Search Optimizations in Structured
Peer—to—peer Systems

Nuno Lopes* and Carlos Baquero*
nuno.lopes @di.uminho.pt, cbm@di.uminho.pt

*DI/CCTC
Universidade do Minho
Braga, Portugal

Abstract—DHT systems are structured overlay networks ca-
pable of using P2P resources as a scalable platform for very
large data storage applications. However, their efficiency expects
a level of uniformity in the association of data to index keys
that is often not present in inverted indexes. Index data tends to
follow non-uniform distributions, often power law distributions,
creating intense local storage hotspots and network bottlenecks
on specific hosts. Current techniques like caching cannot, alone,
cope with this issue.

We propose a distributed data structure based on a decentral-
ized balanced tree to balance storage data and network load more
uniformly across hosts. The results show that the data structure
is capable of balancing resources, in particular when performing
multiple keyword searches.

Index Terms—E.1.b Distributed Data Structures, D.4.7.b Dis-
tributed Systems (Distributed Hash Tables), H.3.3.a Clustering,
H.3.3.h Search Process

I. INTRODUCTION

Peer—to—peer systems have received attention due to their
dynamic adaptation to host failures, decentralized architecture
and amount of distributed resources (storage and network
bandwidth) that are available for distributed applications. One
interesting application for such large amount of resources
is cooperative searching where each host participates with
information (documents) to be searched and with resources
to support such (keyword based) search.

When implementing search with the help of an index, two
approaches are available to distribute a very large index across
a peer—to—peer system: partition-by-document and partition-
by-term [1]. The partition-by-document scheme groups doc-
uments into multiple independent partitions that contain a
local index for their own documents. The partition-by-term
scheme creates a single global index where each partition
stores the occurrence set (document references) for a keyword
(or group of keywords). The partition-by-document scheme
is very efficient at building the index, which can be fully
parallelized, but queries must be sent to all partitions. On the
other hand, the partition-by-term is more costly when building
the index but more efficient in resource usage when processing
queries [2]. Moffat et al. showed that partition-by-term is
more efficient in (query) resource usage when compared to
the partition-by-document [1].

Distributed Hash Tables (DHTs) are a particular type of
peer—to—peer system that are capable of efficiently storing and

locating objects from a given key. Systems like Chord, Pastry,
CAN [3], [4], [5] and others allow scalability in the number
of hosts, requiring only logarithmic communication steps and
routing state. A hash function is used to uniformly distribute
keys to hosts so that key load is balanced. Furthermore, DHT's
assume that peers are homogeneous.

Several systems build term-partitioned inverted indexes over
DHTs [6], [7], [8], where keywords are mapped to the lo-
cations of the documents where they occur. This mapping
makes use of the DHT uniform hash function to locate the
peer responsible for storing the document locations, given a
DHT key that corresponds to the index keyword. Although
the index model maps perfectly into the DHT interface, the
DHT model has two intrinsic assumptions: keys are uniformly
accessed, both in storage and retrieval; and the size of the
tuples (key, object) depict a low variance. These assumptions
are often not possible when indexing textual data.

Hot spots created by data or query asymmetries will occur
due to the power-law distribution of text keyword frequency.
When a single key is accessed very often (e.g. “Katrina”),
a network bottleneck appears on the host storing that key.
This situation known as “query flash crowd” can be minimized
with caching schemes [9]. On the other hand, storage hotspots
occur when very large objects of skewed size are stored on
individual DHT keys (e.g. the occurrence set for the word
“the”). Although storage is often not a critical resource, due
to the current trend on secondary storage capacity, storing such
large objects creates an additional network bottleneck on the
hosts mapping these keys. These network bottlenecks limit
the scalability of term-partitioned indexes [2] and cannot be
totally eliminated by caching, as caching is effective only when
reading data and not when new data is being inserted into the
system. Furthermore, solutions that dynamically redistribute
keys across hosts [10], [11] are also unable to eliminate the
storage hotspots because the storage unbalance is due to a
single key containing a very large object.

In this paper we present a solution for load balancing
DHTs when storing (decomposable) objects with high size
variance. We developed a new DEcentralized Balanced tree
(DEB-tree) algorithm capable of converting a very large object
into multiple bounded size blocks suited for being stored and
searched as DHT values. We used the DEB algorithm to

build a textual inverted index, allowing multiple keys retrieval.
The system evaluation shows a reduction of three orders of
magnitude in the network load distribution standard deviation,
when considering query optimizations.

II. RELATED WORK

Several systems have proposed the building of a textual
inverted index on top of a DHT [6], [7], [8], [12]. Among the
previous systems, only Overcite [12], a peer—to—peer imple-
mentation of the Citeseer system with keyword searching, uses
a partition-by-document design for the search functionality.
Both the DEB-tree system and the remaining systems use the
partition-by-term scheme over a DHT to store the index.

The systems that store the index directly on top of a DHT
do not handle the storage hot-spot problem we have identified
[6], [7]. KSS [6] pre-computed the set intersection of all
keywords up to some combination length in order to optimize
multiple word queries and stored those set intersections on
the DHT. Reynolds and Vahdat [7] used a bloom filter to
compare multiple keyword sets and reduce the amount of
data transmitted between hosts. Both cases try to avoid query
network overloading using techniques that reduce the amount
of information communicated for answering queries. However,
none of them addresses the unbalanced storage caused by
inserting very large occurrence sets on the DHT.

Tang and Dwarkadas [8] also proposed to store the index
directly over the DHT, however they dealt with the storage
hot-spot by using a constant factor balancing, distributing
occurrences of the same index keyword through a fixed interval
of DKEYs. This constant factor distribution does not take into
account the final object size forcing clients to access all DKEYs
inside the interval to manipulate data for the index keyword.

The use of the DEB-tree algorithm creates an additional
layer that automatically balances the storage load and conse-
quentially the network bandwidth used for creating the index
over the DHT hosts.

III. SYSTEM OVERVIEW

The system provides an inverted index interface to user ap-
plications and stores the index on a structured P2P overlay that
is implemented by a DHT algorithm. The system architecture,
depicted in Figure 1, is composed by the index layer that
presents an inverted index interface to client applications, the
tree management (block) layer that implements our distributed
balanced tree algorithm and the routing layer (the DHT
algorithm) responsible for routing messages between hosts.
The index layer receives requests from client applications and
converts them into tree based operations to be executed by
the tree layer. In turn, the tree layer uses the routing layer to
locate the tree block that should process the operation. Tree
blocks are stored on the P2P sub-system.

A. Index Model

A textual inverted index stores relations between text words
(the vocabulary) and sets of document locations (the occur-
rences) in the form:

keyword — {document location}sgr.

Jl Insert(keyword, doc_loc)

Index Layer

@ Insert(tree block, item)

Block Layer

Block Layer 0—> Data

Deliver(key, msg)

@ Route(key, msg)

KBR KBR |

Fig. 1. The system is built with a base DHT overlay network for managing
hosts membership in a scalable way. Each host of the system contains three
components: a key-based routing (KBR) layer, the tree management (block)
layer and the client index interface.

e INSERT (keyword, doc_loc)
e REMOVE (keyword, doc_loc)

e SEARCH (keywordget): doc_locses
(a) Index Layer Interface

e BLOCK-ITEM-INSERT (blk_key,doc_loc)
e BLOCK-ITEM-REMOVE (blk_key,doc_loc)
e BLOCK-GET (blk_key): blk_contents

(b) Tree Management Layer Interface

Fig. 2.
layers.

Operation interface available at the Index and Tree Management

Since a single keyword can occur on multiple documents,
we store a set of document locations for each keyword.
Document locations are just single opaque objects capable of
locating a document over the system. The pair (host_address,
docldjyeqr) is an example of a simple location scheme. Other
location schemes could be used, like an URL link or the
document content hash value, provided the retrieval of the
document is possible from the location value [12].

The index is made accessible to system peers through the
interface on Figure 2(a). User applications, in any given node,
contact the local index library through this interface. The index
INSERT operation adds a new relation between a keyword and
a document. Likewise, REMOVE cancels an association. The
index search operation retrieves the list of document locations
associated with a keyword or a set of keywords.

We only considered the and Boolean operator for multiple
keyword queries, although the remaining Boolean operators
could also be implemented.

B. DHT Interface

The DEB Tree implementation uses a custom DHT interface
that substitutes the typical GET/PUT interface with just a
single route call. The operations offered by the DEB-tree
implementation, shown in Figure 2(b), allow a fine grain
manipulation of the data object associated to a given key. Here

the object has a Set structure and the operations allow the
insertion and removal of individual items. Otherwise, if the
usual GET/PUT operations were used, latency would double
and consistency problems could arise due to lack of atomicity
in GET,PUT sequences [13].

The actual custom DHT interface is slightly richer, in order
to support other needed operations which are best performed
on the node that hosts the block. Their implementation does
not present additional difficulties once a Key Based Routing
interface is available, ROUTE(key, message), which is the
case for all DHT implementations [14]. We assume the DHT
layer will create a perfect balancing between DHT keys and
peers through the use of additional balancing techniques [10],
[11].

C. DEB Tree Algorithm

We will now describe the DEcentralized Balanced tree
implementation [15]. This tree algorithm was based on the
BT-tree design and shares the high-availability requirements
present on B-link trees [16]. However, unlike the B-link tree
algorithm which was designed for a cluster based architecture
with global system view and centralized environment, this
algorithm was designed for being deployed on wide-area
systems requiring neither global knowledge nor centralized
entities.

The DEB tree algorithm supports a mapping interface for
(key,value) tuples, just like the BT-tree, storing document
locations (the key) and opaque payloads (the value). In this
paper only document locations were used, hence the absence
of a value payload on the block insert operation (see Figure
2(b)). Each DEB tree instance stores the document location
set for a particular keyword. Therefore, each index keyword
will have an unique DEB tree.

Our algorithm enables the use of small sized blocks both
for small or large sets. Small sets can be stored inside a single
block whilst large sets will be distributed over a block tree,
starting at the root block and appending a new block level as
new information is inserted onto the set. DHT blocks contain
either index occurrences (document locations) or references
to other blocks. For every index keyword there exists always
a root block, empty by default. Each block grows in size as
occurrences are inserted. When a block reaches a reference
limit size it creates new blocks and divide it’s contents with
the new blocks. Depending on the block size the DHT will
possibly have to store more than one block per host if the
number of blocks exceeds the number of hosts. We assume that
the storage capacity of any host is sufficiently large to hold all
the blocks that are assigned to it. Again, this is proportional to
the indexing load injected in the system by these same hosts.

Blocks are distributed over the DHT through an hash value
of the block key. To improve this initial load balancing
strategy, dynamic techniques can be applied to the DHT in
order to maintain the (block) keys evenly balanced. We expect
that by using small sized blocks, load balancing will improve
considerably.

IV. INVERTED INDEX OPERATIONS

The index operations amount to inserting references and
searching for keywords. These operations are available at the
client’s host and issue multiple block requests through the
DHT to accomplish the initial index operation.

A. Document Insertion

For indexing a document into the system, peer clients use
the INSERT (keyword, doc_location) function, which adds a
document location to a keyword occurrence set. Since the
occurrence set is stored on a DEB tree instance, one tree
per keyword, this is to say the document location will be
inserted into the corresponding DEB tree. The client must call
the INSERT function for every (keyword, doc_location) pair
it wishes to index.

Tree insertion is made first by locating the block responsible
for storing the item and then by inserting it on the block’s data.
If the tree only contains a single block, the root block, then
the operation finishes after accessing this block. For bigger
trees, the client starts at the root block and follows child block
references until reaching the correct leaf block. The operation
terminates after receiving the acknowledgment of the insertion
from the leaf. Removing an index occurrence works in the
same way as for the insertion case.

B. Multiple Keyword Search

Queries in this index system follow a multiple keyword
intersection model, using the and Boolean Query operator for
returning the set of document locations that are common to
all the query keywords. To perform this intersection, the client
would need to fetch all the occurrence sets and then perform
a local intersection on the fetched data to determine the final
result set.

This simple solution is clearly not optimal. Fetching a
complete large occurrence set uses network bandwidth to
retrieve data that may not be necessary to effectively answer
the query. Remember that each keyword occurrence set is
stored under a different DEB tree instance.

We opted for an incremental intersection evaluation that
makes a parallel breadth-first traversal of all the trees simul-
taneously. The use of an incremental evaluation enables the
use of two optimization techniques to considerably reduce the
query network bandwidth: early-pruning and term re-ordering.

The early-pruning heuristic was inspired by the adaptive set
intersection algorithm suggested by Li et al. [17] to minimize
data exchange when evaluating set intersections. The heuristic
prunes tree sub-branches according to the rule that intersecting
an empty set with any set will always be empty. By selecting
the branches of large trees to visit according to items already
found on smaller trees, and pruning the remaining branches,
the heuristic reduces the number of visited blocks without
affecting the operation’s correction.

Term re-ordering is a database optimization that consists in
accessing the intersection sets in order from the smallest to the
largest so that the amount of exchanged data is reduced to the
minimum. The re-ordering was implemented by accessing first

10000
1000

100 4

Frequency

Sorted Terms (%)

Fig. 3.
collection.

Frequency distribution of sorted keywords (terms) in the textual

the root blocks of smaller trees. The size of each keyword set
was locally determined by the tree’s height, which is available
at the root blocks.

C. Internal Block Caching

Tree based structures require all operations to access the
tree’s root block. This access pattern creates a network hot
spot on the host storing it. We overcome this limitation by
caching the root and higher level blocks at clients. By using a
BT —tree algorithm, all client data is stored exclusively at leaf
blocks. Since clients target only leaf blocks, internal blocks
are used only for leaf block location within the tree. Caching
internal blocks will not have any side effect to the success of
client index operations as they operate exclusively over leafs.
It will however decrease the number of block accesses a client
has to make in order to locate the target leaf, and relieve higher
level block contention, namely the root block when cached.

The larger a tree is, the less probability higher level blocks
have of being modified and therefore becoming outdated on
caches. On the other hand, the bigger a tree is, the higher
probability one of it’s top level blocks will have of being
accessed and the higher chance a cached block will be used.
For the trees that fit a single (root) block, internal block
caching is not useful and clients will access the block directly.

V. EVALUATION

We performed a simple evaluation of query methods using
a custom made discrete event simulator implementing the
DEB-tree algorithm over 1000 virtual hosts. The simulation
ran queries over a collection of 10.000 documents with an
average size of 3KB. The Figure 3 shows the distribution of
keyword occurrences in the textual collection, depicting a Zipf
distribution.

The Figure 4 shows the cumulative distribution function
(CDF) of the number of block requests (messages) received at
hosts, according to the query optimizations used for a block

100 —
80 e / ———————— -
g 60 ["""""" / """""" E
3 :
I AQ [b E
/ inc
Lo L early |
20 / sort-loc --------
! /' sort-loc-cache
/ sort-glob
0 1 it 1 " 1 1 1
0 1000 2000 3000 4000 5000 6000 7000
Block Requests
Fig. 4. A cumulative distribution function (CDF) of the number of block

requests (messages received) on hosts for the different searching methods with
a block size of 32 items.

size of 32 items. A vertical line would represent a perfect
uniform distribution.

The worst result appears on the basic incremental method
(label inc), which traverses all trees in a breadth-first order.
It is followed by the early-pruning method (label early)
which improves the basic incremental method by stopping
the retrieval of further blocks that cannot contribute to the
final result set. We improve further by adding a keyword
term reordering (label sort-loc) that starts by accessing
smaller trees first and leaving larger trees to the end. This
term reordering works in conjunction with early-pruning to
interrupt block retrieval as soon as the final result set can be
computed.

The term reordering method was originally developed for
local knowledge, so we also simulated a variation (label
sort—glob) that supplied the client with the global index
keyword frequency. This experiment allowed us to determine
the maximum possible gain from using this heuristic, although
it cannot be used in real systems.

We implemented the cache procedure over the local term
re-ordering heuristic (label sort-loc—cache). When com-
paring it to the same query method without cache in Fig. 4
(label sort—-1oc), one observes that although cache reduced
the overall load, it was only marginally. This performance can
be explained by noticing that cache was operating only on
internal blocks, having no effect on leaf accesses. Since leafs
are not cached, the hosts storing leaf block data for popular
keywords are overloaded with requests and hence the high
number of messages received at some hosts. A query “flash
crowd” on leaf blocks could be handled directly by the DHT
layer [9].

VI. CONCLUSION

DHT systems provide scalable distributed data store solu-
tions with efficient object location and key balancing among
hosts. However, if a key is often accessed or if it holds a huge
data object, the associated host no longer receives a fit load.

This is often the case in real datasets and in particular when
constructing inverted indexes.

In this article we bring attention to the issue of balancing
storage and network resources among hosts and present a
system that adapts classical and proven techniques, Balanced
Trees, to a demanding distributed setting. The solution is
capable of storing an inverted index and maintaining load
balance between all hosts in the system.

We evaluated our algorithm on a concurrent simulated
environment with a textual reverse index, a highly skewed
dataset. The results show that query optimizations are capable
of balancing network load distribution on hosts, improving the
overall scalability.

REFERENCES

[1] A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates, “A pipelined
architecture for distributed text query evaluation,” Information Retrieval,
vol. 10, no. 3, pp. 205-231, 2007.

[2] R. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras, and F. Silvestri,
“Challenges on distributed web retrieval,” in IEEE 23rd International
Conference on Data Engineering, April 2007, invited Speaker.

[3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable Peer-To-Peer lookup service for internet applica-
tions,” in Proceedings of the ACM SIGCOMM’01 Conference, 2001,
pp. 149-160.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Proceedings of the 18th IFIP/ACM International Conf. on Distributed
Systems Platforms, Germany, 2001, pp. 329-350. [Online]. Available:
citeseer.nj.nec.com/article/rowstron01pastry.html

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content addressable network,” in Proceedings of the ACM
SIGCOMM’01 Conference, 2001, pp. 161-172. [Online]. Available:
citeseer.nj.nec.com/ratnasamyQ1scalable.html

[6] O. Gnawali, “A keyword-set search system for peer-to-peer networks,”
Master’s thesis, Massachusetts Institute of Technology, May 2002.

[71 P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyword searching,”
in Proceedings of the 4th ACM/IFIP/USENIX International Middleware
Conference, Brazil, 2003.

[8] C. Tang and S. Dwarkadas, “Hybrid global-local indexing for efficient
peer-to-peer information retrieval,” in Proceedings of First Symposium
on Networked Systems Design and Implementation, San Francisco, USA,
March 2004.

[9] V. Ramasubramanian and E. G. Sirer, “Beehive: O(1) lookup perfor-
mance for power-law query distributions in peer-to-peer overlays.” in
Proceedings of the 1st Symposium on Networked Systems Design and
Implementation (NSDI’04), March 2004, pp. 99-112.

[10] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load
balancing in structured p2p systems,” in Procs of the 2nd Intl. Workshop
on Peer-to-Peer Systems (IPTPS’03), Berkeley, USA, February 2003.

[11] D. Karger and M. Ruhl, “Simple efficient load balancing algorithms for
peer-to-peer systems,” in Proceedings of the 3rd International Workshop
on Peer-to-Peer Systems (IPTPS’04), Berkeley, CA, USA, February
2004.

[12] J. Stribling, J. Li, I. G. Councill, M. F. Kaashoek, and R. Morris,
“Overcite: A distributed, cooperative citeseer,” in Proceedings of the
3rd Symposium on Networked Systems Design and Implementation
(NSDI’06), 2006.

[13] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, J. Heller-
stein, and S. Shenker, “A case study in building layered dht applications,”
in Proceedings of the ACM SIGCOMM’05 Conference, 2005, pp. 97—
108.

[14] FE. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and 1. Stoica, “Towards
a common api for structured peer-to-peer overlays,” in Procs of the
2nd Int. Workshop on Peer-to-Peer Systems (IPTPS’03), Berkeley, USA,
February 2003.

[15] N. Lopes and C. Baquero, “Using distributed balanced trees over dhts for
building large-scale indexes,” University of Minho, Tech. Rep., October
2006.

[16] T. Johnson and P. Krishna, “Lazy updates for distributed search struc-
tures,” in Proceedings of the 1993 ACM SIGMOD Intl. Conf. on
Management of data (SIGMOD °93). New York, NY, USA: ACM,
1993, pp. 337-346.

[17] J.Li, B. Loo, J. Hellerstein, M. Kaashoek, D. Karger, and R. Morris, “On
the feasibility of peer-to-peer web indexing and search,” in Proceedings
of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03),
Berkeley, USA, February 2003.

