 2.90 121.34 ± 3.43 143.99 ± 1.93 102.58 ± 5.79 132.37 ± 1.23 112.75 ± 3.78 
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Supplementary data S5 

 

Group Genes Function Metabolic compounds obtained in MFA analysis 

1 

RPL14B 
RPS24A 
RPS25B 
RPL30 

RPS26B 
MRPL23 
RPS17B 
RPL40B 
RPL26A 

Ribosome 

Isobutanol  
Methionol 

 Isobutylacetate  
Phenylethanol 

2 

BDH2 
AAD10 
GAD1 

Butanoate metabolism 

Ethylbutanoate  
Ethyldecanoate  
Ethyloctanoate 

ADH2 
ALD3 
SFA1 

Tyrosine metabolism 

ALD4 
ADH2 
ALD3 
SFA1 

Glycolysis / Gluconeogenesis 

ALD4 
GAD1 
ALD3 

beta-Alanine metabolism 

ALD4 
ADH2 
SFA1 

Fatty acid metabolism 

3 

STE5 
STE4 
SLT2 
STE2 
MFA1 
GSC2 
FUS1 

MAPK signaling pathway - yeast 
Octanoic acid  
Decanoic acid  
Hexanoic acid   
Butyric acid  

Ethyldodecanoate  
Dodecanoic acid  

Pyruvate             
Acetate  

Alphacetoglutarate  
Glycerol          
Propanol 

TUM1 
SAM1 
MET2 
CYS3 

Cysteine and methionine 
metabolism 

ATM1 
PDR5 ABC transporters 

4 There are not annotations significantly enriched 

Hexylacetate 
 propylacetate  

2-phenylethylacetate  
amylalcohol  

isovaleric acid  
isoamylacetate  

amylacetate  
ethlpropionate  
propanoic acid  
isoamylalcohol 
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Supplementary data S6 

Group  Genes Function/discription 
Metabolic 

compounds 
obtained in MFA 

1 

RAS1 GTPase involved in G-protein signaling in adenylate cyclase activation 

Acetate 
Decanoic acid 
Propanoic acid 

PMC1 Vacuolar Ca2+ ATPase involved in depleting cytosol of Ca2+ ions 

ENA5 Protein with similarity to P-type ATPase sodium pumps 

GPI18 Functional ortholog of human PIG-V 

YPS3 Aspartic protease 

SPS100 Protein required for spore wall maturation 

YDR543C Dubious open reading frame 

CRH1 Chitin transglycosylase 

YDR034W-B Predicted tail-anchored plasma membrane protein 

COS1 Protein of unknown function 

HXT5 Hexose transporter with moderate affinity for glucose; 

CAT8 Zinc cluster transcriptional activator 

VPS36 Component of the ESCRT-II complex 

TIS11 mRNA-binding protein expressed during iron starvation 

SPI1 GPI-anchored cell wall protein involved in weak acid resistance 

PHM7 Protein of unknown function 

SCS3 Protein required for inositol prototrophy 

ENA2 P-type ATPase sodium pump 

YAR028W Putative integral membrane protein 

MEP1 Ammonium permease 

COS6 Protein of unknown function 

YKE4 Zinc transporter 

ARN2 Transporter 

YLR031W Putative protein of unknown function 

YNL114C Dubious open reading frame 

PDE1 Low-affinity cyclic AMP phosphodiesterase 

PCS60 Oxalyl-CoA synthetase 

SUI1 Translation initiation factor eIF1 

ZAP1 Zinc-regulated transcription factor 

AZR1 Plasma membrane transporter of the major facilitator superfamily; involved in 
resistance to azole drugs such as ketoconazole and fluconazole 

HOP1 Meiosis-specific protein required for chromosome synapsis 

ISF1 Serine-rich, hydrophilic protein 

BDH1 NAD-dependent (R,R)-butanediol dehydrogenase 

GRE1 Hydrophilin essential in desiccation-rehydration process 

YPS3 Aspartic protease 

SPS19 Peroxisomal 2,4-dienoyl-CoA reductase 

YNL285W Dubious open reading frame 

YIL014C-A Putative protein of unknown function 

YDR262W Putative protein of unknown function 
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1 
(cont.) 

YER188W Dubious open reading frame 

 

IMA3 Alpha-glucosidase 

YMR122W-A Protein of unknown function; 

MEP3 Ammonium permease of high capacity and low affinity 

CPR6 Peptidyl-prolyl cis-trans isomerase (cyclophilin) 

FLO1 Lectin-like protein involved in flocculation 

DDR2 Multi-stress response protein 

YLR030W Putative protein of unknown function 

CRG1 S-AdoMet-dependent methyltransferase involved in lipid homeostasis 

NQM1 Transaldolase of unknown function 

GID8 Subunit of GID Complex, binds strongly to central component Vid30p 

ERR2 Enolase, a phosphopyruvate hydratase; catalyzes the conversion of 2-
phosphoglycerate to phosphoenolpyruvate 

DIG1 MAP kinase-responsive inhibitor of the Ste12p transcription factor; involved 
in the regulation of mating-specific genes and the invasive growth pathway 

YPL025C Dubious open reading frame 

MIG2 

Zinc finger transcriptional repressor; cooperates with Mig1p in glucose-
induced repression of many genes; under low glucose conditions Mig2p 

relocalizes to mitochondrion, where it interacts with Ups1p and antagonizes 
mitochondrial fission factor, Dnm1p, indicative of a role in mitochondrial 

fusion or regulating morphology 

USV1 
Putative transcription factor containing a C2H2 zinc finger; mutation affects 
transcriptional regulation of genes involved in growth on non-fermentable 

carbon sources 

AQY1 Spore-specific water channel; mediates the transport of water across cell 
membranes, developmentally controlled 

ASH1 Component of the Rpd3L histone deacetylase complex 

YEL074W Dubious open reading frame 

GDH1 NADP(+)-dependent glutamate dehydrogenase; synthesizes glutamate from 
ammonia and alpha-ketoglutarate 

INP2 Peroxisome-specific receptor important for peroxisome inheritance 

CCH1 Voltage-gated high-affinity calcium channel 

TDH3 Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 3 

GIP1 Meiosis-specific regulatory subunit of the Glc7p protein phosphatase 

SIP2 One of three beta subunits of the Snf1 kinase complex; involved in the 
response to glucose starvation 

BDF1 Protein involved in transcription initiation 

FBP26 Fructose-2,6-bisphosphatase, required for glucose metabolism 

HHT1 Histone H3 

STE23 Metalloprotease 

PEX22 Putative peroxisomal membrane protein 

SLT2 Serine/threonine MAP kinase 

YMR295C Protein of unknown function that associates with ribosomes; 

HTA1 Histone H2A 

GIS3 Protein of unknown function 

ASR1 Ubiquitin ligase that modifies and regulates RNA Pol II 

RLM1 MADS-box transcription factor 

IMP2' Transcriptional activator involved in maintenance of ion homeostasis 
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2 

PRS3R  
PA12  

RPC37  
RPB5  

RPC40  
IMD3  

RPC19 

Purine metabolism 

Propanol 
Amylalcohol 

Alphacetoglutarate 
Pyruvate 

RPS24B RPL28 
RPL12B RPL30 
RPL16A RPS7B 

RPL12A RPL22B 
RPL21B RPL15A 
RPL43A RPL8A 

RPL32 

Ribosome 

RPA12 RPC37 
RPB5 RPC40 

RPC19 

Pyrimidine metabolism                                                
RNA polymerase 

3 

ALD6 IMD2 
ACS2 ERG6 

ERG12 MET8 
COQ2 ERG10 
ERG9 ERG24 
ERG11 MVD1 
SAM2 ERG20 
HEM2 HMG1 

ERG13 

Biosynthesis of secondary metabolites 

Succinate 
Ethyldodecanoate 

Valeric acid 
Methionol Isobutanol 

ERG6 ERG2 
ERG5 ERG27 
ERG26 ERG9 
ERG24 ERG11 

ARE2 

Steroid biosynthesis 

ALD6 ACS2 
ERG10 Pyruvate metabolism 

ERG10 ERG13 Synthesis and degradation of ketone bodies 
ALD6 ERG10 

ERG13 Valine, leucine and isoleucine degradation 

ERG12 ERG10 
MVD1 ERG20 
HMG1 ERG13 

Terpenoid backbone biosynthesis 

ALD6 ACS2 
ERG10 Propanoate metabolism 

FAA1 ALD6 
ERG10 Fatty acid metabolism 

ALD6 ERG10 Lysine degradation 



PhD Thesis | Inês Mendes 
_______________________________________________________________________ 
 

 

4 

GOR1 Glyoxylate reductase 

2-methylbutanoic acid  
Isovaleric acid  
Octanoic acid 

Ethylpropionate 
Ethylactete 

Ethylhexanoate 
Ethyldecanoate 
Isoamyl acetate 

Hexylacetate  
Ethylvalerate  
Phenylethanol 
Isobutyric acid  
Ethylbutanoate 
Hexanoic acid 
Amylacetate 
Propylacetate 

Glycerol 
Ethyloctanoate 
Isoamyl alcohol 

Ethylactate 
Butyric acid 

2-phenylethyl 
acetate  

Isobutyl acetate 

ALD2 Cytoplasmic aldehyde dehydrogenase 

OPI10 Protein with a possible role in phospholipid biosynthesis 

HBT1 Shmoo tip protein, substrate of Hub1p ubiquitin-like protein 

PCP1 Mitochondrial serine protease 

YCR100C Putative protein of unknown function 

RPN3 Essential non-ATPase regulatory subunit of the 26S proteasome lid 

YBR012C Dubious open reading frame 

DOG2 2-deoxyglucose-6-phosphate phosphatase 

RPN9 Non-ATPase regulatory subunit of the 26S proteasome 

CHA1 Catabolic L-serine (L-threonine) deaminase 

GPD1 NAD-dependent glycerol-3-phosphate dehydrogenase; key enzyme of 
glycerol synthesis, essential for growth under osmotic stress 

PIN4 Protein involved in G2/M phase progression and response to DNA damage 

GRE3 Aldose reductase 

EMI2 Non-essential protein of unknown function 

YNR065C Protein of unknown function 

GUD1 Guanine deaminase 

YBR284W Putative metallo-dependent hydrolase superfamily protein 

COQ6 Putative flavin-dependent monooxygenase 

RFS1 Protein of unknown function 

DDI3 Protein of unknown function 

RTC3 Protein of unknown function involved in RNA metabolism 

PNC1 Nicotinamidase that converts nicotinamide to nicotinic acid 

GPM2 Homolog of Gpm1p phosphoglycerate mutase; converts 3-phosphoglycerate 
to 2-phosphoglycerate in glycolysis 

YMR173W-A Dubious open reading frame 

GLG1 Glycogenin glucosyltransferase 

GCY1 Glycerol dehydrogenase; involved in an alternative pathway for glycerol 
catabolism used under microaerobic conditions 

CDC53 Cullin; structural protein of SCF complexes (which also contain Skp1p, 
Cdc34p, Hrt1p and an F-box protein) involved in ubiquitination 

YBR285W Putative protein of unknown function 

GSP2 GTP binding protein (mammalian Ranp homolog); involved in the 
maintenance of nuclear organization, RNA processing and transport 

ADH2 Glucose-repressible alcohol dehydrogenase II 

IMA1 Major isomaltase (alpha-1,6-glucosidase/alpha-methylglucosidase) 

GPI12 ER membrane protein involved in the second step of GPI anchor assembly 

YNL034W Putative protein of unknown function 

THI20 Trifunctional enzyme of thiamine biosynthesis, degradation and salvage 

CLB2 B-type cyclin involved in cell cycle progression 

ADD37 Protein of unknown function; involved in ER-associated protein degradation 

YFL052W Putative zinc cluster protein that contains a DNA binding domain 

RVS167 Actin-associated protein with roles in endocytosis and exocytosis 
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4 
(cont.) 

UBP11 Ubiquitin-specific protease 

 

SLM1 Phosphoinositide PI4,5P(2) binding protein, forms a complex with Slm2p 

SOR1 Sorbitol dehydrogenase 

UPC2 Sterol regulatory element binding protein 

CWP1 Cell wall mannoprotein that localizes to birth scars of daughter cells 

PUP3 Beta 3 subunit of the 20S proteasome 

HXT8 Protein of unknown function with similarity to hexose transporters 

YCL049C Protein of unknown function; localizes to membrane fraction 

OPT1 Proton-coupled oligopeptide transporter of the plasma membrane 

XDJ1 Chaperone with a role in facilitating mitochondrial protein import 

YIR020C Protein of unknown function 

YGR107W Dubious open reading frame 

YNL193W Putative protein of unknown function 
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Abstract

Saccharomyces cerevisiae strains from diverse natural habitats harbour a vast amount of phenotypic diversity, driven by
interactions between yeast and the respective environment. In grape juice fermentations, strains are exposed to a wide
array of biotic and abiotic stressors, which may lead to strain selection and generate naturally arising strain diversity. Certain
phenotypes are of particular interest for the winemaking industry and could be identified by screening of large number of
different strains. The objective of the present work was to use data mining approaches to identify those phenotypic tests
that are most useful to predict a strain’s potential for winemaking. We have constituted a S. cerevisiae collection comprising
172 strains of worldwide geographical origins or technological applications. Their phenotype was screened by considering
30 physiological traits that are important from an oenological point of view. Growth in the presence of potassium
bisulphite, growth at 40uC, and resistance to ethanol were mostly contributing to strain variability, as shown by the principal
component analysis. In the hierarchical clustering of phenotypic profiles the strains isolated from the same wines and
vineyards were scattered throughout all clusters, whereas commercial winemaking strains tended to co-cluster. Mann-
Whitney test revealed significant associations between phenotypic results and strain’s technological application or origin.
Naı̈ve Bayesian classifier identified 3 of the 30 phenotypic tests of growth in iprodion (0.05 mg/mL), cycloheximide (0.1 mg/
mL) and potassium bisulphite (150 mg/mL) that provided most information for the assignment of a strain to the group of
commercial strains. The probability of a strain to be assigned to this group was 27% using the entire phenotypic profile and
increased to 95%, when only results from the three tests were considered. Results show the usefulness of computational
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Introduction

Most European wine producers use commercial starter yeasts to

guarantee the reproducibility and the predictability of wine

quality. The advantages of fermentations containing Saccharomyces

cerevisiae starter cultures relies on the fact that they are rapid and

produce wine with desirable organoleptic characteristics through

successive processes and harvests [1,2]. In these fermentations the

winemaker has control over the microbiology of the process,

because it is expected that the inoculated yeast strain predominates

and suppresses the indigenous flora. Currently, there are about

200 commercial S. cerevisiae winemaking strains available, and it is

a common practice among wineries to use commercial starter

yeasts that were obtained in other winemaking regions.

S. cerevisiae strains from diverse natural habitats harbour a vast

amount of phenotypic diversity [3], driven by interactions between

yeast and the respective environment. In grape juice fermenta-

tions, strains are exposed to a wide array of biotic and abiotic

stressors [4], which may lead to strain selection and generate

naturally arising strain diversity. Outside the wineries, this

diversifying selection occurs due to unique pressures imposed

after expansion into new habitats [5–9]. This agrees with findings

showing that wine and sake strains are phenotypically more

diverse than would be expected from their genetic relatedness

[10].

Recent phylogenetic analyses of S. cerevisiae strains showed that

the species as a whole consists of both ‘‘domesticated’’ and ‘‘wild’’

populations. DNA sequence analysis revealed that domesticated

strains derived from two independent clades, corresponding to

strains from winemaking and sake. ‘‘Wild’’ populations are mostly

associated with oak trees, nectars or insects [11–13]. Although

some S. cerevisiae strains are specialized for the production of
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alcoholic beverages, they were derived from natural populations

that were not associated with industrial fermentations. This was

proposed once that the oldest lineages and the majority of

variation were found in strains from sources unrelated to wine

production [14].

The phenotypic diversity of S. cerevisiae strains has been explored

for decades in strain selection programmes to choose the ones that

enhance the wine’s sensorial characteristics and confer typical

attributes to specific wines. These strains are used as commercial

ones by winemakers to efficiently ferment grape musts and

produce desirable metabolites, associated with reduced off-flavours

[15,16]. Strain selection approaches are mentioned in many

studies aiming to characterize S. cerevisiae isolates obtained from

winemaking regions worldwide. The most relevant physiological

tests refer to fermentation rate and optimum fermentation

temperature, stress resistance (ethanol, osmotic and acidic), killer

phenotype, sulphur dioxide (SO2) tolerance and production,

hydrogen sulphide (H2S) production, glycerol and acetic acid

production, synthesis of higher alcohols (e.g. isoamyl alcohol, n-

propanol, isobutanol), b-galactosidase and proteolytic enzyme

activity, copper resistance, foam production and flocculation [17].

In our previous work [18] we evaluated the phenotypic and

genetic variability of 103 S. cerevisiae strains from the Vinho Verde
wine region (Northwest Portugal). We then applied several data

mining procedures to estimate a strain’s phenotypic behaviour

based on its genotypic data. We used mainly taxonomic tests and

strains from winemaking environments of one geographical origin.

This study was, to our best knowledge, the first attempt to

computationally associate genotypic and phenotypic data of S.
cerevisiae strains. We used subgroup discovery techniques to

successfully identify strains with similar genetic characteristics

(microsatellite alleles) that exhibited similar phenotypes.

Within the present study we expanded the strain collection to

172 isolates from worldwide geographical origins and technolog-

ical groups (wine, bread, sake, etc.) and included 30 tests with

biotechnological relevance for the selection of winemaking strains.

Our objective was to gain a deeper understanding of the

phenotypic diversity of a global strain collection and to infer

computational models that predict the biotechnological potential

or geographic origin of a strain from its phenotypic profile.

Results

Phenotypic characterization of the strain collection
A Saccharomyces cerevisiae collection was constituted with 172

strains obtained from different geographical origins as shown in

the map in Figure 1. As detailed in Table S1 (supplementary data),

the technological applications or environments from where the

strains were derived were: wine and vine (74 isolates), commercial

wine strains (47 isolates), other fermented beverages (12 isolates),

other natural environments – soil woodland, plants and insects (12

isolates), clinical (9 isolates), sake (6 isolates), bread (4 isolates),

laboratory (3 isolates), beer (1 isolate), and four isolates with

unknown origin.

A phenotypic screen was devised to evaluate strain-specific

patterns for a set of physiological tests, including also tests that are

important for winemaking strain selection. The first group of tests

were performed in microplates using supplemented grape must,

whereas a high reproducibility was obtained between experimental

replicates. The second set of tests consisted in the evaluation of

growth in solid culture media (BiGGY medium, Malt Extract Agar

supplemented with ethanol and sodium metabisulfite). Galactosi-

dase activity was evaluated by growth evaluation using Yeast

Nitrogen Base supplemented with galactose, as indicated in the

materials and methods section. After incubation, growth was

evaluated by visual scoring (solid media) or by A640 determination

(liquid media). Table 1 summarizes the number of strains

belonging to each of the phenotypic classes. Similarities between

strains were evident, but each strain showed a unique phenotypic

profile.

A total of 5160 phenotypic data points were obtained, from 172

strains and 30 tests. The concentrations of the added compounds

were chosen to obtain a wide range of tolerance patterns. As

expected, all strains grew well at 30uC, contrary to the growth at

40uC, where a large phenotypic diversity was observed. Most

strains were able to grow well at pH 8, contrarily to the pH value

of 2. As expected, cellular growth decreased with increasing

concentrations of ethanol (6–14% v/v, liquid media), whereas only

five isolates were able to grow well at the highest ethanol

concentration of 14% (v/v). When ethanol was combined with

sodium metabisulfite in solid culture media, growth was reduced

with increasing concentrations of ethanol (12 to 18%, v/v) or

sodium metabisulfite (50–100 mg/L). Resistance to sulphur

dioxide, which is an antioxidant and bacteriostatic agent used in

vinification, was tested by growth in the presence of wine must

supplemented with potassium bisulphite (KHSO3). For the

concentrations of 150 and 300 mg/L, 101 and 67 strains achieved

the highest class of growth, respectively. Resistance to the

fungicides iprodion, procymidon and to cycloheximide was rather

high at the indicated concentrations. Hydrogen sulphide produc-

tion was tested using BiGGY medium. The majority of the strains

were intermediate H2S producers with the exception of one strain

(from the group of wine and vine strains) that did not produce

H2S.

A global view of strain’s phenotypic diversity is shown in

Figures 2 and S1. Principal component analysis (PCA) of

phenotypic data (Figure 2) show the segregation of all 172 strains

(scores) and the loadings for phenotypic variables in the first two

PCA components. The phenotypes responsible for the highest

strain variability (Figure 2a) were associated with growth patterns

in the presence of potassium bisulphite (KHSO3), at 40uC, in a

finished wine supplemented with glucose (0.5%, w/v), and

resistance to ethanol in liquid media (10 and 14%, v/v). PC-1

(31%) and PC-2 (15%) explained 46% of strain variability and

segregated strains by phenotypic behaviour into some patterns, as

shown in Figure 2b. The group of sake strains (dark dot) and the

group of natural strains (dark square), tended to be separated by

the second component, accumulating in the lower part of the

PCA, indicating that they were influenced by the presence of

ethanol in the medium (higher resistance), and by the growth in

the presence of potassium bisulphite (300 mg/L, lower resistance).

Strains isolated from vines or wine (dark star) showed a

heterogeneous phenotypic behaviour since they were dispersed

throughout the PCA plot for both components. A similar tendency

was observed for commercial strains (light star); however, the

majority of strains tended to concentrate in the upper part of the

PCA, indicative of a trend to higher KHSO3 resistance and lower

ethanol resistance. The nine clinical strains were distributed in

both PCA components, showing no discriminant results in any of

the phenotypic tests.

UPGMA (Unweighted Pair Group Method with Arithmetic

Mean) algorithm was used to hierarchical cluster the 172 strains.

The dissimilarity between two strains was measured using

Euclidean distance (Figure S1). The combined phenotypes of

wine strains did not separate this group of strains that were rather

scattered throughout all the clusters. Commercial strains (light star)

tended to be more predominant in the clusters shown in the lower

Prediction of Winemaking Yeast Potential
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part of the dendogram, where some of the clusters are constituted

only by commercial strains.

We further analysed phenotypic diversity through k-means

clustering algorithm. Using silhouette score [19] we identified 3

distinct clusters (Table 2), composed of 38, 90 and 44 strains

respectively. The phenotypes that most distinguished the strains, as

indicated by high values of information gain to classify strains into

clusters, were growth at the highest and lowest temperature tested

(18 and 40uC). Cluster 2 was constituted of strains that didn’t grow

at both 18 and 40uC, whereas cluster 1 and 3 included strains that

grew at both temperatures, but with more pronounced growth at

40uC, in particular for strains of cluster 3. Other tests that were

also relevant for the cluster separation included growth in the

presence of NaCl (1.5 M), KHSO3 (150 and 300 mg/L), ethanol

6% (v/v) and at pH 2. The strain cluster membership is displayed

in the phenotypic data PCA visualization (supplementary

Figure S2).

Statistical analysis
The number of strains belonging to each group of technological

applications or environment varies between 1 and 74. To assess a

possible influence of a sample bias, due to an unequal number of

representatives from each group, we determined the 95%

confidence intervals for average Manhattan distance [20] between

two strains in a selected group (composed by at least 5 strains). The

distance was estimated based on the strain’s entire phenotypic

profile. The lower and upper bound of each confidence interval

were determined by percentiles of average distances for 10000

bootstraps samples. For example, with this analysis we show that

while the group of commercial strains (47 isolates) includes 31

commercial strains isolated in France, this should not bias our

statistical analysis on utility of strains. Namely, the 95% confidence

interval for average distances between pairwise combinations of

commercial strains from France (6.37, 8.01) overlaps with the

confidence interval of commercial strains from other geographical

origins (4.97, 8.13). The inclusion of a high number of strains from

France does not change the limits of the confidence interval of the

group of commercial strains. A similar result was observed for the

group of wine and vine strains that includes numerous strains from

Portugal: the 95% confidence interval for average distances

between pairwise combinations of strains from Portugal (8–12,

9.83) overlaps with the same interval for wine and vine strains

from other geographical locations (8.06, 9.59).

Mann-Whitney test is mostly used to identify statistically

significant associations between two data sets in which data

instances in each group are measured on ordinal level and when

there is an unequal number of members in the classes to be

compared. This test was used to search for relationships between

phenotypic results for the 172 strains, and their shared geograph-

ical origin or technological application group. After the dichoto-

mization of variables (geographical origin and technological

application or origin), Mann-Whitney test was performed for each

phenotypic variable and p-values were computed and further

adjusted using Bonferroni correction. Statistical analysis using

Mann-Whitney test revealed 300 associations between phenotypes

and technological application or origin of strains, whereas

statistical significance was found for 11 associations (Bonferroni

adjusted p-value lower than 0.1). For each phenotypic test, we

computed the probability of each phenotypic class (0–3) according

to its contribution to the observed association. The most significant

associations between a phenotypic class and a technological group

are reported in Table 3. Two associations were found for the

resistance to iprodion, whereas class 3 and 2 were associated with

strains collected from wine/vineyards and commercial strains,

respectively. Capacity to grow in the presence of potassium

bisulphite (150 mg/mL, classes 2 and 3) was associated with

commercial wine strains. Natural isolates (87%–89%) were

associated with class 2 of growth in wine supplemented with

glucose, both at 0.5 and 1% (w/v), contrarily to 57% of

commercial strains that were unable to grow in wine supplement-

ed with glucose (0.5%, w/v). The lower ability of commercial

strains to grow at higher ethanol concentrations was also

supported by the finding of one significant association for absent

growth (class 0) in liquid medium containing ethanol (14%, v/v).

Figure 1. Geographical location of 172 yeast strains. Underlined identifiers indicate the original designation of sequenced strains [12]. Symbols
represents the strains technological applications or origin: black star – wine and vine; grey star – commercial wine strain; black square – clinical; grey
square – natural isolates; black circle – sake; grey circle – other fermented beverages; black pentagon – beer; grey pentagon- baker; black rectangle –
laboratory; grey rectangle – unknown biological origin.
doi:10.1371/journal.pone.0066523.g001

Prediction of Winemaking Yeast Potential

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e66523



About half of the strains included in the groups shared the inability

to grow in must containing SDS (0.01%, w/v) and CuSO4

(5 mM), but grew well in cycloheximide-supplemented must (76%

of strains, class 2). An identical approach was undertaken to find

associations between the phenotypic results and the geographical

origin of strains, but no statistically relevant results were obtained

(data not shown).

Prediction of technological group based on phenotypic
results
Our next objective was to construct a model that would predict

strain’s technological group from its phenotypic profile. K-nearest

neighbour algorithm (kNN) and naı̈ve Bayesian classifiers [21], as

implemented in the Orange data mining software were used for

modelling.

The predictive performance of both classifiers was evaluated in

terms of area under the Receiver-Operating-Characteristics

(ROC) curve, using 5-fold cross validation [22]. Table 4 shows

the confusion matrix of naı̈ve Bayesian classifications in test data

sets of cross-validation; kNN results are not shown, as these were

similar for both modelling techniques. Cross validated AUC score

was 0.70. Correct assignments were found for the larger groups of

commercial wine strains and strains obtained from wine and

vineyards, where 36 (77%) and 54 (73%) strains respectively, were

accurately allocated. The same computational technique was also

used to explore which phenotypes mostly contributed to the

assignment of a strain to the commercial wine group. Figure 3

represents a nomogram that shows naı̈ve Bayesian classifier results

[23]. Three phenotypes were considered by the classifier as the

ones contributing more positively to build the model, having the

remaining ones a smaller impact. To predict the commercial

potential of a strain, the contribution of each phenotype was

scored in the scale from 2100 to 100, and the individual scores

were summed-up to read-out the probability of the predicted class.

For the present data set, growth in must containing the fungicide

Table 1. Number of strains belonging to different phenotypic classes, regarding values of optical density (Class 0: A640 = 0.1; Class
1: 0.2,A640.0.4; Class 2: 0.5,A640.1.0; Class 3: A640.1.0), growth patterns in solid media, or colour change in BiGGY medium.

Phenotypic test Type of medium Phenotypic class of growth

0 1 2 3

30uC liquid (must) 0 0 3 168

18uC liquid (must) 51 120 1 0

40uC liquid (must) 28 14 80 50

pH 2 liquid (must) 101 68 3 0

pH 8 liquid (must) 0 0 19 153

KCl (0.75 M) liquid (must) 0 2 146 24

NaCl (1.5 M) liquid (must) 84 79 9 0

CuSO4 (5 mM) liquid (must) 124 45 3 0

SDS (0.01% w/v) liquid (must) 139 32 1 0

Ethanol 6% (v/v) liquid (must) 0 2 36 134

Ethanol 10% (v/v) liquid (must) 17 28 85 42

Ethanol 14% (v/v) liquid (must) 82 35 50 5

Ethanol 12% (v/v) solid (MEA) 150 20 1 1

Ethanol 12% (v/v) + Na2S2O5 (75 mg/L) solid (MEA) 159 14 0 0

Ethanol 12% (v/v) + Na2S2O5 (100 mg/L) solid (MEA) 169 3 0 0

Ethanol 14% (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 148 24 0 0

Ethanol 16% (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 163 9 0 0

Ethanol 18% (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 165 7 0 0

KHSO3 (150 mg/L) liquid (must) 34 11 26 101

KHSO3 (300 mg/L) liquid (must) 57 19 29 67

Wine supplemented with glucose (0.5% w/v) liquid 103 45 24 0

Wine supplemented with glucose (1% w/v) liquid 115 41 16 0

Iprodion (0.05 mg/mL) liquid (must) 1 0 28 143

Iprodion (0.1 mg/mL) liquid (must) 1 1 13 157

Procymidon (0.05 mg/mL) liquid (must) 0 0 7 165

Procymidon (0.1 mg/mL) liquid (must) 1 0 9 162

Cycloheximide (0.05 mg/mL) liquid (must) 3 0 7 162

Cycloheximide (0.1 mg/mL) liquid (must) 2 1 19 150

H2S production solid (BiGGY) 1 11 105 55

Galactosidase activity liquid (YNB) 0 21 98 53

MEA: Malt Extract Agar.
doi:10.1371/journal.pone.0066523.t001
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Figure 2. Principal component analysis of phenotypic data for 172 strains. (a) 230 phenotypic tests (loadings). Numbers indicate
phenotypic tests, as mentioned in Table 1: (1) 230uC; (2) 218uC; (3) 240uC; (4) – pH 2; (5) – pH 8; (6) – KCl (0.75 M); (7) – NaCl (1.5 M); (8) – CuSO4

(1.5 M); (9) – SDS (0.01%); (10) – ethanol 6% (v/v) liquid medium; (11) – ethanol 10% (v/v) liquid medium; (12) – ethanol 14% (v/v) liquid medium; (13)
– ethanol 12% (v/v) solid medium; (14) – ethanol 12% (v/v) solid medium + Na2S2O5 (75 mg/L); (15) – ethanol 12% (v/v) solid medium + Na2S2O5

(100 mg/L); (16) – ethanol 14% (v/v) solid medium + Na2S2O5 (50 mg/L); (17) – ethanol 16% (v/v) solid medium + Na2S2O5 (50 mg/L); (18) – ethanol
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iprodion (0.05 mg/mL), in cycloheximide (0.1 mg/mL) and in the

presence of potassium bisulphite (150 mg/mL) were the three

features with the most relevant contribution for the mathematical

assignment of a strain to the commercial group (Figure 3a). The

probability of a strain to be assigned to the group of commercial

strains is 0.27 (27%) when considering the strains entire

phenotypic profile and increases to 0.95 (95%) when only the

three phenotypic results mentioned in Figure 3a are taken into

consideration, as shown in the probability scale present in

Figure 3b.

Discussion

Within our previous work [18] we developed computational

techniques to relate the genotypes and phenotypes of 103

Saccharomyces cerevisiae strains from a winemaking region. The

isolates were characterized regarding their allelic combinations for

11 microsatellites and phenotypic screens included mainly

taxonomic criteria but also some tests with biotechnological

relevance. Subgroups were found for strains sharing allelic

combinations and specific phenotypes such as low ethanol

resistance, growth at 30uC and growth in media containing

galactose, raffinose or urea. Herein, we aim to extend the work to

a phenotypically mostly heterogeneous strain collection of 172 S.

cerevisiae isolates from worldwide origins, to computationally relate

the phenotype with the strain’s geographical origins and to make

predictions about a strain’s biotechnological potential based on

phenotypic data. The group of phenotypic tests used herein was

based on approaches that are generally applied for the selection of

S. cerevisiae winemaking strains [17].

The collection of 172 strains from worldwide geographical

origins revealed a high phenotypic diversity (Figures 2, S2 and

Table 2), which is in agreement with previous studies [3,10,18,24–

27]. A significantly higher phenotypic diversity was observed in the

present study compared to our results from 2009 using 103

Portuguese wine yeast strains [18]. In particular, the inclusion of

new tests compared to our previous study allowed a more detailed

analysis of the phenotypic variability of strains associated with

winemaking environments. Recent studies aimed to describe the

elements that shaped the genomes of S. cerevisiae strains, suggesting

that populations comprise distinct domesticated and natural

groups, as well as mosaics within these groups, based on the

strain origin and application [12,28,29]. Clinical isolates for

example, do not derive from a common ancestor, but rather

represent multiple events in which environmental strains oppor-

tunistically colonize humans [28,30].

Genetic rearrangements and intra-strain variation is character-

istic for this species [31,32], which might explain the rather high

phenotypic variability that was described in recent studies.

Camarasa [3] showed that some phenotypes (resistance to high

sugar concentrations, ability to complete fermentation and low

acetate production) were able to distinguish groups of strains

according to their ecological niches, providing evidence for

phenotypic evolution driven by environmental adaptation. This

high phenotypic variation in stressful conditions was also revealed

by Kvitek et al., showing the existence of unique features shared by

strains from similar habitats [10]. Our data are in agreement with

the previously mentioned studies regarding the high phenotypic

diversity. They also confirm the findings of Legras and co-workers

[33], that found populational substructures of S. cerevisiae strains

according to their technological application or origin, using

multilocus microsatellite typing. In the work of Legras only 28%

of the diversity was associated with geographical origins, which

suggests local domestication events. We herein investigated the

utility of data mining to improve our understanding of relations

between phenotypes and the strains technological application or

origin. The developed models can also be useful to optimize

screening tests and to find commercial wine yeast candidates from

strain collections.

Using Mann-Whitney test, 11 significant associations were

found between a particular phenotypic result and a technological

application or origin of the strains (Table 3). The most significant

results were found for the resistance to iprodion, growth in

potassium bisulphite and in wine supplemented with glucose.

Iprodion is a dicarboximide contact fungicide used to control a

wide variety of fungal pests on vegetables, ornamentals, pome and

stone fruit, root crops, cotton and sunflowers. S. cerevisiae shows a

higher resistance to this fungicide than other yeast species such as

Candida albicans. In this species iprodion stimulates glycerol

synthesis and inhibits the cell growth for several days, contrarily

to S. cerevisiae where a low toxicity was observed [34,35]. Our

results showed that iprodion resistance (0.05 mg/mL) was higher

in strains from wine and vineyards compared to commercial wine

strains. The higher iprodion resistance among strains obtained

from wineries and vineyards might be explained by the evolution

of this trait upon recurrent exposure, which does not apply for

commercial wine strains that are added to clarified musts that

should not contain this fungicide. The low ethanol resistance of

commercial wine strains in liquid media containing 14% (v/v)

18% (v/v) solid medium + Na2S2O5 (50 mg/L); (19) – KHSO3 (150 mg/L); (20) – KHSO3 (300 mg/L); (21) – wine supplemented with glucose 0.5% (w/v);
(22) – wine supplemented with glucose 1% (w/v); (23) – Iprodion (0.05 mg/mL); (24) – Iprodion (0.1 mg/mL); (25) – Procymidon (0.05 mg/mL); (26) –
Procymidon (0.1 mg/mL); (27) – Cycloheximide (0.05 mg/mL); (28) – Cycloheximide (0.1 mg/mL); (29) – H2S production; (30)– galactosidase activity. (b)
– 172 strains (scores) distribution. Symbols represents the strains technological applications or origin: black star – wine and vine; grey star –
commercial wine strain; black square – clinical; grey square – natural isolates; black circle – sake; grey circle – other fermented beverages; black
pentagon – beer; grey pentagon- baker; black rectangle – laboratory; grey rectangle – unknown biological origin.
doi:10.1371/journal.pone.0066523.g002

Table 2. Phenotypic tests mostly contributing for the division
of strains into three clusters, in terms of information gain,
obtained with k-means clustering algorithm.

Phenotypic test Information gain Cluster

1 2 3

18uC 0,33 1 0 1

40uC 0,33 2 0 3

NaCl (1.5M) 0,26 0 0 1

KHSO3 (300 mg/L) 0,23 3 0 3

Ethanol 6% (v/v) – liquid
medium

0,23 3 2 3

pH 2 0,21 0 0 1

KHSO3 (150 mg/L) 0,21 3 0 3

Total number of strains 38 90 44

Numbers in the last three columns represent the most characteristic value in
terms of phenotypic class of strains included in the clusters, for the mentioned
phenotypic tests.
doi:10.1371/journal.pone.0066523.t002
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ethanol was somehow unexpected, because these strains are

usually selected for high ethanol resistance. This could be

explained by the fact that the mathematical relations were

observed for ethanol concentrations above the values that usually

occur in wines (10–13%, v/v). Results showed also that

commercial strains tended to a better growth in media containing

potassium bisulphite, a compound used as wine antiseptic and

antioxidant, reflecting also an adaptive mechanism among this

group of strains.

We found that the large phenotypic variability between strains

could be associated with the technological application or origin of

the strains (Table 3) rather than their geographical origin, once

that no relevant relations were considered for the last analysis. The

naı̈ve Bayesian classifier was used to assign a strain to their

technological application or origin group, based on their

phenotypic profile (Table 4). This association was achieved for

the majority of strains belonging to the commercial and wine and

vine groups (77% and 73% respectively). The cross-validated

performance of this method yielded an AUC score of 0.70, that is

Table 3. Relevant associations (adjusted p,0.1) between phenotypic results and strain’s technological application or origin,
obtained using Mann-Whitney test and after Bonferroni correction.

Phenotypic test
Class of phenotypic
result Technological group/origin

Adjusted
p-value

% of strains sharing
positive association *

Iprodion (0.05 mg/mL) 2 Commercial 3.2461028 82.0

Iprodion (0.05 mg/mL) 3 Wine and vine 0.015 56.4

KHSO3 (150 mg/L) 2, 3 Commercial 0.001 59.3

Wine supplemented with glucose (0.5%, w/v) 0 Commercial 0.075 57.0

Wine supplemented with glucose (0.5%, w/v) 2 Natural isolate 0.002 87.2

Wine supplemented with glucose (1%, w/v) 2 Natural isolate 0.041 89.5

Ethanol 14% (v/v) – liquid medium 0 Commercial 0.004 64.5

Cycloheximide (0.1 mg/mL) 2 Commercial 0.007 75.6

Procymidon (0.1 mg/mL) 2 Other fermented beverages 0.005 92.4

SDS (0.01%, w/v) 0 Commercial 0.078 45.3

CuSO4 (5 mM) 0 Commercial 0.075 50.6

*Percentage of strains that share the phenotypic result and belong to the described group or that didn’t share the phenotypic result nor belong to that group.
doi:10.1371/journal.pone.0066523.t003

Figure 3. Nomogram showing naı̈ve Bayesian classifier results for the prediction of commercial strains based on phenotypic classes
of growth for each test. (a) Performance of three phenotypic tests that contributed in a positive way to predict commercial strains; (b) Probability
of predicting commercial strains when considering the entire phenotypic profile (grey circle), or only the three phenotypic tests mentioned in panel
(a) by the blue dots (black circle).
doi:10.1371/journal.pone.0066523.g003
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considered as moderate [22] and lies in between the values of an

arbitrary and perfect classification (AUC =0.5 and 1.0, respec-

tively). Poor results were obtained for the remaining groups, which

is due to the corresponding small number of isolates. These results

demonstrate the potential of the predictive models to classify

strains based on results of phenotypic screens.

Bayesian classifier used the strains phenotypic profiles for

prediction of commercial strains, and identified 3 of the 30

phenotypic tests (growth in musts containing iprodion (0.05 mg/

mL), cycloheximide (0.1 mg/mL) or potassium bisulphite

(150 mg/mL)) as the ones providing more information for the

assignment of strains to the commercial group. When using only 3

tests, rather than the entire phenotypic profile, the probability of a

strain to be classified as commercial increases significantly (from

27% to 95%).

In conclusion, our results demonstrate the usefulness of

computational approaches to describe phenotypic variability

among groups of S. cerevisiae strains that also might occur as

adaptive mechanisms in specific environments. The herein

developed models can make predictions about the biotechnolog-

ical potential of strains and simplify the selection of candidate

strains to be used as commercial wine strains.

Materials and Methods

Strain collection
A Saccharomyces cerevisiae strain collection was constituted,

comprising 172 strains with different geographical origins and

technological applications or origins (Figure 1 and Table S1 –

supplementary data). This collection includes strains used for

winemaking (commercial and natural isolates that were obtained

from winemaking environments), brewing, bakery, distillery (sake,

cachaça) and ethanol production, laboratory strains and also

strains from particular environments (e.g. pathogenic strains,

isolates from fruits, soil and oak exudates). The complete genome

sequence of thirty strains is currently available [12] (their original

strain code is mentioned in the map of Figure 1). All strains were

coded (Zn) and stored at 280uC in cryotubes containing 1 mL

glycerol (30% v/v).

Phenotypic characterization
Phenotypic screening was performed considering a wide range

of physiological traits that are also important from an oenological

point of view.

In a first set of phenotypic tests, strains were inoculated into

replicate wells of 96-well microplates. Isolates were grown

overnight in YPD medium (yeast extract 1% w/v, peptone 1%

w/v, glucose 2% w/v), and the optical density (A640) was then

determined and adjusted to 1.0. After washing with peptone (1%

w/v), 15 mL of this suspension were inoculated in quadruplicate in

microplate wells containing 135 mL of white grape must of the

variety Loureiro, to a cellular density of 56106 cells/mL (A640

= 0.1). Final optical density was determined after 22 h (30uC, 200
rpm) in a microplate spectrophotometer. All microplates were

carefully sealed with parafilm, and no evaporation was observed

for incubation temperatures of 30uC and 40uC. As shown in

Table 1, this approach included the following tests: growth at

various temperatures (18, 30 and 40uC), evaluation of ethanol

resistance (6, 10 and 14%, v/v), tolerance to several stress

conditions caused by extreme pH values (2 and 8), osmotic/saline

stress (0.75 M KCl and 1.5 M NaCl). Growth was also assessed in

the presence of potassium bisulfite (KHSO3, 150 and 300 mg/L),

copper sulphate (CuSO4, 5 mM), sodium dodecyl sulphate (SDS,

0.01%, w/v), the fungicides iprodion (0.05 and 0.1 mg/mL) and
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procymidon (0.05 and 0.1 mg/mL), as well as cycloheximide (0.05

and 0.1 mg/mL). These tests were carried out using Loureiro

grape must supplemented with the mentioned compounds. The

growth in finished wines was determined by adding glucose (0.5

and 1%, w/v) to a commercial white wine (12.5% v/v alcohol

content). Galactosidase activity was evaluated by adding galactose

(5% w/v) to Yeast Nitrogen Base (YNB, DifcoTM, Ref. 239210),

using test tubes with 5 mL culture medium and 56106 cells/mL,

followed by 5 to 6 days of incubation at 26uC.
Other tests were performed using solid media. Overnight

cultures were prepared as previously described, adjusted to an

optical density (A640) of 10.0 and washed. One ml of this

suspension was placed on the surface of the culture media

mentioned below. Hydrogen sulphide production was evaluated

using BiGGY medium (SIGMA-ALDRICH, Ref. 73608) [36],

followed by incubation at 27uC for 3 days. The colony colour,

which represents the amount of H2S produced was then analysed,

attributing a score from 0 (no colour change) to 3 (dark brown

colony). Ethanol resistance (12%, v/v) and the combined

resistance to ethanol (12, 14, 16 and 18%, v/v) and sodium

bisulphite (Na2S2O5; 75 and 100 mg/L) was evaluated by adding

the mentioned compounds to Malt Extract Agar (MEA, SIGMA-

ALDRICH, Ref. 38954), and growth was visually scored after

incubation (2 days at 27uC).
All phenotypic results were assigned to a class between 0 and 3

(0: no growth (A640 = 0.1) or no visible growth on solid media or

no colour change of the BiGGY medium; 3: at least 1.5 fold

increase of A640, extensive growth on solid media or a dark brown

colony formed in the BiGGY medium; scores 1 and 2

corresponded to the respective intermediate values) as shown in

table S2.

Data analysis
The phenotypic variability was evaluated by principal compo-

nent analysis (PCA), available in the Unscrambler X software

(Camo). The BioNumerics software (Applied Maths) was used for

clustering, dendogram drawing and calculation of cophenetic

correlation coefficients. Mann-Whitney test was applied to the

phenotypic data set, including Bonferroni correction, to find

relevant associations between phenotypic data and the strain’s

technological or geographical origin. A set of standard predictive

data-mining methods, such as naı̈ve Bayesian classifier and k
nearest-neighbours algorithm [21], as implemented in the Orange

data mining suite [37,38], were used for the inference of prediction

models. For prediction scoring, area under the receiver operating

characteristics (ROC) curve (AUC) was used [22], which estimates

the probability that the predictive model would correctly

differentiate between distinct locations or distinct technological

application or origins, given the associated pairs of strains.

Supporting Information

Figure S1 Phenotypic variation of 172 strains under 30
growth conditions. Strains are organized according to

UPGMA-based hierarchical clustering (cophenetic correlation

factor = 0.75), using Euclidean distance correlation to estimate

phenotypic profile similarities. Symbols represents the strains

technological applications or origin: black star – wine and vine;

grey star – commercial wine strain; black square – clinical; grey

square – natural isolates; black circle – sake; grey circle – other

fermented beverages; black pentagon – beer; grey pentagon-

baker; black rectangle – laboratory; grey rectangle – unknown

biological origin.

(TIF)

Figure S2 PCA representation of the three strain
clusters, obtained with k-means clustering algorithm.
The symbols represent the belonging of the 172 strains shown in

the phenotypic data PCA (Figure 2b) to each cluster: circles –

cluster 1 (38 strains); lines – cluster 2 (90 strains); squares – cluster

3 (44 strains).

(TIF)

Table S1 Origin and technological application of the
172 Saccharomyces cerevisiae strains.

(DOCX)

Table S2

(XLSX)
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Abstract
Genome sequencing is essential to understand individual variation and to study the
mechanisms that explain relations between genotype and phenotype. The accumulated
knowledge from large-scale genome sequencing projects of Saccharomyces cerevisiae
isolates is being used to study the mechanisms that explain such relations. Our objective
was to undertake genetic characterization of 172 S. cerevisiae strains from different
geographical origins and technological groups, using 11 polymorphic microsatellites,
and computationally relate these data with the results of 30 phenotypic tests. Genetic
characterization revealed 280 alleles, with the microsatellite ScAAT1 contributing most
to intrastrain variability, together with alleles 20, 9 and 16 from the microsatellites
ScAAT4, ScAAT5 and ScAAT6. These microsatellite allelic profiles are characteristic
for both the phenotype and origin of yeast strains. We confirm the strength of these
associations by construction and cross-validation of computational models that can pre-
dict the technological application and origin of a strain from the microsatellite allelic
profile. Associations between microsatellites and specific phenotypes were scored using
information gain ratios, and significant findings were confirmed by permutation tests
and estimation of false discovery rates. The phenotypes associated with higher number
of alleles were the capacity to resist to sulphur dioxide (tested by the capacity to grow in
the presence of potassium bisulphite) and the presence of galactosidase activity. Our
study demonstrates the utility of computational modelling to estimate a strain techno-
logical group and phenotype from microsatellite allelic combinations as tools for pre-
liminary yeast strain selection. Copyright © 2014 John Wiley & Sons, Ltd.

Keywords: Saccharomyces cerevisiae; microsatellite; phenotypic characterization; data
mining; nearest-neighbour classifier

Introduction

Large-scale genome-sequencing projects of
Saccharomyces cerevisiae strains are essential to
understand individual variation and to study the
mechanisms that explain relations between geno-
type and phenotype. Revealing such associations
will help to increase our understanding of genetic
and phenotypic strain diversity, which is particu-
larly high in the case of winemaking strains.

Relational studies of genetic and phenotypic
variability should help to decipher genotype–
phenotype relationships and elucidate genetic ad-
aptations involved in phenotypes that are relevant
to thrive in stressful industrial environments. They
should also contribute towards strain improvement
strategies through breeding and genetic engineer-
ing, taking into consideration the diversity of the
wild strains (Borneman et al., 2013; Dequin and
Casaregola, 2011; Roberts and Oliver, 2011).
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Recent phylogenetic analyses of S. cerevisiae
strains showed that the species as a whole consists
of both ‘domesticated’ and ‘wild’ populations,
whereby the genetic divergence is associated with
both ecology and geography. Sequence compari-
son of 70 S. cerevisiae isolates confirmed the exis-
tence of five well-defined lineages and some
mosaics, suggesting the occurrence of two domes-
tication events during the history of association
with human activities, one for sake strains and
one for wine yeasts (Liti and Schacherer, 2011;
Liti et al., 2009; Schacherer et al., 2009). S.
cerevisiae isolates associated with vineyards and
wine production form a genetically differentiated
group, distinct from ‘wild’ strains isolated from
soil and oak-tree habitats, and also from strains de-
rived from other fermentations, such as palm wine
and sake or clinical strains. Recent research indi-
cates that wine strains were domesticated from
wild S. cerevisiae (Fay and Benavides, 2005;
Legras et al., 2007), followed by dispersal, and
the diversifying selection imposed after yeast ex-
pansion into new environments due to unique pres-
sures led to strain diversity (Borneman et al., 2013;
Diezmann and Dietrich, 2009; Dunn et al., 2012).
The interactions between S. cerevisiae and humans
are considered drivers of yeast evolution and the
development of genetically, ecologically and geo-
graphically divergent groups (Goddard et al.,
2010; Legras et al., 2007; Sicard and Legras,
2011). The limited knowledge about the mecha-
nisms responsible for the fixation of specific
genetic variants due to ecological pressures can
be extended by combining genetic and phenotypic
characteristics. Recent studies show that groups of
strains can be distinguished on the basis of specific
traits that were shaped by the species’ population
history. Wine and sake strains are phenotypically
more diverse than would be expected from their
genetic relatedness, and the contrary is the case
for strains collected from oak trees (Kvitek et al.,
2008). Wine yeasts and other strains accustomed
to growing in the presence of musts with high
sugar concentrations are able to efficiently ferment
synthetic grape musts, contrary to isolates from
oak trees or plants that occur in environments with
low sugar concentrations. Commercial wine yeasts
were differentiated by their fermentative perfor-
mances as well as their low acetate production
(Camarasa et al., 2011). West African population
shared low-performance alleles conferring unique

phenotypes regarding mitotic proliferation under
different stress-resistance environments. Other
phenotypes differentiated lineages from Malaysia,
North America and Europe, in which the frequency
of population-specific traits could be mapped onto
a corresponding population genomics tree based
on low-coverage genome sequence data (Warringer
et al., 2011).
The global genetic architecture underlying phe-

notypic variation arising from populations adapting
to different niches is very complex. Most pheno-
typic traits of interest in S. cerevisiae strains are
quantitative, controlled by multiple genetic loci re-
ferred to as quantitative trait loci (QTLs). Genome
regions associated with a given trait can be detected
by QTL analysis, using pedigree information or
known population structure to make specific
crosses for particular phenotypes. The crosses are
then genotyped using single nucleotide polymor-
phisms (SNPs) or other markers across the whole
genome and statistical associations of the linkage
disequilibrium between genotype and phenotype
are identified (Borneman et al., 2013; Dequin and
Casaregola, 2011; Liti and Louis, 2012; Salinas
et al., 2012; Swinnen et al., 2012). QTL mapping
was successfully applied to dissect phenotypes that
are relevant in winemaking, such as fermentation
traits (Ambroset et al., 2011) or aromatic com-
pounds production (Katou et al., 2009; Steyer
et al., 2012). QTLs that were relevant for oenolog-
ical traits and wine metabolites were mapped to
genes related to mitochondrial metabolism, sugar
transport and nitrogen metabolism. Strong epistatic
interactions were shown to occur between genes in-
volved in succinic acid production (Salinas et al.,
2012). The genotype–phenotype landscape has also
been explored by several studies using statistical
and probabilistic models (MacDonald and Beiko,
2010; Mehmood et al., 2011; O’Connor and
Mundy, 2009), as well as gene knockout
approaches (Hillenmeyer et al., 2008).
Current methods to infer genomic variation and

determine relationships between S. cerevisiae strains
include microsatellite analyses (Franco-Duarte
et al., 2009; Legras et al., 2005; Muller and
McCusker, 2009; Richards et al., 2009), detection
of genetic alterations using comparative genome
hybridization (aCGH) (Carreto et al., 2008; Dunn
et al., 2012; Kvitek et al., 2008; Winzeler et al.,
2003) and SNPs detection by tiling arrays
(Schacherer et al., 2009).
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Within our previous work (Franco-Duarte et al.,
2009) we evaluated the phenotypic and genetic
variability of 103 S. cerevisiae strains that were
isolated from vineyards of the Vinho Verde wine
region (north-west Portugal). We used a set of 11
polymorphic microsatellite loci and, through sub-
group discovery-based data mining, successfully
identified strains with similar genetic characteris-
tics (microsatellite alleles) that exhibited similar,
mostly taxonomic phenotypes, allowing us also
to make predictions about the phenotypic traits of
strains. Within this study, we aim to investigate
whether such computational associations can be
established in a larger collection of 172 diverse
S. cerevisiae strains obtained from worldwide geo-
graphical origins and distinct technological uses
(winemaking, brewing, bakery, distillery, labora-
tory, natural, etc.). In the study we use 30 physio-
logical traits, most of them being important from
an oenological point of view.

Materials and methods

Strain collection and phenotypic
characterization

The S. cerevisiae strain collection used in this
work consists of 172 strains of different geograph-
ical origins and technological applications or
origins (see supporting information, Table S1,
strains Z1–Z187). The collection includes strains
used for winemaking (commercial and natural iso-
lates that were obtained from winemaking environ-
ments), brewing, bakery, distillery (sake, cachaça)
and ethanol production, laboratory strains and also
strains from particular environments (e.g. patho-
genic strains, isolates from fruits, soil and oak
exudates). The collection further includes a set of
sequenced strains (Liti et al., 2009). All strains
were stored at –80ºC in cryotubes containing 1 ml
glycerol (30% v/v).
Phenotypic screening was performed consider-

ing a wide range of physiological traits that are
also important from an oenological point of view.
In a first set of phenotypic tests, strains were inoc-
ulated into replicate wells of 96-well microplates.
Isolates were grown overnight in YPD medium
(yeast extract 1% w/v, peptone 1% w/v, glucose
2% w/v) and the optical density (A640) was then
determined and adjusted to 1.0. After washing with

peptone water (1% w/v), 15 μl of this suspension
were inoculated in quadruplicate in microplate
wells containing 135 μl white grape must of the
variety Loureiro, supplemented with the com-
pounds mentioned below. The initial cellular den-
sity was 5 × 106 cells/ml (A640 = 0.1) and the final
optical density was determined in a microplate
spectrophotometer after 22 h of incubation (30ºC,
200 rpm). All microplates were carefully sealed
with parafilm, and no evaporation was observed
for incubation temperatures of 30ºC and 40ºC. As
summarized in Table S2 (see supporting informa-
tion), this approach included the following tests:
growth at various temperatures (18ºC, 30ºC and
40ºC), evaluation of ethanol resistance (6%, 10%
and 14% v/v) and tolerance to several stress condi-
tions caused by extreme pH values (2 and 8),
osmotic/saline stress (0.75 M KCl and 1.5 M NaCl).
Growth was also assessed in the presence of potas-
sium bisulphite (KHSO3, 150 and 300 mg/l),
copper sulphate (CuSO4, 5 mM), sodium dodecyl
sulphate (SDS, 0.01% w/v), the fungicides
iprodion (0.05 and 0.1 mg/ml) and procymidon
(0.05 and 0.1 mg/ml), as well as cycloheximide
(0.05 and 0.1 mg/ml). The growth in finished
wines was determined by adding glucose (0.5 and
1% w/v) to a commercial white wine (12.5% v/v
alcohol). Galactosidase activity was evaluated by
adding galactose (5% w/v) to Yeast Nitrogen Base
(YNB, DifcoTM, cat. no. 239210), using test tubes
with 5 ml culture medium and the same initial
cell concentration (5 × 106 cells/ml), followed by
5–6 days of incubation at 26ºC and subsequent
visual evaluation of growth. Other tests were
performed using solid media. Overnight cultures
were prepared as previously described, adjusted
to an optical density (A640) of 10.0 and washed;
1 μl of this suspension was placed on the surface
of the culture media mentioned below. Hydrogen
sulphide production was evaluated using BiGGY
medium (Sigma-Aldrich, cat. no. 73608) (Jiranek
et al., 1995), followed by incubation at 27ºC for
3 days. The colony colour, which represents the
amount of H2S produced, was then analysed,
attributing a score from 0 (no colour change) to 3
(dark brown colony). Ethanol resistance (12% v/v)
and the combined resistance to ethanol (12%, 14%,
16% and 18% v/v) and sodium bisulphite (Na2S2O5;

75 and 100 mg/l) was evaluated by adding the
mentioned compounds to Malt Extract Agar
(MEA; Sigma-Aldrich, cat. no. 38954) and growth
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was visually scored after incubation (2 days at
27ºC). All phenotypic results were assigned to a
class between 0 and 3 before the statistical analysis
(0, no growth in liquid media (A640 = 0.1) or no vis-
ible growth on solid media; 3, A640≥ 1.0, extensive
growth on solid media or a dark brown colony
formed in the BiGGY medium; scores 1 and 2
corresponded toA640 of 0.2–0.4 and 0.5–1.0, respec-
tively, and to intermediate values of growth and col-
our changes in solid medium and BiGGY medium),
as shown in Table S2 (see supporting information).

Genetic characterization

After cultivation of a frozen aliquot of yeast cells
in 1 ml YPD medium (yeast extract 1% w/v,
peptone 1% w/v, glucose 2% w/v) for 36 h at
28ºC (160 rpm), DNA isolation was performed as
previously described (Schuller et al., 2004) and
used for microsatellite analysis.
Genetic characterization was performed using 11

highly polymorphic S. cerevisiae-specific microsat-
ellite loci: ScAAT1, ScAAT2, ScAAT3, ScAAT4,
ScAAT5, ScAAT6, ScYPL009c, ScYOR267c, C4,
C5 and C11 (Field and Wills, 1998; Legras et al.,
2005; Perez et al., 2001; Schuller et al., 2007,
2012; Techera et al., 2001). Multiplex PCR
mixtures and cycling conditions were optimized
and performed in 96-well PCR plates, as previously
described (Franco-Duarte et al., 2009).

Data analysis

We have estimated the number of repeats for the
alleles from each locus based on the genome
sequence of strain S288c available in the
Saccharomyces Genome Database (http://www.
yeastgenome.org) and the results obtained for the
size of microsatellite amplicons of this strain.
Principal component analysis (PCA), available

in the The Unscrambler® X software (Camo),
was used for microsatellite variability analysis. A
set of standard predictive data-mining methods,
as implemented in the Orange data mining suite
(Demsar et al., 2013), were used to study the rela-
tions between the genetic constitutions of strains
and their geographical origins or technological
applications. Alleles that were present in less than
five strains were removed, and the k nearest-
neighbour algorithm (kNN) (Tan et al., 2006)
was used for inference. The modelling approach

was tested in five-fold cross-validation, each time
fitting the model on 80% of the data and testing it
on the remaining 20%. Results were reported in
terms of cross-validated area under the receiver
operating characteristics curve (AUC), which esti-
mates the probability that the predictive model
would correctly differentiate between distinct tech-
nological applications of the strains (Hanley and
McNeil, 1982).
The strength of associations between micro-

satellites and specific phenotypes was scored using
information gain ratio, as implemented in the
Orange data-mining suite. Significant findings
were confirmed by permutation tests and estima-
tion of false-discovery rate. Data was first
preprocessed to filter out features with only a sin-
gle, constant value, in which the distribution was
too skewed, or when more than 95% of strains
shared the same value. This was done for both mi-
crosatellite and phenotypic data. The filtering pro-
cedure reduced our dataset to retain 40 of the
initial 295 microsatellite features and 60 of the ini-
tial 83 phenotypic ones. We then considered the
resulting dataset to test 40 × 60 = 2400 associations
between microsatellites and phenotypes. Informa-
tion gain (IG) (Quinlan, 1986), also popularly
referred to as ‘mutual information’, is a measure
of mutual dependence of two random variables.
In the present study we used it to assess the influ-
ence of an independent variable, X, on a dependent
class variable, Y. IG tells us how much information
we gain about Y by knowing the value of X. If the
class variable Y can take l distinct values, y1, y2,…, yl,
we can define its entropy by:

H Yð Þ ¼ ∑
l

j¼1
P Y ¼ yj
� �� log2 P Y ¼ yj

� �� �
(1)

Here, P is a probability measure. The entropy
H(Y) measures the unpredictability of a random
variable Y that represents the amount of informa-
tion required to answer the question, ‘what is the
value of Y?’. By knowing the value of independent
variable X one can reduce this uncertainty if the
dependent and independent variables are related.
Suppose that X = xi, where xi is one of k distinct
values x1, x2,…, xk that variable X can take. By re-
placing the probability P(Y= yj) in equation 1, with
conditional probability P(Y= yj|X= xi), we define a
conditional entropy H(Y|X = xi) of Y, assuming that
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the value of X is xi. By knowing the distribution of
X, i.e. by knowing the probabilities P(X = xi) for all
i= 1,…, k, we can define a conditional entropy of
Y, given the variable X:

H Y jXð Þ ¼ ∑
k

i¼1
H Y X ¼ xiÞ�P X ¼ xið Þjð (2)

The reduction of uncertainty from H(Y) to H(Y|X)
is called information gain and is defined as the
difference IG(X) =H(Y)�H(Y|X). If this difference
is normalized by H(X), the entropy of the variable
X, the ratio is called information gain ratio (IGR).
This score was first introduced in IG Xð Þ

H Xð Þ Quinlan
(1986) in order to avoid overestimation of multi-
valued variables. IGR(X) ranges from 0, where
knowing the value of X provides no information
about Y, to 1 in cases where X and Y are perfectly
correlated. To compute IGR we need to estimate
the unconditional and conditional probabilities from
the data; in the present work these probabilities were
estimated with relative frequencies. For computation
of IGR, Orange software (v. 2.7.1) was used. Each
IGR estimate was compared to its null distribution,
obtained from 100 000 computations of IGR for that
particular feature combination on permuted data.We
then tested the null hypothesis (IGR=0) and
obtained p values as proportions of permutation
experiments where IGR≥ the score obtained from
original dataset. The permutation procedure was
repeated for all microsatellite–phenotype pairs and
the computed p values were corrected using the
false-discovery rate procedure (FDR) (Benjamini
and Hochberg, 1995). We here report on pairs of
correlated microsatellites and phenotypic features
with FDR< 0.2.

Results

Strain collection and genetic characterization

A S. cerevisiae collection was constituted, including
172 strains from different geographical origins and
technological origins, as follows: wine and vine
(74 isolates), commercial wine strains (47 isolates),
other fermented beverages (12 isolates), other
natural environments – soil woodland, plants and
insects (12 isolates), clinical (nine isolates),
sake (six isolates), bread (four isolates), laboratory

(three isolates), beer (one isolate) and four isolates
of unknown origin (see supporting information,
Table S1).
All 172 strains were genetically characterized

regarding allelic combinations for the previously
described microsatellites ScAAT1, ScAAT2,
ScAAT3, ScAAT4, ScAAT5, ScAAT6,
ScYPL009c, ScYOR267c, C4, C5 and C11 (Field
and Wills, 1998; Legras et al., 2005; Perez et al.,
2001; Schuller and Casal, 2007; Schuller et al.,
2007, 2012; Techera et al., 2001). As shown in
Table 1, a total of 280 alleles was obtained;
microsatellites ScAAT1 and ScAAT5were the most
and the least polymorphic, with 39 and 5 alleles,
respectively. The genetic diversity of the collection
is illustrated on the principal component analysis
(PCA) plot in Figure 1. Some patterns of genetic
relatedness between strains sharing the same techno-
logical origin became evident, as shown in
Figure 1A. Sake strains (black dots) were located
in the right part of the PCA plot, due to the larger
sizes of alleles for loci ScYOR267c and C4. For this
group of strains, we identified nine unique alleles,
where three were present in more than one strain
and belonged to three different loci (ScAAT6, C4
and ScYOR267c). Strains from fermented bever-
ages other than wine were separated by PC-2, being
located in the upper part of the PCA plot, indicating
that they share a combination between smaller
alleles of microsatellite C4 and bigger alleles of
ScYOR267c. These 12 strains are marked in the
PCA plot inside the area surrounded by a dotted line.
Twelve unique alleles were found for these strains,
two of them (C4-58 and ScYPL009c-57) being
present in six of the 12 strains. On the contrary, the
group of wine strains (both natural isolates and
commercial strains) showed heterogeneous distribu-
tion across the two components, being preferentially
located in the left side of the PCA plot. The nine
clinical strains were distributed across both compo-
nents, with no discriminant results in any locus.
The 172 strains (scores) were also segregated in
the first two components of the PCA constructed
from the allelic combination for 11 loci. Loci
ScYOR267c and C4 had the highest weight in strain
variability, followed by ScYPL009c and ScAAT4,
although within a smaller extent (Figure 1B).
To reveal the weight of different alleles on the

genetic variability of the strains, the profile of the
11 microsatellites was represented for each strain
as a vector where the values 0, 1 and 2 corresponded
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to the absence of an allele, the presence of a hetero-
zygous allele and the presence of two copies of the
allele, respectively. We assumed that all strains were
diploid, because aneuploid loci were rarely detected
(< 3%). In addition, the DNA content of a represen-
tative set of homozygous strains corresponded to a
diploid strain (flow-cytometry analysis, data not
shown). A total of 48 160 data points were generated
and the segregation of the 280 alleles in the two
components of the PCA is shown in Figure 2. Al-
leles ScAAT4-20, ScAAT5-9 and ScAAT6-16 have
the highest weight in strain variability, due to their
positioning in the right and upper part of the PCA

plot. Among the 11 microsatellite loci, 30 alleles
were identified by PCA as contributing to the
highest strain variability among 172 strains
(Table 1). Loci ScAAT3, ScAAT4, and ScAAT5
were the ones with the higher number of variable
alleles (four), in opposition to loci ScAAT1, C5
and C11 with 1 allele each.

Prediction of the technological group based on
microsatellite alleles

We examined the relations between strains’ tech-
nological groups and the corresponding genotypes

Table 1. Summary of the distribution of alleles (indicated in numbers of repetitions) among 172 Saccharomyces cerevisiae
strains from 11 microsatellite loci

Microsatellite
designation

Total number
of alleles

(range of allele
sizes in number

of repeats)

Most
frequent
alleles

Number of
strains in
which the
allele was
obtained

Most variable
alleles (number
of repetitions)
identified by

PCA (Figure 2)

Percentage of
most variable
alleles among

the total number
of alleles per locus References*

ScAAT1 39 (6–54) 24 27 19 15 A, B
16 21

ScAAT2 18 (5–22) 15 58 7, 14, 15 28
16 33
14 34
13 21

ScAAT3 19 (3–49) 16 45 11, 14, 16, 22 32 B, C
14 32
22 28

ScAAT4 17 (1–27) 20 100 7, 9, 11, 20 35 B
11 22

ScAAT5 6 (2–49) 9 80 8, 9, 10, 11 67 B
10 63
8 37

ScAAT6 10 (12–44) 16 124 14, 16, 17 50 B
17 40

C4 9 (16–61) 21 52 21, 24, 40 56 D
24 44
22 31

C5 19 (3–38) 4 31 3 16 D
3 25
12 23
13 22

C11 18 (1–47) 13 42 23 17 D
14 24
24 28

ScYPL009c 13 (57–86) 80 47 65, 80, 81 46 A, C
81 45
82 28
79 23
65 20

ScYOR267c 12 (37–100) 52 52 52, 56, 62 42 A, C
56 24

*A, Techera et al., 2001; B, Perez et al., 2001; C, Field and Wills, 1998; D, Legras et al., 2005.
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and scored them for their predictive value. Compu-
tational models were constructed to either predict
the strains’ technological application or origin
from microsatellite data. Alleles that were present
in less than five strains were removed, reducing
the total number of alleles from 280 to 153. In
71% of the cases, the removed alleles were present
in only one or two strains. The k nearest-neighbour
(kNN) algorithm was used for inference, as

implemented in the Orange data-mining software.
A good prediction model was obtained in terms
of both area under the receiver-operating-
characteristics curve (AUC) (Hanley and McNeil,
1982) and classification accuracy (0.8018 and
0.547, respectively). Table 2 shows the confusion
matrix of the kNN cross-validation classifications,
where the report on averaged posterior AUCs esti-
mated only on the test data that are not included in

Figure 1. Principal component analysis of microsatellite data. (A) Distribution of 172 strains according to their allelic com-
binations for 11 loci (scores): symbols represent the strains technological applications or origin: ★, wine and vine; , com-
mercial wine strain; ■, beer; , baker; ●, sake; , other fermented beverages; , clinical; , natural isolates; , laboratory;

, unknown biological origin. Sake strains and strains from other fermented beverages are surrounded by unbroken and
dotted lines, respectively. (B) Contribution of microsatellite loci (loadings) to the separation of strains shown in (A)
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the training of the model. For the strains derived
from winemaking environments (commercial and
natural wine strains), 47% and 72% of strains, re-
spectively, were correctly assigned. Interestingly,
the majority of ‘false’ assignments did not fall
out of the wine strains group, occurring for com-
mercial wine strains that were assigned to the
natural wine strains (21 of 47 strains) or natural
wine strains that were catalogued as commercial
wine strains (16 of 74 strains). If all wine strains
were grouped in one single category, the propor-
tion of correct assignments would increase to
93% (112 of 121 strains). For the groups of strains
isolated from sake, natural environments, other
fermented beverages and bread, the proportion of
correct assignments were 67%, 42%, 50% and
50%, respectively, which is rather high consider-
ing the relatively small number of isolates included
in these groups (6, 12, 12 and 4, respectively). The
high number of correct assignments, even for small
groups of strains, and a very high AUC score both
reinforce the validity of the modelling technique,
confirming a strong relation between our genotype
profiles and strain groups. On the other side, and
with only 22% of correct assignments, our
approach was not successful in identification of
clinical strains, which was expected due the
absence of a common ancestor for this group, and
because pathogenic S. cerevisiae strains arise from
different origins (Liti and Schacherer, 2011).

Associations between microsatellites and
phenotypes

The 172 S. cerevisiae strains were characterized
phenotypically, considering 30 physiological traits
that are important from an oenological point of
view, in four replicates, measuring A640 after 22 h
of growth. A high reproducibility was obtained be-
tween the four replicates, with the average standard
deviation (SD) = 0.08. Results were catalogued
with a number between 0 and 3 [0, no growth in
liquid media (A640 = 0.1) or no visible growth on
solid media or no colour change of the BiGGY
medium; 3, at least 1.5-fold increase of A640,
extensive growth on solid media or a dark brown
colony formed in the BiGGY medium; scores 1
and 2 corresponded to the respective intermediate
values], resulting in a total of 5160 data points,
as summarized in Table S2 (see supporting infor-
mation). Our objective was to identify subsets of
strains sharing similar phenotypic results and
allelic combinations. To test the associations be-
tween phenotypic results and microsatellite alleles,
we analysed pairwise relationships between corre-
sponding variables (each microsatellite variable
vs each phenotypic feature). First we binarized all
phenotypic features in order to analyse the rela-
tionship more precisely (which phenotypic value
is associated with a certain microsatellite), then
the constant features (shared by> 95% of strains)

Figure 2. Principal component analysis of a Boolean matrix of 280 alleles from 11 microsatellites in 172 Saccharomyces
cerevisiae strains
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were removed. Information gain ratio (IGR) was
computed between microsatellite predictor and
binarized phenotypic response variable, and re-
peated again using permutated phenotypic data,
as described in Materials and methods; p values
were reported after correction using the false-dis-
covery rate (FDR) procedure, and the pairs for
which FDR was< 0.2 are marked in Figure 3. In
Table S3 (see supporting information) the exact
FDR-adjusted p values are shown for associations
between all phenotypic and genetic data. Significant
associations were obtained between microsatellites
ScAAT1, ScAAT2, ScAAT5, ScAAT6, YPL009c,
C4 and C5, and for 13 phenotypic classes. For the
phenotypic classes in which significant associations
were found with microsatellite alleles, between one
and eight associations were found with a particular
microsatellite allele (number following black cir-
cles). For nine phenotypic tests and classes, a single
association was established: ‘40°C= 1’, ‘40°C=3’,
‘SDS (0.01% w/v) = 0’, ‘KHSO3 (150 mg/l) = 2’,
‘ethanol 10% v/v (liquid medium)= 0’, ‘ethanol
10% v/v (liquid medium) = 2’, ‘ethanol 10% v/v
(liquid medium)= 3’, ‘ethanol 12% v/v+Na2S2O5

75 mg/l (solid medium) = 1’ and ‘wine
supplemented with glucose 1%=0’. The pheno-
types with the highest number of allelic associations
were ‘KHSO3 (300 mg/l) = 3’ and ‘galactosidase
activity = 1’, with eight associated alleles each. In
terms of microsatellite alleles, 22 alleles had an
association with at least one phenotype. For two
alleles, three significant associations were obtained
(ScAAT2-13 and C4-21), being the highest number
of associations with phenotypes (seven) found for
microsatellites ScAAT1 and ScAAT2, in opposition
to ScAAT5, ScAAT6 and YPL009c, with only three
associations each established. These numbers are
not related to the total number of alleles and the
range of allele sizes shown in Table 2.

Discussion

In our previous work (Franco-Duarte et al., 2009)
we developed a method to computationally associ-
ate the genotype and phenotype of 103 S. cerevisiae
strains, mainly from the Vinho Verde winemaking
region, using microsatellite data obtained with
11 polymorphic markers and phenotypic data from
a set of 24 taxonomic tests. Herein, we aimed toT
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investigate whether such associations could be
established in a worldwide collection of 172
S. cerevisiae strains from different geographical ori-
gins and technological uses (winemaking, brewing,
bakery, distillery, laboratory, natural, etc.). We
considered 30 physiological traits that are mainly
used in S. cerevisiae winemaking strain selection
programmes (Mannazzu et al., 2002). Phenotypic
analysis revealed a high diversity, similar to other
studies that showed high diversity within domesti-
cated and natural populations of S. cerevisiae,
describing also mosaic strains, depending on their
origin and application (Agnolucci et al., 2007;
Brandolini et al., 2002; Camarasa et al., 2011;
Goddard et al., 2010; Kvitek et al., 2008; Liti
et al., 2009; Salinas et al., 2010; Schacherer et al.,
2009; Warringer et al., 2011). In addition, we

showed significant associations between phenotypic
results and strains’ technological applications or
origins using the Mann–Whitney test (Mendes
et al., 2013). Part of the high phenotypic variability
and intrastrain variation can also be explained by the
existence of genetic rearrangements that are charac-
teristic for S. cerevisiae, being particularly high in
the case of winemaking strains (Schuller et al.,
2007). Large-scale genome sequencing projects are
now under way to provide data for an in-depth
understanding of relationships between genotype
and phenotype.
The collection of 172 S. cerevisiae strains

obtained from different geographical origins and
technological groups also revealed high genetic
diversity (Figures 1, 2, Table 1), with a total of
280 alleles obtained with 11 polymorphic

Figure 3. Significant associations (black circles) between microsatellites and phenotypes, obtained with Orange data-mining
software. Each association was calculated between a microsatellite allele (numbers following black circles) of the microsatel-
lite represented at the top, and a phenotypic class (0–3). Marked associations refer to significant p values obtained after false-
discovery rate correction (p value after FDR< 0.2), using information gain ratio associations compared against data from
permutation test (for details, see Materials and methods)
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microsatellites. PCA components of Figure 2
explain only a small part of the total variance
(PC-1, 7%; PC-2, 5%), which seems to indicate
that all the microsatellite alleles are important to
differentiate between strains, but also revealed a
group of 54 alleles that are the most relevant to
explain variability among strains. Microsatellite
ScAAT1 was the most polymorphic one, with 39
alleles, followed by ScAAT3 and C5 with 19 alleles
each, confirming the data of our previous study
(Franco-Duarte et al., 2009). Herein we also
observed some patterns of distribution according to
the strains’ technological applications or origins,
when considering the PCA of genetic data, in partic-
ular for sake strains and strains from fermented
beverages other than wine. Clinical strains, which
are opportunistic environmental strains colonizing
human tissues (Muller and McCusker, 2009;
Schacherer et al., 2007), did not show any discrimi-
nant distribution with PCA, which was expected
because they do not share a common ancestor (Liti
and Schacherer, 2011). Sake strains and strains
obtained from fermented beverages other than wine
showed some unique alleles in loci ScAAT6, C4,
ScYOR267c and ScAAT1, ScAAT5, ScAAT6,
C4, ScYPL009c, ScYOR267c, respectively. These
results highlight the existence of alleles that are
representative of a specific technological group,
which justifies the approach used in this research.
Regarding microsatellite distributions in human

populations (5795 individuals and 645 microsatel-
lite loci), multidimensional scaling detected 240
intrapopulation and 92 interpopulation pairs
regarding genetic and geographical relatedness
(Pemberton et al., 2013). In our study we demon-
strate that a strain’s allelic combination and the
respective technological application or origin
(Table 2) are strongly related, as the latter can be
predicted from the proposed genotypic characteriza-
tion. Regarding winemaking strains (both natural
and commercial), the approach was able to predict
the technological application or origin for 93% of
the strains. The AUC score of the model was
0.802, between the values of an arbitrary and perfect
classification (AUC=0.5 and 1.0, respectively) and
can be considered as moderately high (Mozina et al.,
2004). These results demonstrate the potential of
the approach to predict the technological origin
of a strain from the entire microsatellite profile,
even for groups of strains with small sample size
(sake or bread, six and four strains, respectively).

The genetic and phenotypic profile of strains
obtained with 11 markers and 30 phenotypic tests
was used to computationally score and rank
genotype–phenotype associations. Associations
were scored using information gain ratio (Quinlan,
1986) and significant results were shown in form
of p value after the false-discovery rate procedure.
Thirty-two associations, representing 13 pheno-
typic classes and 22 microsatellite alleles, were
significantly established. The phenotypic classes
with more associations were related to high capac-
ity to resist to the presence of KHSO3 during
fermentation, and to galactosidase activity; these
two phenotypes were associated with eight alleles
each. These results are valuable to select strains
that are resistant to sulphur dioxide, an antioxidant
and bacteriostatic agent used in vinification (Beech
and Thomas, 1985), and that were tested by the
capacity of strains to grow in a medium
supplemented with KHSO3. The association
between eight alleles and the strains’ moderate
galactosidase activity, although not directly related
to winemaking, could be also a beneficial criterion
to choose S. cerevisiae strains capable to hydrolyse
galactose, an alternative to the use of glucose as
carbon source, pointing to an improved evolution-
ary capacity of these strains. The most polymor-
phic locus, ScAAT1, also revealed the highest
number of associations with phenotypes, but this
was not observed for other polymorphic loci.
Seven phenotype–genotype associations were
found for each of the alleles ScAAT2–13 and
C4-21, which can be considered as the most infor-
mative to predict strains biotechnological potential
regarding the associated phenotypes.
The prediction of the technological group from

allelic combinations and the presence of statisti-
cally significant associations between phenotypes
and allele both demonstrate that computational
approaches can be successfully used to relate geno-
type and phenotype of yeast strains. Microsatellite
analysis revealed to be an efficient marker to eval-
uate genetic relatedness in yeasts and can be
employed in the industry as a quick and cheap
analysis. Although microsatellite analysis is the
most accurate method for S. cerevisiae strain char-
acterization, the 11 microsatellites are spread on
only nine chromosomes and might provide for a
rather coarse representation of a genotype. Taking
into account that the discovered associations apply
to smaller fraction of the genome, this study could
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be beneficially complemented with additional
markers of other genomic regions. These findings
may become particularly important for the simplifi-
cation of strain selection programmes, by partially
replacing phenotypic screens through a preliminary
selection based on the strain’s microsatellite
allelic combinations.
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