
Considering Context and Users in

Interactive Systems Analysis

José Creissac Campos1, Michael D. Harrison
2

1 DI/CCTC, Universidade do Minho

Campus de Gualtar, 4710-057 Braga, Portugal

Jose.Campos@di.uminho.pt

2 Informatics Research Institute, Newcastle University

Newcastle upon Tyne, NE1 7RU, UK

Michael.Harrison@ncl.ac.uk

Abstract. Although the take-up of formal approaches to modelling and reason-

ing about software has been slow, there has been recent interest and facility in

the use of automated reasoning techniques such as model checking [5] on in-

creasingly complex systems. In the case of interactive systems, formal methods

can be particularly useful in reasoning about systems that involve complex in-

teractions. These techniques for the analysis of interactive systems typically fo-

cus on the device and leave the context of use undocumented. In this paper we

look at models that incorporate complexity explicitly, and discuss how they can

be used in a formal setting. The paper is concerned particularly with the type of

analysis that can be performed with them.

Keywords: interactive systems, modelling, analysis, context.

1 Introduction

Because usability is dependent on “specified users” [11], at the limit the usability of a

device can only be assessed empirically and ‘in situ’. However, usability analysis

techniques can be employed to help the designers and developers to envisage the im-

pact of interactive systems.

Different types of usability analysis methods have been proposed over the years.

They can be divided into two general classes. Empirical methods (typically performed

with real users – for example, think aloud protocols and questionnaires), and analytic

models (usually based on models – for example, heuristic evaluation and cognitive

walkthroughs).

Usability cannot be guaranteed in an analytic way. There are simply too many fac-

tors involved to make it feasible. Nevertheless, despite some dispute about their real

worth [9, 10], analytic methods are being used in practice and evidence indicates that

they can play a relevant role in detecting potential usability problems from the outset

of design [6].

Performing usability analysis of interactive systems design is a multi-faceted prob-

lem. This means that no single analysis method can cover all aspects of usability. For

example, Cognitive Walkthrough [12] focuses on how the device supports the users’

work, while Heuristic Evaluation [13] focuses on generic/universal properties of the

device. Different methods will be needed at different stages of design and for differ-

ent tasks.

One specific type of analytic approach is the use of formal (mathematically rigor-

ous) methods of modelling and reasoning. Although take up of formal approaches to

modelling and reasoning about software has been slow, recent years have seen an in-

creased interest in the use of automated reasoning techniques such as model checking

[5] for the analysis of complex systems. In the case of interactive systems, formal

methods can be particularly useful in reasoning about systems with complex interac-

tions. Examples include the analysis of the internal mode structure of devices [4, 8]

and the analysis of the menu structures of interactive applications [19].

Consider, for example, performing a Cognitive Walkthrough of a user interface

with a complex mode structure. It will be very difficult, if not impossible, to guaran-

tee that all possible systems response will have been considered during the analysis.

With model checking, although we cannot achieve the same level of reasoning about

cognitive psychology aspects of the interaction, we are able to test properties over all

possible behaviours of the system.

The problem with all these techniques is that they focus on the device, occasionally

(as in the case of Cognitive Walkthrough) a representation of the user’s task, but

never on an explicit representation of the context in which the device and user are

embedded. Although in practice the analyst or team of analysts brings this contextual

understanding to the table, as devices become more dependent on context the need to

make assumptions explicit about context becomes more important. This problem be-

comes more pressing as we move towards ubiquitous computing where device action

uses context explicitly, including details like location, user preferences and previous

activity.

In this paper we look at the modelling of interactive systems in a formal setting,

and what type of analysis can be performed with them. In particular, we look at how

we can consider context in interactive systems modelling and analysis from a formal

(mathematically rigorous) standpoint. The contribution of the paper is to develop a

separable model of context that supports clarity of assumptions in the analysis of the

device.

The structure of the paper is as follows. Section 2 discusses the relevance of user

and context considerations in the modelling and analysis of interactive systems. Sec-

tion 3 addresses modelling of devices. Section 4 addresses modelling of assumptions

about user behaviour as restrictions on the behaviour of the device. Section 4 ad-

dresses the impact of context in the analysis. Section 5 reflects on what has been pre-

sented in the paper. Section 6 concludes with some final considerations.

2 Devices and Users in Context

According to the ISO 9241-11 standard, usability can be defined as “The extent to

which a product can be used by specified users to achieve specified goals with effec-

tiveness, efficiency and satisfaction in a specified context of use” [11]. Analysing this

definition, we can see that the factors that have an impact on the usability of a system

when trying to achieve a given goal are the actual product (or device) being used, the

users using the device to achieve the goal, and the context of the interactive system.

From now on we will use the terms interactive device (or simply device) and user(s)

to refer to the interactive product being designed/analysed, and to the human(s) using

it, respectively. The term interactive system will be used to refer to the combination of

both (device and users).

Traditionally, analytic approaches to usability analysis have placed particular em-

phasis on the device and/or user. So, for example, in heuristic evaluation a team of

experts checks a model/prototype against a list of desirable features of interactive de-

vices. It is assumed that the experts will identify appropriate usage considerations.

Cognitive walkthroughs attempt to determine if/how a device will support its users in

achieving specified goals, from a model of the device. The approach is rooted in the

CE+ theory of exploratory learning [16], and, in some ways, this means it over pre-

scribes the assumptions that are made about how the user will behave. In PUMA [1]

the model of a (rational) user is built to analyze what the user must know to success-

fully interact with the device. Again, this means that the assumptions about user be-

haviour are quite strong. In [4] a model of the device is analysed against all possible

user behaviour. Instead of prescribing, from the outset, assumptions about how users

will behave, these assumptions are derived during the analysis process. Hence, as-

sumptions about the user are identified that are needed to guarantee specified proper-

ties of the overall interactive system.

In summary, context has not been given particular attention, being usually only

implicitly considered. Taking account of context is important because it has an effect

on the way device actions are interpreted. A key problem associated with ubiquitous

systems is that confusions arise because actions are interpreted through implicit as-

sumptions about context. This problem is effectively the mode problem that model

checking techniques are particularly well suited to addressing.

Additionally, considerations about the user tend to be either too vague (c.f. Heuris-

tic Evaluation) or over prescribed and therefore in danger of not capturing all relevant

behaviours (c.f. Cognitive Walkthroughs or PUMA) – these techniques might over-

look workarounds for example. While these approaches can be useful, problems arise

when we consider complex systems. This happens because it becomes difficult to

identify informally all the assumptions that are being made about (or, more impor-

tantly, are relevant to) the user behaviour, and/or because a very prescriptive model of

user behaviour might rule out unexpected behaviours that are potentially interesting

from an analysis point of view.

As stated above, in this paper we are specifically interested in (formal) analytic ap-

proaches. We are particularly interested in seeing how we can build on the work de-

veloped in [4, 2] to take into consideration models/assumptions about the users and

the context of usage of the systems.

In order to make the discussion more concrete, we will be using as a basis an ex-

ample described in [4] (but considerably reworked here due to our new focus). We

need to be clear about what we mean by context. So we want to discuss the issues as-

sociated with context using a very simple example. Rather than look at a ubiquitous

system we re-consider the analysis of a mode control panel (MCP). This is a safety

critical interactive system that has been analysed using a number of techniques [14].

The important thing about this example is that the context in which the device is em-

bedded is crucial to an understanding of the interactive behaviour of the system. The

techniques that are developed here are as important in intelligent and mobile systems

where action inference (qua mode) is based on preferences, or location, or history or

other elements that can be described as context. The example addresses the design of

the Mode Control Panel (MCP) of an MD-88 aircraft (see figure 1), and was devel-

oped using MAL interactors [4, 2].

Fig. 1. The MCP panel (areas with lighter background will be modelled)

3 Device Model (or, Devices in Context)

Building a behavioural model of the device enables analysis of all the behaviours that

are possible to achieve goals. Whether or not these behaviours are cognitively plausi-

ble, however, is sometimes left outside the formal analysis process. This is due to the

difficulty in adequately formalising the users’ cognitive process. This aspect will be

further explored in section 2.2. For now we will concentrate on the device model.

3.1 Modelling

In the approach put forward in [4, 2] only the device is modelled explicitly. In the

MCP example, the device is the actual MCP. Using MAL interactors we can perform

a first modelling approach1:

1 For brevity the definitions of some named expressions are not presented here. It is expected

that the names used will be self-explanatory. The full model is available at

http://www.di.uminho.pt/ivy/index.php?downloads

interactor MCP
 includes
 dial(ClimbRate) via crDial
 dial(Velocity) via asDial
 dial(Altitude) via ALTDial
 attributes
 [vis] pitchMode: PitchModes
 [vis] ALT: boolean
 actions
 [vis] enterVS enterIAS enterAH enterAC
 toggleALT
 axioms
 [asDial.set(t)] action'=enterIAS
 [crDial.set(t)] action'=enterVS
 [ALTDial.set(t)] ensure_ALT_is_set
 [enterVS] pitchMode'=VERT_SPD & ALT'=ALT
 [enterIAS] pitchMode'=IAS & ALT'=ALT
 [enterAH] pitchMode'=ALT_HLD & ALT'=ALT
 [toggleALT] pitchMode'=pitchMode & ALT'=!ALT
 [enterAC] pitchMode'=ALT_CAP & !ALT'

For a description of the MAL interactors language the reader is directed to [2].

Here the focus is not so much on the particular language being used but in what is be-

ing expressed. We will provide enough detail about the models to make their meaning

clear. The main point about the language is to know that axioms are written in Modal

Action Logic [18].

Returning to the model above, it includes the three dials of interest identified in

figure 1, as well as attributes to model the pitch mode and the altitude capture switch

(ALT). The pitch mode defines how the MCP influences the aircraft:

• VERT_SPD (vertical speed pitch mode) – instructs the aircraft to main-

tain the climb rate set in the MCP;

• IAS (indicated air speed pitch mode) – instructs the aircraft to maintain

the velocity set in the MCP;

• ALT_HLD (altitude hold pitch mode) – instructs the aircraft to maintain

the current altitude;

• ALT_CAP (altitude capture pitch mode) – internal mode used to perform

a smooth transition from VERT_SPD or IAS to ALT_HLD.

The altitude capture switch, when armed, causes the aircraft to stop climbing when

the altitude indicated in the MCP is reached. The available actions are related to se-

lecting the different pitch modes, and setting the values in the dials.

This particular model, however, is of limited interest from a behavioural analysis

point of view since it does not consider the semantics of the controlled process. In fact

only the logic of the user interface has been modelled. In principle, this can enable us

to analyse what are the possible behaviours in the interface. In this case, however, in

order for the MCP to have realistic behaviour, we must include in the model informa-

tion about the process that the MCP is controlling and its constraints (i.e., its context

of execution). At the minimum we need to know what the possible responses (behav-

iours) of the process are. Without that we will not be able to analyse the joint behav-

iour of device and user (the interactive system).

In this case, the context is a very simple model of the aircraft and its position in

airspace:

interactor airplane
 attributes
 altitude: Altitude
 climbRate: ClimbRate
 airSpeed: Velocity
 thrust: Thrust
 actions
 fly
 axioms
Process behaviour
 [fly] (altitude'>=altitude-1 & altitude'<=altitude+1)
 & (altitude'<altitude -> climbRate'<0)
 & (altitude'=altitude -> climbRate'=0)
 & (altitude'>altitude -> climbRate'>0)
 & (airSpeed'>=airSpeed-1 & airSpeed'<=airSpeed+1)
 & (airSpeed'<airSpeed -> thrust'<0)
 & (airSpeed'=airSpeed -> thrust'=0)
 & (airSpeed'>airSpeed -> thrust'>0)
not enough airspeed means the plane falls/stalls
 (airSpeed<minSafeVelocity & altitude>0)->climbRate<0

This description is bound to the device model through a number of declarations as de-

scribed below. Firstly, we must bind the two models architecturally. We do this by in-

clusion in the MCP of:

 includes
 airplane via plane

Secondly, creating a behavioural binding requires that the following axioms must be

included in the MCP:

 per(enterAC) -> (ALT & nearAltitude)
 (ALT & pitchMode!=ALT_CAP & nearAltitude)
 -> obl(enterAC)
 pitchMode=VERT_SPD -> plane.climbRate=crDial.needle
 pitchMode=IAS -> plane.airSpeed=asDial.needle
 pitchMode=ALT_HLD -> plane.climbRate=0
 pitchMode=ALT_CAP -> plane.climbRate=1
 (pitchMode=ALT_CAP & plane.altitude=ALTDial.needle)
 -> obl(enterAH)

What these axioms state is how the process and the device are related. The first two

axioms state that action enterAC must be performed when the ALT capture is armed

and the aircraft is near enough the target altitude, and that only in those conditions can

it be performed. The next four axioms state how the different pitch modes in the de-

vice affect the process. The last axiom states that action enterAH must happen when

the target altitude is finally reached.

3.2 Analysis

We can now start testing the device. We will be focussing on detecting potential

problems with one of the main functions of the MCP: controlling the altitude acquisi-

tion procedure. A reasonable assumption is to consider that, whenever the altitude

capture is armed, the aircraft will reach the desired altitude (that is, the altitude set in

ALTDial). This assumption can be expressed as:

AG((plane.altitude!=ALTDial.needle & ALT)
 ->
 AF(pitchMode=ALT_HLD
 & plane.altitude=ALTDial.needle))

What the formula expresses is that whenever the plane is not at the altitude set in

the ALTDial, and the ALT capture is armed, then eventually the plane will be at the

desired altitude and the pitch mode will be altitude hold (ALT_HLD).

A modelling and verification environment (IVY) that is under development2 has

facilitated the analysis of these models using the SMV model checker [5]3. With the

help of the IVY tool, it is possible to determine that the property above does not hold.

The counterexample, produced by NuSMV, shows that the pilot can simply toggle the

altitude capture off (see figure 2)4.

We can conclude that, in order to guarantee the property, we must at least assume a

user that will not toggle the altitude capture off. This is a reasonable expectation on

the user behaviour which can be expressed without adding to the model by changing

the property to consider only those behaviours where the pilot does not disarm the al-

titude capture:

AG((plane.altitude!=ALTDial.needle & ALT)
 ->
 AF((pitchMode=ALT_HLD
 & plane.altitude=ALTDial.needle)
 | action=toggleALT))

2 See http://www.di.uminho.pt/ivy.
3 To be precise, two versions of SMV are currently being maintained and developed: Cadence

SMV, by Cadence labs, and NuSMV. In the current context are using NuSMV.
4 We present here a graphical representation of the traces produced by NuSMV. This represen-

tation is shown at the level of abstraction of the MAL interactors model (hence the presence

of actions associated with state transitions). Each column represents the behaviour of a single

interactor (except for the first column which acts as a global index to the states produced by

the model checker). States (represented by rectangles) can be annotated with information on

their attributes (not in this particular case) and/or markers identifying specific state proper-

ties. Transitions are labeled with the action that triggers them. The trace representations in

this paper have been produced by the trace visualizer component of the IVY tool.

Fig. 2. Counter example for the first property (the dark coloured lines identify states where

plane.altitude<ALTDial.needle; the light coloured lines identify states where the ALT capture

is armed)

Now, either the plane reaches the desired altitude/pitch mode or the altitude cap-

ture is turned off.

This new formulation of the property still does not hold. The counterexample now

shows a pilot that keeps adjusting vertical speed. Clearly this is a possible but, in the

current context, unlikely behaviour. Once again we need to redefine the property in

order to consider only those behaviours where this situation does not happen. There is

a limit to the extent to which this process can continue because:

• the property to prove is made opaque through more and more assumptions

about the user;

• there are assumptions that can become very hard to encode this way;

• there is no clear separation between the property that was proved and the

assumptions that were needed.

To avoid these problems, we will now explore encoding the assumptions about

user behaviour as constraints on the possible user behaviours. Remember that up to

now we were considering all possible behaviours that the device supported, regardless

of their cognitive plausibility. This new approach will be dealt with in the next sec-

tion.

4 On User and other user related Models

Several authors have proposed the use of different types of models to address the is-

sue of considering users during formal verification of interactive systems. Two exam-

ples are the work on Programmable User Modelling Analysis (PUMA) [1], and work

by Rushby [17]. In the case of PUMA, the objective is to model a rational user. As al-

ready explained, this can become too prescriptive, considering that we want to ex-

plore unexpected interactions.

In the case of Rushby’s work, assumptions about how the users will behave are en-

coded in the device model from the outset. The danger here is that no clear separation

between the device and user assumptions is enforced by the modelling approach.

Hence assumptions might be made that go unnoticed during the analysis.

We adopt an approach similar to the latter except for a significant difference. We

do not create the model (make assumptions about user behaviour) beforehand. In-

stead, we obtain the user model as a bye product of the verification process, identify-

ing the assumptions that are needed for the interactive system to verify the property or

properties under consideration. This means that even when the property is finally veri-

fied, an analysis must be performed of the needed assumptions in order to see if they

are acceptable. This way, the results are less prone to tainting by hidden assumptions

made about the users’ behaviour during the modelling process.

4.1 Modelling

We will now consider a user model that constrains the pilot not to behave as de-

scribed in the previous section. The approach to encoding assumptions about user be-

haviour is to strengthen the pre-conditions on the actions the user might execute.

The only danger in doing this is that the action whose pre-conditions are being

strengthened can also be used by the device itself. In that case the axioms would re-

strict not only user behaviour, but also the device’s behaviour. This problem can be

avoided by defining distinct user-side, and device-side actions with the same seman-

tics, but different modality annotations.

For example, in the case of the toggleALT action we would be defining two re-

placement actions:

• toggleALT_user – action for the user to toggle the altitude capture on and

off;

• toggleALT_dev – action for the device to toggle the altitude capture on

and off.

The first would be marked as user selectable, while the second would not. Alterna-

tively we could use a parameter in toggleALT to specify whether the actions were be-

ing caused by the user or by the device, and strengthen the axioms for the user only.

In this case, however, using different modalities would not be possible since we

would only have one action.

In the current case toggleALT is only performed by the users so we do not need to

make the above distinction.

We start by setting up the user interactor. It simply creates a binding (by inclusion

to the MCP model):

interactor user
 includes
 MCP via ui

Next we introduce the assumptions as restrictions on user behaviour. Since we

want to model restrictions, the axioms take the form of permission axioms over the

action of the user:

• Assumption n. 1 – the pilot will not toggle the altitude capture off. The

axiom states that the altitude toggle action is only permitted when the alti-

tude capture is off. This restricts the behaviours of interest to those where

the user never switches the altitude capture off. Note that this does not in-

terfere with the internal behaviour of the device. The device uses the en-

terAC action to switch the capture off when approaching the target alti-

tude.

 per(ui.toggleALT) -> !ui.ALT

• Assumption n. 2 – the pilot will be wise enough not to set inappropriate

climb rates. The three following axioms state that, when the altitude cap-

ture is armed, the user will only set climb rates that are appropriate for the

goal at hand (negative if the aircraft is above the target altitude; positive if

the aircraft is below the target altitude; and zero when the aircraft is at the

target altitude).

 per(ui.crDial.set(-1)) ->
 (!ui.ALT | ui.plane.altitude>ui.ALTDial.needle)
 per(ui.crDial.set(0)) ->
 (!ui.ALT | ui.plane.altitude=ui.ALTDial.needle)
 per(ui.crDial.set(1)) ->
 (!ui.ALT | ui.plane.altitude<ui.ALTDial.needle)

Our model is now three tiered. At the core there is the context in which the device

is embedded and in which the interaction takes place, in this case the aircraft itself.

Then there is the device (the MCP). Finally at the top level there is a model of user

assumptions.

4.2 Analysis

We can now test the system under these two user assumptions. Considering the user

model, the property becomes:

AG((ui.plane.altitude!=ui.ALTDial.needle & ui.ALT)
 -> AF(ui.pitchMode=ALT_HLD
 & ui.plane.altitude= ui.ALTDial.needle))

In the context of these two assumptions the property still does not hold. This time

the counter example points out that, during the intermediate ALT_CAP pitch mode,

changes to the vertical speed will cause a change in pitch mode when the altitude cap-

ture is no longer armed. This behaviour effectively ‘kills the altitude capture’: the air-

craft will be flying in VERT_SPD pitch mode with the altitude capture disarmed (see

state 7 in figure 3).

Fig. 3. Partial view of the counter-example for the model with user assumptions (from state 3 to

state 4 the action set(1) in crDial causes no problem, from 6 to state 7 the altitude capture is no

longer armed and the ALT_CAP pitch mode is lost)

We could keep adding constraints to the behaviour of the user, and we would find

out that the only possibility to prove the property is to consider that the user does not

make changes to the values set in the MCP while the plane is in ALT_CAP mode.

This seems an unreasonable assumption, and in fact instances of this problem have

been reported to the Aviation Safety Report System (ASRS) [14].

5 Impact of Context in the Analysis

In reality, there is a problem with the analysis above. We are referring directly to

plane.altitude at the user level in the second assumption which is an attribute of the

aircraft, not an attribute of the device. On the face of it axioms in the user model

should only refer to attributes of the interactive device annotated with an appropriate

modality. The problem is that in our model there is no information about current alti-

tude being provided through the device that mediates the context to the user.

There are two possible solutions to this:

• If we are designing the device we might consider including the needed in-

formation on the display.

• If we are analysing an existing device (as is the case), or designing it as

part of a larger system, we must analyse whether the information is al-

ready present in some other part of the system, not included in the current

model, and consider how to represent this in the model.

Of course the results of the analysis are completely dependent on the quality of the

model used. However, developing separate models for the different levels of analysis

involved helps in identifying potential flaws in the models.

In any case, we can also explore the use of contextual information, and whether the

needed information is present in the environment.

5.1 Context

Context is understood as the characteristics of the environment that have a bearing

on the interactive system (see figure 4). The system (S) is to be understood as the

combination of device (D) and user(s) (U). The device is formed by the application’s

functional core (L) and its user interface (I). Analysing the context can be relevant at

a number of levels:

• We might want to analyse whether including some piece of information in

the device is really needed – if the information is clearly present in the

context of use then including it in the device might create unnecessary

user interface clutter.

• We might want to analyse a situation of (partial) system failure, and

whether the user will be able to overcome it by resorting to contextual in-

formation.

• We might be interested in identifying problems related to different per-

ceptions being obtained from the information gathered through the con-

text and its representation in the device’s user interface.

• We might also be interested in the effect that (changes in) the context of

usage might have on interaction with the device. It is not the same to use a

system under high or low workload conditions. For example, under high

workload conditions it is unlikely that the pilot will be able to adequately

process the information about vertical speed obtained from the environ-

ment.

Fig. 4. Context

Context is present at many levels: physical environment, user capability and pref-

erences and so on. Different levels “see” context differently – these may be thought of

as interpretation functions (probably partial functions because the levels do not neces-

sarily consider the same subsets of the context, and do not necessarily interpret it in

the same way). These different interpretations of context can be used to express how

information about context is processed at different levels.

5.2 Context in the MCP

Returning to the MCP, the altitude of the plane is part of the context of the MCP

(device). In this case, we can say (assuming a 'large' aircraft) that the pilot has no (or

little) context regarding altitude or velocity. He may have information about vertical

speed (derived from the aircraft’s tilt and thrust). However it is likely that the user

perception of this context information is quite low and can be discarded except for ex-

treme circumstances. However, in those extreme circumstances the workload inside

the aircraft’s cockpit will probably be high. Hence, it is unlikely that the pilot will be

able to gain accurate context information. In that case, unless the device provides in-

formation on the altitude, the axioms for the first set of assumptions on section 3 can-

not be accepted as they have been written.

Even if we consider that contextual information about the altitude is available (be-

cause we are talking about a small aircraft), we still have to analyse what information

is available. There is the problem of the definition of the information that is perceived

by the pilot. It is unlikely that the pilots will be able to compare the altitude displayed

in the MCP with their perception of the altitude of the aircraft. It is necessary to be

cautious about what should and should not be part of the context of the user (and

how) because this will have a strong impact on the quality of the analysis.

All things considered, it is conservative to assume that the user will not be able to

gain accurate enough information regarding altitude from the context of use to be able

to compare it with the value set in the ALTDial dial. This means that we must find a

way to reformulate assumption number two. As the situation stands, even considering

a user that does not use the MCP while in ALT_CAP mode is not enough to conclude

that the system is predictable regarding altitude acquisition.

We could simply assume that the pilot would not change the climb rate whenever

the altitude capture is armed (or even consider that the MCP would not allow it to

happen). These constraints, however, are clearly too strong. The alternative then

would be to expand the interface to include information about the current altitude of

the aircraft.

We note that while in this case the analysis of contextual information on the user

side meant that not enough information was available to users, due to the specific

conditions inside a cockpit, in mobile and ubiquitous environments contextual infor-

mation will most probably play a more relevant role. In this type of system action in-

ference (qua mode) is based on preferences, or location, or history or other elements

that can be described as context.

6 Discussion

As stated in section 2, we chose to introduce the issues associated with context by

means of a simple example. This was done so that we could be clear about the differ-

ent concepts involved. This section reflects on what was learnt, and discusses the

relevance of context in a larger setting.

6.1 Relevance of context

Figure 4 identifies different aspects that must be considered when analysing an inter-

active system. The setting of the Activity to be carried out by the system is critical to

this analysis. Typical approaches to the analysis of interactive systems that address

the interaction between user and interface might or might not take the Activity into

consideration (for example, a task model), and might or might not take the Logic of

the device into consideration (depending on the modelling detail). What we have ar-

gued is that Context is also a relevant factor in this analysis process.

In our example, the aircraft was the context for the MCP and was both being influ-

enced by the MCP, and influencing its behaviour. Hence, context will interact with

the device: it can both influence the device’s behaviour and be influenced by it.

More importantly, the context will also influence the user. Not only what the user

knows (as was discussed in relation to the MCP), but even the user’s goals, and how

he or she tries to achieve them. Hence, context will also influence the activities the

system supports.

6.2 Different models/different analysis

The analysis of the MCP was introduced as a means of illustrating the ideas being

put forward regarding both the need to take into account context when performing

analysis of interactive system models, and the possibility of deriving information

about needed assumptions over user behaviour from that same analysis. It has illus-

trated a particular style of analysis based on behavioural aspects of the system, spe-

cifically related to the mode structure of the device.

Besides mode related issues we can also think of analysing the menu structure of a

device, or its support for specific user tasks. Using an approach based on a number of

different models, each relating to a specific type of analysis means that it becomes

easier to take into consideration different combinations of these factors. For example,

we could add to our model a user task model and analyse whether the device, with the

given user assumptions, supported that specific task in a given context.

Another (non-mutually exclusive) possibility is to consider the analysis of repre-

sentational issues of the interface. In fact, it is not sufficient to say that some piece of

information is available at the user interface, it is also necessary to consider if the rep-

resentation being used to present the information is adequate.

Again, the notion of context becomes relevant. In [7] a model of user beliefs about

the device’s state is analysed against a model of the actual device’s state. The objec-

tive of that analysis was to assess the quality of the user interface with respect to how

it conveyed information about the device. In a contextually rich setting, however, the

user will be exposed to more stimuli than those provided by the device, and unless the

context of use is considered, the correspondence between the model of user beliefs

and reality will be limited.

6.3 Information Resources

Focussing on context not only helps make analysis more accurate by more thoroughly

identifying what information users have available, it also raises new issues. Task

models might take contextual information into consideration to express how users will

adapt to different situations. It becomes relevant to consider how context changes the

beliefs the user has about the device, but also how the device conveys information

about the context, and whether the information the user receives via the device, and

the information the user receives directly are consistent.

The goal of this focus on context is to identify relevant information that the user

needs to successfully interact with the system. In the example we were mainly inter-

ested in understanding whether the user would have enough information to keep the

climb rate of the aircraft at an appropriate level. However, we could also consider

what information was needed for the user to take specific actions. For example, if in-

stead of being automatic, the transition to the ALT_CAP pitch mode was to be per-

formed by the pilot, we could be interested in analysing whether enough information

was being provided so that the pilot could make the decision to activate that pitch

mode at (and only at) the appropriate time.

This information can come from the device or from the context of use. In [3] an

approach is discussed that uses the notion of (information) resources to facilitate the

analysis of whether enough information is provided to inform user actions. The re-

sources considered therein related to the device only. The approach can easily be ex-

tended to consider contextual information, and to include not only resources for action

but also resources as a means of supporting the definition of user assumptions. Hence

the notion of information resource can act as a unifying approach that helps in consid-

ering all types of information available to the user in the same framework.

7 Conclusion

Several authors have looked at the applicability of automated reasoning tools to inter-

active systems analysis and their usability characteristics. Approaches such as Pa-

ternò’s [15] or Thimbleby’s [19] have focused heavily on the device. They have

shown that it is possible to reason about characteristics of the dialog supported by the

device. For example, in [19] it is shown how a formal analysis of the menu structure

of a mobile phone could contribute to a simpler and faster dialogue.

When analysing an interactive device, we must take into consideration the character-

istics of its users to avoid analysing behaviours that are irrelevant from a cognitive

perspective, or consider design that, although ideal according to some formal crite-

rion, are not cognitively adequate. When building a formal model we are necessarily

restricting the domain of analysis, and in that process relevant aspects might be left

out of the model. This is particularly relevant of interactive systems, where cognitive

aspects are important but difficult to capture. Taking the user into consideration dur-

ing the analysis helps in reducing that effect.

Approaches aimed at building complex architectures that attempt to model the user

cognitive processes are clearly inadequate from a verification standpoint. In PUMA

[1], a more contained approach is attempted: modelling the behaviour of a rational

user. Even so, the authors agree that creating models suitable for automated reasoning

is a time consuming process. It should also be noted that the analysis is then per-

formed against those behaviours that are considered rational only. An alternative is to

consider, not a model of the user but a model of the work. In [3] information derived

from the task model for the device is used to drive the analysis. This enables analysis

of whether the device supports the intended tasks, but restricts the analysis to those

behaviours that are considered in the task model.

A more flexible approach is to consider assumptions of user behaviour instead of a

full blown model of user behaviour or work. These assumptions act as snippets of

user behaviour that are found relevant for the analysis in question. Two approaches

that follow this approach are work by Campos and Harrison [4] and by Rushby [17].

In the first case assumptions are derived from the analysis process (i.e., nothing is as-

sumed to start with) and the analysis drives which assumptions are needed in order to

guarantee some property. The assumptions are encoded into the property under verifi-

cation. In second approach, assumptions are encoded into the model from the outset.

That is, during model development.

The advantage of producing a separate model of context is that (1) it separates the

description of the device from those concerns that influence the use of the device (2)

it makes clear the contextual assumptions that are being made that can be used as part

of the rationale for the design. Issues of context will become more important with the

trend towards ambient systems where user context (for example location, task, his-

tory, preferences) may be used by the system to infer what action the user should

make.

The example given here hints at many of these issues. This paper sets forth an

agenda for more explicit specifications of context that can provide basic assumptions

for rationale for the design of implicit action and its analysis.

Acknowledgments. This work was carried out in the context of the IVY project, sup-

ported by FCT (the Portuguese Foundation for Science and Technology) and FEDER

(the European Regional Development Fund) under contract POSC/EIA/26646/2004.

References

1. Butterworth, R., Blandford, A., Duke, D., Young R.M.: Formal user models and methods

for reasoning about interactive behaviour. In J. Siddiqi and C. Roast, editors, Formal As-

pects of the Human-Computer Interaction, pages 176–192. SHU Press, 1998.

2. Campos, J.C.: Automated Deduction and Usability Reasoning. DPhil thesis, Department of

Computer Science, University of York, September (1999)

3. Campos, J.C., Doherty, G.J.: Supporting resource-based analysis of task information needs.

In S. W. Gilroy and M. D. Harrison, editors, Interactive Systems: Design Specification and

Verification - 12th International Workshop, DSV-IS 2005, volume 3941 of Lecture Notes

in Computer Science, pages 188-200. Springer-Verlag (2006)

4. Campos, J.C., Harrison, M.D.: Model Checking Interactor Specifications. Automated Soft-

ware Engineering, 8(3):275-310, August (2001)

5. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)

6. Desurvire, H.W., Kondziela, J.M., Atwood, M.E.: What is gained and lost when using

evaluation methods other than empirical testing. In A. Monk, D. Diaper, and M. D. Harri-

son, editors, People and Computers VII — Proceedings of HCI’ 92, British Computer Soci-

ety Conference Series, pages 89–102. Cambridge University Press, September (1992)

7. Doherty, G.J., Campos, J.C., Harrison, M.D.: Representational Reasoning and Verification.

Formal Aspects of Computing, 12(4):260-277 (2000)

8. Gow, J., Thimbleby, H., Cairns, P.: Automatic Critiques of Interface Modes. In S. W.

Gilroy and M. D. Harrison, editors, Interactive Systems: Design Specification and Verifica-

tion - 12th International Workshop, DSV-IS 2005, volume 3941 of Lecture Notes in Com-

puter Science, pages 201-212. Springer-Verlag (2006)

9. Gray, W., Salzman M.: Damaged merchandise? A review of experiments that compare us-

ability evaluation methods. Human Computer Interaction 13(3):203—261 (1998)

10. Hartson, H.R., Andre, T.S., Williges, R.C.: Criteria for Evaluating Usability Evaluation

Methods. International Journal of Human-Computer Interaction, (15)1:145-181 (2003)

11. ISO: International Standard ISO 9241-11: Ergonomic requirements for office work with

visual display terminals (VDTs) – Part 11: Guidance on Usability, International Organiza-

tion for Standardisation, Geneva (1998)

12. Lewis, C., Polson, P., Wharton, C., Rieman, J.: Testing a walkthrough methodology for

theory-based design of walk-up-and-use interfaces. In CHI ’90 Proceedings, pages 235–

242, New York, April. ACM Press (1990)

13. Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In Proceedings of the

SIGCHI conference on Human factors in computing systems, pages 249-256. ACM Press

(1990)

14. Palmer, E.: “Oops, it didn’t arm” – a case study of two automation surprises. In Jensen,

R.S. and Rakovan, L.A., eds, Proceedings of the 8th International Symposium on Aviation

Psychology’, Ohio State University, pp. 227-232 (1995)

15. Paternò, F.D.: A Method for Formal Specification and Verification of Interactive Systems.

D.Phil thesis, Department of Computer Science, University of York (1996)

16. Polson, P., Lewis, C.: Theory-Based Design for Easily Learned Interfaces. Human-

Computer Interaction, 5:191-220 (1990)

17. Rushby, J.: Using model checking to help discover mode confusions and other automation

surprises. Reliability Engineering and Systems Safety, 75(2):167-177, February (2002).

18. Ryan, M., Fiadeiro, J., Maibaum, T.: Sharing actions and attributes in modal action logic.

In Ito, T., Meyer, A.R., eds.: Theoretical Aspects of Computer Software. Volume 526 of

Lecture Notes in Computer Science, pages 569–593. Springer-Verlag. (1991)

19. Thimbleby, H.: User Interface Design with Matrix Algebra. ACM Transactions on Com-

puter-Human Interaction. 11(2): 181-236. June (2004)

