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Abstract. Worldwide, around 9% of the children are born with less than 

37 weeks of labour, causing risk to the premature child, whom it is not 

prepared to develop a number of basic functions that begin soon after the 

birth. In order to ensure that those risk pregnancies are being properly 

monitored by the obstetricians in time to avoid those problems, Data 

Mining (DM) models were induced in this study to predict preterm births 

in a real environment using data from 3376 patients (women) admitted in 

the maternal and perinatal care unit of Centro Hospitalar of Oporto. A 

sensitive metric to predict preterm deliveries was developed, assisting 

physicians in the decision-making process regarding the patients’ 

observation. It was possible to obtain promising results, achieving 

sensitivity and specificity values of 96% and 98%, respectively.  
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1 Introduction 

Preterm birth portrays a major challenge for maternal and perinatal care and it is a 

leading cause of neonatal morbidity. The medical, education, psychological and social 

costs associated with preterm birth indicate the urgent need of developing preventive 

strategies and diagnostic measures to improve the access to effective obstetric and 

neonatal care [1]. This may be achieved by exploring the information provided from 

the information systems and technologies increasingly used in healthcare services. 

In Centro Hospitalar of Oporto (CHP), a Support Nursing Practice System 

focused on nursing practices (SAPE) is implemented, producing clinical information. 

In addition, patient data plus their admission form are recorded though EHR (Electronic 

Health Record) presented in Archive and Diffusion of Medical Information (AIDA) 

platform. Both SAPE and EHR are also used by the CHP maternal and perinatal care 

unit, Centro Materno Infantil do Norte (CMIN). CMIN is prepared to provide medical 

care / services for women and child. Therefore, using obstetrics and prenatal 

information recorded from SAPE and EHR, it is possible to extract new knowledge in 

the context of preterm birth. This knowledge is achieved by means of Data Mining 

(DM) techniques, enabling predictive models based on evidence. This study 



accomplished DM models with sensitivity and specificity values of approximately 96% 

and 98%, which are going to support the making of preventive strategies and diagnostic 

measures to handle preterm birth. 

Besides the introduction, this article includes a presentation of the concepts and 

related work in Section 2, followed by the data mining process, described in Section 3. 

Furthermore, the results are discussed and a set of considerations are made in Section 

4. Section 5 presents the conclusions and directions of future work.  

2 Background and Related Work 

2.1 Preterm Birth 

Preterm birth refers to a delivery prior to 37 completed weeks (259 days) of labour. 

Symptoms of preterm labour include uterine contractions occurring more often than 

every ten minutes, or the leaking of fluids. Preterm birth is the leading cause of long-

term disability in children, since many organs, including the brain; lungs and liver are 

still developing in the final weeks of pregnancy [2]. Preterm Birth has not decreased in 

the last 30 years, due to the failure identifying the high-risk group during routine 

prenatal care [3]. Many studies were conducted to identify a way to predict preterm 

deliveries, focusing on physiologic measures, ultrasonography, obstetrics history and 

socioeconomic status [4]. For instance, in 2011 a model was developed for predicting 

spontaneous delivery before 34 weeks based on maternal factors, placental perfusion 

and function at 11-13 weeks’ gestation, through screening maternal characteristics and 

regression analysis. They detected 38.2% of the preterm deliveries in women with 

previous pregnancies beyond 16 weeks and 18.4% in those without [3]. Most of the 

efforts to predict preterm birth face limited provision of population based data, since 

registration of births is incomplete and information is lacking on gestational age [6]. 

2.2 Interoperability Systems and Data Mining in Healthcare 

As mentioned in the previous section, this study is based on real data acquired from 

CMIN. The knowledge extraction depends substantially on the interoperability between 

SAPE and EHR systems assured through AIDA. This multi-agent platform enables the 

standardization of clinical systems and overcomes the medical and administrative 

complexity of the different sources of information from the hospital [5].  

In healthcare systems, there is a wealth of data available, although there is a lack of 

effective analysis tools to extract useful information. Thus, data mining have found 

numerous applications in scientific and clinical domain [8]. Successful mining 

applications have been implemented in the healthcare. In obstetrics and maternal care, 

some of these studies were employed to predict the risk pregnancy in women 

performing voluntary interruption of pregnancy (VIP) [9] and manage VIP by 

predicting the most suitable drug administration [7]. 



3 Study Description 

This study was conducted by following the Knowledge Discovery in Database (KDD), 

allowing the extraction of implicit and potentially useful information, through 

algorithms, taking account the magnitudes of data increasing [10]. 

The DM methodology employed was the Cross Industry Standard Process for Data 

Mining (CRIP-DM), a non-rigid sequence of six phases, carried out in this section, 

which allow the implementation of DM models to be used in real environments [11]. 

To induce the DM models, four different algorithms were implemented: Decision Trees 

(DT), Generalized Linear Models (GLM), Support Vector Machine (SVM) and Naïve 

Bayes (NB). This study used data collected from 3376 patients (women) admitted in 

the maternal and perinatal care unit (CMIN) of CHP comprising a period between 2012-

07-01 and 2015-01-31, in a total of 1120 days. 

3.1 Business Understanding 

The Business aim of this project is to identify the risk group of preterm delivery, to 

ensure the proper monitoring and to avoid its associated problems. The DM goal is to 

develop accurate models able to support the decision-making process by predicting 

whether or not a woman will be subjected to a preterm delivery, based on data from 

clinic cases. 

3.2 Data Understanding 

The initial dataset extracted from SAPE and EHR admission records was analysed and 
processed in order to be used in the DM process. A set of 13 variables were selected: 
age (corresponds to the age of the pregnant patient), programmed (indicates whether or 
not a delivery is programmed), gestation (singular or multiple pregnancies), PG1 and 
PG2 (first echography measures), motive (reason of intervention - normal delivery or 
unexpected events), patients’ weight and height, BMI (body mass index), blood type,  
cardiotocography (CTG) (biophysics exam that evaluates the fetal wellbeing), 
streptococcus (presence of the bacterium streptococcus in the pregnant system) and 
finally, marital status of the pregnant patient. The target variable Group Risk denotes the 
preterm birth risk and it is presented in Table I. 

Table I: Representation of the target variable Group Risk.  

 
In Table II are shown statistics measures related to the numerical variables age, 

gestation, PG1, PG2 and BMI, while in Table III it is represented the percentage of 
occurrences for some used variables. 

 

Description Value Target Distribution Percentage 

>=37 weeks of gestation (Term) 0 3137 92.92% 

< 37 weeks of gestation (Preterm) 1 239 7.08% 



Table II: Statistics measures of age, PG1, PG2, weight, height, BMI variables. 

Table III: Percentage of occurrences of some variables. 

Variable Class Cases 
Programmed True 12.53% 
Gestation Singular 89.90% 
Motive Normal 81.33% 
Streptococcus Positive 13.27% 
Cardiotocography Suspect 2.19% 

3.3 Data Preparation 

After understanding the data collected, the variables were prepared to be used by the 

DM models. The data pre-processing phase started with the identification of null and 

noise values. These values were eliminated from the dataset. To ensure the data 

normalization, all the values, such as weight and height, were transformed to 

International System measures, using the point to separate decimal values.  

As shown in Table 1, there is a disparity in the distribution of values of the target 

variable Risk Group (low percentage of preterm birth cases). In order to balance the 

target, the oversampling technique was implemented by replicating the preterm birth 

cases until it reached approximately 50% of the dataset, obtaining 6244 entries. 

3.4 Modelling 

A set of Data Mining models (DMM) were induced using the four DM techniques 

(DMT) mentioned in Section 3: GLM, SVM, DT and NB. The developed models used 

two sampling methods Holdout sampling (30% of data for testing) and Cross Validation 

(all data for testing). Additionally there were implemented two different approaches, 

one using the raw dataset (3376 entries) and another with oversampling. Different 

combinations of variables were used, obtaining 5 different scenarios: 

S1: {Age (A), Gestation (G), Programmed (P), PG1, PG2, Motive (M), Height (H), Weight (W), BMI, 

Blood Type (B), Marital Status (MS), CTG, Streptococcus (S)} 

S2: {A, H, W, BMI, B, MS, CTG, S} 
S3: {G, P, PG1, PG2, M, CTG, S} 

S4: {A, G, PG1, PG2, M, H, W, BMI, B, CTG, S} 
S5: {A, G, P, M, H, W, BMI, B} 

 Therefore, a total of 80 Data Mining models (DMM) were induced: 

DMM = {5 Scenarios, 4 Techniques, 2 Sampling Methods, 2 Approaches} 

All the models were induced using the Oracle Data Miner with its default 

configurations. For instance, GLM was induced with automatic preparation, with a 

confidence level of 0.95 and a reference value of 1. 

 Minimum Maximum Average Standard Deviation 
Age 14 46 29.88 5.81 
PG1 

 

5 40 12.81 2.96 
PG2 0 8 3.09 1.96 
BMI 14.33 54.36 29.40 4.57 



3.5 Evaluation 

The study used the confusion matrix (CMX) to assess the induced DM models. Using 

the CMX, the study estimated some statistical metrics: sensitivity, specificity and 

accuracy. Table IV presents the best results achieved by each technique, sampling 

method and approach. The best accuracy (93.00%) was accomplished with scenario 3 

by both DT and NB techniques using oversampling and 30% of data for testing. The 

best sensitivity (95.71%) was achieved by scenario 4 with oversampling using SVM 

technique and all the data for testing. Regarding specificity, scenario 2 reached 97.52% 

using SVM with oversampling and all the data for testing.  

Table IV: Sensitivity, specificity and accuracy values for the best scenarios for each DMT, 

approach and sampling method. Below, the best metric values highlighted for each DMT.  

DMT Oversampling Sampling Scenario Sensitivity Specificity Accuracy 

DT   No 30% 3 0.8889 0.9303 0.9300 

 No All 1 0.2896 0.9723 0.8599 

GML No All 4 0.2896 0.9723 0.8599 

 Yes All 4 0.8674 0.7126 0.7687 

NB No 30% 3 0.8889 0.9303 0.9300 

 No All 1 0.4868 0.9646 0.9271 

SVM No All 2 0.1023 0.9752 0.4570 

 Yes All 4 0.9571 0.6647 0.7410 

In order to choose the best models a threshold was established, considering 

sensitivity, accuracy and sensitivity values upper than to 85%. Table V shows the 

models that fulfil the threshold. 

Table V: Best model achieving the established threshold. 

Scenario Model Oversampling Sampling Sensitivity Specificity Accuracy 

3 NB,DT No 30% 0.8889 0.9303 0.9300 

4 Discussion 

Should be noted that the best sensitivity (95.71%) and specificity (97.52%) are reached 

by models that did not achieve the threshold defined, showing low values in the 

remaining statistical measures used to evaluate the models. It can be settled that 

scenario 3 meets the defined threshold, presenting good results in terms of specificity 

and sensitivity, as seen in Table V. Thus, it appears that the most relevant factors that 

affect the term of birth are: pregnancy variables, Gestation and physical conditions of 

the pregnant woman. In a clinic perspective, the achieved results will enable the 

prediction of preterm birth, with low uncertainty, allowing those responsible better 

monitoring and resource management. In a real time environment, physicians can rely 

on the model to send a warning informing that a specific patient has a risk pregnancy 

and it is in danger of preterm delivery. Consequently, the physician can be observant 

and alert to these cases and can put the patients on special watch, saving resources and 

time to the healthcare institution. 



5 Conclusions and Future Work 

At the end of this work it is possible to assess the viability of using these variables and 

classification DM models to predict Preterm Birth. The study was conducted using real 

data. Promising results were achieved by inducing DT and NB, with oversampling and 

30% of the data for testing, in scenario 3, achieving approximately 89% of sensitivity 

and 93% of specificity, suited to predict preterm births. The developed model support 

the decision-making process in maternity care by identifying the pregnant patients in 

danger of preterm delivery, alerting to their monitoring and close observation, 

preventing possible complications, and ultimately, avoiding preterm birth. 

In the future new variables will be incorporated in the predictive models and other 

types of data mining techniques will be applied. For instance, inducing Clustering 

techniques would create clusters with the most influential variables to preterm birth. 
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