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Abstract

Here, we define and consider (linear) TP-directions and TP-paths for a
totally nonnegative matrix, in an effort to more deeply understand perturbation
of a TN matrix to a TP matrix. We give circumstances in which a TP-direction
exists and an example to show that they do not always exist. A strategy to give
(nonlinear) TP-paths is given (and applied to this example). A long term goal
is to understand the sparsest TP-perturbation for application to completion
problems.
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1 Introduction

An m-by-n matrix is totally nonnegative (positive), abbreviated TN (TP), if all
its minors are nonnegative (positive) real numbers. It is TNk(TPk) if all its minors of
order ≤ k are nonnegative (positive). A recent general reference about such matrices
is [1]. It is known that the TN matrices are the topological closure of the TP matrices.
Proofs show that arbitrarily close to each TN matrix there are TP matrices. This is
somewhat subtle, and, typically, every entry is changed (which is often unnecessary).
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We are interested in what are the minimal sets of entries of a given TN matrix that
must be changed in order to perturb it to TP. This is interesting for at least the
following reason: understanding the relation between the TN and TP completion
problems. In addition, minimal perturbing sets hold a natural theoretical interest,
and will likely be of use in other particular problems [5]. We also ask what may be
said about the nature of the perturbations to TP that occur. When can the entries
in the perturbing positions be taken to be positive? When the minimal perturbing
set is a block, can the perturbation be taken to be TP? When are there homogeneous
linear perturbations or linear directions in which all matrices are TP? What about
nonlinear parametric perturbations? We have only begun study of these questions
here, and focus initially on TP directions.

A simple example that shows that perturbing sets may have few entries is

B =

[
1 1
1 1

]
which is TN. Perturbation of any single entry can make B TP, either perturbation of
the (1, 1) or (2, 2) entry up or perturbation of the (1, 2) or (2, 1) entry down. Note that
if 2 entries in the same line are perturbed, they could both be perturbed upward (or
downward) by small amounts. In the following, after a brief discussion of background
information, we define TP-directions and TP-paths for a totally nonnegative matrix,
and further study the existence of each of them. For this purpose, the inverse sum
property (ISP) and the notion of an even pair are introduced and related to TP-
directions.

2 Background

To know that a real matrix is TP, not all minors need be checked. A minor (or
submatrix) of a given matrix M is called contiguous if both index sets α, β on which
it is based are sets of consecutive indices. We use the standard notation M [α, β] to
denote the submatrix lying in rows α and columns β, and if |α| = |β|, detM [α, β]
denotes the α, β minor. Similarly, A(α, β) denotes the submatrix of A resulting from
deletion of rows α and columns β. If all the contiguous minors (note that these
include the entries) of a real matrix are positive, then the matrix is TP. In fact, not
even all the contiguous minors need be checked. A contiguous minor (or submatrix) is
called initial if at least one of the two consecutive index sets begins with 1. Only the
initial minors need be checked for positivity, to verify that a matrix is TP [1, 2, 3, 7].
There are exactly as many initial minors in a matrix as there are entries, and all the
initial (or some equivalent set of) minors must be checked to verify TP. For example,
the trailing minors (contiguous minors in which the last index appears in at least
one index set) also suffice because of the forward/backward symmetry of the TP
property. However, if something else is already known about a matrix, fewer of the
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initial minors being positive suffice that it be TP. For example if a matrix is TN, then
the Shapiro minors being positive imply that it is TP [6, 1]. The Shapiro minors are
the initial minors in which the “other” index set includes the last index (both initial
and trailing); they are contiguous minors to the northeast or southwest. Generally,
checking for TN is more complicated and factorization methods offer a better option
[1]. Proofs of many such statements, especially the one about initial minors, best
rely on the Sylvester determinantal identity [4, 1]. The very useful special case is the
following. Let A ∈Mn(F) be the partitioned matrix

A =

 a11 aT12 a13
a21 A22 a23
a31 aT32 a33


in which A22 ∈Mn−2(F) and a11 and a33 are scalars. Define the matrices

B =

[
a11 aT12
a21 A22

]
, C =

[
aT12 a13
A22 a23

]
, D =

[
a21 A22

a31 aT32

]
, E =

[
A22 a23
aT32 a33

]
.

Then

detA =
detB detE − detC detD

detA22

, when detA22 6= 0.

Also many of these concepts may be described in terms of compounds (recall
that the kth compound matrix of an m× n matrix A is the

(
m
k

)
×
(
n
k

)
matrix formed

from the determinants of all k × k submatrices of A, i.e., all k × k minors, arranged
with the submatrix index sets in lexicographic order [4]). A matrix is TN (TP) if all
its compounds are entry-wise nonnegative (positive).

A less familiar notion is that a matrix be totally nonsingular. This means that
all square submatrices are invertible. Most of the nice statements about total posi-
tivity do not carry over to total nonsingularity. For example, nonsingularity of the
contiguous square submatrices does not suffice for total nonsingularity. Of course a
TP matrix is totally nonsingular. Generically (e.g., in the totally nonsingular case),
however, a general matrix may be reconstructed from its initial minors using Sylvester.

3 Definitions

We now mention some new ideas specific to our work. We assume throughout that B
is a TN matrix to be altered entry-wise.

Definition 1. If A and B are m-by-n matrices, then A is a linear B-perturbation if
there is a τ > 0 such that B + tA is TP for all 0 < t < τ . If, further, τ may be taken
to be +∞, then A is called a (linear) B-direction.

We note that the existence of a linear B-perturbation for a TN matrix B is a
stronger statement than that B may be perturbed to TP.
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Definition 2. If A and B are m-by-n matrices, and A = A(t) is a continuous matrix
function such that A(t) → 0 as t → 0, then A(t) is a B-perturbation if there is a
τ > 0 such that B +A(t) is TP for 0 < t < τ . If, further, τ may be taken to be +∞,
then A(t) is called a B-path.

Thus, a linear B-direction (B-path) is a linear B-perturbation (B-perturbation)
for which large as well as “small” changes result in a TP matrix. A B-perturbation
may not be TN and may even have negative entries, but a linear B-direction must, at
least, be TN and a B-path must eventaully be TN. We will study linear B-directions
that are TP and give an algorithm to produce polynomial B-perturbations and B-
paths.

Definition 3. If A,B ∈ Mm,n(R) and A is totally nonsingular, then for index sets
α, β such that |α| = |β|, the α, β count is Cα,β(A,B), the number of negative real
eigenvalues of A[α, β]−1B[α, β].

Definition 4. We say that A and B, as in Definition 3, constitute an even pair if
for every pair of index sets α, β, with |α| = |β|, Cα,β(A,B) is even. A and B form a
0-pair, if, further, each of these even counts is 0.

Recall that a real, square, invertible matrix has positive determinant if and only
if it has an even number of negative real eigenvalues. This is a motivation for 0 and
even pairs.

Next, as usual, we use e to denote the vector of 1′s of relevant dimension.

Definition 5. A totally nonsingular matrix A ∈ Mm,n(R) has the (strict) inverse
sum property (ISP), if, for all index sets α ⊆ {1, ...,m}, β ⊆ {1, ...n}, with |α| = |β|,

eTA[α, β]−1e ≥ 0 (> 0),

i.e., the sum of the entries of the inverse of every square submatrix is nonnegative
(positive).

If the above inequalities hold for the initial submatrces of A, A is said to have the
initial (strict) ISP. Note that the ISP implies that the entries of a matrix are positive.

4 B-directions and linear B-perturbations

We begin with some elementary properties of B-directions and B-perturbations. First,
note that, since TP is a property inherited by submatrices, so are B-directions and
perturbations.
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Proposition 6. If A is a linear B-direction (perturbation), then for any index sets
α, β, A[α, β] is a linear B[α, β]-direction (perturbation), in which α and β are sets of
indices of the same cardinality.

Since increasing the northwestern-most or southeastern-most entry of a TP ma-
trix preserves total positivity [1, p.198], we have

Proposition 7. If A and B are m-by-n matrices and A is a linear B-direction (per-
turbation), then for any s ≥ 0, A + sE11 and A + sEm,n are linear B-directions
(perturbations).

By simple algebraic manipulation, we also have

Proposition 8. If A is a linear B-direction (perturbation), then any positive linear
combination of A and B is a linear B-direction (perturbation).

Note that if A and B are m-by-n matrices and A is TP, then B + tA is TP for
sufficiently large t. Despite this, and the above results, it is possible for a TP matrix
to be a linear B-perturbation for a TN matrix B, without being a B-direction.

Example 9. Let B =

[
1 7
0 2

]
and A =

[
1 1
1 2

]
. Then B is TN and A is TP.

A calculation shows that A is a B-perturbation, for τ = 1; B + tA is not TP for
1 ≤ t ≤ 2, and B + tA is TP for t > 2.

Of course, multiplication by a positive scalar preserves the ISP, but positive
diagonal scaling does not.

Example 10. The matrix [
2 1
3 2

]
is TP and has the ISP. But[

1 0
0 10

] [
2 1
3 2

]
=

[
2 1
30 20

]
is, of course, TP, but does not have the ISP.

The above shows that a matrix may be TP but not have the ISP. Conversely, a
matrix may have the ISP without being TP.

Example 11. The matrix

[
2 3
1 1

]
is not TP, as its determinant is −1, but, as

eTA−1e = 1 and the entries of A are positive, A does have the ISP.
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Given a TN matrix B, the natural existence question of a TP matrix A such that
A+B is TP is answered by a process similar to the bordering by which TP matrices
may be constructed (see the cover of [1]). It is clear that for A to be a B-direction,
B must be TN (small t) and A must be (at least) TN (large t). We now turn to
characterizations of linear B-perturbations and B-directions.

Proposition 12. Let A, B be n-by-n real matrices and t ∈ IR be such that detA >
0 and B + tA is invertible. Then det(B + tA) = detA det(A−1B + tI), so that
det(B + tA) > 0 if and only if A−1B + tI has an even number of negative real
eigenvalues, i.e., A−1B has an even number of real eigenvalues < −t.

Theorem 13. Suppose B ∈ Mm,n(R) is TN and A ∈ Mm,n(R) is TP. Then A is a
linear B-perturbation if and only if A,B is an even pair.

Proof. If A,B is not an even pair, then there are index sets α, β with |α| = |β|
and with A[α, β]−1B[α, β] having odd negative eigenvalues −λ2k+1 ≤ ... ≤ −λ1, and
for 0 < t < λ1,

A[α, β]−1B[α, β] + tI

would have negative determinant, as would B[α, β] + tA[α, β]. Thus, B + tA would
not be TP for small t. On the other hand, if A,B is an even pair (and not a 0-
pair), and λ is the algebraically largest negative real eigenvalue among the matrices
A[α, β]−1B[α, β] with |α| = |β|, then τ = −λ verifies that A is a linear B-perturbation
(with tolerance τ). If A,B is actually a 0-pair, we may take any τ > 0 to verify that
A is a linear B-perturbation. �

Theorem 14. Suppose that B ∈ Mm,n(R) is TN and A ∈ Mm,n(R) is TP. Then A
is a (linear) B-direction if and only if A,B is a 0-pair.

Proof. That A is a B-direction means that A is a linear B-perturbation with
τ = +∞ (i.e., any τ > 0 verifies the definition of B-perturbation). The proof of the
previous theorem shows that this happens precisely for a 0-pair. �

Remark. Since positivity of the initial minors implies the positivity of all minors,
then the definitions of B-perturbation and B-direction need only consider the initial
submatrices of A and B. The two theorems then indicate that the notions of even
pair and 0 pair need only take these submatrices into account.

This has the curious implication that if A is TP and B is TN, then if for all initial
submatrices A[α, β]−1B[α, β] have an even number of (0) negative real eigenvalues,
then the same will hold for all square submarices. We do not know the extent to
which this holds beyond our hypotheses that A be TP and B be TN.

As usual, we let J denote the matrix all of whose entries are 1. If the number
of rows and columns is unclear from context, we denote them with subscripts as in
Jm,n. Of course, the matrix J is TN.
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Corollary 15. A TP matrix A is a (linear) J-directon if and only if A has the ISP.

Proof. For each pair of index sets α, β, with |α| = |β|, rankA[α, β]−1J [α, β] = 1,
because rankJ [α, β] = 1 and A[α, β]−1 is nonsingular. Since Tr(A[α, β]−1J [α, β]) =
eTA[α, β]−1e, the only possible nonzero eigenvalue of A[α, β]−1J [α, β] is eTA[α, β]−1e.
Thus, A and J form a 0-pair if and only if A has the ISP, and the claim of the corollary
follows from the prior theorem �

If J is replaced by a more general TN matrix, the content of the corollary need
no longer be valid.

Example 16. The matrix A =

[
2 1
3 2

]
is TP and has the ISP, and B =

[
2 2
1 1

]
is TN, but A is not a B-direction.

We may say a bit more in the case of J .

Theorem 17. The following statements are equivalent for a TP matrix A:

(1) A is a J-direction;

(2) A is a J-perturbation;

(3) A, J is an even pair;

(4) A, J is a 0-pair;

(5) A has the ISP; and

(6) A has the initial ISP.

Proof. (1) obviously implies (2). (2) implies (3) by Theorem 13. (3) implies (4)
because J has rank 1, so that A[α, β]−1J [α, β] cannot have more than 1 negative real
eigenvalue. (4) implies (5) follows by Theorem 14 and Corollary 15. (5) implies (6)
trivially. (6) implies (1) because the initial minors of J + tA are positive for all t > 0.
�

Not surprisingly, we may similarly characterize TP directions for arbitrary rank
1 matrices.

Corollary 18. Suppose that K is a positive rank 1 TN matrix. Then there are positive
diagonal matrices D and E such that DKE = J . Now, A is a (linear) TP K-direction
if and only if D−1AE−1 has the ISP.

Now, for J , and thus positive rank 1 matrices generally, there do always exist
TP directions. To see this, we first give some lemmas.
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Lemma 19. Suppose that C is a k-by-(k + 1) TP matrix. Then there is a k + 1 row

vector g such that

[
g
C

]
is a (k + 1)-by-(k + 1) TP matrix. Moreover, the entries of

g may be chosen so as to increase from right to left, and a greater rate of increase,

producing g′, will also make

[
g′

C

]
TP.

Recall that if A = (aij) is n-by-n and invertible, then adj(A) = (detA)A−1. We
have that

Lemma 20. eTadj(A)e is a linear function of each row of A, and in particular of the
first row of A.

Lemma 21. The coefficient of a11 in eTadj(A)e as a function of the first row of A is
eTadj(A(1, 1))e. And this coefficient is positive if A(1, 1) is TP and satisfies the ISP.

Lemma 22. There exist J-directions.

Proof. It suffices to construct a TP matrix A for which the trailing inverse sums
are positive. This may be done sequentially using the above lemmas starting with
a positive, right-to-left increasing, last row, and then bordering right to left, making
each successive entry large enough to ensure both TP and positive inverse sum (for
the maximum trailing minor). Note that making eTadj(A)e > 0 is the same as
eTA−1e > 0 as detA > 0. �

Example 23. A TP matrix A, such as Lemma 22 guarantees, may be constructed
as follows: The last row and column are all 1s; the entries of (n − 1)th row are
an−1,j = n+1−j, j = 1, ..., n−1; the entries of (n−1)th column are ai,n−1 = n+1−i,
i = 1, ..., n− 1 and the other entries are aij = ai,j+1 + ai+1,j.

For example a 5× 5 J-direction is


70 35 15 5 1
35 20 10 4 1
15 10 6 3 1
5 4 3 2 1
1 1 1 1 1

.

Corollary 24. If B is positive and rank 1, then there exist B-directions.

It follows that there exist TP matrices of any size, with the ISP. It would be
interesting to more explicitly characterize these.

Of course, if the TN matrix B is actually TP, then B itself is a (linear) B-
direction.

Theorem 25. If B ∈Mm,n(R),m ≥ n, is TN and any one of, TP1 and rank 1; TP ;
or TPn−1, then B has a TP direction.
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Proof. Here we only consider m = n, when m > n see Lemma 19. The first case
is concluded by Corollary 24, and in the second case, just let the TP matrix be B
itself. In the third case, since B is TPn−1, we may only perturb great enough the
(1, 1) entry of B to make it TP, then the perturbed matrix is a B-direction. �

If B is a positive 3-by-3 TN matrix, the only situations, in which Theorem 25
does not guarantee a TP direction for B, are those in which B is TP1 and not TP2

and rank either 2 or 3. (So, some initial 2-by-2 minor is 0, and the determinant
may be 0.) In either of these cases, straightforward calculation verifies that there
is a TP direction for B. So, every positive 3-by-3 TN matrix B does have (linear)
B-directions. However, this need not happen for every n.

The first case not covered is a 4-by-4, TP1, TN, rank 2 matrix. Consider the
following example.

Example 26. Let B =


4 3 2 1
1 1 1 1
1 1 1 1
1 2 3 4

 . Then B is a TN matrix of rank 2.

Let A = (aij) be a 4-by-4 TP matrix. Then
4 3 2 1
1 1 1 1
1 1 1 1
1 2 3 4

+t


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


ta11 + 4 ta12 + 3 ta13 + 2 ta14 + 1
ta21 + 1 ta22 + 1 ta23 + 1 ta24 + 1
ta31 + 1 ta32 + 1 ta33 + 1 ta34 + 1
ta41 + 1 ta42 + 2 ta43 + 3 ta44 + 4

 .
Notice that the coefficient of t of the minor 123; 123 is −[(a21 − 2a22 + a23) −

(a31 − 2a32 + a33)], but at the same time the coefficient of t of the minor 234; 123 is
[(a21−2a22+a23)−(a31−2a32+a33)]. Since neither of the minors has a constant term,
the minors 123; 123 and 234; 123 cann’t be positive simultaneously for all positive t.
Thus, there is no (linear) B-direction.

It is a natural question, then which rank 2 TN matrices B have (linear) B-
directions, and what is the role of 0 entries.

In the next section we show that for the B of Example 26, there is a (polynomial)
B-path and suggest a general method for constructing (sparse) B-paths.

5 Polynomial B-perturbations and B-Paths for TN

matrices

We suppose now that B is an entry-wise positive TN matrix that we wish to perturb
to TP via a polynomial matrix. We allow the polynomial matrix to be sparse, but it
may also be arranged that it be full, as well. We proceed by analogy to the classical
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method of constructing TP matrices, as exhibited on the cover of [1]. We proceed
right to left from the southeastern-most entry to the northwestern-most entry one
row at a time. Of course, the upper left entry of each trailing minor that is 0 must be
perturbed (upward). It suffices to make each of these minors positive. In particular,
as in the case of TP construction, it suffices to make positive the determinant of the
maximal southeastern minor that is altered (at each step). This one will be a trailing
minor. Our perturbations will be polynomials, in a single variable, that take on the
value 0 at the argument 0, i.e., the constant term is 0. But as we have seen, these
polynomials may have to be nonlinear.

We consider Example 26 from the last section to illustrate the process. We
actually find a B-path, where there was no (linear) B-direction.

Example 27. Let

B =


4 3 2 1
1 1 1 1
1 1 1 1
1 2 3 4

 .
Then B is TN of rank 2 (but not TP). Since the last two rows form a TP

matrix, the “first” entry that requires perturbation is in the (2, 3) position. Call the
perturbation x. The entry in the (2, 2) position also requires perturbation as the
(trailing) 234; 234 minor of B is 0. A perturbation of 2x would leave this minor 0, so
make the perturbation 2x+ x2. The (2, 1) position also requires perturbation. Since
a perturbation of 3x + 2x2 would make the (trailing) 2, 3, 4; 1, 2, 3 minor 0, choose a
perturbation of 3x+ 2x2 + x3. So far, our perturbed matrix is

4 3 2 1
1 + 3x+ 2x2 + x3 1 + 2x+ x2 1 + x 1

1 1 1 1
1 2 3 4


To achieve a B-perturbation, the (1, 2) and (1, 1) entries require perturbation in

that order. However, to achieve a B-path, the (1, 3) entry need be perturbed by at
least x to keep the 12;34 minor positive for all x. Without this, continuing in a similar
manner gives the B-perturbation

4 + 2x+ 3x2 + x3 + x4 3 + x+ x2 2 1
1 + 3x+ 2x2 + x3 1 + 2x+ x2 1 + x 1

1 1 1 1
1 2 3 4


The initial minors of size at least 2 are
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12; 12: 1 +x2 +x3 + 3x4 + 2x5 +x6

12; 23: 1 + x3

12; 34: 1− x

23; 12: x+ x2 + x3

34; 12: 1

123; 123: x4 + x5 + x6

123; 234: x3

234; 123: x3

1234; 1234: x6

Because the 12;34 minor is 1 − x, this is not a B-path. If we had continued by
first perturbing the (1, 3) entry and continuing, we would have produced

4 + 8x+ 5x2 + 4x3 + x4 + x5 3 + 5x+ 2x2 + x3 2 + x 1
1 + 3x+ 2x2 + x3 1 + 2x+ x2 1 + x 1

1 1 1 1
1 2 3 4


This is a B-path as the trailing minors of size at least 2-by-2 are

34; 34: 1

34; 23: 1

34; 12: 1

23; 34: x

23; 12: x

234; 234: x2

234; 123: x3

123; 234: x4

1234; 1234: x7.
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